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Abstract
Weconsider an acyclic network of single-server queueswith heterogeneous processing
rates. It is assumed that each queue is fed by the superposition of a large number of
i.i.d. Gaussian processes with stationary increments and positive drifts, which can be
correlated across different queues. The flow of work departing from each server is
split deterministically and routed to its neighbors according to a fixed routing matrix,
with a fraction of it leaving the network altogether. We study the exponential decay
rate of the probability that the steady-state queue length at any given node in the
network is above any fixed threshold, also referred to as the ‘overflow probability’. In
particular, we first leverage Schilder’s sample-path large deviations theorem to obtain
a general lower bound for the limit of this exponential decay rate, as the number
of Gaussian processes goes to infinity. Then, we show that this lower bound is tight
under additional technical conditions. Finally, we show that if the input processes to the
different queues are nonnegatively correlated, non-short-range dependent fractional
Brownian motions, and if the processing rates are large enough, then the asymptotic
exponential decay rates of the queues coincide with the ones of isolated queues with
appropriate Gaussian inputs.

Keywords Gaussian processes · Acyclic networks · Large deviations

Mathematics Subject Classification 60F10

1 Introduction

Modern communication networks are complex, and handle huge amounts of data.
This is especially true closer to the backbone of the networks, where large numbers
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of connections share the same resources. The design and operation of these networks
greatly benefits from tractable theoretical models that are able to describe and predict
the performance of the system. In order to obtain such tractable models, a common
practice is to represent the network’s nodes as single server queues with an appropriate
service discipline. Moreover, given the high level of traffic aggregation, it is appealing
to approximate the incoming traffic to the network by Gaussian processes [1,2]. Since
these networks are often operated in a regime where the packet loss probabilities are
very small, there is a need for understanding the large-deviations behavior of these
networks.

While a queueing network with Gaussian inputs is a rather streamlined model, the
analysis of its large-deviations behavior is notoriously difficult outside the case of an
isolated queue, which has been thoroughly studied [3–6]. The main reason for this is
that after the (initially Gaussian) incoming traffic goes through the first queue, it is no
longer Gaussian. Then, when it is fed to a different queue, the analysis of this queue is
significantly harder. For the special case of two queues in tandem, with work arriving
only to the first queue and all the departingwork of the first queue going into the second
one, a useful trick involving subtracting the first queue (which has Gaussian input)
from the sum of both queues (which behaves exactly as a single-server queue with a
Gaussian input) yields a tractable analysis of the second queue in the tandem [7], even
if it does not have a Gaussian input; see also the more refined approach in [8] based
on the delicate busy-period analysis developed in [9]. However, this trick does not
work for more complex networks (not even for two queues in tandem with inputs to
both queues, or when not all departures from the first queue join the second one [10]).
Another factor that further complicates the analysis of complex networks is the fact
that the input processes to the different queues can be correlated. This becomes a
problem when the output of queues with correlated inputs are merged into another
queue.

In this paper, we consider acyclic networks of single-server queues, where work
arrives to the queues as (possibly correlated) Gaussian processes, and where the work
departing from each queue is deterministically split among its neighbors, with a frac-
tion of it leaving the system altogether. This deterministic split of the departing work
was also considered in, for example, [11], and it is particularly suitable for modeling
single-class networks (where all work is essentially exchangeable), or for modeling
networks where all work needs to be routed to the same node (and thus where the
splitting of departure streams is only performed to load balance the network).

In terms of our approach, this paper fits in the framework of the analysis of a single
Gaussian queue [5], and the subsequent analysis of tandem, priority, and generalized
processor sharing queues [7,12]; we refer to [13] for a textbook account on Gaussian
queues. In terms of our scope, this paper is perhaps most similar to [11], where the
authors obtained large-deviations results for acyclic networks of G/G/1 queues. How-
ever, in that paper, there were certain limitations regarding the correlation structure of
the input processes (in that they have to be independent across different queues), and
regarding the structure of the network (in that any two directed paths cannot meet in
more than one node).
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1.1 Our contribution

In this paper, we generalize the analysis of a pair of queues in tandem, fed by a single
Gaussian process [7], to acyclic networks of single-server queues, fed by (possibly
correlated) Gaussian processes. As in [7], we assume that the arrival processes are
the superposition of n i.i.d. (multi-dimensional) Gaussian processes, and scale the
processing rates of the servers by a factor ofn, which corresponds to the so called ‘many
sources regime.’ In this regime, for any given node i , we work toward characterizing
the asymptotic exponential decay rate of its ‘overflow probability,’ that is, the limit

− lim
n→∞

1

n
logP

(
Q(n)

i > nb
)

, (1)

where Q(n)
i is the steady-state queue length at the i th node, and b is any positive

threshold. In particular:

(i) We obtain a general lower bound on the asymptotic exponential decay rate by
leveraging the power of a generalized version of Schilder’s theorem (Theorem 3).

(ii) Under additional technical conditions, we prove the tightness of the lower bound
by finding the most likely sample paths, and showing that the corresponding
asymptotic exponential decay rates coincidewith the lower bound (Theorems4, 5,
and 6).

(iii) We show that if the input processes to the different queues are nonnegatively
correlated, non-short-range-dependent fractional Brownian motions, and if the
processing rates are large enough, then the asymptotic exponential decay rates
of the queues coincide with those of isolated queues with appropriate Gaussian
inputs (Theorem 7).

1.2 Organization of the paper

The paper is organized as follows: In Sect. 2, we introduce some notation, the network
model, and a few preliminaries on large-deviations theory. In Sect. 3, we present our
main results. In Sect. 4, we introduce an interesting examplewhere the large-deviations
behavior of any queue in the network coincides with the behavior of a single-server
queue with Gaussian input. Finally, we conclude in Sect. 5.

2 Model and preliminaries

In this section, we introduce some notation, the queueing network model that we
analyze, and present a few preliminaries on sample-path large deviations theory.

123



336 Queueing Systems (2021) 98:333–371

2.1 Notation for underlying graph

Given a directed graph G = (V , E), and a node i ∈ V , we introduce the following
notation: Let

Nin(i) �
{
j ∈ V : ( j, i) ∈ E

}

be the set of all inbound neighbors of i . Let

Pm(i) �
|V |⋃
l=m

{
r ∈ V l : rl = i, and (r�, r�+1) ∈ E, ∀ � ≤ l − 1

}

be the set of all directed paths that contain at least m nodes, and end at node i . In
particular, note that the trivial path (i) is only in P1(i). For any path r ∈ P2(i), let
r+ ∈ P1(i) be the path that results from removing the node r1 from the path r . Finally,
for any path r ∈ P1(i), let |r | be the number of nodes that it contains.

2.2 Queueing network

In this subsection,we introduce the basic structure of our queueing network.Consider a
directed acyclic graphwith k nodes, and a scaling parameter n ∈ Z+. Each node i of the
graph is equipped with a single server with rate nμi , and a queue with infinite capacity.
Work arrives to the network in a number of stochastic processes, A(n)

1 (·), . . . , A(n)
k (·),

with stationary increments and positive rates nλ1, . . . , nλk , respectively. (More details
about these processes are given in Sect. 2.3.) In particular, A(n)

i (·) is the stream of work
that enters the network at node i . Work departing from node i is split deterministically
so that, for each edge (i, j)with i �= j , a fraction pi, j ∈ [0, 1] is routed to node j . The
remaining fraction of the work departing from node i , denoted by pi,i ∈ [0, 1], leaves
the network; evidently,

∑
i pi, j = 1. In order to simplify notation, for any directed

path r , let us denote

�r �
|r |−1∏
�=1

pr�,r�+1 .

In particular, we have �(i) = 1.
For s ≤ t , we interpret

A(n)
i (s, t) � A(n)

i (t) − A(n)
i (s)

as the amount of exogenous work that arrived to the i th node during the time interval
(s, t]. Let D(n)

i (s, t) be the amount of work that departed the i th node during (s, t].
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Then, the total amount of work arriving to the i th node during (s, t] is

I (n)
i (s, t) � A(n)

i (s, t) +
∑

j∈Nin(i)

p j,i D
(n)
j (s, t), (2)

recalling that Nin(i) is the set of inbound neighbors of i . Furthermore, for t ∈ R,
Reich’s formula states that the amount of remaining work in the i th queue at time t
(also called the ‘queue length’) is given by

Q(n)
i (t) � sup

s<t

{
I (n)
i (s, t) − nμi (t − s)

}
. (3)

Moreover, we evidently have

D(n)
i (s, t) = Q(n)

i (s) + I (n)
i (s, t) − Q(n)

i (t). (4)

Since we are interested in the steady-state of the queue lengths, we need to ensure
that the service rate of each server is strictly larger than the total arrival rate to its node.
This is enforced by imposing the following assumption.

Assumption 1 For each i ∈ {1, . . . , k}, we have
∑

r∈P1(i)

λr1�r < μi .

Note that, even under Assumption 1, the existence and uniqueness of k-dimensional
processes D(n)(·), I (n)(·), and Q(n)(·) that satisfy Eqs. (2), (3), and (4) is not immedi-
ate. This is shown in in Sect. 3.1, by expressing them as functionals of the exogenous
arrival processes A(n)

1 (·), . . . , A(n)
k (·).

2.3 Gaussian arrival processes

In this subsection, we specify the nature of the exogenous arrivals to the network. Let
{X ( j)(·)} j∈Z+ be a sequence of i.i.d. k-dimensional Gaussian processes with contin-
uous sample paths and stationary increments, and with X ( j)(0) = (0, . . . , 0), for all
j ∈ Z+. Each one of these k-dimensional processes is characterized by its drift vector
λ = (λ1, . . . , λk), where

λ � E

[
X (1)(1)

]
,

and by its covariance matrix � : R2 → R
k×k , where

�i, j (t, s) = Cov
(
X (1)
i (t), X (1)

j (s)
)

.
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Throughout this paper, we assume that the process A(n)(·) �
(
A(n)
1 (·), . . . , A(n)

k (·)) is
a k-dimensional Gaussian process such that

A(n)
i (·) =

n∑
j=1

X ( j)
i (·), (5)

for all i ∈ {1, . . . , k}. Therefore, A(n)(·) also has continuous sample paths and station-
ary increments, and satisfies A(n)(0) = (0, . . . , 0). Moreover, the k-variate process
A(n)(·) has drift vector nλ, and covariance matrix n�.

Remark 1 Equation (5) corresponds to the setting where the arrival processes are
a superposition of individual streams, which is also called the ‘many-sources
regime’ [14].

Finally, the following assumption is in place. It is required for a generalized version
of Schilder’s theorem to hold, which is introduced in the following subsection.

Assumption 2 (i) The covariance matrix � is differentiable.
(ii) For every i, j ∈ {1, . . . , k}, we have

lim
t2+s2→∞

�i, j (t, s)

t2 + s2
= 0.

2.4 Sample-path large deviations

In this paper, our aim is to study the limit

Ii (b) � − lim
n→∞

1

n
logP

(
Q(n)

i > nb
)

, (6)

where Q(n)
i is the steady-state queue length of the i th node, and I : R+ → R

k+ is a
function that only depends on the server ratesμ � (μ1, . . . , μk), on the routingmatrix
p, on the drift vector λ, and on the covariance matrix �. In order to do this, we rely
on a sample-path large deviations principle for centered Gaussian processes, based
on the generalized Schilder’s theorem. Before stating this theorem, we introduce its
framework.

First, we introduce the sample-path space

�k �
{
ω : R → R

k,

continuous, ω(0) = (0, . . . , 0), lim
t→∞

‖ω(t)‖2
1 + |t | = lim

t→−∞
‖ω(t)‖2
1 + |t | = 0

}
,

equipped with the norm

‖ω‖�k � sup

{‖ω(t)‖2
1 + |t | : t ∈ R

}
,
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which is a separable Banach space [15]. Next, we introduce the Reproducing Kernel
Hilbert Space (rkhs) Rk ⊂ �k (see [16] for more details) induced by using the
covariance matrix �(·, ·) as the kernel. In order to define it, we start from the smaller
space

Rk∗ � span
{
�(t, ·)v : t ∈ R, v ∈ R

k
}

,

with the inner product 〈·, ·〉Rk defined as

〈
�(t, ·)u, �(s, ·)v〉Rk � u
�(t, s)v,

for all t, s ∈ R and u, v ∈ R
k . The closure ofRk∗ with respect to the topology induced

by its inner product is the rkhs Rk . Using this inner product and its corresponding
norm ‖ · ‖Rk , we define a rate function by

I(ω) �
{

1
2‖ω‖2Rk , if ω ∈ Rk,

∞, otherwise.

Remark 2 In [12,15], the authors defined an appropriate multi-dimensional rkhs as
the product of single-dimensional spaces that use the individual variance functions
as kernels. There this could be done because the different coordinates of the multi-
dimensional Gaussian process of interest were assumed independent. In our case,
since the coordinates of our Gaussian process of interest need not be independent,
we needed to define the multi-dimensional space directly, using the whole covariance
matrix as the kernel. When the coordinates are indeed independent, both definitions
are equivalent.

Under the framework define above, the following sample-path large deviations
principle holds.

Theorem 1 (Generalized Schilder [17]) Under Assumption 2, the following holds:

(i) For any closed set F ⊂ �k ,

lim sup
n→∞

1

n
logP

(
A(n)(·) − nλ ·

n
∈ F

)
≤ − inf

ω∈F
{
I(ω)

}
.

(ii) For any open set G ⊂ �k ,

lim inf
n→∞

1

n
logP

(
A(n)(·) − nλ ·

n
∈ G

)
≥ − inf

ω∈G
{
I(ω)

}
.

Schilder’s theorem typically only gives implicit results, as it is often hard to explic-
itly compute the infimum over the set of sample paths. However, as in [7,12,15], we
will leverage the properties of our rkhs to obtain explicit results.
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3 Main results

In this section, we will establish large deviations results for the steady-state queue-
length distributions. In particular, we will use Theorem 1 to show that for any
{1, . . . , k}, and for every b > 0, the limit

− lim
n→∞

1

n
logP

(
Q(n)

i > nb
)

(7)

exists, and to find (tight) bounds for it. The first step is to express this probability as a
function of the Gaussian arrival processes (Sect. 3.1), and to show that the limit exists
(Sect. 3.2). Second, we obtain a general upper bound for this limit (Sect. 3.3), and
prove that it is tight under additional technical assumptions (Sect. 3.4). The arguments
largely follow the same structure as the arguments for the analysis of the second queue
in a tandem [7], but without the simplifications that come from having only two queues
in tandem, with arrivals only to the first one.

3.1 Overflow probability as a function of the arrival processes

In this subsection, we obtain a set Ei (b) of sample paths such that

P

(
Q(n)

i > nb
)

= P

(
A(n)(·) − nλ ·

n
∈ Ei (b)

)
.

By Reich’s formula, we have

P

(
Q(n)

i > nb
)

= P

(
sup
t<0

{
I (n)
i (t, 0) + nμi t

}
> nb

)

= P

(
∃ t < 0 : I (n)

i (t, 0) + nμi t > nb
)

,

where I (n)
i (t, 0) is the total amount of work that arrived to the i th queue in the time

interval (t, 0]. If i is a node with no inbound neighbors, i.e., if Nin(i) = ∅, we have
that I (n)

i (t, 0) = −A(n)
i (t), and thus

P

(
Q(n)

i > nb
)

= P

(
∃ t < 0 : nμi t − A(n)

i (t) > nb
)

= P

(
A(n)(·) − nλ ·

n
∈
{
f ∈ �k : ∃ t < 0, (μi − λi )t − fi (t) > b

})
.

In this case, a large-deviations analysis can be performed through a straightforward
application of Schilder’s theorem (this is exactly the same as in the case of an isolated
Gaussian queue [5]). However, in general the input process is the sum of the local
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Gaussian arrival process, and the departure processes of its inbound neighbors, which
are not Gaussian. In the following lemma, we obtain the input process as a functional
of the exogenous arrival processes of all the upstream nodes.

Lemma 1 For each i ∈ {1, . . . , k}, and for all t < 0, we have

I (n)
i (t, 0) = A(n)

i (t, 0) + sup
t∈Ti (t)

⎧
⎨
⎩

∑

r∈P2(i)

[
A(n)
r1 (tr , 0) + nμr1 (tr − tr+ )

]
�r

⎫
⎬
⎭

− sup
s∈Ti (0)

⎧⎨
⎩

∑

r∈P2(i)

[
A(n)
r1 (sr , 0) + nμr1 (sr − sr+ )

]
�r

⎫⎬
⎭ , (8)

where

Ti (t) �
{
t ∈ R

P1(i) : t i = t and tr < tr+ , ∀ r ∈ P2(i)
}
.

The proof is given in Appendix A, and consists of solving a recursive equation on the
input processes by using induction on the maximum length of paths that end in node
i .

Remark 3 Let t∗ and s∗ be finite optimizers of the two suprema in (8) over the closure
of their domains. These have the following interpretation: for each path r ∈ P2(i), the
time t∗r (respectively, s∗r ) is the starting point of the busy period of the r1th queue that
contains the time t∗r+ (respectively, s∗r+ ). Then, since t i = t < 0 and si = 0, it follows
that t∗r ≤ s∗r , for all r ∈ P1(i). Combining this with (8), and using the continuity of
A(n)(·), we obtain

I (n)
i (t, 0) = A(n)

i (t, 0) − n

⎛
⎝ ∑

j∈Nin(i)

μ j p j,i

⎞
⎠ t

+ sup
t∈Ti

⎧⎨
⎩
∑

r∈P2(i)

[
A(n)
r1 (tr , 0)

+ n

⎛
⎝μr1 −

∑
j∈Nin(r1)

μ j p j,r1

⎞
⎠ tr

⎤
⎦�r

− sup
s∈Si (t)

⎧⎨
⎩
∑

r∈P2(i)

[
A(n)
r1 (sr , 0)

+ n

⎛
⎝μr1 −

∑
j∈Nin(r1)

μ j p j,r1

⎞
⎠ sr

⎤
⎦�r

⎫⎬
⎭

⎫⎬
⎭ ,

where

Ti �
{
t ∈ R

P1(i) : t i < 0 and tr < tr+ , ∀ r ∈ P2(i)
}
,
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Si (t) �
{
s ∈ R

P1(i) : si = 0 and tr < sr < sr+ , ∀ r ∈ P2(i)
}
.

Note that the continuity of A(n)(·) is what allows us to have the condition tr < sr
instead of tr ≤ sr . This distinction will be convenient later.

We now state the main result of this subsection.

Theorem 2 For each i ∈ {1, . . . , k}, and for every b > 0, we have

P

(
Q(n)

i > bn
)

= P

(
A(n)(·) − nλ ·

n
∈ Ei (b)

)
, (9)

where

Ei (b) �

⎧⎨
⎩ f ∈ �k : ∃ t ∈ Ti : ∀ s ∈ Si (t), fi (t i ) +

∑
r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r

> b −
∑

r∈P1(i)

⎡
⎣
⎛
⎝μr1 − λr1 −

∑
j∈Nin(r1)

μ j p j,r1

⎞
⎠(tr − sr

)
⎤
⎦�r

⎫⎬
⎭ .

The proof follows immediately from Reich’s formula and Lemma 1, and it is given in
Appendix B.

3.2 Decay rate of the overflow probability

In this subsection, we establish the existence of the limit

− lim
n→∞

1

n
logP

(
Q(n)

i > bn
)

,

for all b > 0. Recall that Theorem 2 states that P(Q(n)
i > bn) satisfies (9), where

Ei (b) is an open set of the path space �k . Then, by Schilder’s theorem (Theorem 1),
we have

− lim inf
n→∞

1

n
log

(
P

(
A(n)(·) − nλ ·

n
∈ Ei (b)

))
≤ inf

f ∈Ei (b)
{
I( f )

}
,

and

− lim sup
n→∞

1

n
log

(
P

(
A(n)(·) − nλ ·

n
∈ Ei (b)

))
≥ inf

f ∈Ei (b)
{
I( f )

}
.

Then, the existence of the limit is equivalent to showing that Ei (b) is an I-continuity
set, which is stated in the following proposition. The proof follows along the lines of
the proof of [7, Thm. 3.1], and it is thus omitted.
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Proposition 1 For each i ∈ {1, . . . , k}, and for every b > 0, we have

− lim
n→∞

1

n
log
(
P

(
Q(n)

i > bn
))

= inf
f ∈Ei (b)

{
I( f )

} = inf
f ∈Ei (b)

{
I( f )

}
. (10)

Since the existence of the decay rate of interest given in (6) has been established
now, in the following subsections, we focus on finding lower and upper bounds on it.

3.3 Lower bound on the decay rate

In this subsection, we present a general lower bound for the asymptotic exponential
decay rate of the overflow probability in steady state. We start by introducing some
notation. Given a vector v and a scalar a, we denote v − (a, . . . , a) as v − a. For each
node i ∈ {1, . . . , k}, we denote

Âi (t) �
A(n)
i (t) − nλi t√

n
.

Note that Â(·) is a k-dimensional Gaussian process with zero mean, and covariance
matrix �. For each node, i ∈ {1, . . . , k},

λi �
∑

r∈P1(i)

λr1�r ,

Āi (s, t) �
∑

r∈P1(i)

[
Âr1(tr ) − Âr1(sr )

]
�r .

Moreover, let us define the functions

kbi (t, s) � E
[
Āi (t − t i , s)

∣∣ Āi (t − t i , t) = b − (μi − λi
)
t i
]
,

hbi (t, s) � E
[
Āi (t − t i , s)

∣∣ Āi (s, t) = b − (μi − λi
)
t i − ci (t, s)

]
,

where

ci (t, s) �

⎛
⎝λi − λi −

∑
j∈Nin(i)

μ j p j,i

⎞
⎠ t i

+
∑

r∈P2(i)

⎛
⎝μr1 − λr1 −

∑
j∈Nin(r1)

μ j p j,r1

⎞
⎠(tr − sr

)
�r .

Note that ci (t, t − t i ) = 0.
Using the above notation, we now state our lower bound.
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Theorem 3 Under Assumptions 1 and 2, for each i ∈ {1, . . . , k} and for every b > 0,

− lim
n→∞

1

n
logP

(
Q(n)

i > bn
)

≥ inf
t∈Ti

sup
s∈Si (t)

{
I
b
i (t, s)

}
,

where

I
b
i (t, s) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
b−(μi−λi

)
ti

]2

2Var
(
Āi (t−ti ,t)

) , if kbi (t, s) < ci (t, s),

or s = t − t i ,[
b−(μi−λi

)
ti−ci (t,s)

]2

2Var
(
Āi (s,t)

) , if hbi (t, s) > ci (t, s),

[
b−(μi−λi

)
ti

]2

2Var
(
Āi (t−ti ,t)

) +
[
kbi (t,s)−ci (t,s)

]2

2Var
(
Āi (s,t)

∣∣∣ Āi (t−ti ,t)=b−(μi−λi
)
ti

) , otherwise.

(11)

The proof is given in Appendix C, and it essentially consists of two steps. First, we
decompose the event Ei (b) given in Theorem 2 as a union of intersections of simpler
events that only involve the sample paths at fixed times, and we upper bound the
probability of the intersection by the probability of the least likely one. Then, we use
Cramér’s theorem to obtain the decay rate of the least likely of these simpler events by
solving the additional quadratic optimization problem that arises by its application.

Remark 4 As part of the proof of Theorem 3, it is established that conditions kbi (t, s) <

ci (t, s) or s = t − t i , and hbi (t, s) > ci (t, s) cannot be satisfied at the same time. As
a result, the three cases in the definition of Ibi (t, s) are disjoint.

Remark 5 The lower bound in Theorem 3 generalizes the lower bound given in [7,
Corollary 3.5], not only by generalizing the network structure from a set of tandem
queues to any acyclic network of queues, but also by removing a concavity assumption
on the square root of the variance of the input processes. However, the removal of this
assumption makes the expression of the lower bound more convoluted, even if we
restrict it to the case of a pair of queues in tandem.

Remark 6 It is worth highlighting that, even if the bound of Theorem 3 is not tight,
it provides an upper bound for the asymptotic exponential decay rate of overflow
probability that can be used as a performance guarantee in applications.

3.4 Tightness of the lower bound

In this subsection, we obtain conditions under which the lower bound in Theorem 3
is tight. We present three results, one for each of the cases in the definition of Ibi (t, s)
in (11), with different technical conditions for each case.

Let (t∗, s∗) be an optimizer of (11) over the closure of its domain.We first establish
that, if the optimum of (11) is achieved in the first case, then the lower bound of
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Theorem 3 is tight under an additional technical condition. This is formalized in the
following theorem.

Theorem 4 Under Assumptions 1 and 2, the following holds. If

kbi
(
t∗, s

)
< ci

(
t∗, s

)
, (12)

for all s ∈ Si (t∗) such that s �= t∗ − t∗i , then

lim
n→∞

1

n
logP

(
Q(n)

i > bn
)

= − inf
t∈Ti

⎧
⎪⎨
⎪⎩

[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

⎫
⎪⎬
⎪⎭

.

The proof is given in Appendix D, and it essentially consists of two steps. First, we
identify a most likely sample path in the least likely event of the intersection given in
the decomposition of the event Ei (b) that was used in the proof of Theorem 3. Then,
we show that under the assumptions imposed this most likely sample path is in all the
sets featuring in the intersection, thus implying optimality in Ei (b).

Since the condition in (12) requires an optimizer t∗ of (11), it is generally hard
to verify. In the following lemma, we present a sufficient condition that is easier to
verify.

Lemma 2 A sufficient condition for (12) to hold is that

kbi
(
t̃, s
)

< ci
(
t̃, s
)
, (13)

for all s ∈ Si
(
t̃
)
such that s �= t̃ − t̃ i , where

t̃ ∈ argmin
t∈Ti

⎧⎪⎨
⎪⎩

[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

⎫⎪⎬
⎪⎭

.

The proof is given in Appendix E.

Remark 7 Although the condition of (13) looks almost the same as the original one
of (12), the key simplification is that for (13), we only need t̃ instead of t∗, which is
an optimizer of an easier optimization problem.

We now present the second result of this subsection. It asserts that, if the optimum
of (11) is achieved in the second case, then the lower bound of Theorem 3 is tight
under an additional technical condition.

Theorem 5 Under Assumptions 1 and 2, the following holds: Suppose that

E
[
Āi (s, s∗)

∣∣ Āi (s∗, t∗) = b − (μi − λi
)
t∗i

−ci (t∗, s∗)
] ≥ ci (t∗, s∗) − ci (t∗, s),
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for all s ∈ Si (t∗). If

hbi
(
t∗, s∗

)
> ci

(
t∗, s∗

)

then

lim
n→∞

1

n
logP

(
Q(n)

i > bn
)

= − inf
t∈Ti

sup
s∈Si (t)

⎧
⎪⎨
⎪⎩

[
b − (μi − λi

)
t i − ci (t, s)

]2

2Var
(
Āi (s, t)

)

⎫
⎪⎬
⎪⎭

.

The proof is analogous to the proof of Theorem 4, and it is thus omitted.

Remark 8 Note that the second condition in Theorem 5 is satisfied if the first one is
satisfied with strict inequality for s = t∗ − t∗i .

Finally, we show that if the optimum of (11) is achieved in the third case, then the
lower bound of Theorem 3 is tight under a different additional technical condition.

Theorem 6 Under Assumptions 1 and 2, the following holds: Suppose that

E
[
Āi (s, s∗)

∣∣ Āi (t∗ − t∗i , t∗) = b − (μi − λi
)
t∗i ; Āi (t∗ − t∗i , s∗)

= ci (t∗, s∗)
] ≥ ci (t∗, s∗) − ci (t∗, s), (14)

for all s ∈ Si (t∗). If

hbi
(
t∗, s∗

) ≤ ci
(
t∗, s∗

)
, and kbi

(
t∗, s∗

) ≥ ci
(
t∗, s∗

)
,

then

lim
n→∞

1

n
logP

(
Q(n)

i > bn
)

= − inf
t∈Ti

sup
s∈Si (t)

⎧⎪⎨
⎪⎩

[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

+
[
kbi (t, s) − ci (t, s)

]2

2Var
(
Āi (s, t)

∣∣∣ Āi (t − t i , t) = b − (μi − λi
)
t i
)

⎫
⎪⎬
⎪⎭

.

The structure of the proof is the same as the proof of Theorem 4, and it is given in
Appendix F.

123



Queueing Systems (2021) 98:333–371 347

4 Example: equivalence to a single server queue

In this section, we show that if the input process is a multivariate fractional Brownian
motion with non-short-range dependence and nonnegative correlation between its
coordinates, and if the service rates are sufficiently large, then the large deviations
behavior of any fixed queue in the network is the same as if all inputs to upstream
queues were inputs to the queue itself. This phenomenon was also observed in [7] for
the second queue in a tandem, and here we generalize the conditions under which it
occurs.

4.1 Preliminaries onmultivariate fractional Brownianmotions

Consider the case where the exogenous arrival process A(n)(·) is a multivariate frac-
tional Brownian motion (mfBm). Since each coordinate is a real-valued fBm, for each
i ∈ {1, . . . , k}, and for every t < s < 0, we have

Cov
(
A(n)
i (t), A(n)

i (s)
)

= σ 2
i

2

[
|t |2Hi + |s|2Hi − |s − t |2Hi

]
,

where Hi ∈ (0, 1) is its Hurst index, and

σi �
√
Var

(
A(n)
i (1)

)

is its variance. Furthermore, it is known [18] that for each i, j ∈ {1, . . . , k}, and for
every t < s < 0, we have

Cov
(
A(n)
i (t), A(n)

j (s)
)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σiσ j
2

[
(ρi, j − ηi, j )|t |Hi+Hj + (ρi, j + ηi, j )|s|Hi+Hj − (ρi, j − ηi, j )|s − t |Hi+Hj

]
,

if Hi + Hj �= 1,
σiσ j
2

[
ρi, j
(|t | + |s| − |s − t |)+ ηi, j

(
s log |s| − t log |t | − (s − t) log |s − t |)

]
,

if Hi + Hj = 1,

where

ρi, j � Corr
(
A(n)
i (1), A(n)

j (1)
)

are their covariances, and ηi, j = −η j,i ∈ R represents the inter-correlation in time
between the two coordinates. Note that, contrary to the single-dimensional fBm, they
need not be time-reversible. In particular, a mfBm is time-reversible if and only if
ηi, j = 0 for all i, j [19, Prop. 6]. Moreover, the parameters ηi, j have the following
interpretation [19]:

(i) If the one-dimensional fBms are short-range dependent (i.e., if Hi , Hj < 1/2),
then they are either short-range interdependent if ρi, j �= 0 or ηi, j �= 0, or
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independent if ρi, j = ηi, j = 0. This also holds when Hi + Hj < 1, even if one
of them is larger than or equal to 1/2.

(ii) If the one-dimensional fBms are long-range dependent (i.e., if Hi , Hj > 1/2),
then they are either long-range interdependent if ρi, j �= 0 or ηi, j �= 0, or
independent if ρi, j = ηi, j = 0. This also holds when Hi + Hj > 1, even if one
of them is smaller than or equal to 1/2.

(iii) If the one-dimensional fBms are Brownian motions (i.e., if Hi = Hj = 1/2),
then they are either long-range interdependent if ηi, j �= 0, or independent if
ηi, j = 0. This also holds whenever Hi + Hj = 1, even if neither of them are
equal to 1/2.

4.2 Nonnegatively correlated, non-short-range-dependent inputs

We now present the main result of this section.

Theorem 7 Fix some node i . Suppose that Hj = H ≥ 1/2, for all j ∈ {1, . . . , k},
that η j,l = 0, for all j, l ∈ {1, . . . , k}, and that ρ j,l ≥ 0, for all j, l ∈ {1, . . . , k}.
Moreover, suppose that

min

⎧⎨
⎩μ j − λ j −

∑
l∈Nin( j)

μl pl, j : j �= i

⎫⎬
⎭ >

sup
α∈(0,1)|P2(i)|

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
r∈P2(i)

(
σr1σiρr1,i +

∑
r ′∈P2(i)

σr1σr ′
1
ρr1,r ′

1
�r ′

)
[
(αr )

2H +1−(1−αr )
2H ]�r

(
∑

r∈P2(i)
αr�r

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(
μi − λi

2Hσ 2
i

)
,

(15)

where

σ 2
i � σ 2

i +
∑

r∈P2(i)

⎛
⎝2σr1σiρr1,i +

∑
r ′∈P2(i)

σr1σr ′
1
ρr1,r ′

1
�r ′

⎞
⎠�r .

Then, for every b > 0,

− lim
n→∞

1

n
logP

(
Q(n)

i > nb
)

= 1

2σ 2
i

(
b

1 − H

)2−2H
(

μi − λi

H

)2H

.

The proof is given in Appendix G, and amounts to checking that Theorem 4 applies
in this case, to then compute the exact decay rate.

Remark 9 Note that this decay rate is the same as the one that we would obtain in a
single-server queue with processing rate μi and input

∑
r∈P1(i)

A(n)
r1 (·)�r .
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This means that under the assumptions of Theorem 7, in this regime, the queues
upstream of node i are ‘transparent.’ In particular, this implies that the most likely
overflow path is the one where all upstream queues are empty.

Remark 10 In the case of a pair of queues tandem with arrivals only to the first queue,
the condition in (15) is the same as the one obtained in the analysis of the tandem
queues done in [7].

5 Conclusions

We have considered an acyclic network of queues with (possibly correlated) Gaussian
inputs and static routing, and characterized the large deviations behavior of the steady-
state queue length in each queue of the network. We achieved this by defining an
appropriate multi-dimensional reproducing kernel Hilbert space, and using Schilder’s
theorem to obtain lower and upper bounds for the asymptotic exponential decay rate.
This generalizes previous results, which focused on isolated queues and two-queue
tandem systems (with arrivals only to the first queue).

While the results that we obtain are quite general both in terms of the network
structure and in terms of the correlation structure among the arrival processes to the
different nodes, there are still interesting open problems. For instance:

(i) While we considered essentially only single-class traffic with a deterministic
split of the work departing from each server, it would be interesting to extend
our results to multi-class networks, where the servers are shared by using, for
example, the generalized processor sharing discipline [12].

(ii) While we only obtained large-deviations results for each queue separately, it
would be interesting to obtain similar results for the joint queue lengths.
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Appendix A. Proof of Lemma 1

We prove this by induction in themaximum length of paths that end in node i . Suppose
that the maximum length is one. Then, P2(i) = ∅ and thus

I (n)
i (t, 0) = A(n)

i (t, 0).
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Now suppose that (8) holds for all nodes j such that the maximum length of paths
that end in j is at most one less than the maximum lengths of paths that end in node
i . Recall that

D(n)
j (t, 0) = Q(n)

j (t) + I (n)
j (t, 0) − Q(n)

j (0),

Q(n)
j (t) = sup

s<t

{
I (n)
j (s, t) − nμ j (t − s)

}
.

Combining the last two equations, we obtain that I (n)
i (t, 0) equals

A(n)
i (t, 0) +

∑
j∈Nin(i)

p j,i D
(n)
j (t, 0)

= A(n)
i (t, 0) +

∑
j∈Nin(i)

p j,i

[
sup
t j<t

{
I (n)
j (t j , t) − nμ j (t − t j )

}

+ I (n)
j (t, 0) − sup

s j<0

{
I (n)
j (s j , 0) + nμ j s j

}]

= A(n)
i (t, 0) +

∑
j∈Nin(i)

p j,i

[
sup
t j<t

{
I (n)
j (t j , 0) − nμ j (t − t j )

}

− sup
s j<0

{
I (n)
j (s j , 0) + nμ j s j

}]
.

Since all j are inbound neighbors of i , and the graph is acyclic, the maximum lengths
of paths that end in nodes j are at most one less than the maximum length of paths that
end in node i . Then, using the inductive hypothesis on the input processes I (n)

j (t j , 0),

I (n)
i (t, 0) equals A(n)

i (t, 0) increased by

∑
j∈Nin(i)

p j,i

⎡
⎣sup
t j<t

⎧
⎨
⎩A(n)

j (t j , 0) + sup
t∈T j (t j )

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (tr , 0) + nμr1 (tr − tr+ )

]
�r

⎫
⎬
⎭

− sup
s∈T j (0)

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (sr , 0) + nμr1 (sr − sr+ )

]
�r

⎫
⎬
⎭− nμ j (t − t j )

⎫
⎬
⎭

− sup
s j<0

⎧
⎨
⎩A(n)

j (s j , 0) + sup
t∈T j (s j )

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (tr , 0) + nμr1 (tr − tr+ )

]
�r

⎫
⎬
⎭

− sup
s∈T j (0)

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (sr , 0) + nμr1 (sr − sr+ )

]
�r

⎫
⎬
⎭+ nμ j s j

⎫
⎬
⎭

⎤
⎦ =

∑
j∈Nin(i)

p j,i

⎡
⎣sup
t j<t

⎧
⎨
⎩A(n)

j (t j , 0) + sup
t∈T j (t j )

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (tr , 0) + nμr1 (tr − tr+ )

]
�r

⎫
⎬
⎭

−nμ j (t − t j )
}

123



Queueing Systems (2021) 98:333–371 351

− sup
s j<0

⎧
⎨
⎩A(n)

j (s j , 0) + sup
t∈T j (s j )

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (tr , 0) + nμr1 (tr − tr+ )

]
�r

⎫
⎬
⎭

+nμ j s j
}]

.

After renaming the variables for ease of exposition, and using that

C . sup
x

{
f (x) + sup

y

{
g(y)

}} = sup
x,y

{
C
[
f (x) + g(y)

]}
,

and that

sup
x

{
f (x)

}+ sup
y

{
g(y)

} = sup
x,y

{
f (x) + g(y)

}
,

we obtain that I (n)
i (t, 0) equals A(n)

i (t, 0) increased by

∑
j∈Nin(i)

p j,i

⎡
⎣sup
t j<t

⎧
⎨
⎩A(n)

j (t j , 0) + sup
t( j)∈T j (t j )

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (t( j)r , 0)

+nμr1 (t
( j)
r − t( j)r+ )

]
�r

}
− nμ j (t − t j )

}

− sup
s j<0

⎧
⎨
⎩A(n)

j (s j , 0) + sup
s( j)∈T j (s j )

⎧
⎨
⎩
∑

r∈P2( j)

[
A(n)
r1 (s( j)r , 0)

+nμr1 (s
( j)
r − s( j)r+ )

]
�r

}
+ nμ j s j

}]

=
∑

j∈Nin(i)

sup
t j<t

{
sup

t( j)∈T j (t j )

{
p j,i

[
A(n)
j (t j , 0)

+
∑

r∈P2( j)

[
A(n)
r1 (t( j)r , 0) + nμr1 (t

( j)
r − t( j)r+ )

]
�r − nμ j (t − t j )

⎤
⎦
⎫⎬
⎭

⎫⎬
⎭

− sup
s j<0

{
sup

s( j)∈T j (s j )

{
p j,i

[
A(n)
j (s j , 0)

+
∑

r∈P2( j)

[
A(n)
r1 (s( j)r , 0) + nμr1 (s

( j)
r − s( j)r+ )

]
�r + nμ j s j

⎤
⎦
⎫
⎬
⎭

⎫
⎬
⎭

= sup
t�<t,

∀�∈Nin(i)

⎧
⎪⎪⎨
⎪⎪⎩

sup
t(�)∈T�(t�),∀�∈Nin(i)

⎧
⎨
⎩
∑

j∈Nin(i)

p j,i

[
A(n)
j (t j , 0) + nμ j (t j − t)

+
∑

r∈P2( j)

[
A(n)
r1 (t( j)r , 0) + nμr1 (t

( j)
r − t( j)r+ )

]
�r

⎤
⎦
⎫
⎬
⎭

⎫
⎬
⎭

− sup
s�<0,

∀�∈Nin(i)

⎧
⎪⎪⎨
⎪⎪⎩

sup
s(�)∈T�(s�),∀�∈Nin(i)

⎧⎨
⎩
∑

j∈Nin(i)

p j,i

⎡
⎣A(n)

j (s j , 0) + nμ j s j +
∑

r∈P2( j)

[
A(n)
r1 (s( j)r , 0)

123



352 Queueing Systems (2021) 98:333–371

+nμr1 (s
( j)
r − s( j)r+ )

]
�r

]}}
.

Finally, note that there is a one-to-one correspondence between the paths in P2(i) and
the paths in

⋃
j∈Nin(i)

P2( j) ∪ {( j)},

where each r ′ ∈ P2(i) is of the form r ′ = (r1, . . . , r|r |, i) for some r ∈ P2( j)∪{( j)},
j ∈ Nin(i). Then, we can rename the variables once more to obtain

sup
t�<t,

∀�∈Nin(i)

⎧
⎪⎪⎨
⎪⎪⎩

sup
t(�)∈T�(t�),∀�∈Nin(i)

⎧⎨
⎩
∑

j∈Nin(i)

p j,i

[
A(n)
j (t j , 0) + nμ j (t j − t)

+
∑

r∈P2( j)

[
A(n)
r1 (t( j)r , 0) + nμr1(t

( j)
r − t( j)r+ )

]
�r

⎤
⎦
⎫⎬
⎭

⎫⎬
⎭

− sup
s�<0,

∀�∈Nin(i)

⎧
⎪⎪⎨
⎪⎪⎩

sup
s(�)∈T�(s�),∀�∈Nin(i)

⎧⎨
⎩
∑

j∈Nin(i)

p j,i

[
A(n)
j (s j , 0) + nμ j s j

+
∑

r∈P2( j)

[
A(n)
r1 (s( j)r , 0) + nμr1(s

( j)
r − s( j)r+ )

]
�r

⎤
⎦
⎫⎬
⎭

⎫⎬
⎭

= sup
t∈Ti (t)

⎧
⎨
⎩
∑

r ′∈P2(i)

[
A(n)

r ′
1

(tr ′ , 0) + nμr ′
1
(tr ′ − tr ′+)

]
�r ′

⎫
⎬
⎭

− sup
s∈Ti (0)

⎧
⎨
⎩
∑

r ′∈P2(i)

[
A(n)

r ′
1

(sr ′ , 0) + nμr ′
1
(sr ′ − sr ′+)

]
�r ′

⎫
⎬
⎭ .

Appendix B. Proof of Theorem 2

By Reich’s formula, we have

P

(
Q(n)

i > nb
)

= P

(
sup
t i<0

{
I (n)
i (t i , 0) + nμi t i

}
> nb

)
.

By Lemma 1, we obtain

P

(
Q(n)

i > nb
)

= P

(
sup
t i<0

{
A(n)
i (t i , 0)
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+ sup
t∈Ti (t i )

⎧⎨
⎩
∑

r∈P2(i)

[
A(n)
r1 (tr , 0) + nμr1(tr − tr+)

]
�r

− sup
s∈Si (t)

⎧⎨
⎩
∑

r∈P2(i)

[
A(n)
r1 (sr , 0) + nμr1(sr − sr+)

]
�r

⎫⎬
⎭

⎫⎬
⎭

+nμi t i } > nb)

= P

(
∃ t i < 0, t ∈ Ti (t i ) : ∀ s ∈ Si (t) : 1

n

(
A(n)
i (t i , 0)

+
∑

r∈P2(i)

[
A(n)
r1 (tr , 0) − A(n)

r1 (sr , 0)
]
�r

⎞
⎠

> b − μi t i −
∑

r∈P2(i)

[
μr1

(
tr − sr

)− μr1

(
tr+ − sr+

)]
�r

⎞
⎠

= P

(
∃ t ∈ Ti : ∀ s ∈ Si (t) : 1

n

(
−A(n)

i (t i )

−
∑

r∈P2(i)

[
A(n)
r1 (tr ) − A(n)

r1 (sr )
]
�r

⎞
⎠

> b − μi t i −
∑

r∈P2(i)

[
μr1

(
tr − sr

)− μr1

(
tr+ − sr+

)]
�r

⎞
⎠

= P

(
A(n)(·) − nλ ·

n
∈ Ẽ i (b)

)
,

where

Ẽ i (b) �

⎧⎨
⎩ f ∈ �k : ∃ t ∈ Ti : ∀ s ∈ Si (t), − fi (t i ) −

∑
r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r

> b − (μi − λi )t i −
∑

r∈P2(i)

[(
μr1 − λr1

)(
tr − sr

)− μr1

(
tr+ − sr+

)]
�r

⎫
⎬
⎭ .

Since the centered Gaussian processes are symmetric, we have

P

(
Q(n)

i > nb
)

= P

(
A(n)(·) − nλ ·

n
∈ Ei (b)

)
,
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where

Ei (b) �

⎧
⎨
⎩ f ∈ �k : ∃ t ∈ Ti : ∀ s ∈ Si (t), fi (t i ) +

∑
r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r

> b − (μi − λi )t i −
∑

r∈P2(i)

[(
μr1 − λr1

)(
tr − sr

)− μr1

(
tr+ − sr+

)]
�r

⎫⎬
⎭ .

Using that si = 0 and that �r = pr1,r2�r+ , we obtain

Ei (b) �

⎧⎨
⎩ f ∈ �k : ∃ t ∈ Ti : ∀ s ∈ Si (t), fi (t i ) +

∑
r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r

> b −
∑

r∈P1(i)

(
μr1 − λr1

)(
tr − sr

)
�r −

∑
r∈P2(i)

−μr1 pr1,r2
(
tr+ − sr+

)
�r+

⎫⎬
⎭ .

(16)

Note that, for every r , r ′ ∈ P2(i) such that |r | = |r ′| and r� = r ′
� for all � ≥ 2, we

have r+ = r ′+. It follows that

∑
r∈P2(i)

−μr1 pr1,r2
(
tr+−sr+

)
�r+ =

∑
r+:r∈P2(i)

∑
j∈Nin((r+)1)

−μ j p j,(r+)1

(
tr+−sr+

)
�r+ .

(17)
Moreover, note that

{
r+ : r ∈ P2(i)

} = {r ∈ P1(i) : r is not maximal
}
,

and that Nin(r1) = ∅ for every maximal path r ∈ P1(i). Therefore,

∑
r+:r∈P2(i)

∑
j∈Nin((r+)1)

−μ j p j,(r+)1

(
tr+ − sr+

)
�r+

= ∑
r∈P1(i)

∑
j∈Nin(r1)

−μ j p j,r1

(
tr − sr

)
�r .

Finally, combining this with Eqs. (16) and (17), we get

Ei (b) �

⎧⎨
⎩ f ∈ �k : ∃ t ∈ Ti : ∀ s ∈ Si (t), fi (t i ) +

∑
r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r

> b −
∑

r∈P1(i)

⎡
⎣
⎛
⎝μr1 − λr1 −

∑
j∈Nin(r1)

μ j p j,r1

⎞
⎠(tr − sr

)
⎤
⎦�r

⎫⎬
⎭ .

123



Queueing Systems (2021) 98:333–371 355

Appendix C. Proof of Theorem 3

Theproof consists of two steps. First,wedecompose the eventEi (b)given inTheorem2
as a union of intersections of simpler events that only involve the sample paths at fixed
times, andwemajorize the probability of the intersection by the probability of the least
likely one (Lemma 3). Then, we use Cramér’s theorem to obtain the decay rate of the
least likely of these simpler events by solving the additional quadratic optimization
problem that arises by its application (Lemma 4).

Lemma 3 We have

inf
f ∈Ei (b)

{
I( f )

} ≥ inf
t∈Ti

sup
s∈Si (t)

inf
f ∈Ut,s

{
I( f )

}
,

where

Ut,s �
{
f ∈ �k : fi (ti ) +

∑

r∈P2(i)

[
fr1(tr ) − fr1(tr − ti )

]
�r ≥ b − (μi − λi

)
ti and

fi (ti ) +
∑

r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r ≥ b − (μi − λi )ti − ci (t, s)

}
.

Remark 11 Note that the first condition in the definition of the set Ut,s is the same as
the second one, but with sr = tr − t i , for all r ∈ P2(i). This generalizes Theorem
3.2 in [7], where an appropriate Ut,s is defined by having the first condition being the
same as the second one but with sr = 0, for all r ∈ P2(i). In the case of a tandem
with arrivals only to the first queue, both definitions are equivalent.

Proof Recall that

Ei (b) �
{
f ∈ �k : ∃ t ∈ Ti : ∀ s ∈ Si (t), fi (t i )

+
∑

r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r > b − (μi − λi )t i − ci (t, s)

⎫⎬
⎭ .

Thus,

Ei (b) =
⋃
t∈Ti

⋂
s∈Si (t)

Et,s,

where

Et,s �

⎧⎨
⎩ f ∈ �k : fi (t i ) +

∑
r∈P2(i)

[
fr1 (tr ) − fr1 (sr )

]
�r > b − (μi − λi )t i − ci (t, s)

⎫⎬
⎭ .

Then, we have
inf

f ∈Ei (b)
{
I( f )

} = inf
t∈Ti

inf
f ∈ ⋂

s∈Si (t)
Et,s

{
I( f )

}
. (18)
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Now fix t ∈ Ti , and consider the innermost infimum. Since f is continuous, then

fi (t i ) +
∑

r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r > b − (μi − λi )t i − ci (t, s)

for all s ∈ Si (t) implies

fi (t i ) +
∑

r∈P2(i)

[
fr1(tr ) − fr1(sr )

]
�r ≥ b − (μi − λi )t i − ci (t, s)

for all s ∈ Si (t). Hence
⋂

s∈Si (t)

Et,s ⊂
⋂

s∈Si (t)

Ut,s ⊂ Ut,r ,

for all r ∈ Si (t), and thus

inf
f ∈ ⋂

s∈Si (t)
Et,s

{
I( f )

} ≥ inf
f ∈Ut,r

{
I( f )

}
.

Therefore,

inf
f ∈ ⋂

s∈Si (t)
Et,s

{
I( f )

} ≥ sup
r∈Si (t)

inf
f ∈Ut,r

{
I( f )

}
.

Combining this with (18) completes the proof.

Remark 12 Note that, by taking the supremum over all r ∈ Si (t) at the end of the
proof, we are essentially upper bounding the probability of an intersection with the
probability of the least likely event.

While we have made progress toward obtaining the desired expression for the
limiting overflow probability, the expression in Lemma 3 still depends on the rate
function I. We now proceed to compute this simpler expression.

Lemma 4 Under Assumption 2, for t ∈ Ti and s ∈ Si (t), we have

inf
f ∈Ut,s

{
I( f )

} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
b−(μi−λi

)
t i

]2

2Var

(
Āi (t−t i ,t)

) , if kbi (t, s) < ci (t, s),

or s = t − t i ,[
b−(μi−λi

)
t i−ci (t,s)

]2

2Var

(
Āi (s,t)

) , if hbi (t, s) > ci (t, s),

[
b−(μi−λi

)
t i

]2

2Var

(
Āi (t−t i ,t)

) +
[
kbi (t,s)−ci (t,s)

]2

2Var

(
Āi (s,t)

∣∣∣ Āi (t−t i ,t)=b−(μi−λi
)
t i

) , otherwise.
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Proof Recall that

P

(
A(n)(·) − nλ ·

n
∈ Ut,s

)

can be rewritten as

P

(
1

n

⎛
⎝A(n)

i (t i ) +
∑

r∈P2(i)

[
A(n)
r1 (tr ) − A(n)

r1 (tr − t i )
]
�r

⎞
⎠ ≥ b − μi t i and

1

n

⎛
⎝A(n)

i (t i ) +
∑

r∈P2(i)

[
A(n)
r1 (tr ) − A(n)

r1 (sr )
]
�r

⎞
⎠

≥ b − μi t i −
∑

r∈P2(i)

μr1

[(
tr − tr+

)− (sr − sr+
)]

�r

)
. (19)

Since this probability only depends on the state of the trajectories at fixed points in
time, that is, only depends on a finite set of Gaussian random variables, it follows that
Ut,s is a I-continuity set, and thus Schilder’s theorem implies that

− lim
n→∞

1

n
logP

(
A(n)(·) − nλ ·

n
∈ Ut,s

)
= inf

f ∈Ut,s

{
I( f )

}
. (20)

We now proceed to compute the left-hand side.
First, consider the exceptional case where s = t − t i . Substituting this in (19), we

get

P

(
A(n)(·) − nλ ·

n
∈ Ut,s

)

= P

⎛
⎝1

n

⎛
⎝A(n)

i (t i ) +
∑

r∈P2(i)

[
A(n)
r1 (tr ) − A(n)

r1 (tr − t i )
]
�r

⎞
⎠ ≥ b − μi t i

⎞
⎠ . (21)

Moreover, by Cramér’s theorem, we have that

− lim
n→∞

1

n
logP

⎛
⎝ 1

n

⎛
⎝A(n)

i (ti ) +
∑

r∈P2(i)

[
A(n)
r1 (tr ) − A(n)

r1 (tr − ti )
]
�r

⎞
⎠ ≥ b − μi ti

⎞
⎠

=
[
b − (μi − λi

)
ti
]2

2Var
(
Āi (t − t i , t)

) .
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Combining this with (20) and (21), we obtain

inf
f ∈Ut,s

{
I( f )

} =
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

) .

Now consider the case when s �= t − t i . By the multivariate version of Cramér’s
theorem, we have that

lim
n→∞

1

n
logP

(
1

n

⎛
⎝A(n)

i (t i ) +
∑

r∈P2(i)

[
A(n)
r1 (tr ) − A(n)

r1 (sr )
]
�r

⎞
⎠ ≥

b − μi t i −
∑

r∈P2(i)

μr1

[(
tr − tr+

)− (sr − sr+
)]

�r ,

1

n

⎛
⎝A(n)

i (t i ) +
∑

r∈P2(i)

[
A(n)
r1 (tr ) − A(n)

r1 (tr − t i )
]
�r

⎞
⎠ ≥ b − μi t i

)

= inf
{
�t,s(y, z) : y ≥ b − (μi − λi

)
t i ;

z ≥ b − (μi − λi )t i − ci (t, s)
}
,

where

�t,s(y, z) � 1

2
(y, z)

(
Var
(
Āi (t − t i , t)

)
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Cov
(
Āi (t − t i , t), Āi (s, t)

)
Var

(
Āi (s, t)

)
)−1

(y, z)
 .

(22)
Combining this with (19) and (20), we get that

inf
f ∈Ut,s

{
I( f )

} = inf
{
�t,s(y, z) : y ≥ b − (μi − λi

)
t i ; z ≥ b − (μi − λi )t i − ci (t, s)

}
. (23)

Since �t,s is quadratic and the constraints are linear, it follows by standard calculus
that the optimal values of y and z are

y∗ � max

{
b − (μi − λi )t i ,

[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (s, t)

)
]
z∗
}

. (24)

and

z∗ � max

{
b − (μi − λi )t i − ci (t, s),

[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (t − t i , t)

)
]
y∗
}

,

(25)

respectively. Although this gives four possible combinations for (y∗, z∗), the following
lemma states that one of them is not possible. ��
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Claim 1 For all t ∈ Ti and s ∈ Si (t) such that s �= t − t i , we have that

y∗ = b − (μi − λi
)
t i , and/or z∗ = b − (μi − λi )t i − ci (t, s).

Proof Suppose that

y∗ =
[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (s, t)

)
]
z∗ > b − (μi − λi

)
t i , (26)

and that

z∗ =
[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (t − t i , t)

)
]
y∗ > b − (μi − λi )t i − ci (t, s).

Then, we have

y∗ =
[

Cov
(
Āi (t − t i , t), Āi (s, t)

)2
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)
]
y∗,

which is impossible because the Cauchy–Schwarz inequality implies that

Cov
(
Āi (t − t i , t), Āi (s, t)

)2
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

) < 1, (27)

for all t , and s such that s �= t − t i . ��
Combining Claim 1 with (26) and (25), we conclude that z∗ > b − (μi − λi )t i −

ci (t, s) if and only if

b − (μi − λi )t i − ci (t, s) <

[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (t − t i , t)

)
] [

b − (μi − λi
)
t i
]
,

which is equivalent to

ci (t, s) >

[
Cov

(
Āi (t − t i , t), Āi (t − t i , s)

)

Var
(
Āi (t − t i , t)

)
] [

b − (μi − λi
)
t i
]

= kbi (t, s).

In that case, substituting the optimal values

y∗ = b − (μi − λi )t i ,

z∗ =
[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (t − t i , t)

)
] [

b − (μi − λi
)
t i
]
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in (22), we obtain

�t,s(y
∗, z∗)

= y∗2
Var

(
Āi (s, t)

)− 2y∗z∗Cov
(
Āi (t − t i , t), Āi (s, t)

)+ z∗2Var
(
Āi (t − t i , t)

)

2
[
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)− Cov
(
Āi (t − t i , t), Āi (s, t)

)2]

=

[
Var

(
Āi (s, t)

)− 2
Cov( Āi (t−t i ,t), Āi (s,t))

2

Var( Āi (t−t i ,t))
+ Cov( Āi (t−t i ,t), Āi (s,t))

2

Var( Āi (t−t i ,t))

] [
b − (μi − λi

)
t i
]2

2
[
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)− Cov
(
Āi (t − t i , t), Āi (s, t)

)2]

=
[
b − (μi − λi )t i

]2

2Var
(
Āi (t − t i , t)

) .

Combining this with (23) we get that, if

kbi (t, s) < ci (t, s), (28)

then

inf
f ∈Ut,s

{
I( f )

} =
[
b − (μi − λi )t i

]2

2Var
(
Āi (t − t i , t)

) .

On the other hand, combining Claim 1 with Eqs. (26) and (25), we also get that

y∗ > b − (μi − λi )t i

if and only if

[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (s, t)

)
] [

b − (μi − λi )t i − ci (t, s)
]

> b − (μi − λi
)
t i ,

which is equivalent to

ci (t, s) <

[
Cov

(
Āi (s, t), Āi (t − t i , s)

)

Var
(
Āi (s, t)

)
] [

b − (μi − λi
)
t i − ci (t, s)

]
= hbi (t, s).

In that case, substituting the optimal values

z∗ = b − (μi − λi
)
t i − ci (t, s),

y∗ =
[
Cov

(
Āi (t − t i , t), Āi (s, t)

)

Var
(
Āi (s, t)

)
] [

b − (μi − λi )t i − ci (t, s)
]
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in (22), we obtain that �t,s(y∗, z∗) equals

y∗2
Var

(
Āi (s, t)

)− 2y∗z∗Cov
(
Āi (t − t i , t), Āi (s, t)

)+ z∗2Var
(
Āi (t − t i , t)

)

2
[
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)− Cov
(
Āi (t − t i , t), Āi (s, t)

)2]

=

[
Cov( Āi (t−t i ,t), Āi (s,t))

2

Var( Āi (s,t))
− 2

Cov( Āi (t−t i ,t), Āi (s,t))
2

Var( Āi (s,t))
+ Var

(
Āi (t − t i , t)

)] [
b − (μi − λi

)
t i − ci (t, s)

]2

2
[
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)− Cov
(
Āi (t − t i , t), Āi (s, t)

)2]

=
[
b − (μi − λi )t i − ci (t, s)

]2
2Var

(
Āi (s, t)

) .

Combining this with (23) we get that, if

hbi (t, s) > ci (t, s), (29)

then

inf
f ∈Ut,s

{
I( f )

} =
[
b − (μi − λi )t i − ci (t, s)

]2
2Var

(
Āi (s, t)

) .

Finally, if neither (28) nor (29) hold, Claim 1 implies that

y∗ = b − (μi − λi )t i ,

z∗ = b − (μi − λi )t i − ci (t, s).

Combining this with (23), we obtain that �t,s(y∗, z∗) equals

y∗2
Var

(
Āi (s, t)

)− 2y∗z∗Cov
(
Āi (t − t i , t), Āi (s, t)

)+ z∗2Var
(
Āi (t − t i , t)

)

2
[
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)− Cov
(
Āi (t − t i , t), Āi (s, t)

)2]

= y∗2
Var

(
Āi (s, t)

)
Var

(
Āi (t− t i , t)

)−2y∗z∗Cov
(
Āi (t− t i , t), Āi (s, t)

)
Var

(
Āi (t− t i , t)

)+z∗2Var
(
Āi (t− t i , t)

)2

2
[
Var

(
Āi (t− t i , t)

)
Var

(
Āi (s, t)

)−Cov
(
Āi (t− t i , t), Āi (s, t)

)2]
Var

(
Āi (t− t i , t)

)

= y∗2

2Var
(
Āi (t − t i , t)

)

+
[
z∗Var

(
Āi (t − t i , t)

)− y∗
Cov

(
Āi (t − t i , t), Āi (s, t)

)]2

2
[
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)− Cov
(
Āi (t − t i , t), Āi (s, t)

)2]
Var

(
Âi (t − t i , t)

)

=
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

+
[[
b − (μi − λi

)
t i
]
Cov

(
Āi (t − t i , t), Āi (t − t i , s)

)− ci (t, s)Var
(
Âi (t − t i , t)

)]2

2
[
Var

(
Āi (t − t i , t)

)
Var

(
Āi (s, t)

)− Cov
(
Āi (t − t i , t), Āi (s, t)

)2]
Var

(
Âi (t − t i , t)

)

=
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

) +

[
Cov( Āi (t−t i ,t), Āi (t−t i ,s))

Var
(
Âi (t−t i ,t)

) [b − (μi − λi )t i ] − ci (t, s)

]2

2

[
1 − Cov( Āi (t−t i ,t), Āi (s,t))

2

Var( Āi (t−t i ,t))Var( Āi (s,t))

]
Var

(
Āi (s, t)

)
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=
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

) +
[
kbi (t, s) − ci (t, s)

]2

2Var
(
Āi (s, t)

∣∣∣ Āi (t − t i , t) = b − (μi − λi
)
t i
) .

Combining this with (23) we get that, if

kbi (t, s) ≥ ci (t, s) and hbi (t, s) ≤ ci (t, s),

then

inf
f ∈Ut,s

{
I( f )

} =
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

+
[
kbi (t, s) − ci (t, s)

]2

2Var
(
Āi (s, t)

∣∣∣ Āi (t − t i , t) = b − (μi − λi
)
t i
) ,

as desired. Combining Lemmas 3 and 4 concludes the proof of Theorem 3.

Appendix D. Proof of Theorem 4

Given Theorem 3, it is enough to show that if

kbi
(
t∗, s

)
< ci

(
t∗, s

)
, (30)

for all s ∈ Si (t∗) such that s �= t∗ − t∗i , then

− lim
n→∞

1

n
logP

(
Q(n)

i > bn
)

≤ inf
t∈Ti

⎧
⎪⎨
⎪⎩

[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

⎫
⎪⎬
⎪⎭

.

In the proof of Theorem 3, the lower bound in the decay rate was obtained by replacing
the decay rate of an intersection of events by the decay rate of the least likely of these.
Therefore, if the optimum path in this least likely set happens to be in all the sets in
the intersection, then the bound is tight. In particular, if t∗ and s∗ are optimizers in
the lower bound of Theorem 3, then we need to show that the most probable path in
Ut∗,s∗ is in Ei (b). Furthermore, since Theorem 1 states that Ei (b) is a I-continuity set,
then it is enough to show that the most probable path in Ut∗,s∗ is in Ei (b).
Claim 2 If kbi (t∗, s) < ci (t∗, s), for all s ∈ Si (t∗) such that s �= t∗ − t∗i , then a most
probable path in Ut∗,s∗ is f ∗ ∈ �k such that

f ∗
j (·) = E

[
Â j (·)

∣∣ Āi (t∗ − t∗i , t∗) = b − (μi − λi
)
t∗i
]
,

for j ∈ {1, . . . , k}.
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Proof For j ∈ {1, . . . , k}, we have

f ∗
j (·) =

Cov
(
Â j (·), Āi (t∗ − t∗i , t∗)

)

Var
(
Āi (t∗ − t∗i , t∗)

)
[
b − (μi − λi

)
t∗i
]
.

Then, we can write

f ∗(·) =
⎛
⎝ ∑

r∈P1(i)

[
�(t∗r , ·) − �(t∗r − t∗i , ·)

]
.er1�r

⎞
⎠
[

b − (μi − λi
)
t∗i

Var
(
Āi (t∗ − t∗i , t∗)

)
]

,

and thus f ∗ is in the rkhs Rk . Then, we have

I( f ∗) = 1

2
〈 f ∗, f ∗〉Rk

= 1

2

⎛
⎝ ∑

r∈P1(i)

∑
r ′∈P1(i)

e

r1 .
[
�(t∗r , t∗r ′ ) − �(t∗r , t∗r ′ − t∗i ) − �(t∗r − t∗i , t∗r ′ )

∑
r∈P1(i)

+ �(t∗r − t∗i , t∗r ′ − t∗i )
]
.er ′

1
�r�r ′

⎞
⎠
[

b − (μi − λi
)
t∗i

Var
(
Āi (t∗ − t∗i , t∗)

)
]2

= 1

2

⎛
⎝ ∑

r∈P1(i)

∑
r ′∈P1(i)

[
Cov

(
Âr1 (t

∗
r ), Âr ′

1
(t∗r ′ )

)
− Cov

(
Âr1 (t

∗
r ), Âr ′

1
(t∗r ′ − t∗i )

)

−Cov
(
Âr1 (t

∗
r − t∗i ), Âr ′

1
(t∗r ′ )

)

∑
r∈P1(i)

+ Cov
(
Âr1 (t

∗
r − t∗i ), Âr ′

1
(t∗r ′ − t∗i )

)]
�r�r ′

⎞
⎠
[

b − (μi − λi
)
t∗i

Var
(
Āi (t∗ − t∗i , t∗)

)
]2

= 1

2

⎡
⎣ ∑
r∈P1(i)

∑
r ′∈P1(i)

Cov
(
Âr1 (t

∗
r ) − Âr1 (t

∗
r − t∗i ) ,

Âr ′
1
(t∗r ′ ) − Âr ′

1
(t∗r ′ − t∗i )

)
�r�r ′

] [ b − (μi − λi
)
t∗i

Var
(
Āi (t∗ − t∗i , t∗)

)
]2

= 1

2
Var

⎛
⎝ ∑

r∈P1(i)

[
Âr1 (t

∗
r ) − Âr1 (t

∗
r − t∗i )

]
�r

⎞
⎠
[

b − (μi − λi
)
t∗i

Var
(
Āi (t∗ − t∗i , t∗)

)
]2

=
[
b − (μi − λi

)
t∗i
]2

2Var
(
Āi (t∗ − t∗i , t∗)

) .

Since kbi (t∗, s) < ci (t∗, s) for all s ∈ Si (t∗) such that s �= t∗ − t∗i , the expression
above is equal to the lower bound in Theorem 3. It follows that f ∗ is a most probable
path in the set Ut∗,s∗ . ��
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To complete the proof, we just need to show that f ∗ ∈ Ei (b), i.e., we need to show
that there exists t ∈ Ti such that

f ∗
i (t i ) +

∑
r∈P2(i)

[
f ∗
r1(tr ) − f ∗

r1(sr )
]
�r ≥ b − (μi − λi

)
t i − ci (t, s),

for all s ∈ Si (t). For t = t∗, we have

f ∗
i (t∗i ) +

∑
r∈P2(i)

[
f ∗
r1(t

∗
r ) − f ∗

r1(sr )
]
�r

= E
[
Āi (s, t∗)

∣∣ Āi (t∗ − t∗i , t∗) = b − (μi − λi
)
t∗i
]

= b − (μi − λi
)
t∗i +

E
[
Āi (s, t∗ − t∗i )

∣∣ Āi (t∗ − t∗i , t∗) = b − (μi − λi
)
t∗i
]

= b − (μi − λi
)
t∗i − kbi (t

∗, s).

Finally, combining this with (30) and the fact that kbi
(
t∗, t∗ − t∗i

) = 0 =
ci
(
t∗, t∗ − t∗i

)
, we obtain

f ∗
i (t∗i ) +

∑
r∈P2(i)

[
f ∗
r1(t

∗
r ) − f ∗

r1(sr )
]
�r

= b − (μi − λi
)
t∗i − kbi (t

∗, s) ≥ b − (μi − λi
)
t∗i − ci (t∗, s),

for all s ∈ Si (t∗), which concludes the proof.

Appendix E. Proof of Lemma 2

Since t − t i ∈ Si (t) for all t ∈ Ti , we have

sup
s∈Si (t)

⎧⎪⎨
⎪⎩

[
b − (μi − λi

)
t i − ci (t, s)

]2

2Var
(
Āi (s, t)

)

⎫⎪⎬
⎪⎭

≥
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

) ,

for all t ∈ Ti . Therefore, we have

sup
s∈Si (t)

{
I
b
i (t, s)

}
≥
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

) ,
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and thus

inf
t∈Ti

sup
s∈Si (t)

{
I
b
i (t, s)

}
≥ inf

t∈Ti

⎧⎪⎨
⎪⎩

[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

⎫⎪⎬
⎪⎭

=
[
b − (μi − λi

)
t̃ i
]2

2Var
(
Āi
(
t̃ − t̃ i , t̃

)) .

(31)

On the other hand, since kbi
(
t̃, s
)

< ci
(
t̃, s
)
for all s ∈ Si ( t̃) such that s �= t̃ − t̃ i ,

we have

I
b
i ( t̃, s) =

[
b − (μi − λi

)
t̃ i
]2

2Var
(
Āi
(
t̃ − t̃ i , t̃

)) ,

for all s ∈ Si ( t̃). Combining this with (31), we get

inf
t∈Ti

sup
s∈Si (t)

{
I
b
i (t, s)

}
=
[
b − (μi − λi

)
t̃ i
]2

2Var
(
Āi
(
t̃ − t̃ i , t̃

)) . (32)

In particular, this means that we can pick t̃ = t∗, and thus kbi (t
∗, s) = kbi ( t̃, s) <

ci ( t̃, s) = ci (t∗, s), for all s ∈ Si (t∗) such that s �= t∗ − t∗i .

Appendix F. Proof of Theorem 6

Similarly to the proof of Theorem 4, if t∗ and s∗ are optimizers in the lower bound of
Theorem 3, we need to show that the most probable path in Ut∗,s∗ is in Ei (b).

Claim 3 If hbi (t∗, s∗) ≤ ci (t∗, s∗) and kbi (t∗, s∗) ≥ ci (t∗, s∗) , then a most probable
path in Ut∗,s∗ is f ∗ ∈ �k such that

f ∗
j (·) = E

[
Â j (·)

∣∣ Āi (t∗ − t∗i , t∗) = b − (μi − λi
)
t∗i ; Āi (t∗ − t∗i , s∗) = ci (t∗, s∗)

]
,

for j ∈ {1, . . . , k}.
Proof Using standard properties of conditional multivariate Normal random variables,
we get that

f ∗
j (·) = θ∗

1Cov
(
Â j (·), Āi (t∗ − t∗i , t∗)

)
+ θ∗

2Cov
(
Â j (·), Āi (t∗ − t∗i , s∗)

)
,

for all j ∈ {1, . . . , k}, where

θ∗ �
(

Var
(
Āi (t∗ − t∗i , t∗)

)
Cov

(
Āi (t∗ − t∗i , t∗), Āi (t∗ − t∗i , s∗)

)
Cov

(
Āi (t∗ − t∗i , t∗), Āi (t∗ − t∗i , s∗)

)
Var

(
Āi (t∗ − t∗i , s∗)

)
)−1

(
b − (μi − λi

)
t∗i

ci (t∗, s∗)

)
.
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Then, we can write

f ∗(·) = θ∗
1

⎡
⎣ ∑
r∈P1(i)

[
�(t∗r , ·) − �(t∗r − t∗i , ·)

]
.er1�r

⎤
⎦

+θ∗
2

⎡
⎣ ∑
r∈P1(i)

[
�(s∗r , ·) − �(t∗r − t∗i , ·)

]
.er1�r

⎤
⎦ ,

and thus f ∗ is in the rkhs Rk . After tedious but straightforward computations we
obtain

I( f ∗) =
[
b − (μi − λi

)
t i
]2

2Var
(
Āi (t − t i , t)

)

+
[
kbi (t, t, s) − ci (t, s)

]2

2Var
(
Āi (t − t i , s)

∣∣∣ Āi (t − t i , t) = b − (μi − λi
)
t i
) .

Since hbi (t∗, s∗) ≤ b − (μi − λi
)
t∗i and k

b
i (t∗, s∗) ≥ ci (t∗, s∗), the equation above

is equal to the lower bound in Theorem 3. It follows that f ∗ is a most probable path
in Ut∗,s∗ . ��

To complete the proof, we just need to show that f ∗ ∈ Ei (b), i.e., we need to show
that there exists t ∈ Ti such that

f ∗
i (t i ) +

∑
r∈P2(i)

[
f ∗
r1(tr ) − f ∗

r1(sr )
]
�r ≥ b − (μi − λi

)
t i − ci (t, s),

for all s ∈ Si (t). In order to simplify notation, we denote

E[ · ] � E
[ · ∣∣ Āi (t∗ − t∗i , t∗) = b − (μi − λi

)
t∗i ; Āi (t∗ − t∗i , s∗) = ci (t∗, s∗)

]
.

For t = t∗, we have

f ∗
i (t∗i ) +

∑
r∈P2(i)

[
f ∗
r1 (t

∗
r ) − f ∗

r1 (sr )
]
�r = E

⎡
⎣ Âi (t∗i ) +

∑
r∈P2(i)

[
Âr1 (t

∗
r ) − Âr1 (sr )

]
�r

⎤
⎦

= b − (μi − λi
)
t∗i − E

⎡
⎣ ∑
r∈P2(i)

[
Âr1 (sr ) − Âr1 (t

∗
r − t∗i )

]
�r

⎤
⎦ .

Combining this with (14), we obtain

f ∗
i (t∗i ) +

∑
r∈P2(i)

[
f ∗
r1(t

∗
r ) − f ∗

r1(sr )
]
�r ≥ b − (μi − λi

)
t∗i − ci (t∗, s),
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for all s ∈ Si (t∗), which concludes the proof.

Appendix G. Proof of Theorem 7

We start with a technical lemma.

Lemma 5 There exists

t∗ ∈ argmin
t∈Ti

⎧⎪⎨
⎪⎩

[
b − (μi − λi

)
t i
]2

Var
(
Āi (t − t i , t)

)

⎫⎪⎬
⎪⎭

(33)

such that t∗r = t∗i , for all r ∈ P2(i).

Proof Note that the numerator of the function being minimized in (33) only depends
on t i . As a result, we can focus on the structure of the maximizers of its denominator
when we keep t i fixed. Using that Â(·) is a time-reversible mfBm, we obtain that
Var

(
Āi (t − t i , t)

)
equals

∑
r∈P1(i)

∑
r ′∈P1(i)

�r�r ′Cov
(
Âr1 (tr ) − Âr1 (tr − t i ), Âr ′

1
(tr ′ ) − Âr ′

1
(tr ′ − t i )

)

=
∑

r∈P1(i)

∑
r ′∈P1(i)

�r�r ′
[
Cov

(
Âr1 (tr ), Âr ′

1
(tr ′ )

)
− Cov

(
Âr1 (tr ), Âr ′

1
(tr ′ − t i )

)

− Cov
(
Âr1 (tr − t i ), Âr ′

1
(tr ′ )

)

+Cov
(
Âr1 (tr − t i ), Âr ′

1
(tr ′ − t i )

)]

=
∑

r∈P1(i)

∑
r ′∈P1(i)

σr ′
1
σr1ρr1,r ′

1

2

[(
|tr |2H + |tr ′ |2H − |tr − tr ′ |2H

)

−
(
|tr |2H + |tr ′ − t i |2H − |tr − tr ′ + t i |2H

)

−
(
|tr − t i |2H + |tr ′ |2H − |tr − t i − tr ′ |2H

)

+
(
|tr − t i |2H + |tr ′ − t i |2H − |tr − tr ′ |2H

)]
�r�r ′

=
∑

r∈P1(i)

∑
r ′∈P1(i)

σr ′
1
σr1ρr1,r ′

1

2

[(
|tr − tr ′ + t i |2H + |tr − t i − tr ′ |2H − 2|tr − tr ′ |2H

)]

�r�r ′ .

Taking the derivative with respect to tr , and using that tr ≤ t i ≤ 0 for all t ∈ Ti , we
obtain

∂

∂ tr
Var

(
Āi (t − ti , t)

) =
∑

r ′∈P1(i)

σr ′
1
σr1ρr1,r ′

1
H
[
sign(tr − tr ′ + t i )|tr − tr ′ + t i |2H−1

+ sign(tr − tr ′ − t i )|tr − tr ′ − t i |2H−1
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− 2sign(tr − tr ′)|tr − tr ′ |2H−1
]
�r�r ′ .

Moreover, for all tr ≤ min{tr ′ : r ′ ∈ P1(i), r ′ �= r}, we have

∂

∂ tr
Var

(
Āi (t − t i , t)

) =
∑

r ′∈P1(i), r ′ �=r

σr ′
1
σr1ρr1,r ′

1
H
[

− (tr ′ − tr − t i )2H−1

+ sign(tr − tr ′ − t i )|tr − tr ′ − t i |2H−1

+ 2(tr ′ − tr )2H−1
]
�r�r ′ . (34)

If tr − tr ′ − t i ≤ 0, we have

− (tr ′ − tr − t i )2H−1 + sign(tr − tr ′ − t i )|tr − tr ′ − t i |2H−1 + 2(tr ′ − tr )2H−1

= −(tr ′ − tr − t i )2H−1 − (tr ′ − tr + t i )2H−1

+ 2(tr ′ − tr )2H−1 ≥ 0, (35)

where in the last inequalityweused that H ≥ 1/2.On the other hand, if tr−tr ′−t i > 0,
we have

− |tr − tr ′ + t i |2H−1 + sign(tr − tr ′ − t i )|tr − tr ′ − t i |2H−1 + 2|tr − tr ′ |2H−1

= −(tr ′ − tr − t i )2H−1 + (tr − tr ′ − t i )2H−1

+ 2(tr ′ − tr )2H−1 ≥ 0, (36)

where in the last inequality we used that H ≥ 1/2. Combining (34), (35), and (36)
with ρr1,r ′

1
≥ 0, for all r , r ′ ∈ P1(i), it follows that Var

(
Āi (t − t i , t)

)
is maximized

when tr = t i , for all r ∈ P2(i). ��

Lemma 5 implies that we can pick

t∗ ∈ argmin
t∈Ti

⎧⎪⎨
⎪⎩

[
b − (μi − λi

)
t i
]2

Var
(
Āi (t − t i , t)

)

⎫⎪⎬
⎪⎭

such that t∗r = t∗i , for all r ∈ P2(i). In that case, we have

t∗i ∈ argmin
t i≤0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
b − (μi − λi

)
t i
]2

Var

(
∑

r∈P1(i)
Âr1(t i )�r

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.
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An elementary computation yields that

t∗i = −
(

b

μi − λi

)(
H

1 − H

)
. (37)

Using this, the condition in Lemma 2 is

Cov

(
∑

r∈P2(i)
Âr1(sr )�r , Âi (t∗i ) + ∑

r∈P2(i)
Âr1(t

∗
i )�r

)

Var

(
Âi (t∗i ) + ∑

r∈P2(i)
Âr1(t

∗
i )�r

)
[
b − (μi − λi

)
t∗i
]

<
∑

r∈P2(i)

⎛
⎝μr1 − λr1 −

∑
j∈Nin(r1)

μ j p j,r1

⎞
⎠ (−sr )�r , (38)

for all s ∈ Si (t∗) such that s �= t∗ − t∗i . Then, since t∗ − t∗i /∈ Si (t∗), a sufficient
condition for (38) to hold is that

min

⎧
⎨
⎩μ j − λ j −

∑
l∈Nin( j)

μl pl, j : j �= i

⎫
⎬
⎭ >

sup
s∈S(t∗)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cov

(
∑

r∈P2(i)
Âr1(sr )�r , Âi (t∗i ) + ∑

r∈P2(i)
Âr1(t

∗
i )�r

)

Var

(
Âi (t∗i ) + ∑

r∈P2(i)
Âr1(t

∗
i )�r

)(
∑

r∈P2(i)
−sr�r

)

[
b − (μi − λi

)
t∗i
]
⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Substituting (37) in the equation above, we obtain, with bH � b/(1 − H),

Cov

(
∑

r∈P2(i)
Âr1 (sr )�r , Âi (t∗i ) + ∑

r∈P2(i)
Âr1 (t

∗
i )�r

)

Var

(
Âi (t∗i ) + ∑

r∈P2(i)
Âr1 (t

∗
i )�r

)(
∑

r∈P2(i)
−sr�r

)
[
b − (μi − λi

)
t∗i
]

=
bH · ∑

r∈P2(i)

[
Cov

(
Âr1 (sr ), Âi (t∗i )

)
+ ∑

r ′∈P2(i)
Cov

(
Âr1 (sr ), Âr ′

1
(t∗i )

)
�r ′

]
�r

(
Var

(
Âi (t∗i )

)
+ ∑

r∈P2(i)

[
2Cov

(
Âi (t∗i ), Âr1 (t

∗
i )
)

+ ∑
r ′∈P2(i)

Cov
(
Âr1 (t

∗
i ), Âr ′

1
(t∗i )

)
�r ′

]
�r

)(
∑

r∈P2(i)
−sr�r

)
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=
bH · ∑

r∈P2(i)

(
σr1σiρr1,i + ∑

r ′∈P2(i)
σr1σr ′

1
ρr1,r ′

1
�r ′

)
�r

(
|sr |2H + |t∗i |2H − |t∗i − sr |2H

)

2|t∗i |2H
[
σ 2
i + ∑

r∈P2(i)

(
2σr1σiρr1 ,i + ∑

r ′∈P2(i)
σr1σr ′

1
ρr1,r ′

1
�r ′

)
�r

](
∑

r∈P2(i)
−sr�r

)

=

∑
r∈P2(i)

(
σr1σiρr1,i + ∑

r ′∈P2(i)
σr1σr ′

1
ρr1,r ′

1
�r ′

)
�r

(∣∣∣ srt∗i
∣∣∣
2H + 1 −

∣∣∣1 − sr
t∗i

∣∣∣
2H
)

2

[
σ 2
i + ∑

r∈P2(i)

(
2σr1σiρr1,i + ∑

r ′∈P2(i)
σr1σr ′

1
ρr1 ,r ′

1
�r ′

)
�r

](
∑

r∈P2(i)

sr
t∗i

�r

)
(

μi − λi

H

)
.

Then, a sufficient condition for (38) to hold is that

min

⎧
⎨
⎩μ j − λ j −

∑
l∈Nin( j)

μl pl, j : j �= i

⎫
⎬
⎭ >

sup
α∈(0,1)|P2 (i)|

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
r∈P2(i)

(
σr1σiρr1,i + ∑

r ′∈P2(i)
σr1σr ′

1
ρr1,r ′

1
�r ′

)
�r
(
(αr )

2H + 1 − (1 − αr )
2H )

[
σ 2
i + ∑

r∈P2(i)

(
2σr1σiρr1,i + ∑

r ′∈P2(i)
σr1σr ′

1
ρr1,r ′

1
�r ′

)
�r

](
∑

r∈P2(i)
αr�r

)
(

μi − λi

2H

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Lemma 2 and Theorem 4 finish the proof.
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