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Abstract
Collecting and sharing speech resources is important for
progress in speech science and technology. Often, speech re-
sources cannot be shared because of concerns over the privacy
of the speakers, e.g., minors or people with medical condi-
tions. Current technologies for pseudonymizing speech have
only been tested on “standard” speech for which pseudonymiza-
tion methods are evaluated on speaker identification risk, in-
telligibility, and naturalness. For many applications, the im-
portant characteristics are para-linguistic aspects of the speech,
e.g., voice quality, emotion, or disease progression. Little
information is available about the extent to which speaker
pseudonymization methods preserve such paralinguistic infor-
mation. The current study investigates how well voice quality
parameters are preserved by an example speech pseudonymiza-
tion application. Correlations prove to be high between original
and pseudonymized recordings for seven acoustic parameters
and a composite measure of dysphonia, the AVQI. Root mean
square errors for these parameters were reasonably small. A
linear mixed effect model shows a link between the difference
between source and target speaker and the size of the absolute
difference in the AVQI. It is argued that new measures of qual-
ity are needed for pseudonymized non-standard speech before
wide-spread application of pseudonymized speech can be con-
sidered in research and clinical practise.
Index Terms: voice privacy, speaker pseudonymization, voice
quality, paralinguistics

1. Introduction
Collecting and sharing speech resources is important for
progress in speech science and technology. A lot of progress
in speech technology has been made possible by the availability
of large speech corpora in combination with advanced statisti-
cal techniques [1, 2]. However, speech recordings also carry a
privacy risks. This is especially true when the speakers have
medical conditions, are minors, or the subject matter is sensi-
tive. But these are also groups that might benefit from improve-
ments in speech technology tailored to their needs. The pri-
vacy risks resulting from sharing speech recordings would be
mitigated if the probability of speaker (re-)identification could
be reduced while retaining useful linguistic and para-linguistic
features. Successful de-identification of speech would shift the
risk-benefit balance for sharing speech corpora towards more
sharing.

De-identification of speech will always be a trade-off
between risk of re-identification and usefulness. In gen-
eral, pseudonymization is more realistic than attempting true
anonymization. This trade-off suggests an approach to
pseudonymization that is adjustable in the level of information
removed from the speech while still preserving relevant features
well enough to make the result useful. The goal is to develop

a method in which the transformation of the speech can be tai-
lored to the risk profile and features needed (c.f., [3]).

The VoicePrivacy 2020 challenge [4] has been organized
to stimulate development of pseudonymization and anonymiza-
tion methods useful for speech technology deployment, balanc-
ing the risk of re-identification and speech quality. The first
VoicePrivacy 2020 challenge was directed at “normal” speech.
However, research into paralinguistics, disordered and patho-
logical speech, and the deployment of, e.g., cloud-based di-
agnostics on speech, would all benefit from being able to use
pseudonymized speech to alleviate privacy risks. Non-standard
speech has peculiarities that can make de-identification more or
less difficult, depending on the task. In non-standard speech, ev-
ery speaker has her or his own individual deviations from stan-
dard speech. These deviations are important for the task at hand,
e.g., diagnosing pathologies, but are also powerful features to
re-identify the speaker. However, these peculiarities can be in-
herently transient, or changing over time, making re-identifying
speakers over time difficult even without pseudonymization.
Non-standard speech can also be a challenge for automatic
speech recognition or measures of naturalness.

These particulars of non-standard speech complicate the
evaluation of pseudonymization methods on re-identification
risk, intelligibility, or speech degradation. This is not always
a problem as for many tasks, intelligibility or naturalness are
irrelevant. One such task is the automatic evaluation of voice
quality in speakers with larynx pathologies.

The current study makes a first step in the direction of eval-
uating the use of pseudonymization in research of paralinguis-
tic phenomenons by investigating to what extent voice qual-
ity can be measured in pseudonymized speech using an algo-
rithm that has been entered in the VoicePrivacy 2020 challenge
[5, 6, 7]. The algorithm performed reasonably on anonymiza-
tion and WER in the VoicePrivacy 2020 challenge and good
on speech quality (entry I1 in [6, 7]). In this study the per-
formance of a range of voice quality parameters are compared
between original speech and pseudonymized speech.

The questions addressed in the current study are:

1. Can original acoustic voice parameter values be deter-
mined from pseudonymized speech?

2. What is the error in these values when determined from
pseudonymized speech?

3. Can the size of the error be predicted from the extent of
the anonymization?

2. Methods
2.1. Speech recordings

Speech recordings from 43 patients (9F/34M) who had been
treated for small laryngeal tumors with laser surgery or radia-
tion therapy were obtained for analysis. Speech had been rou-
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AVQI CPPs HNR Slope
Original 4.469 (1.714) 10.887 (3.132) 14.108 (4.431) -20.706 (3.748)
P500 -0.054 (0.516) ∗0.400 (0.991) ∗-0.882 (1.958) ∗0.656 (1.554)
P550 -0.155 (0.526) ∗0.635 (0.887) -0.037 (1.964) ∗1.338 (1.305)
P600 ∗-0.323 (0.623) ∗0.810 (0.964) 0.408 (2.083) ∗1.847 (1.515)
RMSE [0.51 - 0.61] [0.86 - 0.95] [1.93 - 2.07 ] [1.30 - 1.55]

Tilt Jitter Shimmer ShdB
Original -10.646 (1.323) 1.380 (1.517) 8.149 (3.454) 0.733 (0.299)
P500 ∗-0.463 (0.607) ∗-0.440 (0.905) 0.185 (2.298) 0.019 (0.197)
P550 -0.083 (0.485) ∗-0.535 (1.04) -0.292 (1.950) -0.004 (0.159)
P600 -0.106 (0.634) ∗-0.630 (0.982) ∗-0.781 (1.784) -0.049 (0.153)
RMSE [0.46 - 0.57] [1.27 - 1.46] [1.88 - 3.21] [0.16 - 0.28]

Table 1: Average values (sd) of all parameters (Original) and pairwise differences with the Original recordings after pseudonymization
(P500, P550, P600). Pseudonymization targets P500: φ=500 Hz, F0=120 Hz; P550: φ=550 Hz, F0=150 Hz; P600: φ=600 Hz,
F0=180 Hz; RMSE: Range of root mean square errors for (P500, P550, P600) compared to linear model from fit to Original ∼
Pseudo. (see Figure 2); *: p< 0.001 pair-wise Student t-test against value for Original. See text.

tinely recorded during consultations, both before treatment and
during 12 month follow-up. From each recording session, 3
seconds from a sustained vowel, preferably /a/, and 4 seconds of
running speech, mainly from a neutral story read aloud, were se-
lected. When no sustained vowel of at least 3 seconds was avail-
able, several sustained vowel realizations were concatenated to
obtain a sample of 3 seconds. In total, 101 recorded sessions
were available for analysis from these speakers, 42 recorded be-
fore the start of treatment (1 per speaker, missing for 1 speaker)
and 59 recorded during follow up (0-3 per speaker). The dis-
tribution of recordings over speakers is uneven due to technical
and administrative omissions.

The neutral first formant, φ, is a measure of the vocal tract
length (VTL) [8] and is manipulated during pseudonymization
together with F0. The average φ for these speakers, calculated
according to [5, 8, 9, 10] from all recorded sessions, is φ = 549
(±14) Hz and the mean F0 = 142 (±56) Hz. Treatment for small
laryngeal tumors is not expected to change the VTL, i.e., φ, but
it must be noted that the pitch of these patients will have been
affected before as well as after treatment.

Average values for vocally healthy speakers from the pro-
files in [10] are φ = 561 (±12) Hz and F0 = 200 (±21) Hz for
female speakers (N=116) and φ = 534 (±11) Hz and F0 = 116
(±21) Hz for male speakers (N=107).

AVQI Acoustic Voice Quality Index
CPPs Smoothed Cepstral Peak Prominence
HNR Mean Harmonics to Noise Ratio (dB)
Slope Slope of LTAS (dB)
Tilt Tilt of trendline through LTAS (dB)
Jitter Jitter (% period perturbation)
Shimmer Shimmer (% amplitude perturbation)
ShdB Shimmer (dB)

Table 2: List of acoustic parameters tested. All are defined in
[11] and can be calculated in Praat [12]. Note that Jitter is not
part of the AVQI.

2.2. Voice quality parameters

Seven acoustic parameters related to voice quality and a com-
posite measure of voice quality are used in this study (see Ta-
ble 2). Overall voice quality is measured using the Acoustic

Figure 1: Scatter plot and regression line of AVQI for P600
pseudonymized vs. original values. Diagonal dotted line: Ideal
correlation. Horizontal and vertical dotted lines: AVQI=2.95
cutoff value between normal and dysphonic voice for Dutch.
Spearman correlation coefficient R=0.934, p < 0.001

Voice Quality Index (AVQI) [11, 13, 14, 15]. The AVQI falls
on a scale from 0-10 (lower is better) with AVQI=2.95 being
the demarcation point between normal and dysphonic voice for
Dutch [11, 13]. The AVQI (version 2.03 [16, 17]) is calculated
from primary acoustic parameters as (1):

AV QI = (3.295− 0.111 · CPPs− 0.073 ·HNR−
0.213 · Shimmer + 2.789 · ShdB−

0.032 · Slope+ 0.077 · T ilt) · 2.208 + 1.797

(1)

This differs slightly from the formula derived in [11, 15].
Acoustic parameters are determined on the voiced parts of the
concatenation of 3 seconds of recorded sustained vowel, prefer-
ably /a/, and 4 seconds of recorded running speech according to
[11]. All values were extracted from the AVQI Praat script ver-
sion 2.03 [15, 16, 17], with AVQI values truncated between 0-
10. No-voice conditions with undefined parameter values were
scored as AVQI=10.

Of the 101 original speech samples, 81 (80%) are dyspho-
nic (AVQI≥2.95), 38/42 recorded before treatment (90%) and
43/59 after treatment (73%).
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Figure 2: Pearson’s correlation coefficients between Pseudonymized and Original values of parameters. All R: p < 0.001. P500
(green): φ = 500 Hz, F0 = 120 Hz; P550 (red): φ = 550 Hz, F0 = 150 Hz; P600 (blue): φ = 600 Hz, F0 = 180 Hz. See text.

2.3. Speech pseudonymization

A signal processing approach is used in the current study for
pseudonymization of speech. The method is based on changing
the perceived acoustic length of the vocal tract and individual
formant frequencies by changing the sampling rate (“playback
speed”) after which overlap-add [18] is applied to adjust the
F0 and the duration of the utterances. The standard Praat [12]
command Change Gender is used to perform these changes.
Details can be found in [5, 9, 10]. In ABX speaker identifica-
tion experiments with pseudonymized normal speech, both ex-
pert and naive subjects identified speakers in≤70% of trials [9].
This method has been entered into the VoicePrivacy 2020 chal-
lenge [4] and performance results can be found in [5, 6, 7, 9].
See also the Examples folder in the media files.

In the current study, the procedure for the human listen-
ing experiments from [9] was used. The original recordings
were pseudonymized to three fixed target “speakers” with ran-
dom frequency and intensity shifts added to a low-frequency
band around F0 and the F3−5 bands. Speaking rate was fixed at
3 syllables/second for all targets. The three pseudonymization
targets have neutral first formants, φ, of 500 Hz, 550 Hz, and
600 Hz and F0 values of, respectively, 120 Hz, 150 Hz, and 180
Hz. They are indicated as, respectively, P500, P550, and P600
in the remainder of this article. These target positions span the
vocal track lengths and F0 of male and female speakers.

It is expected that the extent of the changes needed to
go from the characteristics of the source speaker to those
of the target speaker will affect the voice quality of the
resulting pseudonymized speech as measured with, e.g., a
root-mean-square error (RMSE). The “distance” between the
pseudonymized and original recordings is given by two param-
eters: The change in VTL, i.e., φ, and the change in median
F0. The procedure to change φ also changes the median F0 and,
therefore, will affect the additional changes needed to arrive at
the target F0. So, there will be an interaction between changes

in φ and changes in median F0. To determine how the sizes
of these changes affect the voice quality outcomes, the abso-
lute difference between the AVQI values from pseudonymized
and original recordings, |∆AV QI|, are modelled from the ab-
solute differences in φ, |∆φ|, and median F0, |∆F0|, between
the pseudonymized and original recordings and a signed inter-
action term, ∆φ:∆F0, for all three targets pooled (P500, P550,
and P600). A linear mixed effects model is constructed with
|∆φ|, |∆F0|, and ∆φ:∆F0 as fixed effects and Speaker as ran-
dom effect according to (2):

|∆AV QI| ∼ |∆φ|+ |∆F0|+ ∆φ : ∆F0 + (1|Speaker)
(2)

3. Results
Statistics are done with R version 3.6.1 [19]. To compensate
for the number of tests for 3 pseudonymization targets and 8
parameters, a Bonferroni correction is used and the level of sig-
nificance is set at p < 0.001.

The average values for the 8 parameters for the original
recordings and the differences with the pseudonymized record-
ings (pseudonymized - original value) are given in Table 1. The
differences between pseudonymized and original speech seem
to be systematic, with pseudonymized speech tending to have
the “better” values, e.g., with pseudonymized speech having
lower AVQI scores than the original recordings. As a result,
the number of dysphonic speech samples (AVQI≥2.95) is also
reduced from 81 (80%) in original to 74-76 in pseudonymized
speech (73-75%, not shown). This systematic difference is par-
ticularly noticeable for CPPs, Slope, and Jitter, where it is sta-
tistically significant for all three pseudonymization targets. For
other parameters, i.e., AVQI, HNR, Tilt, and Shimmer, it is only
significant for one of the extreme targets, P500 or P600, which
would be furthest from the average speaker cases.

Pairwise correlations between parameter values in origi-
nal and pseudonymized speech are strong. Figure 1 gives
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an example of a scatter plot for AVQI scores between P600
pseudonymized speech and the original recordings. Correlation
coefficients between pseudonymized speech and original for all
parameters are presented in Figure 2. For most parameters R &
0.9. Jitter, Shimmer, and ShdB correlate less well with R> 0.7.

Voice quality parameter values are strongly correlated
between pseudonymized and original recordings for each
pseudonymization target (see Figure 2). This implies that origi-
nal parameter values can be estimated from the pseudonymized
values using a linear model based on the target value (P500,
P550, P600), i.e., lm(Original ∼ Pseudonymized).

A recipient of pseudonymized speech needs to know the
expected measuring error before the data will be usable. A
recipient only knows the (approximate) pseudonymization tar-
get. So it is important to estimate the average error for each
pseudonymization target. The range of root mean square errors
(RMSE) between the estimated and observed original parameter
values for the three pseudonymization targets are presented in
the last row of Table 1. For the parameters with lower correla-
tions between original and pseudonymized values, Jitter, Shim-
mer and ShdB, these RMSEs are only marginally smaller than
the standard deviation of the original values. For the other pa-
rameters, the RMSE values are a third of the standard deviation
of the original values, e.g., for AVQI the RMSE ∼ [0.51-0.61],
while the standard deviation of the original values is 1.7.

When preparing pseudonymized speech for distribution, it
is important to select the pseudonymization parameters such
that the measuring error will be within the intended range. The
model of (2) gives a first approximation of the relation between
absolute AVQI error and the pseudonymization parameters. The
model fit for (2) results in contributions of Intercept, |∆F0|,
and ∆φ:∆F0 that were statistically significant (p<0.001, [20]),
while the contribution from |∆φ| was not (p=0.0078). No such
effects were found for the other acoustic parameters that make
up the AVQI (p>0.001, not shown).

The R2 of the model fit in (2) is 0.12 for the fixed, and 0.37
for the random effects (Speaker) [21]. It can be inferred that
changing the F0 and the interaction, ∆φ:∆F0, had a significant
effect on the general voice quality, AVQI, after pseudonymiza-
tion. The fit of the model for fixed and random effects combined
has R2=0.49. Adding the original AVQI as a fixed effect to (2),
increases this to total R2=0.57 (p<0.001, ANOVA, ∆AIC=-9,
not shown) with higher AVQI (=lower voice quality) associated
with higher deviations in AVQI between pseudonymized and
original speech.

4. Discussion
The results of the current study show that the questions posed
in the Introduction can be answered in the affirmative. It
is indeed possible to determine the original acoustic param-
eter values as well as the derived voice quality (AVQI) from
pseudonymized speech within predictable RMSE tolerances.
For most acoustic parameters, there is a strong correlation be-
tween the pseudonymized and original values and a bounded
RMSE. For instance, for the overall voice quality, AVQI, the
correlation coefficient R>0.9 and the RMSE is between 0.5-
0.6 on a scale from 0-10. Although not ideal, such a system
could already be used for some tasks, if care is taken to keep
the RMSE within pre-determined limits.

It has also been found that, for the AVQI, the error sizes
can be predicted from the pseudonymization parameters, within
certain limits. The absolute difference between the AVQI of
pseudonymized and original speech can be approximated with

a linear mixed effect model using the speaker characteristics and
the pseudonymization parameters. Such a relation has not (yet)
been found for the composite parameters. As the signal process-
ing approach to speech pseudonymization used in this study is
tuneable, this relation helps to select settings that trade-off be-
tween anonymity and conservation of voice quality parameters,
e.g., to lower RMSE.

The surprising fact that pseudonymized speech tends to
sometimes score “better” on acoustic parameters than the orig-
inal speech could be an artefact of the overlap-add procedure
used to change the duration and F0 of the pseudonymized
speech. This procedure might “regularize” the pitch periods
compared to the originals.

80% of the speech samples selected for this study are dys-
phonic (AVQI ≥ 2.95). This presents problems when evaluating
the quality of the pseudonymization. First, the voice parameters
which are to be preserved are also a good cue to speaker iden-
tity. Hence, it is difficult to evaluate the anonymization as both
human listeners and Automatic Speaker Verification (ASV) ap-
plications will be able to identify the speakers to a large ex-
tent on their voice parameters. Second, the intelligibility of the
speech is already lower due to their dysphonic nature. Both hu-
man listeners and Automatic Speech Recognition (ASR) appli-
cations will rate the speech with lower intelligibility. It will be
difficult to tease out the additional deterioration of intelligibility
due to the pseudonymization. And third, naturalness is difficult
to evaluate in dysphonic speech, original or pseudonymized.

Before pseudonymized speech can be shared with other re-
searchers or used for diagnostic purposes in a clinical setting,
the anonymity and usefulness of the pseudonymized speech
have to be vetted. To evaluate the quality of pseudonymiza-
tion applications for non-standard speech, alternatives must be
found for the customary ASV, ASR, and naturalness scores.
Currently, a similarity/distance approach seems to be most
promising for evaluating the quality of a pseudonymization ap-
plication. Such an approach was already proposed for intelligi-
bility in [5, 9].

5. Conclusions

Using a tuneable signal processing approach to speech
pseudonymization, it is shown that voice quality parameters can
still be measured after pseudonymization up to a predictable er-
ror. The method allows for implementing a trade-off between
anonymity and conservation of voice quality parameters. For
further advances in the use of speech pseudonymization meth-
ods in para-linguistic applications, it is argued that there is a
need for evaluation standards for anonymity and speech quality
in pseudonymized non-standard speech. Such new evaluation
standards are needed before pseudonymization can be consid-
ered useful and safe in research and clinical practice.
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