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Rejection and Importance Sampling based Perfect Simulation
for Gibbs hard-sphere models

Moka, S. B.
University of Queensland

Juneja, S.
TIFR, Mumbai

Mandjes, M. R. H.
University of Amsterdam

Abstract

Coupling from the past (CFTP) methods have been used to generate perfect samples from
finite Gibbs hard-sphere models, an important class of spatial point processes, which is a set of
spheres with the centers on a bounded region that are distributed as a homogeneous Poisson
point process (PPP) conditioned that spheres do not overlap with each other. We propose
an alternative importance sampling based rejection methodology for the perfect sampling of
these models. We analyze the asymptotic expected running time complexity of the proposed
method when the intensity of the reference PPP increases to infinity while the (expected) sphere
radius decreases to zero at varying rates. We further compare the performance of the proposed
method analytically and numerically with a naive rejection algorithm and popular dominated
CFTP algorithms. Our analysis relies upon identifying large deviations decay rates of the non-
overlapping probability of spheres whose centers are distributed as a homogeneous PPP.

Keywords: Exact Simulation, Dominated Coupling From The Past, Large Deviations, Non-
overlapping Probability.

1 Introduction

Perfect sampling, that is, generating unbiased samples from a target distribution (also referred to
as perfect simulation or exact sampling), is an important and exciting area of research in stochas-
tic simulation. In this paper, we introduce and investigate a novel methodology for generating
perfect samples of finite Gibbs hard-sphere models, which are an important family of Gibbs point
processes. Roughly, a Gibbs hard-sphere model can be described as a set of spheres such that
their centers constitute a Poisson point process on a bounded Euclidean space conditioned that no
two spheres overlap with each other. The proposed methodology combines importance sampling
(IS) and acceptance-rejection (AR) techniques to achieve substantial performance improvement in
certain important regimes of interest. In statistical physics, there is a large body of work related to
the Gibbs hard-sphere models; see, e.g., [35, 30, 1, 2, 28, 37, 24, 6]. These models are important also
in modelling adsorption of latexes or proteins on solid surfaces [40, 38, and references therein].
For the analysis of wireless communication networks, it is common to use the Gibbs hard-sphere
models to model base-stations in a cellular network because no two base-stations are to be nor-
mally placed closer than a certain distance from each other [39, 18]. Our results can be used to
assess the stationary behaviour of Code Division Multiple Access (CDMA) wireless networks.

Literature Review: The existing literature offers several perfect sampling methods for Gibbs
hard-sphere models. Among these, the dominated coupling from the past (dominated CFTP)
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methods are most prominent and they are based on the seminal paper by Propp & Wilson [36]; see
[27, 25, 22, 26]. Another well-known perfect sampling method for the Gibbs hard-sphere models
is called the backward-forward algorithm (BFA) by Ferrari et al. [12]; also see [23, 16]. To see
some of the applications of perfect sampling for these models, refer to [8, 7, 33]. For other related
literature on perfect sampling for spatial point processes, refer to [34, 19]. As mentioned in [16],
all the existing methods are, in some sense, complementary to each other. They take advantage
of an important property that the distribution of a Gibbs hard-sphere model can be realized as
an invariant measure of a spatial birth-and-death process, call it the interaction process. For exam-
ple, the main ingredient of the dominated CFTP method is to construct a birth-and-death process
backward in time starting from its steady-state at time zero such that it dominates the interaction
process, and then use thinning on the dominating process to construct coupled upper and lower
bound processes forward in time such that the coalescence of these two bounding processes as-
sures a perfect sample from the target measure, which is the invariant measure of the interaction
process. The BFA is based on the construction of the clan of ancestors that uses thinning of a dom-
inating process and extends the applicability to infinite-volume measures. A crucial drawback of
the naive AR and the dominated CFTP methods is that they are guaranteed to be efficient only if
the intensity of the Gibbs hard-sphere model is close to the intensity of the reference Poisson point
process; see [23] for details. In addition, most of the dominated CFTP methods suffer from the
so-called impatient-user bias (a bias that is induced when a user aborts long runs of the algorithm);
see [13], [14] and [41].

Our Contributions: Acceptance-rejection methods are free of the impatient-user bias and in-
volve neither thinning nor coupling (which are crucial for the other methods). Despite being an
obvious alternative to the existing methods, to the best of our knowledge, in the context of Gibbs
point processes, the use of AR methods is still largely unexplored (except brief discussions, e.g.,
in [15] and [23]). AR methods for Gibbs hard-sphere models are amenable to further algorith-
mic enhancements that may substantially decrease the expected running time of the algorithm.
The proposed methodology provides one such enhancement. To highlight the significance of the
proposed methodology, we compare its running time complexity with that of both the naive AR
and the dominated CFTP methods. This effectiveness analysis is based on our large deviations
analysis of the non-overlapping probability. A brief summary of our results is as follows.

• Our first key contribution is that we conduct a large deviations analysis of the probability
of spheres not overlapping with each other when their centers constitute a homogeneous
Poisson point process (PPP). More specifically, we consider a homogeneous marked PPP on
[0, 1]d with intensity λ where the points are the center of spheres with independently and
identically distributed (iid) radii as marks which are independent of the centers and identical
in distribution to R/λη for a positive bounded random variable R and a constant η > 0.
We establish large deviations of the probability of spheres do not overlap with each other,
as λ↗∞. This analysis is useful in the study of the asymptotic behavior of the expected
running time complexities of the proposed and the existing perfect sampling methods for
the Gibbs hard-sphere models. This analysis may also be of independent interest.

• Our second key contribution is that we propose a novel IS based AR algorithm for generating
perfect samples of the Gibbs hard-sphere model obtained by considering the homogeneous
marked PPP conditioned on no overlap of the spheres. This is achieved by partitioning the
underlying configuration space and arriving at an appropriate change of measure on each
partition. Applicability of the proposed algorithm is illustrated in two scenarios. In the first
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scenario, all the spheres are assumed to be of a fixed size (i.e., R is a fixed positive constant).
We develop a grid based IS technique under which spheres are generated sequentially such
that the chance of spheres overlapping is small and the corresponding likelihood ratio has a
better deterministic upper bound that improves the acceptance probability in each iteration
of the algorithm. In the second scenario, we consider the general case where spheres have
iid radii. In this scenario, we divide the underlying configuration space into two sets. On
one set, the sum of the volumes of spheres is bounded from below and on the other set,
the volume sum takes small values so that the set consists of rare configurations only. For
the first set, we develop a grid based IS method that is similar to the one stated above,
and for the second set, we use an exponential twisting on the sphere volume distribution. In
both the scenarios, the new method provably substantially improves the performance of the
algorithm compared to the naive AR method.

• We analytically and numerically compare the performance of the proposed IS based AR
method with that of some of the dominated CFTP methods. The numerical results support
our analytical conclusions that the proposed method is substantially efficient compared to
the existing methods over the high density regime where ηd ≤ 1 and λ is large.

Organization: Section 2 provides a definition of the hard-sphere model. The large deviations
of the non-overlapping probability is presented in Section 3. In Section 4, we first review a naive
AR method and analyze its expected running time complexity, and we then propose and analyze
the IS based AR method. In Section 5, a review of the well-known dominated CFTP methods for
the hard-sphere models is given. Section 6 illustrates the efficiency of the proposed methodology
using numerical experiments. Section 7 is a brief conclusion of the paper. All proofs are presented
in Appendix A.

2 Preliminaries

First we introduce some notation. X ∼ F denotes that the distribution of a random object X is F .
Poi(λ) and Bern(p) denote, respectively, Poisson distribution with mean λ > 0 and Bernoulli distri-
bution with success probability p. The uniform distribution on [0, 1] is denoted by Unif(0, 1). For an
event A, the indicator function I(A) is equal to 1 if A occurs, otherwise it is equal to 0. A measure
µ1 is absolutely continuous with respect to a measure µ2 on a measurable set A if µ1(B ∩ A) = 0
for any measurable B such that µ2(B ∩ A) = 0. For any probability measure µ, Pµ(A) denotes
the probability of an event A under µ, and Eµ[·] denotes the associated expectation. We drop the
subscript µ when it is not relevant. For any non-negative real valued functions f and g, write
f(x) = O(g(x)) if lim supx→∞ f(x)/g(x) ≤ c for some constant c > 0, write f(x) = Ω(g(x)) if
g(x) = O(f(x)), and write f(x) = o(g(x)) if lim supx→∞ f(x)/g(x) = 0. Write f(x) = Θ(g(x)) if
both f(x) = O(g(x)) and f(x) = Ω(g(x)) are true. For any real value x, the largest integer n such
that n ≤ x is denoted by bxc and the smallest integer n such that n ≥ x is denoted by dxe. The set
of all the non-negative integers is denoted by N0.

A random finite subset X = {X1, . . . , XN} of an observation window W ⊂ Rd is called a
Poisson point process (PPP) with a finite intensity measure ν on W if N ∼ Poi(ν(W )) and for every
n ∈ N0, conditioned on N = n, the points X1, . . . , Xn are iid with distribution ν(dx)/ν(W ). A PPP
on [0, 1]d is called λ-homogeneous PPP with intensity λ > 0 if the intensity measure ν(dx) = λ dx,
where dx is Lebesgue measure on W . To each point Xi of the λ-homogeneous PPP on [0, 1]d, we
associate a mark which is a non-negative number interpreted as the radius of a sphere centered
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at Xi. In particular, a λ-homogeneous marked PPP on [0, 1]d is a PPP on W = [0, 1]d × [0,∞) with
the intensity measure ν(dx× dr) = λdx× F (dr) where F is the distribution of each radius. That
is, the centers constitute a λ-homogeneous PPP on [0, 1]d which is independent of the radii, and
the radii are iid with distribution F . A realization of the marked PPP with n points is denoted by
x = {(y1, r1), . . . , (yn, rn)}, where ri ≥ 0 is the radius of the sphere centered at yi ∈ [0, 1]d. Define
G = ∪n∈N0Gn where

Gn =
{
x = {(y1, r1), . . . , (yn, rn)} : (yi, ri) ∈ [0, 1]d × [0,∞), for i = 1, . . . , n

}
.

Now we define a Gibbs hard-sphere model. Suppose that µ0 is the distribution of a λ-homogeneous
marked PPP as defined above with F being the distribution of R/λη for a constant η > 0 and a
non-negative random variable R. Let A ⊂ G be the set of all configurations with no two spheres
overlapping with each other. Then the distribution µ of the Gibbs hard-sphere model is absolutely
continuous with respect to µ0 with the Radon-Nikodym derivative given by

dµ

dµ0
(x) =

I (x ∈ A )

P(λ)
, x ∈ G , (1)

where the normalizing constant P(λ) is the non-overlapping probability given by

P(λ) = Pµ0 (X ∈ A ) . (2)

We refer to the Gibbs hard-sphere model as a torus-hard-sphere model if the boundary of the
underlying space [0, 1]d is periodic, that is, a sphere S(x, a) centered at x ∈ [0, 1]d with radius r is
defined by

S(x, r) =
{

(y1 mod 1, . . . , ydmod 1) : y = (y1, . . . , yd) ∈ Rd, ‖x− y‖ < r
}
,

where ‖ · ‖ is the d-dimensional Euclidean norm and ’mod’ denotes the modulo operation [9]. If
the boundary is not periodic, we refer to the model as a Euclidean-hard-sphere model.

From now onwards, the phrase ‘hard-sphere model’ refers to either of these two models and
we assume that R is bounded from above by a constant r > 0. In particular, if R is a constant, we
take r = R. Furthermore, we assume that 2r/λη < 1 to avoid certain trivial difficulties such as the
possibility of a sphere on the torus overlapping with itself.

3 Large Deviations Results

In this section, we obtain large deviations results for the non-overlapping probability P(λ). We
use these results for analyzing the running time complexity of both the naive and importance
sampling based acceptance-rejection methods. Hereafter, γ = πd/2/Γ(d/2 + 1), where Γ(·) is the
gamma function. Note that the volume of a sphere with radius r is given by γrd. Define m1 :=

E[(R+ R̂)d], where R̂ is independent and identical in distribution to R, and let

γ′ =

{
γ, if [0, 1]d is treated as the torus,
γ/2d, otherwise.

(3)
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Theorem 1. The non-overlapping probability P(λ) satisfies

lim
λ→∞

P(λ) =

{
1, if ηd > 2,

exp
(
−γm1

2

)
, if ηd = 2,

lim
λ→∞

[
1

λ2−ηd logP(λ)

]
= −γm1

2
, if 1 < ηd < 2,

and lim
λ→∞

[
1

λ
logP(λ)

]
= −1, if 0 < ηd < 1.

When ηd = 1, the limit δ := limλ→∞
[

1
λ logP(λ)

]
exists and −1 ≤ δ < 0. Furthermore, δ ↗ 0 if

γm1 ↘ 0, and δ ≤ −1
2

(
1− 1

γ′rd

)2
if R ≡ r and γ′rd > 1. In addition, for the torus-hard-sphere model,

lim
λ→∞

[
P(λ) exp

(γm1

2
λ2−ηd

)]
= 1, if 5/3 < ηd < 2.

An important and fundamental characteristic of a Gibbs point process is its intensity; see, for
example, [29, and references therein] and [5]. Roughly speaking, the intensity of a Gibbs point
process is the expected number of points of the process per unit volume. There is an interesting
connection between the regimes considered in Theorem 1 and the asymptotic intensity of the
torus-hard-sphere model. To see this, assume that each sphere has a fixed radius r/λη. Since the
underlying space is [0, 1]d, the intensity ρ(λ) of the model is exactly equal to the expected total
number of points in a realization of the model. Equivalently, we may consider the fraction of the
volume VF(λ) occupied by the spheres, given by VF(λ) = ρ(λ)γrdλ−ηd. For the torus-hard-sphere
model, the volume fraction VF(λ) is bounded from above by ρmaxγ, where ρmax is the closest
packing density defined by ρmax = limn→∞Nn/(n + 1)d, with Nn being the maximal number of
mutually disjoint unit radius spheres which are included in the hypercube [−(n+1/2), (n+1/2)]d;
see [29]. Proposition 1 describes asymptotic behavior of VF(λ) as λ→∞ for different values of ηd.
In particular, the regime with ηd > 1 is a low density regime while the regime with ηd < 1 is a high
density regime. In the high density regime, the intensity of the hard-sphere model is much smaller
than the intensity λ of the reference PPP.

Proposition 1. For the torus-hard-sphere model with a fixed radius R = r,

lim
λ↗∞

VF(λ)

γrdλ1−ηd = 1, if ηd > 1,

lim
λ↗∞

VF(λ) = ρmaxγ, if ηd < 1,

lim
λ↗∞

VF(λ) < ρmaxγ, if ηd = 1.

4 Acceptance-Rejection Based Algorithms

In Section 4.1, we present a naive acceptance-rejection (AR) algorithm for generating perfect sam-
ples of the hard-sphere model and analyze its expected running time complexity. We then proceed
to present and analyze our importance sampling (IS) based AR algorithm where the key idea is
to partition the configuration space G so that a well chosen IS technique can be implemented
on each partition. One such IS for the hard-sphere model is the reference IS presented in Sec-
tion 4.3 where spheres are generated sequentially such that, whenever possible, the center of each
sphere is selected uniformly over the region on [0, 1]d that guarantees no overlap with the existing
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spheres. However, generating samples from this IS measure can be computationally challenging
when d ≥ 2. The grid based IS introduced in Sections 4.4 and 4.5 overcomes this difficulty by
imitating the reference IS, and interestingly, it is more efficient than the reference IS.

In every algorithm presented in this paper, the running time complexity is calculated under the
assumption that checking overlap of a newly generated sphere with an existing sphere is done in a
sequential manner. That is, if there are n existing spheres, the expected running time complexity of
the overlap check is proportional to n. However, if enough computing resources are available, the
overlap check can be done in parallel so that its running time complexity is a constant. We omit the
discussion of this parallel overlap check because it is easy to modify the results to accommodate
the parallel case, and also the key conclusions of the paper do not change.

4.1 Naive AR Algorithm

Algorithm 1 is a naive AR algorithm for generating perfect samples of the Gibbs hard-sphere
model. The basic idea of the algorithm is standard [11], and its correctness is straightforward and
hence omitted.

Algorithm 1 Naive AR Method
1: repeat
2: Generate N ∼ Poi(λ)
3: X← ∅
4: if N 6= 0 then
5: i← 0
6: repeat
7: i← i+ 1
8: Generate Yi independently and uniformly distributed on [0, 1]d

9: Generate a copy Ri of R independently of everything else
10: X← X ∪ {(Yi, Ri/λη)}
11: until i = N or X /∈ A
12: end if
13: until X ∈ A
14: return X

Let TNAR be the expected running time complexity of Algorithm 1, where the running time
complexity denotes the number of elementary operations performed by the algorithm; every ele-
mentary operation takes at most a fixed amount of time. Note that the acceptance probability of
each iteration is P(λ). Then the expected total number of iterations of the algorithm is 1/P(λ).
Suppose Citr(λ) is the expected running time complexity of an iteration. Then,

TNAR =
Citr(λ)

P(λ)
. (4)

We now establish bounds on TNAR, and then establish its asymptotic behavior as λ↗∞ using
Theorem 1. In each iteration of Algorithm 1, spheres are generated in a sequential order until we
see an overlap or a configuration withN non-overlapping spheres. The key to prove Proposition 2
is to establish that the expected number of spheres generated per iteration is Θ

(
λmin{ηd,2}).
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Proposition 2. The expected running time complexity Citr(λ) of an iteration of the naive AR algorithm,
Algorithm 1, satisfies

Citr(λ) = Θ
(
λmin{ηd,2}

)
. (5)

Furthermore, the expected total running time TNAR satisfies:

TNAR =



Θ
(
λ2
)
, if ηd ≥ 2,

Θ
(
ληd exp

(
(γm1/2 + o(1))λ2−ηd

))
, if 1 < ηd < 2,

Θ
(
ληd exp (δλ)

)
, for some 0 < δ ≤ 1, if ηd = 1,

Θ
(
ληd exp

(
(1 + o(1))λ

))
, if 0 < ηd < 1.

Remark 1. From (5) and Theorem 1, we see that for large values of λ and for ηd < 2, TNAR is mainly
governed by P(λ), which can be very small for large λ. This suggests that any rejection based perfect
sampling algorithm with a significant improvement in the acceptance probability will have a significantly
improved running time complexity.

4.2 Importance Sampling Based Acceptance-Rejection Algorithm

A sequence of tuples
{

(Dn,k, µn,k, σn,k)
K
k=1

}
n∈N0

with some K ≤ ∞ is called stable IS sequence if

for each n ∈ N0, (Dn,k)
K
k=1 is a partition of Gn, and (µn,k)

K
k=1 a sequence of probability measures

such that µ0 is absolutely continuous with respect to µn,k on Dn,k ∩ A and the corresponding
likelihood ratio Ln,k(xn) := dµ0

dµn,k
(xn) satisfies

Ln,k(xn) ≤ σn,k ≤ 1, if xn ∈ Dn,k ∩A ,

for k = 1, . . . ,K. Under the stability condition, for every measurable subset B ⊆ G ,

µ(B) ∝ Pµ0(X ∈ B ∩A ) =
∑
n∈N0

e−λ
λn

n!

(
K∑
k=1

Pµ0 (Xn ∈ Dn,k ∩B ∩A )

)

=
∑
n∈N0

e−λ
λn

n!

(
K∑
k=1

Eµn,k
[
I (Xn ∈ Dn,k ∩B ∩A )Ln,k(Xn)

])

=
∑
n∈N0

e−λ
λnσ̃(n)

n!

(
K∑
k=1

σn,k
σ̃(n)

Eµn,k

[
I(Xn ∈ Dn,k ∩B ∩A )Ln,k(Xn)

σn,k

])

=
∑
n∈N0

λnσ̃(n)

n!

(
K∑
k=1

σn,k
σ̃(n)

Pµn,k
(
J = 1,Xn ∈ Dn,k ∩B ∩A

))
, (6)

where σ̃(n) :=
∑K

k=1 σn,k, U ∼ Unif(0, 1) and J ∼ Bern
(
Ln,k(Xn)
σn,k

)
. Let M be a non-negative inte-

ger valued random variable with the pmf defined by,

P (M = m) =
1

Cλ

λmσ̃(m)

m!
, m ∈ N0, (7)

where Cλ :=
∑∞

n=0
λnσ̃(n)
n! . The pmf (7) is well defined because E [σ̃(N)] is finite under the stability

condition. Now consider Algorithm 2.
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Algorithm 2 Importance Sampling Based AR method
1: repeat
2: Generate a sample of M with pmf (7)
3: Generate J1 with pmf P(J1 = k) = σM,k/σ̃(M), k = 1, . . . ,K
4: Generate a realization X of M points under the measure µM,J1

5: Generate J2 ∼ Bern

(
LM,J1 (X)I(X∈DM,J1∩A )

σM,J1

)
6: until J2 = 1
7: return X

Proposition 3. Algorithm 2 generates a perfect sample of the Gibbs hard-sphere model. Furthermore, let
N ∼ Poi(λ). Then the probability of accepting the configuration generated in an iteration of Algorithm 2
is given by

Pacc(λ) =
P(λ)

E[σ̃(N)]
. (8)

We omit the proof of Proposition 3 because the correctness easily follows from (6), and (8)
holds from the observation that

Pacc(λ) =
1

Cλ

∑
n∈N0

λnσ̃(n)

n!

(
K∑
k=1

σn,k
σ̃(n)

Eµn,k

[
Ln,k(Xn)

σn,k
;Xn ∈ Dn,k ∩A

])
.

Note that the expected number of iterations of Algorithm 2 is 1/Pacc(λ). Corollary 1 is an impor-
tant and trivial consequence of Proposition 3.

Corollary 1. For all stable IS sequences
{

(Dn,k, µn,k, σn,k)
K
k=1

}
n∈N0

with the same E[σ̃(N)] =
∑K

k=1 E [σN,k],

the expected number of iterations of Algorithm 2 is the same.

Suppose that C̃itr(λ) is the expected running time complexity of an iteration of Algorithm 2.
Then the expected total running time of the algorithm is given by

TISAR =
C̃itr(λ)E[σ̃(N)]

P(λ)
, (9)

where N ∼ Poi(λ). Recall that the acceptance probability of the naive AR method is P(λ). It is
reasonable to seek a valid stable IS sequence

{
(Dn,k, µn,k, σn,k)

K
k=1

}
n∈N0

so that C̃itr(λ)E[σ̃(N)] is

smaller than Citr(λ). In Subsections 4.4 and 4.5, we present applications of Algorithm 2 where
TISAR is indeed much smaller than TNAR.

Remark 2 (Extension of IS Based AR to General Gibbs Point Processes). Suppose that µ is the dis-
tribution of a Gibbs point process that is absolutely continuous with respect to µ0 with the correspond-
ing Radon-Nikodym derivative given by dµ

dµ0
(x) = exp(−β V (x))

Z , x ∈ G , where the constant β ∈ R is
known as inverse temperature, V is called non-negative potential function, and the normalizing con-
stant Z = Eµ0 [exp (−β V (X))]. If the stability condition holds true when I(xn ∈ A ) is replaced by
exp (−β V (xn)), then Algorithm 2 can generate perfect samples from µ if in line 5 of the algorithm,

J2 ∼ Bern

(
LM,J1(X) exp (−β V (X)) I (X ∈ DM,J1)

σM,J1

)
.

To see that the hard-sphere model is a special case of such a Gibbs point process, take β > 0 and assume that
V (x) = 0 if x is a non-overlapping configuration of spheres, otherwise, V (x) =∞.
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4.3 Reference Importance Sampling

We now introduce an IS measure, called reference IS and denoted by µ̃n for each n, so that
{(Gn, µ̃n, σn)}n∈N0

is a stable IS sequence (with K = 1) that can be used in Algorithm 2 for
generating perfect samples of the hard-sphere model for an appropriate choice of the sequence
{σn : n ∈ N0}. Under µ̃n, first generate iid sequence R1, . . . , Rn identical in distribution to R, and
then n spheres are generated sequentially as follows. Generate the center of the first sphere uni-
formly distributed on [0, 1]d. Suppose that i − 1 spheres are already generated. For the ith sphere
generation, a subset Bi ⊆ [0, 1]d is called blocking region if Bi is the largest set such that the cen-
ter Yi of the ith sphere falling in this region (that is, Yi ∈ Bi) would result in an overlap of the ith

sphere with one of the existing i−1 spheres. The center of the ith sphere is generated with uniform
distribution over the non-blocking region [0, 1]d \ Bi. If for any sphere i ≤ n, the entire space is
blocked (that is, Bi = [0, 1]d), we select the centers of spheres i, . . . , n arbitrarily. Figure 1 illustrates
this for d = 2 and n = 1, 2. In conclusion, µ̃n is the distribution of an output of Algorithm 3.

Algorithm 3 Reference Importance Sampling

1: Input: The total number of spheres n
2: X← ∅
3: if n 6= 0 then
4: B0 = ∅ and i← 0
5: repeat
6: i← i+ 1
7: Generate a copy Ri of R independently of everything else so far generated
8: if Bi = [0, 1]d then
9: Select the center Yi of the ith sphere arbitrarily over [0, 1]d

10: else
11: Identify the non-blocking region Bci
12: Generate Yi uniformly distributed over Bci
13: end if
14: X← X ∪ {(Yi, Ri/λη)}
15: until i = n
16: end if
17: return X

Observe that µ0 is absolutely continuous with respect to µ̃n on Gn ∩ A , and the associated
likelihood ratio satisfies

L̃n(xn) =
dµ0

dµ̃n
(xn) =

n∏
i=1

(
1−Bi

)
, (10)

for all xn ∈ Gn ∩A and n ∈ N0, where Bi is the volume of Bi and L̃0 = 1. Note that L̃n(xn) = 0 if
and only if xn /∈ A because for any xn /∈ A , there exists i ≤ n such that Bi = 1.

Observe that the blocking volume added by the ith sphere is at least γ′ (Ri/λη)d when it does
not overlap with any of the existing spheres. This is because, for the torus-hard-sphere model,
the entire volume within an accepted sphere is added to blocking volume, and for the Euclidean-
hard-sphere model, at least 1/2d fraction of an accepted sphere is added to the blocking volume.
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Figure 1: Illustration of the reference IS method for a Euclidean-hard-sphere model on [0, 1]2 with
spheres of fixed radius r/λη. In (a) (respectively, (b)), the grey region represents the blocking area
when generating the second circle (respectively, when generating the third circle).

Thus,

Bi ≥
γ′

ληd

i−1∑
j=1

Rdj , (11)

for every configuration xi−1 ∈ Gi−1 ∩A . In particular, if all the spheres are of the same size with
a fixed radius r,

I(xn ∈ A )L̃n(xn) ≤
n∏
i=1

(
1− (i− 1)

γ′

ληd
rd
)+

=: δn, (12)

for all n ∈ N0 and xn ∈ Gn, where x+ = max(0, x) and δ0 = 1. Then the stability condition is
satisfied with K = 1, Dn,1 = Gn, µn,1 = µ̃n and σn,1 = δn for n ∈ N0. Thus, Algorithm 2 generates
perfect samples of the fixed radius hard-sphere model, and from Proposition 3, the corresponding
acceptance probability

Pacc(λ) =
P(λ)

E[σ̃N ]
=
P(λ)

E[δN ]
.

Remark 3. When the dimension d = 1, spheres become line segments and thus it is easy to gener-
ate samples from the IS measure µ̃n. However, for d ≥ 2, generating samples under the reference
IS is difficult because every time a new sphere is generated, we need to know the volume of the
blocking region created by the existing spheres and then we need to generate a point uniformly on
this non-blocking region; see line 11 in Algorithm 3. One possible way to implement the reference
IS is by combining a well-known method called power tessellation and a simple rejection method
in two steps: i) Using the power tessellation, we can compute the blocking volumes exactly; see,

10



e.g, [4] and [32]. ii) Then, use a simple acceptance-rejection method where repeatedly a point
is generated independently and uniformly on [0, 1]d until it falls within the non-blocking region.
Unfortunately, implementing the power tessellation method is computationally prohibitive. Be-
sides, even if we have an efficient implementation of the power tessellation method, the above
simple rejection step can be expensive when the non-blocking region is small. Fortunately, we can
overcome both these difficulties by using a simple grid on [0, 1]d. From (9), it is evident that if
there are two IS methods with the same E[σ̃N ], it is computationally preferable to use the method
that has smaller per iteration expected running time, C̃itr(λ). In Subsection 4.4, we introduce a
hyper-cubic grid based IS method that continues to generate perfect samples while the blocking
regions are closely approximated by grid cells. With a careful choice of the cell-edge length, we
make sure that the inequality (12) holds for the grid IS as well (and thus, E[σ̃N ] is same as that of
the reference IS). As a consequence of Corollary 1, the expected iterations of Algorithm 2 is the
same as that of the reference IS method. However, the grid method is easy to implement and has a
much smaller expected iteration cost C̃itr(λ) compared to that of the reference IS. The choice of the
hyper-cubic grid is just an option as it simplifies the implementation. However, the method can
be implemented using other kinds of grids. In two dimensional case, for example, it is possible to
use a hexagonal grid for implementing the IS method.

4.4 Grid Based Importance Sampling for Fixed Radius Case

Consider the hard-sphere model with a fixed radius r/λη. Generation of n spheres under the fol-
lowing grid based IS measure µ̂n starts by partitioning the underlying space [0, 1]d into a hyper-
cubic grid with a cell-edge length ε > 0 such that 1/ε is an integer. The centers of the spheres
are generated in a sequential order: Suppose that i − 1 spheres with centers Y1, . . . , Yi−1 are al-
ready generated. At the time of ith sphere generation, a cell C in the grid is labeled as fully-blocked
if the cell is completely inside a sphere with radius 2r/λη centered at an existing point, that is,
C ⊆ S(Yj , 2r/λ

η) for some j ≤ i− 1; otherwise, the cell is labeled as non-fully-blocked. A non-fully-
blocked cell C is called partially-blocked if C ∩ S(Yj , 2r/λ

η) 6= ∅ for some j ≤ i − 1; otherwise,
it is called non-blocked. The center Yi of the ith sphere is selected uniformly over the non-fully-
blocked cells, because selecting Yi over a fully-blocked cell will certainly result in the ith sphere
overlapping with an existing sphere. We then check for overlap only if Yi is generated over a
partially-blocked cell, because the overlap is not possible if Yi is generated over a non-blocked
cell. If either there is an overlap or all the cells are fully-blocked by the existing spheres, the
centers Yi, . . . , Yn of the remaining spheres are selected arbitrarily (such a selection results in an
overlapping configuration). Otherwise, for the next sphere i + 1 generation, we repeat the same
procedure by relabeling the non-fully-blocked cells by considering spheres 1, . . . , i as the existing
spheres. Note that at the beginning of each iteration all the cells are labeled as non-blocked. Also
note that since all the spheres have the same radius, for relabeling of the cells, we only need to
focus on the cells that might interact with the last sphere generated. See Figure 2 for an illustration
of this sequential procedure.

Suppose that µ̂n is the probability measure under which n spheres are generated by the above
procedure. Then µ0 is absolutely continuous with respect to µ̂n on Gn ∩A and the corresponding
likelihood ratio

L̂n(xn) :=
dµ0

dµ̂n
(xn) =

n∏
i=1

(
1− B̂i

)
, xn ∈ Gn ∩A ,

11



Figure 2: A realization with 5 circles on the unit square [0, 1]2 generated using the grid based IS
method for a Euclidean-hard-sphere model with a fixed radius (smaller circles). The grid size is
50 × 50 and the radius is 0.1. The bigger circle around each point is the actual region blocked
by the circle. For the 6th circle generation, grey cells are fully-blocked, hatched cells are partially
blocked, and white cells are non-blocked.

where B̂i is the volume of fully-blocking cells for the ith sphere generation, that is, B̂i equal to
the product of the number of fully-blocked cells and εd. To apply Algorithm 2 for the fixed ra-
dius hard-sphere model, take K = 1 and for each n ∈ N0, take Dn,1 = Gn, µn,1 = µ̂n and σn,1 = δn.
Thus, σ̃(n) = δn and Ln,1(xn) = L̂n(xn) for all xn ∈ Gn ∩A .

Selection of the cell-edge length ε: Observe that the longest diagonal length of a cell is
√
d ε.

Since we focus only on the non-overlapping configurations, in the implementation, we generate
a sphere only if all the existing spheres are non-overlapping. Suppose that the cell-edge length ε
is selected so that

√
d ε ≤ r/λη. Then for the ith sphere generation, every cell that has non-empty

intersection with S(Yj , r/λ
η), for any j = 1, . . . , i− 1, has to be fully-blocked, because such a cell

is a subset of S (Yj , 2r/λ
η). Thus, the non-overlapping condition of the existing spheres imply that

∪i−1
j=1S(Yj , r/λ

η) is a subset of the union of the fully-blocked cells, and hence B̂i ≥ γ′(i−1)rd

ληd
. Thus,

for n ≥ 1,

I(xn ∈ A )L̂n(xn) ≤ δn =
n∏
i=1

(
1− (i− 1)

γ′rd

ληd

)+

, xn ∈ Gn. (13)
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This upper bound is same as that we obtained in the case of the reference IS; see the inequality
(12). Since the acceptance probability Pacc(λ) = P(λ)/E[δN ] is the same for both the grid IS and
the reference IS methods, we need to choose the cell-edge length ε ≤ r/λη so that the expected
per iteration running time C̃itr(λ) is minimum. It is easy to see that the higher the value of ε, the
smaller C̃itr(λ) due to the following reasons:

1. Labelling of the cells is faster if they are bigger in size;

2. Increase in the cell size increases the chances of overlap of the new sphere with the existing
spheres, and hence on average each iteration generates fewer spheres;

In conclusion, we choose ε = 1/bλη/rc for the implementation of the grid IS method.

To reduce the per iteration complexity of the algorithm, we make some changes to the steps
4 and 5 in Algorithm 2. Observe that a realization Xn generated under µ̂n is accepted only
if Xn ∈ A and J = 1, where J ∼ Bern

(
L̂n(Xn)/δn

)
. In the implementation, we generate an

iid sequence U1, . . . , Un ∼ Unif(0, 1) independent of everything else so far generated, and take
Ji = I

(
Ui ≤ 1−B̂i

(1−(i−1)γ′rdλ−ηd)

)
for i ≤ n. Since J and the product

∏n
i=1 Ji are Bernoulli random

variables with the same success probability L(Xn)/δn, to reduce the per iteration cost, we generate
the ith sphere only if Ji = 1 and the existing spheres do not overlap with each other.

Algorithm 4 implements the grid based IS for a given n with the above mentioned enhance-
ments. Algorithm 2 is restated as Algorithm 5.

Algorithm 4 Grid Based Importance Sampling for Fixed Radius

1: Input: The total number of spheres n ≥ 1 and a grid on [0, 1]d

2: Output: (X,Status) ∈ G × {True,False}. Where Status = True if X ∈ A and Status = False
otherwise

3: Label every cell as non-blocked
4: X← ∅, i← 0 and B̂ ← 0
5: repeat
6: i← i+ 1
7: Generate U ∼ Unif(0, 1)

8: if U > 1−B̂
1−(i−1)γ′rdλ−ηd

then
9: return (X,False)

10: else
11: Generate Yi uniformly distributed over the non-fully-blocked cells

(and independently of everything else so far generated)
12: if Yi is on a partially-blocked cell and there is an overlap then
13: return (X,False)
14: end if
15: Update the cell labels
16: Compute the volume B̂ of the fully-blocked cells
17: end if
18: X← X ∪ {(Yi, r/λη)}
19: until i = n
20: return (X,True)
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Algorithm 5 Perfect Sampling for hard-sphere model using Grid Based IS

1: Partition [0, 1]d into a hypercube grid with cell-edge length ε = 1/bλη/rc
2: repeat
3: Generate a sample of M with pmf (7)
4: if M = 0 then
5: (X,Status)← (∅,True)
6: else
7: Obtain an output (X,Status) from Algorithm 4 with M and the grid as input
8: end if
9: until Status = True

10: return X

Remark 4 (The pmf of M ). Note that, for the current setup, the pmf of M , given by (7), becomes
P (M = m) = 1

Cλ
λmδm
m! , m ∈ N0, where the normalizing constant Cλ =

∑
n∈N0

λnδn
n! . The support

of the pmf is finite because δm = 0 for all m ≥ ληd/(γ′rd) + 1. To increase the performance of the
algorithm, we can further truncate the support of the pmf. Using the maximum packing density,
we can obtain an integer mmax such that X /∈ A for all m ≥ mmax and configurations X with
|X| = m. In that case, we can take P (M = m) = 1

Cλ
λmδm
m! , 0 ≤ m ≤ mmax, with Cλ =

∑mmax
n=0

λnδn
n! .

For example, refer to [29] for finding maximum packing densities for d = 2 and d = 3.

We now focus on the expected running time analysis of Algorithm 5. By Proposition 3, the
acceptance probability Pacc(λ) of Algorithm 5 is P(λ)/E[σ̃(N)] = P(λ)/E[δN ]. A proof of Proposi-
tion 4 is given in Section A.4.

Proposition 4. For the fixed radius hard-sphere model, there exists a constant c > 0 such that

TISAR ≤ cE [δN ]
λmin{ηd,1}

P(λ)
, (14)

where N ∼ Poi(λ). Furthermore,

lim sup
λ↗∞

[
1

λ2−ηd logE [δN ]

]
≤ −γ

′rd

2
, if ηd > 1, and

lim sup
λ↗∞

[
1

λ
logE [δN ]

]
≤ −b, if 0 < ηd ≤ 1, for some constant b > 0.

The following result is a trivial consequence of Propositions 2 and 4.

Corollary 2. For the fixed radius hard-sphere model, if ηd ≥ 2, both TISAR and TNAR are of the same order,
and if 0 < ηd < 2, there exists a constant c > 0 such that TISAR ≤ cE [δN ] TNAR.

Remark 5 (Better choice of δn for the Euclidean-hard-sphere model). If the spheres are Euclidean,
further improvements in the choice of δn can be obtained by accounting for boundary effects.
For instance, for d = 2, the four corners of [0, 1]2 are covered by at most 4 circles, each of which
contributing a blocking area of at least γ′r2/λ2η = πr2/4λ2η, while each of the remaining circles
contributing a blocking area of at least 2γ′r2/λ2η = πr2/2λ2η. Let b0 = 0, bi = (i − 1) πr

2

4λ2η
for

1 ≤ i ≤ 5, and bi = πr2

λ2η
+ (i− 4) πr

2

2λ2η
for i ≥ 6. Then, for this particular scenario, a better choice of

δn in (12) (as well as in (13)) is δn =
∏n
i=1 (1− bn)+ , n ∈ N0.
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4.5 Random Radii Case

We now consider another application of Algorithm 2 for the hard-sphere model when under the
marked PPP the radii of the spheres are iid. For the fixed radius case presented in Section 4.4,
the proposed IS method ensured a uniform bound δn on the likelihood ratio over Gn for every
n ∈ N0, as shown in (13). Such upper bounds are possible for a random radii hard-sphere model
if the radii are bounded below by a positive constant. Furthermore, a similar analysis can be es-
tablished when the spheres are replaced with iid convex shapes such that each shape occupies a
minimum positive volume. However, when the radii are not bounded from below almost surely,
the associated blocking volumes can be arbitrarily small. We address this issue by partitioning
Gn into two sets Dn,1 and Dn,2 for each n so that the IS on Dn,1 is a grid based IS method that is
similar to Algorithm 4 and the IS on Dn,2 is obtained by exponentially twisting the distribution of
Rd to put high probability mass on configurations with lower volume spheres.

We first introduce the exponential twisting of the distribution, say G, of Rd. Recall that R
is assumed to be a bounded non-negative random variable. Without loss of generality further
assume that α := E[Rd] > 0. Thus the logarithmic moment generating function of Rd defined by
Λ(θ) := log

(
E
[
exp(θRd)

])
is finite for every θ ∈ R. Furthermore, the derivative

Λ′(θ) =
dΛ(θ)

dθ
=

E
[
Rd exp(θRd)

]
E [exp(θRd)]

is finite and positive for all θ ∈ R and in particular, Λ′(0) = α. In fact, using the results in Chapter 2
of [10], it can be seen that Λ(θ) is strictly convex. As a consequence, Λ′(θ) is strictly increasing and
hence

αmin := lim
θ→−∞

Λ′(θ) < α.

Let θ̂ be such that Λ′(θ̂) = % for some % ∈ (αmin, α). Therefore, θ̂ < 0. Now consider the distribution
G̃ obtained by exponentially twisting G by the amount θ̂, that is, dG̃(t) = exp

(
θ̂t− Λ(θ̂)

)
dG(t).

Fix a constant a ∈ (0, 1) and for each integer n ≥ 1, define

Hn :=

(t1, t2, . . . , tdnae) ∈ Rdnae+ :
1

dnae

dnae∑
i=1

ti < %

 .

We later see that a = 1/2 is a good choice for increasing performance of the algorithm. Let Λ∗(·) be
the Legendre-Fenchel transform of Λ, that is, Λ∗(t) = supθ∈R{θt− Λ(θ)}. This corresponds to the
large deviations rate function associated with the empirical average of iid samples from G. From
the definition of θ̂ and the fact that Λ(θ) is strictly convex, Λ∗(%) = θ̂%− Λ(θ̂) > 0. Since θ̂ < 0, for
all (t1, t2, . . . , tdnae) ∈ Hn,

exp

θ̂ dnae∑
i=1

ti − dnaeΛ(θ̂)

 = exp

θ̂ dnae∑
i=1

(ti − %) + dnaeΛ∗(%)


≥ exp (dnaeΛ∗(%)) ,

and thus,

dnae∏
i=1

dG

dG̃
(ti) ≤ exp (−dnaeΛ∗(%)) ≤ exp (−naΛ∗(%)) . (15)
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Recall the definition of the distribution µ of the hard-sphere model given by (1). To apply
Algorithm 2, select K = 2 and define

Dn,1 =
{
xn = {(x1, r1/λ

ηd), . . . , (xn, rn/λ
ηd)} ∈ Gn : (rd1 , . . . , r

d
dnae) ∈ H

c
n

}
,

and Dn,2 = Gn \Dn,1, for each n where Hc
n is the complement of Hn within [0, r]dnae. To apply Al-

gorithm 5, we are now left with identifying the IS measures µn,1 and µn,2, and the corresponding
bounds σn,1 and σn,2 for each n ∈ N0.

The measure µn,1 on Dn,1 is again a grid based IS method similar to the grid method intro-
duced for the fixed radius case in Subsection 4.4. First, iid copies {R1, . . . , Rn} of R are generated.
Then, we construct a new grid and label each cell every time a new sphere is generated as follows.
For the generation of the ith sphere with radiusRi/λη, we take the cell-edge length ε = 1/dλη/Rie.
A cell C in the grid is labeled as fully-blocked if C ⊆ S(Xj , (Rj +Ri)/λ

η) for an existing sphere
j ≤ i− 1 with the center Xj and the radius Rj/λη; otherwise, the cell is labeled as non-fully-
blocked. A non-fully-blocked cell C is called partially blocked if C ∩ S(Xj , (Rj +Ri)/λ

η) 6= ∅ for
some j ≤ i− 1; otherwise, it is called non-blocked. Then the next centerXi is generated uniformly
over the non-fully-blocking cells. Just like in the case of fixed radius, X1 is generated uniformly
over [0, 1]d and we check the possibility of the overlap of ith sphere with an existing sphere only if
Xi falls on a partially-blocked cell.

The measure µ0 is absolutely continuous with respect to µn,1 on Dn,1 ∩A and the associated
likelihood ratio Ln,1 is given by

Ln,1(xn) =
n∏
i=1

(
1−Bi

)
, xn ∈ Dn,1 ∩A ,

where B̂i is the volume of all the fully-blocked cells for the ith sphere generation. By (11) and
the fact that the cell-edge length is 1/dλη/Rie, we have Bi ≥ min

(
1, γ

′dnae
ληd

%
)

on Dn,1 ∩A for all

i ≥ dnae+ 1 because 1
dnae

∑dnae
j=1 R

d
j ≥ % over the set Hc

n. Consequently,

I(xn ∈ A )Ln,1(xn) ≤

[(
1− γ′dnae

ληd
%

)+
]n(1−a)

=: σn,1, xn ∈ Dn,1.

The measure µn,2 is induced by the following procedure: Generate iid samples Rd1, . . . , R
d
dnae

from G̃, and independently of this, generate iid samples Rddnae+1, . . . , R
d
n from G. For i = 1, . . . , n,

the radius of the ith sphere is Ri/λd and the center generated uniformly distributed over the non-
blocking region created by the existing i − 1 spheres. Since Rd1, . . . , R

d
dnae are sampled from G̃, by

(15),

I(xn ∈ A )Ln,2(xn) =

dnae∏
i=1

dG

dG̃
(rdi ) ≤ exp (−naΛ∗(%)) =: σn,2, for all xn ∈ Dn,2.

In summary,
{

(Dn,k, µn,k, σn,k)
2
k=1

}
n∈N0

is a stable IS sequence, and hence Algorithm 2 gen-

erates perfect samples from µ. However, to reduce the per iteration complexity (as in the fixed
radius case), we make some modification to the algorithm. Algorithm 6 is similar to Algorithm 4
and Algorithm 2 is restated as Algorithm 7.
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Algorithm 6 Grid Based Importance Sampling for Random Radii Case

1: Input: The total number of spheres n ≥ 1
2: Output: (X,Status) ∈ G × {True,False}. Where Status = True if X ∈ A and Status = False

otherwise
3: i← 0
4: X← ∅
5: repeat
6: i← i+ 1
7: Generate a copy Ri of R independently of everything else so far generated
8: Construct a grid on [0, 1]d with the cell-edge length ε = 1/dλη/Rie
9: Identify the label of each cell in the new grid

10: Compute the volume B̂ of the fully-blocked cells and generate U ∼ Unif(0, 1)

11: if U > 1−B̂
(1−γ′dnae%λ−ηd)

1−a then

12: return (X,False)
13: else
14: Generate Yi uniformly distributed over the non-fully-blocked cells

(and independently of everything else so far generated)
15: if Yi is on a partially-blocked cell and there is an overlap then
16: return (X,False)
17: end if
18: end if
19: X← X ∪ {(Yi, Ri/λη)}
20: until i = n
21: return (X,True)

Algorithm 7 Perfect Sampling for hard-sphere model with Random Radii
1: repeat
2: Generate a sample of M with pmf (7)
3: Generate J with pmf P(J = k) = σM,k/σ̃(M), k = 1, 2
4: if J = 1 then
5: Obtain an output (X,Status) of Algorithm 6 with M as input
6: else
7: Generate X under µM,2

8: if Bern
(
LM,2(X)I(X∈DM,2∩A )

σM,2

)
= 0 then

9: Status← False
10: end if
11: end if
12: until Status = True
13: return X

We now focus on the running time complexity of Algorithm 7. Notice that σ̃(n) = σn,1 + σn,2
for each n ∈ N0. By Proposition 3, Pacc(λ) = P(λ)/E [σ̃(N)] with N ∼ Poi(λ). Observe that
σn,1 ≤ exp

(
−γ′n2 a(1−a)

ληd
%
)

. The proof of Proposition 4 can be extended to the current scenario to
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show that

lim sup
λ↗∞

[
1

λ2−ηd logE [σN,1]

]
≤ −γ′ a(1− a)%, if ηd > 1, and

lim sup
λ↗∞

[
1

λ
logE [σN,1]

]
≤ −b, if 0 < ηd ≤ 1, for some constant b > 0.

It is now clear that a good choice for a is 1/2 because it maximizes a(1 − a). Furthermore, using
the moment generating function of Poisson random variables, we have

E [σN,2] ≤ exp
(
−λ
(

1− e−Λ∗(%)/2
))

.

Recall that TISAR ≤ E [σ̃(N)] C̃itr(λ)/P(λ). The per iteration complexity C̃itr(λ) mainly determined
by relabelling of cells in the new grid for each sphere generation. The grid size for the ith sphere
generation is an order of ληd/Rdi and the total number of spheres generated in each iteration
is at most an order of λmin{ηd,1}. Therefore, for ηd ≤ 2, we can show that C̃itr(λ) is of order
λmin{ηd,1}E[1/Rd].

Remark 6. If % is selected to equal argmin%∈(αmin,α) (σn,1 +σn,2) for each n = 1, 2, . . . , then E [σ̃(N)]
is minimum. Note that σn,1 decreases and σn,2 increases as functions of %. The above decomposi-
tions were chosen to illustrate ideas simply. More complex decompositions are easily created for
further performance improvement. For instance, we could have defined Hn above as

Hc
n :=

{
(r1, . . . , rn) ∈ Rn+ :

1

m

m∑
i=1

ri ≥ %m, ∀m ≤ n

}
,

and then arrived at appropriate {%m}m≤n and appropriate changes of measures for configurations
in Hn and Hc

n. While this should lead to substantial performance improvement, it also signifi-
cantly complicates the analysis.

5 Dominated CFTP Methods

In this section, we review some of the well-known dominated CFTP algorithms for the hard-
sphere models. We refer to [27] for a general description of the dominated CFTP for Gibbs point
processes (this method was first proposed for area-interaction processes by Kendall [25]).

Let D = {D(t) : t ∈ R} be the so-called dominating birth-and-death process on [0, 1]d with
births arriving as a Poisson process with rate λ, where each birth is a uniformly and indepen-
dently generated marked point on [0, 1]d that denoting the center of a sphere with the mark being
its radius. Each birth is alive for an independent random time exponentially distributed with
mean one. It is well known that the steady-state distribution of D is µ0. Furthermore, it is easy to
generate the dominating process D both forward and backward in time so that D(t) ∼ µ0 for all t.
To see this, let · · · < t−2 < t−1 < 0 < t1 < t2 < . . . be the event instants of the process D, where an
event can be either a birth or a death. Assume that with each birth there is an additional mean one
exponentially distributed independent mark to determine its life time. Since the births are arriving
as a Poisson process, the interarrival times are exponential with mean 1/λ. Generate D(0) ∼ µ0,
determine the next event instant t1 and take D(t) = D(0) for 0 ≤ t < t1. If the next event is a birth,
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generate a new independent (marked) point; otherwise, remove the existing point with the small-
est lifetime. Continue the same procedure starting with D(t1) to generate the process over [t1, t2),
and so on. For generating the dominating process D backward in time, observe that D is time-
reversible, and hence we can generate {D(t) : −T ≤ t ≤ 0} for any finite T > 0 just by generating
an independent copy {D̃(t) : 0 ≤ t ≤ T} of the dominating process {D(t) : 0 ≤ t ≤ T} and taking
D(−t) = D̃(t) for 0 ≤ t ≤ T .

Since the distribution µ of the hard-sphere model is absolutely continuous with respect to
µ0, using coupling, it is possible to construct a spatial birth-and-death process Z = {Z(t) : t ∈ R},
called the interaction process, such that Z(t) ⊆ D(t) and Z(t) ∼ µ for all t ∈ R; see [27]. Each itera-
tion of any dominated CFTP method essentially involves the following two steps:

1. Fix n > 0 and construct {D(t) : t−n ≤ t ≤ 0} backward in time starting at time zero with
D(0) ∼ µ0

2. Then, as detailed in Sections 5.1-5.3, use thinning on the dominating process {D(t) : t−n ≤
t ≤ 0} to obtain an upper bounding process {Un(t) : t ≥ t−n} with Un(t−n) = D(t−n) and a
lower bounding process {Ln(t−n) : t ≥ t−n}with Ln(t−n) = ∅ forward in time such that for
t ≥ t−n, Ln(t) ⊆ Z(t) ⊆ Un(t) ⊆ D(t) and Lm(t) ⊆ Ln(t) ⊆ Un(t) ⊆ Um(t) for m ≤ n.

If Un and Ln coalescence at time 0, that is, Un(0) = Ln(0), then Un(0) is a perfect sample from
the target distribution µ. If there is no coalescence, then repeat the steps by increasing n and
extending the dominating process {D(t) : −t−n ≤ t ≤ 0} further backward to time t−n and repeat
the same procedure. It is well known that a good strategy for increasing n is doubling it after every
iteration. The criteria for thinning depends on the coupling used for constructing Z. However, the
dominating process D depends only on λ. In summary, a dominated CFTP algorithm is described
by Algorithm 8.

Algorithm 8 Dominated CFTP

1: Generate {D(t) : t−1 ≤ t ≤ 0}with D(0) ∼ µ0

2: n← 1
3: repeat
4: n← 2 ∗ n
5: Extend D backwards from {D(t) : t−n/2 ≤ t ≤ 0} to {D(t) : t−n ≤ t ≤ 0}
6: Construct {Ln(t) : t−n ≤ t ≤ 0} and {Un(t) : t−n ≤ t ≤ 0}
7: until Ln(0) = Un(0)
8: return Ln(0)

Consider the backward coalescence time N∗ = min {n ∈ N0 : Ln(0) = Un(0)}. The average run-
ning time complexity of Algorithm 8 depends on the number of operations involved within N∗,
which further depends on the construction of the interaction process and the bounding processes.
At each iteration, the length of the dominating process D is doubled on average backwards in time.
Hence, on average the running time complexity doubles at each iteration. From the definition of
N∗, the length of the last iteration is 2dlog2N

∗e ≥ N∗. Let Nf = min {n ∈ N0 : L0(tn) = U0(tn)} be
the forward coalescence time. Due to the reversibility of the dominating process, it can be shown
that N∗ and Nf are identical in distribution [3], and hence the expected computational effort for
constructing the dominating, upper bounding and lower bounding processes up to the forward
coalescence time Nf , starting from time 0, is a lower bound on the expected running time of the
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algorithm.

Below we consider three dominated CFTP methods applicable for the hard-sphere models.

5.1 Method 1

This method is based on [27]. Note that the Papangelou conditional intensity of the hard-sphere
model is given by

`(x, x) :=
I (x ∪ {x} ∈ A )

I (x ∈ A )
= I (x ∪ {x} ∈ A ) , (16)

with the convention that 0/0 = 0. The interaction process Z = {Z(t) : t ∈ (−∞,∞)} is constructed
as follows: Suppose x is a birth to D that sees Z in a state x ∈ G . Then x is added to Z if and only
if `(x, x) = 1. Every death in D reflects in Z, that is, if there is a death of a point y in D, then y is
removed from the process Z as well if it is present. It can be shown that µ is the unique invariant
probability measure of Z; see, e.g., [16] or [12].

For each n ≥ 1, the bounding processes are constructed as follows: As mentioned earlier take
Ln(t−n) = ∅ and Un(t−n) = D(t−n). Suppose that xl = Ln(ti) and xu = Un(ti) for −n ≤ i < 0,
then assign Ln(t) = xl and Un(t) = xu for ti < t < ti+1. In case it is a birth x in the dominating
process D at time ti+1, set Ln(ti+1) = xl ∪{x} if `(xu, x) = 1; otherwise, it will remain unchanged,
that is, Ln(ti+1) = xl. Similarly, set Un(ti+1) = xu ∪ {x} if `(xl, x) = 1; otherwise, set Un(ti+1) =
xu. Every death in the dominating process reflects in both lower and upper bound processes. Note
that a birth is accepted by the lower bounding process if the resulting state of the upper bounding
process is in A . Similarly, a birth in D is accepted in the upper bounding process if the resulting
state of the lower bounding process is in A .

Theorem 2. The expected running time complexity TDC1 of the above dominated CFTP algorithm satisfies

TDC1 ≥ c
λ

P(λ)
, (17)

for some constant c > 0. In particular,

TDC1 =


Ω
(
λ
)
, if ηd ≥ 2,

Ω
(
λ exp

((
γµ1

2 + o(1)
)
λ2−ηd

))
, if 1 < ηd < 2,

Ω
(
λ exp

((
1 + o(1)

)
λ
))

, if 0 < ηd ≤ 1.

As highlighted by the numerical results in Section 6, the lower bound (17) is a loose bound,
because the bound is established by considering the running time complexity only up to the time
at which the lower bounding process receives its first arrival. This can be much smaller than the
running time complexity until the coalescence of the upper and lower bound processes.

5.2 Method 2

This method is an improved version of Method 1, again based on [27]. Observe that at any
given time t ∈ R, the interaction process Z(t) can have only non-overlapping spheres. This
suggests a better way of constructing the bounding processes that we describe now. For each
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n ≥ 1, just like in Method 1, start with Ln(t−n) = ∅ and Un(t−n) = D(t−n) to guarantee that
Ln(t−n) ⊆ Z(t−n) ⊆ Un(t−n). Suppose that the event at ti+1 is an arrival of sphere x. Irrespective
of whether Un(ti) ∈ A or not, if x is not overlapping with any sphere in the upper bounding pro-
cess Un(ti), then it can not overlap with any sphere in Z(ti) and hence is accepted to Z. Thus, we
add x to both the bounding processes. (Observe that in Method 1, such an x is added to both the
bounding processes only if Un(ti) ∈ A because of the Papangelou conditional intensity (16).) If x
overlaps with any sphere in the lower bounding process Ln(ti), then it must overlap with a sphere
in Z(ti) as well, and hence it is not added to any of the bounding processes L and U. If x does
not overlap with any sphere in Ln(ti), but does overlap with a sphere in Un(ti), its presence in
the process Z cannot be ruled out, and hence we keep it in the upper bounding process, but not in
the lower bounding process. Finally, every death in D is reflected in both the bounding processes
Ln and Un. Under this construction, the lower bounding process accepts births more often and
hence the upper bounding process accepts births less often when compared with the construction
in Section 5.1. As a result the running time of Method 2 is shorter than that of Method 1.

5.3 Method 3

A different approach for dominated CFTP for repulsive pairwise interaction processes has been
proposed by Huber [22]. Here, we discuss main ingredients of the method for hard-sphere model;
refer to [22] and [23] for more details. In this method, the interaction process Z is different from Z
in Sections 5.1-5.2 and is known as spatial birth-death swap process whose invariant distribution
is again the distribution µ of the hard-sphere model. In addition to births and deaths of spheres,
this process also allows swap moves; here a swap move is an event where an existing sphere is
replaced by an arrival if it is the only sphere that is overlapping with the arrival. The lower
and upper bounding processes are constructed as follows: As usual let Un(t−n) = D(t−n) and
Ln(t−n) = ∅. For any 0 < k < n, if t−k is an instant of a death in the dominating process D(t) then
the death is reflected in both the upper and lower bound processes. Now suppose that x ∈ D(t−k)
is born at t−k.

Case 1: If no sphere in Un(t−k) is overlapping with x, then the arrival sphere x is added to
both Un(t−k) and Ln(t−k). If only one sphere y in Un(t−k) is overlapping with x, then y is
removed from Un(t−k) (from Ln(t−k) if it is present) and x is added to both Un(t−k) and
Ln(t−k).

Case 2: There are at least two spheres in Ln(t−k) overlapping with x. Then x is rejected by
both Un(t−k) and Ln(t−k).

Case 3: There is at most one sphere in Ln(t−k) and at least two spheres in Un(t−k) overlap-
ping with x. Then x is added to Un(t−k) (but not to Ln(t−k)). If y ∈ Ln(t−k) is the one that
is overlapping with x, then remove y from Ln(t−k).

6 Simulations

We compare the performance of all the methods discussed in this paper using numerical experi-
ments, and illustrate the effectiveness of the proposed IS based AR method over certain regimes
where the other methods fail to work. For this, we consider the torus-hard-sphere model with a
fixed radius r/λη on 2-dimensional square [0, 1]2. Thus, ηd = 2η. In the first two experiments, by
fixing values of η and r, we estimate the complexities of the algorithms as a function of the inten-
sity λ of the reference PPP by computing a sample average of the number of spheres (or, circles
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in this case) generated per generation of a perfect sample of the hard-sphere model. Instead of
estimating the expected running time complexities, we take this approach to keep the discussion
independent of the underlying data structures and programming language used in the implemen-
tation of the algorithms. In addition, we estimate the non-overlapping probability P(λ) using the
conditional Monte Carlo rare event estimation for Gilbert graphs proposed by [20]. The Gilbert
graph under consideration is a random graph where the nodes constitute a λ-homogeneous PPP
on [0, 1]2 and there is an edge between two points if they are within a distance of 2r/λη. Therefore,
P(λ) is the probability that there are no edges in the graph. The codes for all the methods discussed
in this paper are available at https://github.com/saratmoka/PerfectSampling HardSpheres.

For the implementation of the proposed IS based AR method, the grid is constructed using the
cell-edge length ε = 1/bλη/rc; see Section 4.4 for more details on the cell-edge length selection.
The complexities of the algorithms are estimated using 1000 samples. In the simulation results
presented below, ŜNAR and ŜISAR denotes the sample means of complexities of the naive AR and
the IS based AR algorithms. Likewise, ŜDCM1, ŜDCM2 and ŜDCM3 are the corresponding estimates
for the three dominated CFTP methods 1, 2, and 3 presented in Section 5, respectively.

A standard software used for generating perfect samples of the hard-sphere model using
the dominated CFTP is rHardcore(), which is a part of R package Spatstat that is available at
https://spatstat.org/. Experiment 3 provides a perspective on the performance of the proposed
method with respect to rHardcore() by comparing their expected running times as a function of r
for a fixed λ. We note that rHardcore() does not support the torus-hard-sphere model. However,
when selected ”expand=TRUE”, it reduces the boundary effects by generating a perfect sample
on a larger window, and then clipping the result to the original window [0, 1]2.

Figure 3: Log of the expected number of points generated per a perfect sample of the hard-sphere
model, as a function of λ, in the regime where η = 0.5, d = 2, and r = 1.

Experiment 1: In this experiment, we consider the high density regime. Figure 3 compares the
performance of all the algorithms for η = 0.5 (that is 2η = 1) and r = 1 (this is identical to the
regime where the underlying space is [0,

√
λ]2 and the radius of each sphere is r). This experiment

suggests that the proposed IS based AR method can perform significantly better than every other
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method. To comprehend the rarity of the samples of the hard-sphere configurations under µ0, we
plot logP(λ) in Figure 4 and the expected intensity of the hard-sphere model in Figure 5.

Figure 4: logP(λ) vs λ in the regime where η = 0.5, d = 2, and r = 1, where the non-overlapping
probabilityP(λ) is estimated using the conditional Monte Carlo method proposed in [20]. The plot
shows that, in the high density regime, the configurations with hard-spheres can be extremely rare
under the measure µ0.

Significance of the proposed IS method in the high density regime is more evident when
η = 0.25 (that is, 2η = 0.5) and r = 1. In this case, for values of λ greater than 50, almost all
the times all the dominated CFTP algorithms terminated without giving an output. In particular,
the rHardcore function terminated by producing the error: memory exhausted (limit reached?). On
the other hand, the time taken (in secs) for generating 1000 samples using the proposed method
are 0.13, 0.21, 68.94 and 271.72, when λ values are 50, 100, 200, 300 and 400, respectively.

Figure 5: The intensity of the hard-sphere model against λ in the regime where η = 0.5, d = 2, and
r = 1. Due to extreme rarity of the hard-sphere configurations under µ0 as shown in Figure 4, the
intensity of the hard-sphere model is much smaller than the intensity λ of the PPP.
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Experiment 2: In this experiment, we consider the low density regime. Figure 6 compares the
performances of all the methods for 2η = 1.5 and r = 0.5 to illustrate the case where 1 < ηd < 2.
As we can see, for large values of λ, the dominated CFTP methods 2 and 3 perform better than
the other methods, including the proposed method. Figure 7 is a plot of logP(λ) against λ while
Figure 8 is a plot of the intensity of the hard-sphere model against λ.

Figure 6: Log of the expected number of points generated per a perfect sample of the hard-sphere
model, as a function of λ, in the regime where η = 0.75, d = 2, and r = 0.5.

Figure 7: logP(λ) vs λ in the regime where η = 0.75, d = 2, and r = 0.5, where the non-
overlapping probability P(λ) is estimated using the conditional Monte Carlo method proposed
in [20]. Here we notice that the hard-sphere configurations are relatively less rare compared to the
scenarios in Experiment 1.

Experiment 3 Figure 9 compares the running times of the proposed IS based AR method and
rHardcore() for generating 1000 samples. The same computer is used for running both the soft-
wares. Here, we vary r while fixing λ = 50 and 2η = 1. Observe that for large values of r the
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Figure 8: The intensity of the hard-sphere model against λ in the regime where η = 0.75, d = 2,
and r = 0.5. Unlike in Experiment 1, the intensity of the hard-sphere model is relatively close to
the intensity λ of the PPP.

density is higher, and the proposed method performs far better than the dominated CFTP. As
we expect for this regime, as the radius r increasing, the intensity of the hard-sphere model is
decreasing (Figure 11) while the rarity of the hard-sphere configurations under µ0 is increasing
(Figure 10).

Figure 9: Comparison between the running times of the proposed IS based AR method and rHard-
core() for generating 1000 samples
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Figure 10: logP(λ) vs r in the regime where η = 0.5, d = 2, and λ = 50, where the non-overlapping
probability P(λ) is again estimated using the conditional Monte Carlo method.

Figure 11: Intensity of the hard-sphere model against r in the regime where η = 0.5, d = 2, and
λ = 50.

7 Conclusion

In this paper we considered the problem of perfect sampling for Gibbs hard-sphere models on
[0, 1]d. We discussed the performance of the naive acceptance-rejection method and introduced
importance sampling based enhancements to it. We also compared these methods to some of
the popular coupling from the past based techniques prevalent in the existing literature. For the
performance analysis and comparison (of expected running time complexity), we developed an
asymptotic regime where the intensity λ of the reference Poisson point process increased to infin-
ity, while the (random) volume of each sphere is an order of λ−ηd decreased to zero, for different
regimes of ηd > 0. One main conclusion is that while the dominated coupling from the past meth-
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ods perform better for 1 < ηd < 2 for large λ, our importance sampling based methods provide
a significant improvement for ηd ≤ 1. Enroute, we established large deviations results for the
probability that spheres do not overlap with each other when their centers constitute a Poisson
point process. We also conducted numerical experiments to validate our asymptotic results.

The proposed importance sampling based acceptance-rejection methods rely on clever parti-
tioning of the underlying configuration space and arriving at an appropriate change of measure
on each partition. While we showed how this may be effectively conducted for hard-sphere mod-
els, further research is needed to develop effective implementations for perfect sampling from a
broad class of Gibbs point processes.
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Appendix A Proofs

The following lemmas are useful for proving Theorem 1, Proposition 2 and Proposition 4. Lemma 1
is a standard Chernoff bound for Poisson random variables and Lemma 2 is Hoeffding’s inequal-
ity for U -statistics [21].

Lemma 1 (Chernoff bound for Poisson). Let N ∼ Poi(λ). Then, for any 0 < ε < 1,

P (N ≤ (1− ε)λ) ≤ exp

(
−λε

2

2

)
and P (N ≥ (1 + ε)λ) ≤ exp

(
−λε

2

3

)
.

Lemma 2 (Hoeffding, 1963). Suppose that ξ1, ξ2, . . . , ξn are iid random variables and g : Rk → [0, 1] is
a measurable function. Set

Zn =
∑

1≤i1<i2<···<ik≤n
g (ξi1 , ξi2 , . . . , ξik)

for a positive integer k ≤ n (this is known as a U -statistics of order k). Then, for any ε > 0,

P
(
Zn ≥

(
n

k

)(
E[g(ξ1, ξ2, . . . , ξk)] + ε

))
≤ 2 exp

(
−2bn/kcε2

)
.

The same estimate holds for P
(
Zn ≤

(
n
k

)(
E[g(ξ1, ξ2, . . . , ξk)]− ε

))
.

A.1 Proof of Theorem 1

Recall that λ > 0, η > 0, and R1
λη , . . . ,

Rn
λη are the radii of n spheres whose respective centers

Y1, . . . , Yn are independently and uniformly generated on the d-dimensional unit cube [0, 1]d,
where R1, . . . , Rn are iid positive random variables bounded from above by a constant r and
are independent of Y1, . . . , Yn. Define mi := E

[
(R1 +R2)id

]
, for all i = 1, 2, . . . . Let Pn(λ) be

the probability that these n spheres do not overlap with each other. Since the number of spheres
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in a λ-homogeneous marked PPP on [0, 1]d is a Poisson random variable with mean λ, the non-
overlapping probability

P(λ) = E [PN (λ)] , (18)

where N ∼ Poi(λ).
In proving the theorem, we use the following lemmas which exploits the reference IS measure

µ̃n introduced in Section 4.2. By (10) and the definition of Pn(λ),

Pn(λ) = Pµ0
(
X ∈ A

∣∣|X| = n
)

= Eµ̃n

[
I (X ∈ A )

n∏
i=1

(
1−Bi

)]

= Eµ̃n

[
n∏
i=1

(
1−Bi

)]
. (19)

The following bound holds trivially,

Bi ≤
γ

ληd

i−1∑
j=1

(Rj +Ri)
d , (20)

where the sum is taken to be zero when i = 1. Let θn,λ = γ(2r)d n
ληd

. We have the following upper
and lower bounds on Pn(λ).

Lemma 3. Under the above set-up,

Pn(λ) ≥ exp

−n ∞∑
j=1

( γn
ληd

)j mj

j(j + 1)

 . (21)

Furthermore, for any ε > 0,

Pn(λ) ≤ Nn,λ

[
exp

(
−γn(n− 1)(m1 − ε)

2ληd

)
+ 2 exp

(
−(n− 1)ε2

(2r)2d

)]
, (22)

for any n and λ such that θn,λ < 1, where Nn,λ is a function of n, λ and r, defined by (25) in the proof
below, such that

lim
λ→∞

1

λ2−ηd logNλ,λ = 0, if ηd > 1. (23)

In particular, for the torus-hard-sphere model,

lim
λ→∞

Nλ,λ = 1, if ηd > 3/2. (24)

Proof. Lower Bound: To prove (21) notice that, by (19),

Pn(λ) = Eµ̃n

[
exp

(
n∑
i=1

log
(

1−Bi
))]

= Eµ̃n

exp

 n∑
i=1

∞∑
j=1

−1

j
Bj
i

 ,
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using the Taylor’s expansion log(1 − x) = −
∑∞

j=1 x
j/j for 0 ≤ x ≤ 1. By Jensen’s inequality and

(20),

Pn(λ) ≥ exp

− n∑
i=1

∞∑
j=1

1

j
Eµ̃n

[
Bj
i

]
≥ exp

− n∑
i=1

∞∑
j=1

γj

jλjηd
E

( i−1∑
l=1

(Rl +Ri)
d

)j
≥ exp

− n∑
i=1

∞∑
j=1

γj (i− 1)j

jλjηd
E

( 1

i− 1

i−1∑
l=1

(Rl +Ri)
d

)j .

Again by Jensen’s inequality,
(

1
i−1

∑i−1
l=1 (Rl +Ri)

d
)j
≤ 1

i−1

(∑i−1
l=1 (Rl +Ri)

jd
)

, and thus

Pn(λ) ≥ exp

− ∞∑
j=1

γjmj

jλjηd

n∑
i=1

(i− 1)j

 .

We establish (21) using
∑n

i=1(i− 1)j ≤
∫ n
x=0 x

j dx = nj+1

j+1 .

Upper Bound: Let R(1), R(2), . . . , R(n) be the order statistics of R1, R2, . . . , Rn. Since the non-
overlapping probability Pn(λ) is independent of the order in which the spheres are generated,
without loss of generality assume that the ith sphere has radius R(i). Let, for each 1 ≤ j ≤ i − 1,
B̃i(j) be the volume of the blocked region for the ith sphere generation when the (j + 1)th, (j +

2)th, . . . , (i − 1)th spheres are ignored, where B̃i(0) = 0. We can think of B̃i(j) − B̃i(j − 1) as the
blocking volume contributed by the jth sphere for the ith sphere. Under the new measure µ̃n, the

blocking volume seen by the ith sphere, Bi =

i−1∑
j=1

(
B̃i(j)− B̃i(j − 1)

)
. Consider the sets

N (i) :=

{
j ∈ {1, 2, . . . , i− 1} : B̃i(j)− B̃i(j − 1) =

γ

ληd

(
R(j) +R(i)

)d}
,

for i ≤ n and take N̄ (i) := {1, 2, . . . , i− 1} \N (i). Using the inequality 1− x ≤ e−x and (19),

Pn(λ) ≤ Eµ̃n

[
exp

(
−

n∑
i=1

Bi

)]
= Eµ̃n

exp

− n∑
i=1

i−1∑
j=1

(
B̃i(j)− B̃i(j − 1)

)
≤ Eµ̃n

exp

− γ

ληd

n∑
i=1

∑
j∈N (i)

(
R(j) +R(i)

)d
= Eµ̃n

exp

−γ (2r)d

ληd
Zn +

γ

ληd

n∑
i=1

∑
j∈N̄ (i)

(
R(j) +R(i)

)d
≤ Eµ̃n

[
exp

(
−γ (2r)d

ληd
Zn +

γ(2r)d

ληd

n∑
i=1

|N̄ (i)|

)]
,
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where Zn =
∑n

i=1

∑i−1
j=1

(
R(j)+R(i)

2r

)d
, and the last inequality holds from the assumption that each

Ri ≤ r. Since R(i) is non-decreasing with i, from the definition of N (i), it is easy to see that |N̄ (i)|
is non-decreasing with i. Therefore,

Pn(λ) ≤ Eµ̃n

[
exp

(
−γ (2r)d

ληd
Zn + θn,λ|N̄ (n)|

)]
= Eµ̃n

[
exp

(
−γ (2r)d

ληd
Zn

)
Eµ̃n

[
exp

(
θn,λ|N̄ (n)|

) ∣∣∣R1, . . . , Rn

]]
.

We now show that |N̄ (n)| is stochastically bounded by a binomial random variable, and as a con-
sequence, the conditional expectation Eµ̃n

[
exp

(
θn,λ|N̄ (n)|

) ∣∣∣R1, . . . , Rn

]
is uniformly bounded

from above by a constant, which is a function of n, λ and r. Let

qj = Pµ̃n
(
B̃n(j)− B̃n(j − 1) <

γ

ληd
(R(j) +R(n))

d
)
.

Clearly, qj is increasing with j, and therefore qj ≤ qn−1 for all j ≤ n − 1. This implies that |N̄ (n)|
is stochastically bounded by a binomial random variable with parameters n and qn−1, and thus

Eµ̃n
[
exp

(
θn,λ|N̄ (n)|

) ∣∣∣R1, . . . , Rn

]
≤
(
qn−1 exp (θn,λ) + (1− qn−1)

)n
.

Due to the boundary effect, qn−1 is not the same for the torus model (where boundary spheres
loop over to the opposite boundaries) and the Euclidean model. Observe that, for the Euclidean

model, B̃n(n− 1)− B̃n(n− 2) <
γ(R(j)+R(n))

d

ληd
if either

(1) the center of the (n−1)th sphere is within (R(j) +R(n−1) +2R(n))/λ
η distance from the center

of jth sphere for some j ≤ n− 2, or

(2) the center of (n− 1)th sphere is within (R(n−1) +R(n))/λ
η distance form the boundary of the

unit cube.

Note that the boundary event (2) is irrelevant for the torus-hard-sphere model. The probability

of the event (1) is maximized by
γ

ληd

n−2∑
j=1

(
R(j) +R(n−1) + 2R(n)

)d
1−Bn−1

, while that for the event (2) is

maximized by
1−

(
1− 2(R(n−1) +R(n))/λ

η
)d

1−Bn−1
. Since the R′is are bounded from above by r and

Bn−1 ≤ θn,λ (from (20)), we have

qn−1 ≤ q̄n,λ :=


2dθn,λ
1−θn,λ + c

λη(1−θn,λ) for the Euclidean model,
2dθn,λ
1−θn,λ for the torus model,

for any n and λ such that θn,λ < 1, and for some constant c. Let

Nn,λ =
(

1 + q̄n,λ

(
exp (θn,λ)− 1

))n
, (25)

then Pn(λ) ≤ Nn,λ Eµ̃n
[
exp

(
−γ (2r)d

ληd
Zn

)]
. Using the definition of Zn, for any ε > 0,

Eµ̃n

[
exp

(
−γ (2r)d

ληd
Zn

)]
≤ exp

(
−γn(n− 1)(m1 − ε)

2ληd

)
+ Pµ̃n

(
Zn <

n(n− 1)(m1 − ε)
2(2r)d

)
.
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By Lemma 2 (with k = 2), Pµ̃n

(
Zn <

n(n−1)
2

(
m1−ε
(2r)d

))
≤ 2 exp

(
− (n−1)ε2

(2r)2d

)
, and thus (22) is established.

It remains to prove (23) and (24) under the assumption that ηd > 1. For this case, we have that
limλ↗∞ θλ,λ = 0 and hence limλ↗∞ q̄λ,λ = 0. Since

Nλ,λ ≤ exp
(
λ q̄λ,λ

[
exp (θλ,λ)− 1

])
,

using Taylor’s expansion of the exponential function,

0 ≤ lim
λ↗∞

1

λ2−ηd
logNλ,λ ≤ lim

λ↗∞

q̄λ,λ ∑
j∈N0

γ(j+1)(2r)(j+1)d

(j + 1)!
λj(ηd−1)

 = 0.

Thus (23) holds. In particular, for the torus model with ηd > 3/2,

λ q̄λ,λ

[
exp (θλ,λ)− 1

]
= λ

2dθλ,λ
1− θλ,λ

[
exp (θλ,λ)− 1

]
=

2d

1− θλ,λ

∞∑
j=2

γj(2r)jd

j!
λ1−j(ηd−1)

goes to 0 as λ↗∞, and hence (24) holds.

Lemma 4. Suppose that 1 < ηd ≤ 2. Then, for any 0 < a < 0.5,

P(λ) ≥ exp

− ∞∑
j=1

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)

 [1− o(1)] . (26)

Furthermore, let λ̄ = dλ(1− 1
λa )e for some constant a such that 0 < a < ηd−1

2 . Then, for any ε > 0,

P(λ) ≤ Nλ,λ exp

(
−γλ̄

2 (m1 − ε)
2ληd

)
[1 + o(1)] , (27)

whereNλ,λ satisfies (23) and (24). In particular, (26) holds with ε = 0 if ηd > 5/3 and 2−ηd < a < ηd−1
2 .

Proof. Lower Bound: Fix a such that 0 < a < 0.5. Since Pn(λ) is a decreasing function of n for any
fixed λ, by Lemma 3, we can say that for all n < λ

(
1 + 1

λa

)
,

Pn(λ) ≥ exp

− ∞∑
j=1

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)

 ,

and from (18) and the Chernoff bound for the Poisson variable N (see Lemma 1),

P(λ) ≥ E
(
PN (λ);N < λ

(
1 +

1

λa

))

≥ P
(
N < λ

(
1 +

1

λa

))
exp

− ∞∑
j=1

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)


≥
(

1− exp

(
−1

3
λ1−2a

))
exp

− ∞∑
j=1

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)

 .

Now (26) easily because exp
(
−1

3λ
1−2a

)
= o(1) as a function of λ.
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Upper Bound: From (18),

P(λ) = E[PN (λ)] ≤ E[PN (λ);N ≥ λ̄] + P(N < λ̄) ≤ Pλ̄ (λ) + P(N < λ̄), (28)

where the last inequality holds due the fact that Pn(λ) is a decreasing function of n for fixed λ. We
now analyze Pλ̄ (λ) and P(N < λ̄) separately.

By Lemma 3, for any ε > 0,

Pλ̄ (λ) ≤ Nλ,λ

[
exp

(
−γλ̄(λ̄− 1) (m1 − ε)

2ληd

)
+ 2 exp

(
− λ̄ ε2

(2r)2d

)]
≤ Nλ,λ

[
exp

(
−γλ̄

2 (m1 − ε)
2ληd

)
exp

( γ m1

2ληd−1

)
+ 2 exp

(
− λ̄ ε2

(2r)2d

)]
,

where we used the fact that λ̄ ≤ λ. We rewrite the above expression as follows:

Pλ̄ (λ) ≤ Nλ,λ exp

(
−γλ̄

2 (m1 − ε)
2ληd

)(
exp

( γ m1

2ληd−1

)
+ 2 exp

(
γλ̄2m1

2ληd
− λ̄ ε2

(2r)2d

))
.

Note that γλ̄
2m1

2ληd
= O

(
λ2−ηd) and λ̄ ε2

(2r)2d
= Ω (λ). Since ηd > 1,

2 exp

(
γλ̄2m1

2ληd
− λ̄ ε2

(2r)2d

)
≤ 2 exp

(
−λ̄
(

ε2

(2r)2d
− γ m1

2ληd−1

))
−→ 0, as λ→∞, (29)

and since limλ→∞ exp
( γ m1

2ληd−1

)
= 1, we can say that the first term Pλ̄ (λ) in (28) satisfies the follow-

ing inequality,

Pλ̄ (λ) ≤ Nλ,λ exp

(
−γλ̄

2 (m1 − ε)
2ληd

)
[1 + o(1)] .

By Lemma 1,

P
(
N ≤ λ̄

)
≤ P

(
N ≤ λ

(
1− 1

λa

))
≤ exp

(
−λ

1−2a

2

)
. (30)

Since 2a < 1 (because ηd ≤ 2), we have 1 − 2a > 2 − ηd, and hence using (30) and the fact that
Nλ,λ ≥ 1,

exp
(
γλ̄2(m1−ε)

ληd

)
P
(
N ≤ λ̄

)
Nλ,λ

≤ exp

(
γλ̄2(m1 − ε)

2ληd
− λ1−2a

2

)
−→ 0, as λ→∞, (31)

and hence (27) follows from (28) and (31).
In particular if ηd > 5/3, we choose a such that 2− ηd < a < ηd−1

2 . Let ε = 1/λa. Then (29) and

(31) holds. We complete the proof using the fact that limλ→∞ exp
(
γλ̄2 ε
2ληd

)
= 1.

Proof of Theorem 1. The following upper and lower bounds together complete the proof.

Lower Bounds: Consider the inequality (26).
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Case: ηd > 2. Since R ≤ r, we have mj ≤ (2r)jd. Thus, for ηd > 2, all the terms in the exponent
of the right-hand side of (26) go to zero asymptotically. In other words, for any 0 < a < 0.5,

lim
λ→∞

∞∑
j=1

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)
= 0.

That means, limλ→∞ P(λ) = 1, for ηd > 2.

Case: 3/2 < ηd ≤ 2. Using (26), P(λ) exp
(γm1

2 λ2−ηd) is bounded from below by

exp

O (λ2−ηd−a
)
−
∞∑
j=2

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)

 [1− o(1)] .

By fixing a > 2−ηd, we see that the right-hand side of the above expression goes to one as λ↗∞.
Thus, lim infλ→∞

[
P(λ) exp

(γm1

2 λ2−ηd)] ≥ 1.

Case: 1 < ηd ≤ 3/2. By applying log on both the sides of (26), we have for any 0 < a < 0.5 that

logP(λ) ≥ log (1− o(1))−
∞∑
j=1

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)
,

and see that

1

λ2−ηd

∞∑
j=1

λj(1−ηd)+1
(
1 + 1

λa

)j+1
γjmj

j(j + 1)
=

(
1 + 1

λε

)2
γm1

2
+
∞∑
j=2

(
1 + 1

λa

)j+1
γjmj

λ(j−1)(ηd−1)j(j + 1)
.

Thus lim infλ→∞
1

λ2−ηd
logP(λ) ≥ −γm1

2 for ηd > 1.

Case: 0 < ηd ≤ 1. Configurations with one sphere or no sphere is always accepted, that is,P1(λ) =

P0(λ) = 1. The probability of generating no sphere is e−λ. Consequently, P(λ) > e−λ and for any
ηd > 0,

lim inf
λ→∞

[
1

λ
logP(λ)

]
≥ −1. (32)

In particular, assume that ηd = 1. For this case, first we show that the limit δ := limλ→∞
[

1
λ logP(λ)

]
exists. To prove this, partition the cube [0, 1]d into a cubic grid of cell-edge length x1/d ∈ (0, 1).
Ignore the cells at the boundary that have the edge length strictly smaller than x1/d. So, the total
intensity of the underlying PPP over a cell is λx.

When ηd = 1, the radius of each sphere is identical in distribution to R/λ. Observe that the
non-overlapping probability of the spheres restricting to a cell is P(λx) (see the definition of the
non-overlapping probability). Since the total number of cells is at least 1/x, the non-overlapping
probability P(λ) ≤ (P(λx))

1
x , and thus 1

λ logP(λ) ≤ 1
λx logP(λx). We can increase λ and decrease

the cell-edge length x1/d such that y := λx is fixed. Then the following inequality holds

lim sup
λ→∞

[
1

λ
logP(λ)

]
≤ 1

y
logP(y) < 0.
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Now the existence of the required limit is established by applying limit on y:

lim sup
λ→∞

[
1

λ
logP(λ)

]
≤ lim inf

y→∞

[
1

y
logP(y)

]
.

To show that δ ↗ 0 as γm1 ↘ 0, assume that γm1 < ε for a constant ε ∈ (0, 1). By (19) and (20),

Pn(λ) ≥ E

n−1∏
i=1

(
1− γ

λ

i∑
k=1

(Rk +Ri)
d

)+
 .

Consider the following partial order on Rn+: for any y, y′ ∈ Rn+, we say that y � y′ if yi ≤ y′i for all
i = 1, . . . , n. A function f : Rn+ → R is called increasing (or decreasing) if f(y) ≤ f(y′) (or f(y) ≥
f(y′)) for all y, y′ ∈ Rn+ such that y � y′. If f and g are either increasing or decreasing functions
then Theorem 2.4 of [17] (FKG inequality) can be trivially extended to show that E[f(Y )g(Y )] ≥
E[f(Y )]E[g(Y )]. Clearly the following function fi is a decreasing function on Rn+:

fi(y) =

(
1− γ

λ

i∑
k=1

(yk + yi)
d

)+

.

Therefore,

E

n−1∏
i=1

(
1− γ

λ

i∑
k=1

(Rk +Ri)
d

)+
 ≥ n−1∏

i=1

E

(1− γ

λ

i∑
k=1

(Rk +Ri)
d

)+
 .

Using the convexity of the function x+ and Jensen’s inequality, for each i,

E

(1− γ

λ

i∑
k=1

(Rk +Ri)
d

)+
 ≥ (1− i γm1

λ

)+
,

and thus Pn(λ) ≥
∏n−1
i=1

(
1− i γm1

λ

)+
. With λ = bλ+ λ0.75c and N ∼ Poi(λ),

P(λ) =
∞∑
n=0

e−λ
λn

n!
Pn(λ) ≥

λ∑
n=0

e−λ
λn

n!
Pn(λ) ≥ Pλ(λ)P (N ≤ λ) .

By applying log on both the sides of the above inequality and scaling with 1/λ,

1

λ
logP(λ) ≥ 1

λ
logPλ(λ) +

1

λ
logP (N ≤ λ) .

From the definition of λ and Lemma 1, the second term, 1
λ logP (N ≤ λ), goes to zero as λ ↗ ∞.

We now focus on the first term, 1
λ logPλ(λ). Since γm1 < ε < 1, for all i ≤ λ,

i

λ

γm1

ε
<
λ

λ

γm1

ε
≤
(

1 +
1

λ0.25

)
γm1

ε
≤ 1,

for large values of λ. Thus, we can write using Bernoulli’s inequality that

Pλ(λ) ≥
λ∏
i=1

(
1− i γm1

λ

)
=

λ∏
i=1

(
1− ε iγm1

ελ

)
≥

λ∏
i=1

(1− ε)
iγm1
ελ
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for large values of λ. Therefore, by combining the trivial bound (32) and the above conclusions,

δ ≥ max

(
−1,

γm1

2

[
log(1− ε)

ε

])
−→ 0 as γm1 ↘ 0.

Upper Bounds: We have a complete proof of the large deviation of P(λ) for the case ηd > 2. So,
it remains to prove the theorem for 0 < ηd ≤ 2. We first prove the required upper bounds for the
case 1 < ηd ≤ 2. If 0 < a < 0.5 and λ̄ = dλ(1− 1

λa )e, then from Lemma 4, for any ε > 0,

P(λ) ≤ Nλ,λ exp

(
−γλ̄

2 (m1 − ε)
2ληd

)
[1 + o(1)] . (33)

(34)

Case: ηd > 1. By applying log on both the sides of (33) and then dividing by λ2−ηd, we see that

1

λ2−ηd logP(λ) ≤ −γ (m1 − ε)
2

(
1 +

1

λa

)2

+
1

λ2−ηd logNλ,λ +
1

λ2−ηd log[1 + o(1)].

As a consequence of Lemma 3, lim supλ→∞
1

λ2−ηd
logP(λ) ≤ −γ(m1−ε)

2 . Now take ε↘ 0.
In particular, consider torus-hard-sphere model with 5/3 < ηd ≤ 2. We can fix a such that

2− ηd < a < ηd−1
2 . From Lemma 4, (33) holds with ε = 0. Therefore,

P(λ) exp
(γm1

2
λ2−ηd

)
≤ Nλ,λ exp

(
O
(
λ2−ηd−a

))
[1 + o(1)] ,

and hence lim supλ→∞
[
P(λ) exp

(γm1

2 λ2−ηd)] ≤ 1 from Lemma 3.

Case: 0 < ηd < 1. Let λ = bλ
1+ηd

2 c and N ∼ Poi(λ). From the definition

P(λ) = E [PN (λ)] ≤ P (N ≤ λ) + E [PN (λ);N ≥ λ+ 1] . (35)

For any ε > 0, let Hn(ε) :=
{

1
n

∑n
i=1R

d
i > ε

}
. From (11),

Pn+1(λ) ≤ E

 n∏
i=1

1− γ′

ληd

i∑
j=1

Rdj

+ ≤ P
(
Hc
n

(
ληd

γ′n

))
≤ P

(
Hc
n

(
ληd

γ′λ

))
,

where the second inequality holds because
(

1− γ′

ληd

∑n
j=1R

d
j

)+
= 0 on Hn

(
ληd

γ′n

)
. Since ηd <

(ηd+ 1)/2 < 1, see that λ
ηd

γ′λ ↘ 0 as λ↗∞, and thus for every ε > 0 there exists λε such that

Pn+1(λ) ≤ P (Hc
n (ε)) ,

for all λ > λε and n > λ.
Suppose there is a constant c > 0 such that R ≥ c. Then for all sufficiently small values of ε,

P (Hc
n (ε)) = 0 for all n > λ. Thus for large values of λ, P(λ) ≤ P (N ≤ λ) ≤ e−λλλ, and from the

definition of λ,

lim sup
λ→∞

1

λ
logP(λ) ≤ −1 + lim sup

λ→∞

[
λ log λ

λ

]
= −1.

So we can assume that P(R < ε) > 0 for every ε > 0. Recall that P(R > 0) = 1 and Λ(θ) is the
logarithmic moment generating function of Rd. As a consequence of positivity of R, we see that
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Λ(θ) ↘ −∞ as θ ↘ −∞. Let Λ∗(x) = supθ∈R {θx− Λ(θ)}. As a consequence of the assumption
that P(R < ε) > 0 for every ε > 0, we can show Λ∗(x)↗∞ as x↘ 0. From Theorem 2.2.3 of [10],

P (Hc
n (ε)) ≤ 2 exp

(
−n inf

x≤ε
Λ∗(x)

)
= 2 exp (−nΛ∗(ε))

for all n > λ and ε < E[Rd1], where the last inequality holds because Λ∗(x) is non-decreasing over
0 < x ≤ E[Rd1]. By (35),

P(λ) ≤ P (N ≤ λ) + P (Hc
N (ε) ;N ≥ λ+ 1) ≤ P (N ≤ λ) + P (Hc

N (ε))

≤ P (N ≤ λ) + 2 exp
(
−λ
(

1− e−Λ∗(ε)
))

,

for all λ ≥ λε. To conclude that lim supλ→∞
1
λ logP(λ) ≤ −1, see from the definition of Poisson

distribution and λ that

P (N ≤ λ) =

λ∑
n=0

e−λ
λn

n!
≤ λe−λ

(
λλ

λ!

)
≤ e−λλλ,

where we used the fact that λn−1/(n− 1)! < λn/n! for all n < λ. Hence,

P(λ) ≤ 2 exp
(
−λ
(

1− e−Λ∗(ε)
))(

1 + λλ exp (−λΛ∗(ε))
)

= 2 exp
(
−λ
(

1− e−Λ∗(ε)
))(

1 + exp

(
−λ
(

Λ∗(ε)− λ

λ
log λ

)))
.

From the definition of λ, see that λλ log λ↘ 0 as λ↗∞. As a consequence, as λ↗∞,

exp

(
−λ
(

Λ∗(ε)− λ

λ
log λ

))
goes to zero. Therefore,

lim sup
λ→∞

1

λ
logP(λ) ≤ −

(
1− e−Λ∗(ε)

)
.

We have the required result by taking ε↘ 0.

Case: ηd = 1. It remains to show that δ ≤ −1
2

(
1− 1

γ′rd

)2
if R ≡ r and γ′rd > 1. Since, from

(11), Pn+1(λ) ≤
∏n
i=1

(
1− γ′

λ ir
d
)+

= 0, for all n > λ λ
γ′rd

, we have P(λ) ≤ P
(
N ≤ λ λ

γ′rd

)
. Now

the proof is complete by Lemma 1.

A.2 Proof of Proposition 1

From [29], the intensity of the torus-hard-sphere model is given by

ρ(λ) =

∑∞
n=1 n

λn

n! Pn(λ)∑
n∈N0

λn

n! Pn(λ)
= λ

∑
n∈N0

λn

n! Pn+1(λ)∑
n∈N0

λn

n! Pn(λ)
,

where Pn(λ) is the non-overlapping probability of n uniformly and independently generated
spheres with radius r/λη.
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Case ηd > 1. In this regime, we show that ρ(λ) is of the order of γrdλ1−ηd. Using inequalities (11)
and (20), (

1− nγrdλ−ηd
)
Pn(λ) ≥ Pn+1(λ) ≥

(
1− nγ4rdλ−ηd

)
Pn(λ).

Therefore,

ρ(λ) ≥ λ
∑

n∈N0

λn

n!

(
1− n4rdλ−ηd

)
Pn(λ)∑

n∈N0

λn

n! Pn(λ)
≥ λ− γ4rdλ1−ηdρ(λ),

and

ρ(λ) ≤ λ
∑

n∈N0

λn

n!

(
1− nrdλ−ηd

)
Pn(λ)∑

n∈N0

λn

n! Pn(λ)
≤ λ− γrdλ1−ηdρ(λ).

Consequently,(
1

1 + γ4rdλ1−ηd

)
γrdλ1−ηd ≤ ρ(λ)γrdλ−ηd ≤

(
1

1 + γrdλ1−ηd

)
γrdλ1−ηd,

and thus limλ↗∞
VF(λ)

γrdλ1−ηd
= 1.

Case ηd ≤ 1. We know show that limλ↗∞ VF(λ) ≤ ρmaxγ with equality if and only if ηd < 1.
Towards this end, we first consider another torus-hard-sphere model on [0, λη/r]d with unit radius
spheres and absolutely continuous with respect to a κ-homogeneous Poisson point process for
some intensity κ > 0. Let ρ(κ, λ) be the intensity of this new hard-sphere model. We can easily see
that when κ = rdλ1−ηd, the fraction of the volume occupied by the spheres in the new hard-sphere
model is also VF(λ).

The proof of Proposition 1 and 2 of [29] can be easily modified to show that ρ(κ, λ) is strictly
increasing in κ for any fixed λ > 0, and

lim
κ→∞

ρ(κ, λ) = ρmax,

where ρmax is the closest packing density. On the other hand, by fixing κ,we can further using
[29] show that the limit limλ→∞ ρ(κ, λ) exists and is equal to the intensity of the stationary hard-
sphere model on Rd with unit radius spheres and the reference PPP being κ-homogeneous. (In
fact, the difference between ρ(κ, λ) and the limit limλ→∞ ρ(κ, λ) is known to be insignificant for
large values of λ; see, for example, [5].)

From the above discussion, when ηd < 1, for sufficiently small ε > 0, there exist constants κε
and λε such that ρ(κ, λ) > ρmax− ε, for all λ > λε and κ > κε. If we take κ = rd λ1−ηd, since ηd < 1,

lim
λ→∞

VF(λ) = lim
λ→∞

[
ρ(rdλ1−ηd, λ)γ

]
= ρmaxγ,

which is the maximum packing intensity.
Finally, if ηd = 1 and κ = rd, the limit limλ→∞ ρ(rd, λ) is strictly less than ρmax. Hence, we

have limλ→∞ VF(λ) < ρmaxγ.
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A.3 Proof of Proposition 2

LetN ′ be the number of spheres generated sequentially, independently and identically before see-
ing an overlap. Let N ∼ Poi(λ) independently of N ′. Then from the construction of Algorithm 1,

cE

min(N,N ′)∑
n=1

(n− 1)

 ≤ Citr(λ) ≤ c′
log(λ) + E

min(N,N ′)∑
n=1

(n− 1)

 , (36)

for some positive constants c and c′. In the above expression, log(λ) appears because the cost to
generate a sample of N is at most an order of log(λ) (see, e.g., [11]). Observe that

E

min(N,N ′)∑
n=1

(n− 1)

 = E

[
N−1∑
n=0

nI(N ′ > n)

]
= E

[
N−1∑
n=1

nPn(λ)

]
, (37)

where the last equality follows from the fact that P(N ′ > n) = Pn(λ).

Upper bound: For ηd ≥ 2, since Pn(λ) ≤ 1, we can upper bound (37) by a constant times E[N2],
which is further bounded from above by a constant times λ2. Therefore we just need to consider
the case ηd < 2. From (19), Pn(λ) = Eµ̃n

[∏n
i=1

(
1−Bi

)]
. As a consequence of (11),

Pn(λ) ≤ E

exp

− γ′

ληd

∑
1≤j<i≤n

Rdj

 = E

exp

−γ′rd
ληd

∑
1≤j<i≤n

Rdj

rd

 .
Let α = E[Rd1]. Since r is an upper bound on the R′is, by Hoeffding’s inequality (Lemma 2) on the
sequence {Rd1/rd, . . . , Rdn/rd}with ε = α/2rd, k = 2 and g(x, y) = x,

Pn(λ) ≤ exp

(
− γ′

2ληd
n(n− 1)

2
α

)
+ P

 ∑
1≤j<i≤n

Rdj

rd
≤ α

2rd


≤ exp

(
−γ
′(n− 1)2

4ληd
α

)
+ exp

(
−nα

2

4r2d

)
.

Let a =
√

2ληd

γ′α . Then from the above expression,

∞∑
n=1

nPn(λ) ≤
∞∑
n=1

n exp

(
−(n− 1)2

2a2

)
+
∞∑
n=1

n exp

(
−nα

2

4r2d

)
. (38)

Select λ large enough so that b > 0. Then with p = 1 − exp(−α2/(4r2d)), the second term on the
right side of (38) is 1/p times E [Z] for a geometric random variable Z with success probability p
and support {1, 2, 3, . . . }. Since E [Z] = 1/p, the term

∑∞
n=1 n exp

(
−nα2/(4r2d)

)
bounded from

above by a constant.
On the other hand, since n exp

(
−(n− 1)2/(2a2)

)
≤
∫ n−1
n−2 (x + 2) exp

(
− x2

2a2

)
for any non-

negative integer n, we can write that

∞∑
n=1

n exp

(
−(n− 1)2

2a2

)
≤ 1 +

∫ ∞
0

(x+ 2) exp

(
− x2

2a2

)
dx = 1 + a

√
π

2
E
[(∣∣Z∣∣+ 2

)]
,
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where Z is a Gaussian random variable with mean 0 and variance a2. Since E[|Z|] = a
√

2/π, using
the definition of a, the first term in (38) is bounded from above by a constant times ληd. Thus, the
required upper bound on (36) established as a consequence of (37) and (38).

Lower bound: Let ε′ = min(1, ηd/2). Then from (37),

Citr(λ) ≥ P
(
N > λε

′
/2
) bλε′/2c+1∑

n=1

nPn(λ) ≥ cPbλε′/2c(λ)

(
λε
′

2

)2

,

for a constant c > 0. From (21),

Pbλε′/2c(λ) ≥ exp

−λε′
2

∞∑
j=1

(
γλε

′

2ληd

)j
mj

j(j + 1)

 ≥ exp

−λε′
2

∞∑
j=1

(
γλε

′

2ληd

)j
mj

j

 ,

where mj = E
[
(R1 +R2)jd

]
. Note that mj ≤ (2r)jd since R ≤ r. Therefore, Pbλε′/2c(λ) ≥

exp

−λε′
2

∞∑
j=1

1

j

(
γ(2rd)

2ληd−ε′

)j. Using Taylor’s expansion of log(1 − x) for 0 < x < 1, and the

fact that γ(2rd)

2ληd−ε′
< 1 for sufficiently large values of λ,

Pbλε′/2c(λ) ≥ exp

(
λε
′

2
log

(
1− γ(2rd)

2ληd−ε′

))
=

(
1− γ(2rd)

2ληd−ε′

)λε
′

2

.

From the definition of ε′,

lim
λ→∞

(1− γ(2rd)

2ληd−ε′

)λε
′

2

 =

{
1, if ηd > 2,

exp
(
−γ(2r)d/4

)
, if 0 < ηd ≤ 2.

In addition, from Lemma 1, limλ→∞ P
(
N > λε

′
/2
)

= 1. Therefore, there exists a constant c such

that Citr(λ) ≥ c λ2ε′ . The proof of Proposition 2 is complete using Theorem 1 and (4).

A.4 Proof of Proposition 4

First note that the sphere volume is at most a constant time the cell volume for all λ. Thus, after
generating a sphere, the complexity of relabelling cells around the center of the new sphere plus
the complexity of overlap check is a constant. For ηd > 1, the number of spheres generated in
an iteration of Algorithm 5 is stochastically dominated by a Poisson random variable with rate λ.
Therefore, there exists a constant c such that C̃itr(λ) ≤ c λ. On the other hand, if 0 < ηd ≤ 1, the
expected number of spheres generated per iteration is of order ληd because the expected volume
of each sphere is an order of 1/ληd. It is clear that there exists a constant c > 0 such that C̃itr(λ) ≤
c ληd. Thus, by (9) and Proposition 2,

TISAR ≤ c
λmin(1,ηd)

Pacc(λ)
= cE[σ̃(N)]

λmin(1,ηd)

P(λ)
.
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Thus, (14) holds, because σ̃(n) = δn for each n ∈ N0. Furthermore, from the definition of σ̃(·)
and N ,

E [δN ] ≤ E

[
exp

(
−

N∑
i=0

(i− 1)γ′
rd

ληd

)]
= E

[
exp

(
−γ′ r

d

2ληd
(N − 1)N

2

)]
.

By the Chernoff bound (Lemma 1), for any 0 < ε < 1,

E
[
exp

(
−γ′ r

d

ληd
(N − 1)N

2

)]
≤ E

[
exp

(
−γ′ r

d

ληd
(N − 1)N

2

)
;N > λ (1− ε)

]
+ P (N ≤ λ (1− ε))

≤ exp

(
−γ
′rd

2
(1− ε)λ2−ηd

)
+ exp

(
−λε

2

2

)
.

If ηd > 1, then the second term on the right-hand side of the above expression decreases faster
than the first term, and thus the claim holds true. For ηd = 1, take ε = 1/2, then we have the
required result with b = min

(
1/8, γrd/4

)
. Furthermore, if 0 < ηd < 1 then the first term decreases

faster than the second one, and hence the proof is completed by taking b = 1/2.

A.5 Proof of Theorem 2

To derive the lower bound on TDC1, we view the entire dominating process D as a Poisson Boolean
model on a higher dimensional space and use an extension of the FKG inequality [31] (alterna-
tively, see Theorem 2.2 in [31]). Let s0 = 0 and si be the instant of the ith arrival in the dominating
process after time zero. Let C(x,xu,xl) be the running time complexity of updating the dominat-
ing, upper bound and lower bound processes at the instant of an arrival when their respective
states are x,xu and xl.

Since U0(0) = D(0) and L0(0) = ∅, on
⋂i
j=0{D(sj) /∈ A }, for all t ≤ si,

L0(t) = ∅ and U0(t) = D(t). (39)

Thus, L0(t) 6= U0(t) for all t ≤ si on
⋂i
j=0{D(sj) /∈ A }. Now take

τ = inf {i ∈ N0 : D(si) ∈ A } .

From the above conclusion, it is clear that Nf ≥ τ . Then,

TDC1 ≥ E

Nf∑
i=0

C
(
D(si), U0(si), L0(si)

)
≥ E

[
τ∑
i=0

C
(
D(si), U0(si), L0(si)

)]

=
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i=0

E
[
C
(
D(si), U0(si), L0(si)

)
; τ ≥ i

]

=
∞∑
i=0

E

C(D(si), U0(si), L0(si)
)

;
i−1⋂
j=0

{D(sj) /∈ A }


=

∞∑
i=0

E

C(D(si), D(si),∅
)

;

i−1⋂
j=0

{D(sj) /∈ A }

 ,
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where I
(
∩−1
j=0 {D(sj) /∈ A }

)
= 1 and the last equality follows from (39).

Suppose that D is the state space of the entire process {D(t) : t ∈ R}. Then we can define a
simple partial order on D as follows: For any ω, ω′ ∈ D , we say ω � ω′ if and only if every sphere
present in ω is also present in ω′, that is, either ω′ = ω or ω′ is obtained by adding spheres to ω.
Define the following notion of increasing functions: A real valued function on D is increasing if
f(ω) ≤ f(ω′) for all ω, ω′ ∈ D such that ω � ω′.

At each arrival, if there are n points in the upper bounding process, the cost to decide whether
to accept the new point is at least the the cost to check overlap condition in the upper bounding
process and that cost is an order of n. Therefore,C

(
D(si), U0(si),∅

)
= c|U0(si)| for some constant.

Since |U0(si)| is a non-decreasing function on D as per the partial order stated above, by FKG
inequality (Theorem 2.2 in [31]),

E

C(D(si), D(si),∅
)

;

i−1⋂
j=0

{D(sj) /∈ A }


is bounded from below by

E
[
C
(
D(si), D(si),∅

)] i−1∏
j=0

P (D(sj) /∈ A ) .

Thus,

TDC1 ≥
E
[
C
(
D(s1), D(s1),∅

)]
1− P (D(s1) /∈ A )

=
Eµ0 [|X|]

Pµ0 (X ∈ A )
= c

λ

P(λ)
,

for some constant c > 0. Then (17) follows from (4) and (5). The proof is completed using Theo-
rem 1.
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