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Abstract
In this paper, we investigate the semantics and logic of choice-driven counterfactu-
als, that is, of counterfactuals whose evaluation relies on auxiliary premises about
how agents are expected to act, i.e., about their default choice behavior. To do this,
we merge one of the most prominent logics of agency in the philosophical litera-
ture, namely stit logic (Belnap et al. 2001; Horty 2001), with the well-known logic
of counterfactuals due to Stalnaker (1968) and Lewis (1973). A key component of
our semantics for counterfactuals is to distinguish between deviant and non-deviant
actions at a moment, where an action available to an agent at a moment is deviant
when its performance does not agree with the agent’s default choice behavior at that
moment. After developing and axiomatizing a stit logic with action types, instants,
and deviant actions, we study the philosophical implications and logical properties of
two candidate semantics for choice-driven counterfactuals, one called rewind mod-
els inspired by Lewis (Nous 13(4), 455–476 1979) and the other called independence
models motivated by well-known counterexamples to Lewis’s proposal Slote (Phi-
los. Rev. 87(1), 3–27 1978). In the last part of the paper we consider how to evaluate
choice-driven counterfactuals at moments arrived at by some agents performing a
deviant action.
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1 Introduction

What would have happened if the charge nurse had not put the wrong medications
on the desk? Would the intern have given them to the patient anyway? What if
Alice hadn’t moved out of the way? Would the thief have shot her? Would Beth’s
husband have picked up the kids if she hadn’t? If David had bet tails, would Max
have kept playing? These types of questions are asked in many situations, such as
when determining responsibility, when making plans for the future, and when reason-
ing strategically about how our choices influence the choices of others. A common
feature of these questions is that they involve choice-driven counterfactuals. Choice-
driven counterfactuals are counterfactuals whose semantic value depends on how
agents are expected to act. This means that the evaluation of a choice-driven counter-
factual relies on auxiliary premises about the default choice behavior of the involved
agents, where the default choice behavior is determined by, for instance, duties,
personality, daily schedule, preferences, goals, and so on.

Our aim in this paper is to study a logic for reasoning about choice-driven coun-
terfactuals. To do this, we merge one of the most prominent logics of agency in the
philosophical literature, namely stit logic (the logic of seeing-to-it-that) [5, 25], with
the well-known logic of counterfactuals due to Stalnaker [46] and Lewis [30].

There has been some investigation of the semantics of counterfactuals in the con-
text of branching time [38, 49]—the theory of time that underlies stit semantics.
However, these proposals do not take agency into account. In addition, although
counterfactual reasoning is key to a number of applications of stit logic, such as the
analysis of the notion of responsibility [2, 11, 20, 32], to our knowledge, only Xu
[52] and Horty [25, Chapter 4] explicitly consider how to interpret counterfactuals
in stit semantics. This paper begins to fill this important gap in the stit literature. We
develop a stit logic with the resources to represent the agents’ default choice behavior
and show how to extend this logic with counterfactuals, highlighting some key moti-
vating assumptions and identifying interesting logical properties of choice-driven
counterfactuals.

The paper is organized as follows. In Section 2, we present the stit logic with
deviant actions and n agents, SLDn, that we use to study choice-driven counter-
factuals. In Section 2.1, we introduce the notion of agency in branching time. In
Section 2.2, we motivate a key component of our semantics for counterfactuals,
namely the distinction between deviant and non-deviant actions at a moment, where
an action available to an agent is deviant if it is not prescribed by the agent’s default
choice behavior. In Section 2.3, we present the syntax and semantics of SLDn, and
provide a sound and complete axiomatization. Section 3 extends SLDn to include
counterfactuals. In Section 3.1, we gradually introduce two candidate semantics for
choice-driven counterfactuals, one called rewind models inspired by Lewis [31] and
the other called independence models motivated by well-known counterexamples to
Lewis’s proposal [44]. The logical properties of the two semantics are studied in
Section 3.2. In Section 4, we consider how to evaluate choice-driven counterfactu-
als at moments arrived at by some agents performing a deviant action. Finally, we
conclude in Section 5 with a brief discussion of future work. All proofs are found in
Appendix A and B.
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2 Basic Framework

This section introduces the stit logic with deviant actions and n agents SLDn that we
use as a basis to study choice-driven counterfactuals. The following example, adapted
from [49], illustrates the type of situation that we aim at modeling:

Example 1 There are three agents engaged in the following game: Initially, David
decides whether to play with Max or Maxine and then he bets heads or tails. After
David bets, the person nominated by David flips a coin. David wins if his bet matches
the outcome of the coin flip and loses otherwise; Max wins just in case David loses;
finally, Maxine wins no matter whether David’s bet matches the outcome of the coin
flip. Unknown to David, both Max and Maxine have two coins, one with heads on
each side and one with tails on each side (called the H-coin and the T-coin, respec-
tively). If Max has a chance to play, he flips the H-coin if David bets tails and the
T-coin if David bets heads. If Maxine has a chance to play, she picks one of the coins
to flip at random.1 After nominating Max, David bets heads and Max flips the T-coin,
so David loses.

In Example 1, after Max flips the T-coin, the counterfactual

C1 If David had bet tails, then he would still have lost

is intuitively true: according to the story—the reasoning goes—if David had bet tails
instead of heads, Max would have flipped the H-coin, thus making David lose. In
order to capture this intuition, we need a semantics that can represent the following
elements:

(E1) The different ways in which things could go or could have gone.
For instance, in Example 1, David bets heads but he could have bet tails, and
this would have led to an alternative course of events.

(E2) The particular time at which an agent makes a choice.
When we evaluate a choice-driven counterfactual, we consider what would
have happened had the agents acted differently at a particular time. For
instance, when we evaluate C1, we consider alternatives where David has just
bet tails; alternatives where he has not just bet tails but did bet tails, say, two
weeks ago or will bet tails six days from now are immaterial.

(E3) The types of action performed by the agents.
When we evaluate a choice-driven counterfactual, we consider what would
have happened had the agents performed different types of action. For ins-
tance, when we evaluate C1, we consider alternatives where David performs
the action type “betting tails” instead of the action type “betting heads”.

1The reader may wonder why we don’t simply make Maxine flip a fair coin. The reason is that we will
use Max and Maxine to illustrate a difference concerning the agents’ default choice behavior (see p. 12),
which will be important for the semantics of choice-driven counterfactuals (see p. 22). In order to illustrate
this difference, it is essential that Maxine can choose between different actions, rather than only having a
single choice with indeterministic outcomes available.

299Choice-Driven Counterfactuals



(E4) The default choice behavior of the agents.
When we evaluate a choice-driven counterfactual, we rely on default assump-
tions about what the agents would have done had some agents acted differ-
ently. For instance, when we suppose that David bets tails in order to evaluate
C1, we use Max’s default choice behavior (i.e., to select the coin that makes
David lose) to conclude that he would choose the H-coin.

The semantics of stit logic has almost everything we need. Stit captures the idea
that the future can unfold in different ways, and how it will actually unfold depends,
in part, on what the agents decide to do. This leads to defining stit models in terms
of two main components: a branching time structure representing the different ways
things could go (as per element E1) and a choice function representing the actions
available to the agents at each moment.2 The branching time structure is sometimes
supplemented with instants, which represent the time at which alternative moments
occur (as per element E2); see [5]. In addition, the choice function is sometimes
accompanied by a function that labels the actions available to the agents with their
types (as per element E3); see, e.g., [14, 27, 53]. The only missing ingredient is a
representation of the agents’ default choice behavior (element E4).

We propose a way to model E4 in Section 2.2 below, after we introduce the
formal definitions of branching time structure, instant, and action-type function in
Section 2.1 (readers who are familiar with these notions should feel free to skim
quickly through the definitions). We then present the syntax, semantics, and an
axiomatization of our stit logic with deviant actions SLDn in Section 2.3. We will use
SLDn models to provide a semantics for choice-driven counterfactuals in Section 3.

2.1 Agency in Branching Time

A branching time structure is a set of moments, Mom, with a relation < on Mom,
where m < m′ means that moment m occurs before moment m′. The relation < is
assumed to have a treelike structure with forward branching representing the indeter-
minacy of the future and backward linearity representing the determinacy of the past.
For technical convenience, in this paper we assume that time is discrete, meaning that
every moment has a set of immediate successors, and that it has a unique beginning
and no end. Formally:

Definition 1 (Discrete branching time structure) A discrete branching time structure
(DBT structure) is a tuple 〈Mom, m0, <〉, where Mom �= ∅ is a set of moments, m0 ∈
Mom, and < ⊆ Mom×Mom is the predecessor relation. As usual, ≤ ⊆ Mom×Mom
is defined as: for any m, m′ ∈ Mom, m ≤ m′ if and only if m < m′ or m = m′. The
relation < is assumed to satisfy the following properties: for all m, m1, m2, m3 ∈
Mom,

1. Irreflexivity: m �< m.
2. Transitivity: if m1 < m2 and m2 < m3, then m1 < m3.

2Consult [25, Chapter 2] for an overview of the key components of a stit model.
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3. Past linearity: if m1 ≤ m3 and m2 ≤ m3, then either m1 ≤ m2 or m2 ≤ m1.
4. Discreteness: if m1 < m2, then there is an m3 such that m1 < m3 ≤ m2 and

there is no m4 such that m1 < m4 < m3.
5. Initial moment: m0 < m.
6. No endpoints: there is an m′ ∈ Mom such that m < m′.

The standard notions used to reason about DBT structures are summarized in
Table 1. Given a DBT structure T = 〈Mom, m0, <〉, each history h ∈ HistT rep-
resents a complete course of events. Because of forward branching, many different
histories can pass through a single moment m (i.e., m can be an element of many
different histories). The set of histories passing through moment m is denoted HT

m ;
each h ∈ HT

m represents a complete course of events that can still be realized at m.
Since time is discrete with no endpoints, for each m ∈ Mom, the set of immediate
successors of m, denoted succ(m), is non-empty. If h ∈ HT

m , then h ∩ succ(m) is
a singleton because histories are linearly ordered sets of moments. This means that
there is one and only one successor of m on history h, denoted succh(m). The con-
dition of past linearity ensures that every non-initial moment m �= m0 has a unique
predecessor, denoted pred(m). An index m/h ∈ IndT represents the complete state
of affairs at moment m on history h. In the context of branching time, formulas are
typically evaluated at indices.

We now supplement DBT structures with instants. Intuitively, an instant is a set of
moments happening at the same time.

Definition 2 (Instants) Let T = 〈Mom, m0, <〉 be a DBT structure. For any m ∈
Mom and n ∈ N, define succn(m) recursively as follows:

1. succ0(m) = {m} and succn+1(m) = ⋃
m′∈succn(m) succ(m′).

Table 1 Key notions related to DBT structures

Histories • A history is a maximal set of linearly ordered moments from Mom.

• HistT is the set of histories in T .

• The elements of HistT are denoted with h, h1, h2, . . . , h
′, h′′, . . . .

• History h passes through moment m when m ∈ h.

• HT
m = {h ∈ HistT |m ∈ h} is the set of histories passing through m.

• h1 and h2 are undivided at m iff h1, h2 ∈ HT
m and there is an m′ s.t.

m′ > m and m′ ∈ h1 ∩ h2.

Successors • succ(m) = {m′ ∈ Mom |m < m′ and, for no m′′ ∈ Mom,m < m′′ < m′}
is the set of immediate successors of m.

• If h ∈ HT
m , the immediate successor of m on h, denoted with succh(m),

is the unique element of h ∩ succ(m).

Predecessors • If m �= m0, pred(m) is the unique immediate predecessor of m.

Indices • An index is a pair (m, h) such that m ∈ Mom and h ∈ HT
m .

We write m/h when (m, h) is an index.

• IndT is the set of indices in T .
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Then InstT = {succn(m0) | n ∈ N} is the set of instants over T . We use
t, t1, t2, . . . , to denote elements of InstT .

According to Definition 2, each clock tick transitions every moment in an instant
to the next unique instant.3 When m ∈ t we say that moment m occurs at instant
t and when m ∈ h ∩ t we say that history h crosses instant t at moment m. Let
T = 〈Mom, m0, <〉 be a DBT structure. The fact that < is discrete and rooted in m0
ensures that:

1. InstT is a partition of Mom. Hence, every m ∈ Mom occurs at one and only one
instant, denoted with tm.

2. Every history h crosses each instant t at exactly one moment, denoted with m(t,h).
In what follows, we write t/h for m(t,h)/h.

The above notation together with the notation introduced in Table 1 will be repeatedly
used in Sections 3 and 4. In what follows, we omit the superscript T and simply write
Hist, Hm, Ind, and Inst when the DBT structure is clear from the context.

Turning to agency, we start by fixing sets of (names of) action types and agents:

• Let Atm be a non-empty finite set of (names of) action types.
(We use a, b, c, possibly with superscripts a′, a′′, . . . , for elements of Atm.)

• Let Ag = {1, . . . , n} be the set of n agents for some number n ∈ N.
(We use i, j, k, possibly with superscripts i′, i′′, . . . , for elements of Ag.)

We think of agents as endowed with a repertoire of action types of which they can
be authors. Let Acts be the set of (names of) individual actions defined as follows:

Acts ⊆ Atm × Ag

We write ai when (a, i) ∈ Acts. The idea is that ai is the action type that is
instantiated whenever agent i performs an action of type a. For instance, if a ∈ Atm

is the action type “flipping a coin” and 1, 2 ∈ Ag are, respectively, David and Max,
then a1 is the action type “David flipping a coin” and a2 is the action type “Max
flipping a coin”. For i ∈ Ag, let Actsi be the set of action types authored by agent i:

Actsi = {aj ∈ Acts | j = i}.
A profile is a function α : Ag → Acts such that, for all i ∈ Ag, α(i) ∈ Actsi .

So, a profile is any combination of actions associated with each agent. Let Ag-Acts

be the set of all profiles (we use Greek letters α, β, γ for elements of Ag-Acts). As
usual, when α ∈ Ag-Acts and I ⊆ Ag, we will write αI for the restriction of α to
the set I , α−I for αAg\I , and α(I) for the image of I under α.

3This is a convenient simplification, and is not essential for what follows. The crucial assumption is that,
for m ∈ Mom, there are alternative moments occurring at the same time as m.
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We make the following two key assumptions about the individual actions that are
performed at a moment:

1. The action types in Atm, Acts, and Ag-Acts represent one-step actions. So, in
the spirit of Propositional Dynamic Logic (PDL) [22] and Coalition Logic (CL)
[35], performing an action at a moment transitions to a set of next moments
representing the different possible outcomes of the action.4

2. Every transition from a moment to one of its successors is brought about by
a unique profile. Accordingly, we label every index m/h with the profile that
brings about the transition from m to its successor on h (i.e., the moment
succh(m)). If index m/h is labeled with α ∈ Ag-Acts, then α(i) represents the
action type that agent i ∈ Ag performs at m/h. Hence, every agent i performs
one, and only one, type of action at every index m/h.

This leads us to the following definition.

Definition 3 (Action-type function) Let T = 〈Mom, m0, <〉 be a DBT structure. An
action-type function over T is a mapping act : IndT → Ag-Acts that assigns to
every index in T a profile. For any m ∈ Mom and i ∈ Ag, let

Actsm
i =

⋃

h∈Hm

act(m/h)(i)

be the set of individual actions available to agent i at m and

Actsm =
⋃

i∈Ag

Actsm
i

be the set of individual actions executable at m. Then the function act is required to
satisfy the following conditions: for all m ∈ Mom, h1, h2 ∈ Hist, and i ∈ Ag,

1. No Choice Between Undivided Histories: if h1 and h2 are undivided at m,5 then
act(m/h1) = act(m/h2).

2. Independence of Agents: for all α ∈ Ag-Acts, if α(j) ∈ Actsm for all j ∈ Ag,
then there is h ∈ Hm such that act(m/h) = α.

When |Actsm
i | = 1, we say that agent i has a vacuous choice at m.

It is not difficult to see that the set Actsm
i of actions available to agent i at moment

m induces a partition on Hm: for every h ∈ Hm, the set

Actsm
i (h) = {h′ ∈ Hm | act(m/h′)(i) = act(m/h)(i)}

is the cell in the partition containing h. The set Actsm
i (h) is the action token familiar

in stit semantics that has been tagged with its assigned type. Note that every such

4We think of the assumption that the temporal ordering is discrete as a by-product of this view of actions,
rather than as an assumption about the structure of time in itself.
5That is, m ∈ h1 ∩ h2 and succh1 (m) = succh2 (m).
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Fig. 1 Preliminary representation of Example 1

action token is assigned a unique type and different tokens are assigned different
types.6

Conditions 1 and 2 from Definition 3 are standard requirements in stit semantics,
see [25, Chapter 2]: The condition of no choice between undivided histories ensures
that no individual action executable at a moment can separate histories that are undi-
vided at that moment. The condition of independence of agents ensures that every
combination of individual actions executable at a moment (one for each agent) can
itself be executed at that moment.

2.2 Deviant Actions

Having introduced branching time structures, instants, and action types, the last ele-
ment we need in order to provide a semantics for choice-driven counterfactuals is
the notion of default choice behavior. Before presenting a formal definition, let us go
back to Example 1. A DBT structure and an action-type function representing Exam-
ple 1 are pictured in Fig. 1. In the figure, David is agent 1, Max is agent 2, and Maxine
is agent 3. David’s individual action types are nm1 (nominate Max), nm′

1 (nominate
Maxine), bt1 (bet tails), and bh1 (bet heads); Max’s individual action types are tc2
(flip the T-coin) and hc2 (flip the H-coin); and Maxine’s individual action types are
tc3 (flip the T-coin) and hc3 (flip the H-coin).7 The dashed lines represent instants,
and the actual history is h2 (the thick line).

6This is a common idea and can be found in, e.g., [27]. It is also at the basis of the proof, presented by
[16], that CL [35] can be embedded in stit.
7We assume that the agents who do not move at a moment m only have one available action at m—i.e.,
the vacuous action (vc) that is performed on all histories passing through m. For the sake of readability,
we have omitted vacuous actions from Fig. 1.
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Suppose that we are at moment m4 on history h2 (so, David and Max have made
their choices) and that we want to determine whether the counterfactual

C1 If David had bet tails, then he would still have lost

is true. In order to evaluate C1, we need to consider histories on which David
performs an action of type “betting tails” just previous to the time of m4 (the time of
utterance). In other words, we need to consider histories on which David performs
the action type bt1 at instant t2. Histories h3, h4, h7, and h8 all have this property.
However, among these histories, we only focus our attention on those that are most
similar to the actual history h2. We give a full analysis of similarity in Section 3.
What is important at this stage is that there is a crucial difference between h3 and h4.

On both histories, David bets tails at t2 after nominating Max. Yet, after that, Max
flips the H-coin on h3 and the T-coin on h4. The key difference is that only h3 is con-
sistent with Max’s default choice behavior, namely that if he has a chance to play, he
flips the coin that makes David lose. Thus, we take C1 to be true assuming that Max’s
choice matches his default choice behavior. Contrast C1 with the counterfactual: “If
David had nominated Maxine and bet tails, then he would still have lost”. Given that
Maxine might well flip the T-coin, this counterfactual is false.8

In order to represent the default choice behavior of the agents over time, we will
introduce a deviant-action function that identifies the deviant actions at each moment.
An action available to an agent i at a moment m is deviant if its performance at m

does not agree with agent i’s default choice behavior at m—it is a non-deviant or
default action otherwise. To simplify the exposition, we call an agent’s default choice
behavior a choice rule. In Example 1, “Max flips the coin that makes David lose” is
a choice rule and the actions hc2 (flipping the H-coin) and tc2 (flipping the T-coin)
are deviant actions at m4 and m5, respectively. The following four comments clarify
the notion of choice rule.

What Choice Rules are (not). Choice rules can have various sources, including social
conventions, shared standards of rationality, habits, individual preferences or goals,
and, in the case of artificial agents, choice-guiding programs. Natural examples of a
choice rule are the decision rules found in the game- and decision-theory literature,
such as expected utility maximization or maximin. However, it is important to stress
that some choice rules can be dictated by habits or behavior that is, on the face of
it, irrational (more on this in Section 4). A final point about the interpretation of
choice rules is that they should not be thought of as physical or causal laws. The key
difference is that the latter laws constrain the behavior of the agents in a way that
choice rules do not: while an agent who is hit on his legs by a 220 pound rolling ball
cannot avoid falling, an agent who normally cheats at cards can avoid cheating.

Degrees of Deviation. It is natural to think that the notion of deviant action comes in
degrees: the way that some actions deviate from the default choice behavior may be
more or less important or “abnormal” than others. For simplicity, we treat all deviant

8What is intuitively true is “If David had nominated Maxine and bet tails, then he might lose”.
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choices equally. Everything that follows can be adapted to a graded notion of deviant
action.

(In)deterministic Choice Rules. Suppose that m is a moment at which an agent i has
a non-vacuous choice, and let r be a choice rule that guides the behavior of i at m.
We will say that:

• r is a deterministic choice rule if there is only one action available to i at m that
is non-deviant (the default choice behavior of i at m is fully constrained);

• r is an indeterministic choice rule if there is no action available to i at m that is
deviant (the default choice behavior of i at m is unconstrained); and

• r is a non-deterministic choice rule if it is neither deterministic nor indetermin-
istic (the default choice behavior of i at m is partially constrained).

Max’s behavior in Example 1 is guided by a deterministic choice rule: provided
that Max can play, flipping the T-coin is his only non-deviant option if David bets
heads and flipping the H-coin is his only non-deviant option if David bets tails.
Maxine’s behavior, on the other hand, is guided by an indeterministic choice rule:
if she can play, Maxine may flip either one of the two coins, no matter how David
bets. Finally, an example of a non-deterministic choice rule is: “If mango, pineap-
ple, and pear are available, then Alice picks either mango or pineapple”. When all
three fruits are present, this rule guides Alice’s behavior only partially since picking
the mango and picking the pineapple are both non-deviant. In this paper, we make
the simplifying assumption that all choice rules are either deterministic or indeter-
ministic. Excluding non-deterministic choice rules simplifies our formal definitions.
Of course, this is a significant assumption since non-deterministic choice rules are
ubiquitous. However, the issues concerning choice-driven counterfactuals addressed
in this paper do not depend on this assumption.

Extensional Perspective on Choice Rules. Our models represent the distinction
between actions that are deviant and actions that are not deviant according to an
underlying set of choice rules. But we do not include a representation of the under-
lying choice rules themselves.9 Using this approach, we can represent a wide variety
of choice rules, including choice rules that may change over time. For example, we
can easily represent the choice rule “Alice normally cheats at cards up to time t and
normally respects the rules afterwards” by classifying all instances of Alice’s non-
cheating up to t as deviant and all instances of Alice’s cheating after t as deviant.
Similarly, we can represent choice rules such as “Alice is indifferent between mango
and pineapple but strictly prefers watermelon over mango and pineapple”: according
to this rule, picking watermelon is the only non-deviant option for Alice when water-
melon is available, while none of her options is deviant at moments when watermelon
is not available.

We are now ready to introduce the definition of a frame for our logic SLDn.

9For instance, one could make choice rules explicit using default logic as in [26]. We leave an exploration
of this possibility to future work.
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Definition 4 (SLDn frame) An SLDn frame is a tuple 〈T , act,dev〉 where T is a DBT
structure, act : Ind → Ag-Acts is an action-type function over T , and dev : Mom →
2Acts assigns to every moment a set of deviant individual actions. The function dev
is required to satisfy the following conditions: for all m ∈ Mom and i ∈ Ag,

1. Executability of Deviant Actions: dev(m) ⊆ Actsm.
2. Availability of Non-deviant Actions: Actsm

i \ dev(m) �= ∅.
3. (In)determinism of Choice Rules: if Actsm

i ∩ dev(m) �= ∅, then
|Actsm

i \ dev(m)| = 1.

According to condition 1, only individual actions executable at a moment can be
deviant at that moment. The idea is that individual actions that cannot be performed at
a moment are immaterial for the default choice behavior of the agents at that moment.
According to condition 2, every agent can perform at least one non-deviant action
at every moment. Given the condition of independence of agents, this means that, at
every moment, there is some history on which no agent performs a deviant action.
So, according to the choice rules underlying an SLDn frame, something will always
happen.10 Finally, condition 3 captures the simplifying assumption that all choice
rules are either indeterministic or deterministic. This condition ensures that, at each
moment, agents can be divided into two categories: (i) agents that have no deviant
actions (called unconstrained) and (ii) agents who have some deviant actions and
only one non-deviant action (called constrained).11 This distinction will play a key
role in Section 3.1.

An SLDn frame representing Example 1 is pictured in Fig. 2, where the gray cells
represent the deviant actions (recall that Max’s choice rule is that he flips the coin
that guarantees that David bet incorrectly). In the frame, all agents are unconstrained
at every moment, except for Max who is constrained at moments m4 and m5.

We conclude this subsection with some brief comments about extensions of the
stit semantics related to the one proposed here.

The first extension that we discuss is strategic stit, see [5, Chapter 13], [25, Chapter
7], [15]. Labeling some actions as deviant at a moment can be viewed as a general-
ization of a strategy used in strategic stit. Given a dev function and an agent i, we
can define a function si : Mom → 2Actsi as follows: for all m ∈ Mom,

si(m) = {ai ∈ Actsm
i | ai /∈ dev(m)}

Thus defined, si is a partial strategy for agent i that assigns to each moment m the
non-deviant actions available to i at m. It is a partial strategy because agent i may
be unconstrained at moment m, in which case it is possible that si(m) = Actsm

i with
|Actsm

i | > 1. A similar generalization of strategic stit can be found in [33], where
the authors supplement stit with a set of rational choices for every agent at every
moment. But, as we mentioned above, choice rules may be grounded on preferences

10This raises an immediate question: what if a moment has been reached by some agents performing
deviant actions? We discuss this issue in Section 4.
11Notice that, according to our terminology, agents with a vacuous choice at a moment are unconstrained
at that moment, since their unique choice must be non-deviant by condition 2 in Definition 4.
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Fig. 2 SLDn frame for Example 1

or habits that are, on the face of it, irrational. So, non-deviant choices may not coin-
cide with rational choices. The approach that comes closest to our understanding of
the dev function is Müller’s [34, p. 199] idea of using strategic stit to “affix ‘defaults’
to future choices”. The key difference between Müller’s proposal (and, more gener-
ally, strategic stit) and our own is the role that “defaults” (or strategies) play in the
semantics: in the present paper, “defaults” are introduced to contribute to the analy-
sis of choice-driven counterfactuals rather than provide a semantics for strategic stit
operators.

A second extension of stit adds epistemic operators, see, e.g., [17, 23, 27, 32]. It
is important to not confuse an epistemic indistinguishability relation (an equivalence
relation on indices) with instants. Our interpretation of instants is that they repre-
sent “alternative presents,” and not uncertainty of the agents. In this paper, we are
interested in truth conditions for choice-driven counterfactuals, and not what such
counterfactuals may express about the cognitive procedure, knowledge, and beliefs
used to evaluate them.

2.3 The Logic SLDn

Recall that Ag = {1, . . . , n} is a fixed set of (names of) agents and Atm is a
fixed non-empty finite set of (names of) action types. In addition, let us fix a non-
empty countable set Prop of propositional variables (we use p, q, r , possibly with
superscripts p′, p′′, . . . , for elements of Prop).

Definition 5 (Syntax of SLDn) Let Prop, Atm and Ag be defined as above. The set
of formulas of the language of SLDn, denoted LSLDn , is generated by the following
grammar:

p | do(ai) | dev(ai) | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | Xϕ | Yϕ

where p ∈ Prop and ai ∈ Acts.
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The abbreviations for the Boolean connectives ∨, →, ↔, and the propositional
constants ⊥ and � are defined as usual. We use ♦ϕ, X̂ϕ, and Ŷϕ as abbreviations for
¬�¬ϕ, ¬X¬ϕ, and ¬Y¬ϕ respectively. Finally, we will adopt the usual rules for the
elimination of parentheses.

The three modalities are standard in branching time logic: �ϕ means “ϕ is settled
true” or “ϕ is historically necessary,” Xϕ means “ϕ is true at the next moment on
the current history,” and Yϕ means “ϕ is true at the previous moment on the current
history”. The intended interpretations of the action formulas do(ai) and dev(ai) are
“agent i does action a” and “action ai is deviant”, respectively. For any α ∈ Ag-Acts,
we define:

do(α) :=
∧

ai∈α(Ag)

do(ai).

Thus, do(α) means “the agents do α” (i.e., “for all i ∈ Ag, i performs action
α(i)”).

We now define a model based on an SLDn frame and truth for formulas from
LSLDn at an index.

Definition 6 (SLDn model) An SLDn model is a tuple M = 〈F, π〉, where F is an
SLDn frame and π : Prop → 2Ind is a valuation function.

Definition 7 (Truth for LSLDn) Suppose M is an SLDn model. Truth of a formula
ϕ ∈ LSLDn at an index m/h in M, denoted M, m/h |= ϕ, is defined recursively as
follows:

M, m/h |= p iff m/h ∈ π(p)

M, m/h |= do(ai) iff act(m/h)(i) = ai

M, m/h |= dev(ai) iff ai ∈ dev(m)

M, m/h |= ¬ϕ iff M, m/h �|= ϕ

M, m/h |= (ϕ ∧ ψ) iff M, m/h |= ϕ and M, m/h |= ψ

M, m/h |= Xϕ iff M, succh(m)/h |= ϕ

M, m/h |= Yϕ iff m = m0 or M, pred(m)/h |= ϕ

M, m/h |= �ϕ iff for all h′ ∈ Hm, M, m/h′ |= ϕ

The notions of validity and satisfiability are standardly defined as follows: Let ϕ

be a formula in LSLDn and M an SLDn model. Then: ϕ is valid in M just in case ϕ

is true at all indices m/h in M; ϕ is valid in the class of SLDn models just in case
ϕ is valid in all SLDn models; ϕ is satisfiable in M just in case ϕ is true at some
index m/h in M; finally, ϕ is satisfiable in the class of SLDn models just in case ϕ

is satisfiable in some SLDn models.
The proof of the following theorem can be found in Appendix A.

Theorem 1 The axiom system SLDn, defined by the axioms and rules in Table 2, is
sound and complete with respect to the class of all SLDn frames.
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Table 2 Axiom system SLDn

(CPL) Classical propositional tautologies, modus ponens

(KDX) KD axioms and rules for X

(KY) K axioms and rules for Y

(S5�) S5 axioms and rules for �

(I) Axioms for X and Y:

(FX) X̂ϕ → Xϕ (FY) Ŷϕ → Yϕ

(CXY) ϕ → XŶϕ (CYX) ϕ → YX̂ϕ

(II) Axioms for do:

(Act)
∨

ai∈Actsi
do(ai ) (UH) (do(α) ∧ X♦ϕ) → ♦(do(α) ∧ Xϕ)

(Sin) do(ai ) → ¬do(bi) (IA) (♦do(a1) ∧ · · · ∧ ♦do(an)) → ♦do(α)

provided that ai �= bi provided that α(1) = a1, . . . , α(n) = an

(III) Axioms for dev:

(Ax1) dev(ai) → �dev(ai) (Ax3)
∨

ai∈Actsi
(♦do(ai) ∧ ¬dev(ai))

(Ax2) dev(ai) → ♦do(ai) (Ax4) (♦do(ai) ∧ ♦do(bi) ∧ ¬dev(ai) ∧ dev(bi))

→ ∧

ci �=ai

(♦do(ci) → dev(ci))

The axioms for do are a reformulation, in LSLDn , of the main axioms of the
Dynamic Logic of Agency (DLA) proposed by [24].12 Axioms Act (for “Active”)
and Sin (for “Single”) say that every agent performs one, and only one, action at
every index. Axiom UH expresses no choice between undivided histories: if a group
of agents performs an action that does not rule out that ϕ is true at the next moment,
then there is some history consistent with the group action on which ϕ is true at the
next moment. Axiom IA expresses independence of agents: if the individual actions
a1, . . . , an can be performed separately, then these actions can also be performed
jointly.

Finally, the axioms in the last group express the fact that the dev function
is moment-relative (axiom Ax1) and satisfies the conditions of executability of
deviant actions (axiom Ax2), availability of non-deviant actions (axiom Ax3), and
(in)determinism of choice rules (axiom Ax4).

3 Adding Counterfactuals

In this Section, we extend LSLDn with formulas of the form ϕ �→ ψ with the inter-
pretation “if ϕ were true, then ψ would be true”. Let L�→

SLDn
be the full language. We

12 It can be proved that there is a double embedding between the fragment of SLDn without the operators
dev and Y and DLA. The reformulation of DLA in terms of do and X already appeared in [2].
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aim at providing a semantics for L�→
SLDn

based on SLDn frames. Our starting point is
the well-known possible world semantics for counterfactuals due to Stalnaker [46]
and Lewis [30]:

(∗) A counterfactual ϕ �→ψ is true at a world w just in case either

(i) there is no ϕ-world accessible from w (the vacuous case), or
(ii) some world satisfying ϕ ∧ ψ is more similar to w than any world

satisfying ϕ ∧ ¬ψ .

The fundamental notion is a relative similarity relation between possible worlds,
which [30] takes to be a weak ordering (a transitive relation in which ties are permit-
ted but any two worlds are comparable) satisfying the centering condition (any world
is more similar to itself than any other world).

There are two key questions that arise to adapt the above definition to our seman-
tics: What should take the place of possible worlds as arguments of the relative
similarity relation? What properties does the relative similarity relation satisfy? There
is an extensive literature about the second question; see, e.g., [6, Chapters 10-15].
While the properties we consider in this paper are not uncontroversial, our seman-
tics for choice-driven counterfactuals takes into account some core issues from this
literature. Our aim is to:

1. study the implications of these issues in our stit framework (Sections 3.1 and
3.2); and

2. explore some of the additional issues that arise when evaluating choice-driven
counterfactuals after some agents don’t follow their default choice behavior
(Section 4).

We start with addressing the first question about the definition of relative similarity
in our framework.

In the Lewis-Stalnaker semantics, possible worlds are treated as unanalyzed enti-
ties. By contrast, in our framework formulas are interpreted at a moment on a history,
where the latter represents everything that happened in the past and everything that
will happen in the future. From a logician’s perspective, since Lewis defines relative
similarity as a three-place relation on possible worlds and indices (i.e., moment-
history pairs) are the analogue of possible worlds in an SLDn frame, relative similarity
should be defined as a three-place relation over indices. However, when scholars
in the Lewisian tradition try to put flesh on the bones of Lewis’s abstract relative
similarity relation, they typically think of possible worlds as evolving over time (as
histories) and not as momentary states (as moment-history pairs).13 This squares,
too, with the analysis of Example 1 we suggested in Section 2: In order to determine
the truth value of

(C1) If David had bet tails, then he would still have lost

we consider histories that differ minimally from the actual one where it is true, at the
time of utterance, that David bet tails and check whether, at that time, it is true that

13See, for instance, [31] and [6, Chapters 12-13].
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David loses. From this perspective, it makes sense to introduce a relative similarity
relation between histories (rather than indices). We will see below that, granted some
additional assumptions, both perspectives can be accommodated.

Taking the more philosophical stance and following the intuitive analysis of
Example 1, let us supplement SLDn frames with a relative similarity function

�: Hist → 2Hist×Hist

that assigns to every history h a relative similarity relation �h, where for all h, h1, h2,

h1 �h h2

means “h1 is at least as similar to h as h2”. Let a relative similarity SLDn frame be a
tuple 〈T , act,dev, �〉 such that 〈T , act,dev〉 is an SLDn frame and � a relative simi-
larity function. A relative similarity SLDn model is a tuple 〈T , act,dev, �, π〉 where
〈T , act,dev, �〉 is a relative similarity SLDn frame and π is a valuation function (as
in Definition 6). Recall that, for any moment m, tm is the instant to which m belongs
(the time of m). When a formula is evaluated at m/h, we call tm the time of evalu-
ation. The following definition is the analogue of the Lewis-Stalnaker semantics for
counterfactuals (∗):

Definition 8 (Semantics for ϕ �→ ψ) Where m/h is any index from a similarity
SLDn model M and ϕ, ψ ∈ L�→

SLDn
,

M,m/h |= ϕ �→ ψ iff either (i) there is no h1 ∈ Hist such that M, tm/h1 |= ϕ

or (ii) there is h1 ∈ Hist such that M, tm/h1 |= ϕ ∧ ψ and,
for all h2 ∈ Hist such that M, tm/h2 |= ϕ ∧ ¬ψ ,
h2 ��h h1

Accordingly, a counterfactual is true at an index m/h just in case the consequent is
true, at the time of evaluation tm, on all histories that differ minimally from h where
the antecedent is true at tm (if there are any histories on which the antecedent is true
at tm). We are thus assuming that the truth values of ϕ and ψ at indices not occur-
ring at the time of evaluation do not affect the truth-value of ϕ �→ψ . This reflects
the idea that, when we reason from a counterfactual supposition, we reason about
what would happen if the supposed proposition were true now, see [49, p. 68]. More
generally, the tense used in the antecedent and the consequent of a counterfactual is
a source of indexicality: it points to a specific time (past or future) with respect to
the time of utterance. A semantics for counterfactuals should be able to identify this
specific time. Our semantics does this by first fixing the time of evaluation and then
interpreting the temporal operators occurring in the antecedent and consequent.14

14Another approach would be to tag each atomic proposition with the specific time they refer to, see [42].
E.g., pt means p is true at time t.
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A few definitions will clarify the connection between Definition 8 and the
Lewis-Stalnaker semantics (∗). For any index m/h in a similarity SLDn model
〈T , act,dev, �, π〉, let

t(m/h) = {m′/h′ ∈ Ind | tm = tm′ }
be the set of indices accessible from m/h. So, an index m′/h′ is accessible from
m/h if it occurs at the same time as m/h. Next, for any index m/h, define �m/h ⊆
Ind × Ind by setting, for all m1/h1, m2/h2 ∈ Ind:

(∗∗) m1/h1 �m/h m2/h2 iff m1/h1 ∈ t(m/h) and h1 �h h2.

That is, m1/h1 is at least as similar to m/h as m2/h2 just in case m1/h1 is acces-
sible from m/h and h1 is at least as similar to h as h2. The evaluation rule for �→
in Definition 8 can then be rewritten as:

M,m/h |= ϕ �→ ψ iff either (i) there is no m1/h1 ∈ t(m/h) such that M,m1/h1 |= ϕ,
or (ii) there is m1/h1 ∈ t(m/h) such that M,m1/h1 |= ϕ ∧ ψ and,

for all m2/h2 ∈ t(m/h) such that M,m2/h2 |= ϕ ∧ ¬ψ ,
m2/h2 ��m/h m1/h1.

This is the standard evaluation rule for counterfactuals replacing possible worlds
with indices. Rewriting Definition 8 in this way reveals a key assumption underlying
our semantics for counterfactuals, namely that the time of evaluation does not affect
the relation of relative similarity between histories: if h1 is at least as similar to h

as h2, then this is true no matter what time it is. This is a substantial assumption.
Contrast it with the following condition 2.3 from [49, pp. 68-69]:

2.3 In determining how close m1/h1 is to m2/h2 [where m1 and m2 occur at
the same time], past closeness predominates on future closeness; that is,
the portions of h1 and h2 not after m1 and m2 predominate over the rest
of h1 and h2.

This informal principle is to be intended as strongly as possible: if h3 up to
m3 is even a little closer to h1 up to m1 than is h2 up to m2, then m3/h3 is
closer to m1/h1 than m2/h2 is, even if h2 after m2 is much closer to h1 after
m1, than h3 after m3. Any gain with respect to the past counts more than even
the largest gain with respect to the future. [Notation adapted.]

Fig. 3 Thomason and Gupta’s [49] condition 2.3, an illustration
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Consider the DBT structure in Fig. 3. Condition 2.3 implies that t2/h2 is more
similar to t2/h1 than t2/h3, even if t1/h2 and t1/h3 may well be equally similar to
t1/h1. This is excluded by our assumption (∗∗), according to which, if t2/h2 is more
similar to t2/h1 than t2/h3, then t1/h2 must be more similar to t1/h1 than t1/h3. The
acceptance or rejection of Thomanson and Gupta’s [49] condition 2.3 influences the
logic of counterfactuals. We come back to this issue in Section 3.2.

3.1 Similarity Defined

In this Section, we say more about the properties that our relative similarity relation
�h should satisfy.15 We gradually introduce two candidate definitions of relative
similarity in SLDn frames. The first definition is based on Lewis’s [31] criteria for
determining similarity and gives rise to what we call rewind models. The second
definition, based on well-known counterexamples to Lewis’s criteria [44, p. 27, fn.
33], incorporates the idea that a notion of (in)dependence is key to a semantics of
counterfactuals, giving rise to what we call independence models.

We start with Lewis’s [31, p. 472] first criterion of similarity: “It is of the first
importance to avoid big, widespread, diverse violations of law”.

Lewis has in mind mainly causal or physical laws, but the notion of law in the
above quote can also be understood in terms of choice rules. The suggestion is that a
history h1 is more similar to a history h than another history h2 if fewer deviations
from the agents’ default choice behavior occur on h1 than on h2. For any history h,
the number of deviations on h is defined as follows:

n dev(h) = �
m∈h

|{i ∈ Ag | act(m/h)(i) ∈ dev(m)}|
For each history h, n dev(h) counts, for every moment m on h, the number of

agents performing a deviant action at m/h. Our first analysis of relative similarity is:

Analysis 1. For all histories h, h1, h2, h1 is more similar to h than h2 iff
n dev(h1) < n dev(h2).

Our first observation in this Section is that our definition of similarity requires addi-
tional constraints that go beyond Analysis 1. To see this, consider again Example 1
and its representation in Fig. 2. Recall that the actual history is h2: after nominat-
ing Max, David bets heads and Max flips the T-coin, so David loses. Let L be the
proposition that David loses (so, L is true at instant t3 on h2, h3, h6, h7). Intuitively,
the counterfactual C1 is true at m4/h2. The counterfactual C1 is expressed by the
following formula of LSLDn :

(F1) Ydo(bt1)�→ L (“If David had bet tails, then he would still have lost”).

15As [6, p. 196] notes: “Lewis’s theory evidently needs to be based [...] on a similarity relation that is
constrained somehow—it must say that A�→ C is true just in case C is true at the A-worlds that are most
like the actual world in such and such respects. The philosophical task is to work out what respects of
similarity will enable the theory to square with our intuitions and usage”.
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It is not hard to see that Definition 8 and Analysis 1 would evaluate F1 as false.
The histories on which Ydo(bt1) is true at the time of evaluation tm4 = t3 are
h3, h4, h7, and h8. Among these histories, the ones with the fewest number of devi-
ations are h3, h7, and h8 (in fact, no deviant action is performed on these histories).
So, according to Analysis 1, h3, h7, and h8 are the most similar histories to h2 on
which Ydo(bt1) is true at t3. But ¬L rather than L is true on h8 at t3. So, if we com-
pare histories only in terms of the number of deviations as in Analysis 1, then F1
turns out to be false at m4/h2. The problem with Analysis 1 is that it ignores the
fact that a “small miracle” [31, p. 478] (or a “surgical intervention” [36, p. 239]) at
m4/h2 suffices to reach h3 from h2, while a substantial change in the past is needed
to reach h7 and h8. This suggests that the greater past overlap between h3 and h2 is
more important than the fewer number of deviations on h7 and h8.

Given the condition of past linearity, the past overlap between two histories h1
and h2 is their intersection:16

past ov(h1, h2) = h1 ∩ h2

This leads to a straightforward modification of Analysis 1:

Analysis 2. For all histories h, h1, h2, h1 is more similar to h than h2 iff
either past ov(h, h1) ⊃ past ov(h, h2),
or past ov(h, h1) = past ov(h, h2) and n dev(h1) < n dev(h2).

Remark 1 The criterion of past overlap is the second criterion for determining sim-
ilarity between histories proposed by [31]. There are well-known criticisms of this
criterion: Suppose you left your jacket on a chair in a café. Consider the counterfac-
tual “If my jacket had been stolen, then it would have been stolen right before I left”.
Since the histories on which your jacket has been stolen one moment ago have the
greatest past overlap with the current history, the past overlap criterion implies that
this counterfactual is true. This is clearly a counterintuitive consequence of past over-
lap. However, this issue arises when evaluating a counterfactual whose antecedent
includes an arbitrary past operator. The closest we can come to express this coun-
terfactual is “If my jacket had been stolen n moments ago, then it would have been
stolen one moment ago,” which is clearly false when n > 1. In this paper we assume
the Lewisian analysis and leave a full discussion of this problem for future work. In
doing this, we follow previous work on the semantics of counterfactuals in the con-
text of branching time [38, 52], where a relative similarity relation between histories
is defined in terms of the past overlap criterion. Unlike in the present paper, these
papers do not consider any other criterion of similarity.

Analysis 2 delivers the correct evaluation of F1 at m4/h2: Histories h3 and h4 are
more similar to h2 than h7 and h8, because their past overlap with h2 is greater. In
turn, history h3 is more similar to h2 than h4 because there are fewer deviations on

16The condition of past linearity ensures that h1 ∩ h2 is an initial segment of both h1 and h2. This is why
it makes sense to call it their past overlap.
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Fig. 4 Max and Maxine flip the coin at the same time

h3 than on h4. Since David loses at t3 on history h3, F1 is true at m4/h2. However,
there are still problems with Analysis 2, as illustrated by the following example:

Example 2 Everything is as in Example 1 except that David does not initially nom-
inate Max or Maxine. Instead both Max and Maxine flip a coin after David bets.
David wins only if both Max’s and Maxine’s coins land on the side he bets. Suppose
that after David bets heads, Max flips the T-coin (as prescribed by his choice-rule)
and Maxine happens to flip the H-coin. So David loses.

An SLDn frame representing Example 2 is depicted in Fig. 4, where the labels and
shadings are read as in Fig. 2 on page 12 and the proposition L that David loses is
true at instant t2 on all histories except for h2 and h8. The actual history is h1 (the
thick line). Consider the following counterfactual:

(F2) do(hc2)�→ ¬L (“If Max flipped the H-coin, then David would have won”).

Intuitively, F2 is true at m2/h1. But Analysis 2 and Definition 8 do not vindi-
cate this judgement. The histories on which Max flips the H-coin at tm2 = t2 are
h2, h3, h6, and h7. Histories h2 and h3 have a greater past overlap with h1 than h6
and h7, so the latter two histories can be discarded. In turn, since the number of devi-
ations on h2 is the same as the number of deviations on h3, h2 and h3 are equally
similar to h1. Yet, L rather than ¬L is true on h3 at t2. Given Definition 8, it fol-
lows that David might win—a weaker conclusion than the desired one. The problem
is that, even though h2 and h3 have the same past overlap with h1 as well as the
same number of deviations, more agents need to change their actions to reach h3 than
h2 (in this sense the change required to reach h3 is not minimal). This suggests that
the smaller change making h2 branch off from h1 is more important than the equal
number of deviations on h2 and h3.17

17The importance of fixing the actions of as many agents as possible when evaluating a counterfactual
in a stit model is already emphasized by Horty [25, Chapter 4], who uses this criterion to define a selec-
tion function that picks, for every index m/h, agent i, and action (token) K available to i at m, the
most similar histories to h where i performs K . Since he is only interested in counterfactuals of form “if
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Given two histories h1 and h2, say that h1 and h2 divide at moment m if m is the
last moment they share, i.e., m ∈ h1 ∩h2 and succh1(m) �= succh2(m). When h1 and
h2 divide at moment m, let the number of agents separating h1 and h2 be defined as
follows:

n sep(h1, h2) = |{i ∈ Ag | act(m/h1)(i) �= act(m/h2)(i)}|

Then, n sep(h1, h2) counts the number of agents that, by performing different
actions on h1 and h2 at moment m, make h1 and h2 divide at m.18 When h1 and h2
never divide (i.e., h1 = h2), let n sep(h1, h2) = 0. Putting everything together, we
have our first definition of similarity.

Definition 9 (Rewind similarity function) Let 〈T , act, dev〉 be an SLDn frame.
Define

≺R : Hist → 2Hist×Hist

by setting: for all h, h1, h2 ∈ Hist: h1≺R
h h2 iff:

past ov(h, h1) ⊃ past ov(h, h2), or

past ov(h, h1) = past ov(h, h2) and n sep(h, h1) < n sep(h, h2), or

past ov(h, h1) = past ov(h, h2) and n sep(h, h1) = n sep(h, h2) and n dev(h1) < n dev(h2).

Define �R
h as follows: for all h1, h2 ∈ Hist:

h1 �R
h h2 iff either h1≺R

h h2 or (h1 �≺R
h h2 and h2 �≺R

h h1).

We will call rewind model any similarity model
〈
T , act,dev, �R, π

〉
, where �R is

defined as in Definition 9.
Definition 9 encodes a substantial assumption about how we let a scenario unfold

under the supposition that the antecedent of a counterfactual is true. To see this, let
us go back to our initial Example 1 (cf. also Fig. 2, p. 12), but suppose that the actual
history is h6 instead of h2: After nominating Maxine, David bets heads and Maxine
happens to flip the T-coin, so David loses. What if David had bet tails? Would he
have won? There are two ways to answer this question.

(1) Rewind History: When we suppose that David bet differently, we rewind the
course of events to the moment when David bets (m3), intervene on his choice,
and then let the future unfold according to the agents’ default choice behavior.
Since there is no choice rule constraining Maxine’s flip, we only conclude that
David might win. This is the conclusion we reach by applying Definition 9,

agent i performed (now) a different action, then ϕ would be true,” [25] does not consider other criteria of
similarity.
18Notice that, by the condition of past linearity, if two histories h1 and h2 divide at a moment, then they
divide at a unique moment, so n sep(h1, h2) is well defined.
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according to which h3 and h4 are equally similar to h2. In fact, together with
Definition 8, Definition 9 encodes the following Lewisian procedure:

[T]ake the counterfactual present, avoiding gratuitous difference from the
actual present; graft it smoothly onto the actual past; let the situation
evolve according to the actual laws; and see what happens. [31, p. 463]

(2) Assume Independence: When we suppose that David bet differently, we rewind
the course of events to the moment when David bets (m3), intervene on his
choice, leave all events that are independent of it as they actually are, and then
let the future unfold according to the agents’ default choice behavior. Doing
otherwise “would seem to be positing some strange causal influence” [49, p.
83]. Since there is no choice rule according to which Maxine’s choice depends
on David’s bet, we conclude that, if David had bet differently, then he would
have won.

To make the reasoning in (2) precise, we need to identify all the events that are
independent of David’s choice. In stit, we can think of events as actions performed
by agents (possibly treating Nature as an agent). This allows us to use our distinction
between constrained and unconstrained agents to capture the reasoning in (2): the
unconstrained agents whose default choice behavior is not constrained by a choice
rule at a moment are precisely those whose actions at that moment are independent
of the actions performed at previous moments (e.g. David betting).19

To account for the Assume Independence intuition, we supplement Definition 9
with a further requirement on unconstrained agents. Recall that an agent i is uncon-
strained at a moment m when none of the actions available to her at m is deviant (cf.
Section 2.2). The set of agents unconstrained at moment m is thus defined as:

Ag(m) = {i ∈ Ag | Actsm
i ∩ dev(m) = ∅}

Given an index m/h, define the set of actions performed by unconstrained agents
at m/h as:

act(m/h) = {act(m/h)(i) | i ∈ Ag(m)}

Then the number of independent events for any histories h1 and h2 is defined as:

n indep(h1, h2) = �
t∈Inst |act(t/h1) ∩ act(t/h2)|

19To account for the reasoning in (2) in the context of branching time, Thomason and Gupta [49] impose
constraints of “causal coherence” on their models. Yet, they acknowledge that this move adds a substantial
layer of complexity to their theory. With a similar aim but in the context of branching space-time, Placek
and Müller [38] define “independence” as space-like separation. Yet, they acknowledge that this kind of
independence is hardly realized in everyday situations like the betting scenarios of our examples. The
possibility of distinguishing constrained and unconstrained agents provides us with a convenient way to
get around these difficulties.
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Thus, n indep counts, for every instant t, the number of agents unconstrained at
t on both h1 and h2 that act in the same way on these histories.20 Let us illustrate
the previous definitions with Fig. 2. Assume that the vacuous choices of agent i ∈
{1, 2, 3} are all labeled with vci . We then have the following:

•Ag(mk) = {1, 2, 3} for k ∈ {1, 2, 3, 6, 7} and Ag(mj ) = {1, 3} for j ∈ {4, 5};
• act(t1/h1) ∩ act(t1/h5) = {vc2, vc3}, • act(t1/h5) ∩ act(t1/h7) = {nm′

1, vc2, vc3},
act(t2/h1) ∩ act(t2/h5) = {bh1, vc2, vc3}, act(t2/h5) ∩ act(t2/h7) = {vc2, vc3},
act(t3/h1) ∩ act(t3/h5) = {vc1}, act(t3/h5) ∩ act(t3/h7) = {vc1, vc2, hc3},
so n indep(h1, h5) = n indep(h5, h1) = 6; so n indep(h5, h7) = n indep(h7, h5) = 8.

Our second definition of similarity refines our first definition by incorporating the
assumption of independence discussed in item (2) above.

Definition 10 (Independence similarity function) Let 〈T , act,dev〉 be an SLDn

frame. Define

≺I : Hist → 2Hist×Hist

by setting: for all h, h1, h2 ∈ Hist: h1≺I
hh2 iff either one of the first two conditions

in Definition 9 is satisfied or one of the following holds:

past ov(h, h1) = past ov(h, h2) and n sep(h, h1) = n sep(h, h2)

and n indep(h, h1) > n indep(h, h2), or

past ov(h, h1) = past ov(h, h2) and n sep(h, h1) = n sep(h, h2)

and n indep(h, h1) = n indep(h, h2) and n dev(h1) < n dev(h2)

Define �I
h as follows: for all h1, h2 ∈ Hist,

h1 �I
h h2 iff either h1≺I

hh2 or (h1 �≺I
h h2 and h2 �≺I

h h1).

We will call independence model any similarity model
〈
T , act,dev, �I , π

〉
, where

�I is defined as in Definition 10. In the following, we will use ≺ for elements of
{≺R, ≺I } and � for elements of {�R, �I }.

Definition 10 delivers the correct analysis of Example 2: although h2 and h3 over-
lap the same initial segment of h1, at m2 both David and Maxine act in the same way
on h2 and h1, while Maxine changes her behavior on h3. Hence, h2 is more similar
to h1 than h3. Since ¬L is true on h2 at t2, it follows that F2 is true at m2/h1.21

20 The reason why n indep is defined over all instants rather than a single instant or a set of relevant instants
is that our relative similarity relation compares histories “globally” (see the discussion on pp. 17-18)
21Note that this analysis essentially relies on the assumption that Maxine has two choices: she can pick
the H-coin or pick the T-coin. If Maxine tossed a fair coin instead of choosing between the H-coin and
the T-coin, the example would be different since Maxine would have a single choice with indeterministic
outcomes instead of two choices with deterministic outcomes. So, unless the coin itself was modeled as
an unconstrained agent (i.e., treat nature as an agent), our analysis would be different.
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3.2 Logical Properties

The following are some immediate consequences of Definitions 9 and 10.

Proposition 1 Suppose that 〈T , act, dev, �, π〉 is either a rewind model or an inde-
pendence model. For any history h, the relative similarity relation �h is a centered
weak ordering. That is, �h satisfies the following conditions: for any h′, h1, h2, h3 ∈
Hist,

1. Transitivity: if h1 �h h2 and h2 �h h3, then h1 �h h3.
2. Linearity: either h1 �h h2 or h2 �h h1.
3. Centering: if h′ �h h, then h′ = h.

Recall that, for any index m/h from a similarity SLDn model, the set of indices
accessible from m/h is t(m/h) = {m′/h′ ∈ Ind | tm = tm′ }. The following is a
straightforward corollary of Proposition 1:

Corollary 1 Suppose that 〈T , act,dev, �, π〉 is either a rewind model or an inde-
pendence model. For any index m/h, the relation �m/h ⊆ Ind × Ind defined by
setting: for all m1/h1, m2/h2 ∈ Ind,

(∗∗) m1/h1 �m/h m2/h2 iff m1/h1 ∈ t(m/h) and h1 �h h2,

is a centered weak ordering satisfying the following: for all m1/h1, m2/h2 ∈ Ind,

Priority: if m1/h1 ∈ t(m/h) and m2/h2 /∈ t(m/h), then m2/h2 ��m/h m1/h1

Definition 8 together with Corollary 1 show that our semantics for the counter-
factual matches the Lewisian semantics with possible worlds replaced with indices.
Proposition 2 is then a well-known consequence of Corollary 1.

Proposition 2 The following axioms and rule are valid and truth preserving in any
rewind model (resp. independence model):22

(K�→ ) (ϕ �→ (ψ1 → ψ2)) → ((ϕ �→ψ1) → (ϕ �→ψ2))

(Suc) ϕ �→ ϕ

(Inc) (¬ϕ �→ ϕ) → (ψ �→ ϕ)

(Cen) ϕ → (ψ ↔ (ϕ �→ ψ))

(Cond) ((ϕ1 ∧ ϕ2)�→ ψ) → (ϕ1 �→ (ϕ2 → ψ))

(RMon) ¬(ϕ1 �→ ¬ϕ2) ∧ (ϕ1 �→ χ) → ((ϕ1 ∧ ϕ2)�→ χ)

(RN�→ ) From ψ infer ϕ �→ψ

22Suc stands for “Success,” Inc for “Inclusion” (as it says that the closest indices satisfying a counterfac-
tual antecedent—if any—are accessible), Cen stands for “Centering,” Cond for “Conditionalization,” and
RMon for “Rational Monotonicity”.
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More interestingly, the principles in the next proposition reflect the interaction
between counterfactuals and temporal modalities.

Proposition 3 The following principles are valid in any rewind model (resp.
independence model).

(DisX) X(ϕ �→ψ) ↔ (Xϕ �→ Xψ) (DisY) Y(ϕ �→ ψ) ↔ (Yϕ �→ Yψ)

(Cen1) ♦ϕ → (♦ψ → �(ϕ �→♦ψ)) (Cen2) ♦ϕ → ((ϕ �→�ψ) → �ψ)

Proof See Appendix B.

Corollary 2 The following principles are theorems of the axiom system obtained by
extending SLDn with the principles in Proposition 2, Cen1 and Cen2:

1. ♦ϕ → (�ψ ↔ �(ϕ �→�ψ)) 2. ♦ϕ → ((ϕ �→�ψ) → �(ϕ �→ψ))

Proof Straightforward given Cen1, Cen2, and the fact that � is an S5 modality.

The validity of the distribution principles DisX and DisY depends on the assumption
that the time of evaluation does not affect the relation of relative similarity between
histories. In fact, since the most similar histories to a history h up to the present time
t are the same as the most similar histories to h up to one instant after t, the most
similar histories to h on which Xϕ is true at t must be the same as the most similar
histories to h on which ϕ is true one instant after t (similarly for Yϕ).

Interestingly, the condition 2.3 from [49] (see p. 18) makes it possible to find
counterexamples to DisX and DisY. To see this, let us go back to Fig. 3. Recall
that, according to condition 2.3, t2/h2 is more similar to t2/h1 than t2/h3. Assume
that t1/h2 and t1/h3 are equally similar to t1/h1 and that p is true only at t2/h2
and t2/h3 while q is true only at t2/h2. Since q is true at the most similar
index to t2/h1 at which p is true (i.e., t2/h2), p�→ q is true at t2/h1, and so
X(p�→ q) is true at t1/h1. On the other hand, since ¬Xq is true at one of the
most similar indices to t1/h1 at which Xp is true (i.e., t1/h3), Xp�→ Xq is false
at t1/h1.

Thomason and Gupta [49, pp. 70-71] rely on a variant of Example 1 to support the
claim that DisX and DisY should not come out as logical validities. In their version
of the example, Max and David are the only agents, the game starts with David’s bet
(at t2 in Fig. 2) and ends after Max flips either the T-coin or the H-coin. So we can
depict their example as in Fig. 2 ignoring histories h5, h6, h7, and h8 and moments
occurring before time t2. As in Example 1, Max flips the coin that guarantees that
David loses. In addition, the actual history is h2: David bets heads and Max flips the
T-coin. Now, let L′ be the proposition “David loses at time t3” (so, L′ is true at all
moments on histories h2 and h3). According to [49], the counterfactual

(A) do(bt1)�→ L′ (“If David bets tails, he would lose at t3”)
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is intuitively true at t2/h2, i.e., at the beginning of the game on the actual history.
Hence, Y(do(bt1) → L′) is true at t3/h2. On the other hand, the authors take the
counterfactual

(B) Ydo(bt1)�→ YL′ (“If David had bet tails, he would have lost at t3”)

to be intuitively false at t3/h2, i.e., at the end of the game on the actual history. If this
is correct, then the implication Y(do(bt1)�→ L′) → (Ydo(bt1)�→ YL′) is false at
t3/h2, that is, the principle DisY is not intuitively valid.23

We disagree with Thomanson’s and Gupta’s judgement about B. Given Max’s
choice rule, at the end of the game it would be perfectly natural to explain to David:
“Well, if you had bet tails, you would still have lost”. We think that the problem
stems from a confusion between the time of evaluation and the time to which the
antecedent of a counterfactual refers. In discussing the present example, Thomason
and Gupta seem to take it that, in reasoning from a counterfactual supposition, we
hold fixed as many past facts as possible up to the time of evaluation (t2 in the case
of A and t3 in the case of B). But, as most scholars think (cf. [6, Chapter 12]), what
we intuitively do is rather to hold fixed as many past facts as possible up to the
time to which the antecedent refers (t2 for both A and B).24 It then makes sense that
relative similarity between histories is not affected by the time of evaluation: what
is important is just that the longer a history h′ overlaps another history h, the more
similar h′ is to h.

Turning to Cen1 and Cen2, the validity of these principles follows from the pri-
ority of the criterion of past overlap: if ϕ can be true at a moment, then supposing
that ϕ is true does not require shifting to a different moment. (Compare the reasoning
behind the validity of Cen: if ϕ is true at an index, then supposing that ϕ is true does
not require moving to a different index).

Items 1 and 2 in Corollary 2 highlight an interesting interaction between counter-
factuals and historical necessity. In particular, item 2, which we discuss below, can
be viewed as a principle of “exportation” of � from �→ .

The validities we have considered so far do not depend on whether we work
with rewind models or with independence models. The next Proposition 2 involves a
formula that distinguishes the two classes of models.

23Observe that Thomason and Gupta’s [49] condition 2.3 does not exclude the possibility of defining a
similarity relation between the indices from Fig. 2 such that t2/h3 is the most similar index to t2/h2 where
do(bt1) is true and t3/h4 is the most similar index to t3/h2 where Ydo(bt1) is true. Given such a similarity
relation, A turns out to be true at t2/h2 while B turns out to be false at t3/h2, in accordance with the
authors’ intuitive judgement. Our property (∗∗) does not allow us to define a similarity relation of this
sort: according to it, t2/h3 is the most similar index to t2/h2 where do(bt1) is true if and only if t3/h3 is
the most similar index to t3/h2 where Ydo(bt1) is true.
24It is worth noting that, if we kept fixed as many past facts as possible up to the time of evaluation, B

would be false, no matter whether Max flips the T-coin by chance or because his default choice behavior
is to make David lose. Yet, intuitively, we judge B false only in the former case (recall the reasoning
underlining the Rewind History and Assume Independence attitudes).

322 I. Canavotto, E. Pacuit



Fig. 5 Fruit basket example

Proposition 4 The following principle is valid in any rewind model, but not valid in
some independence model.

(Exp�) �¬ϕ → ((ϕ �→�ψ) → �(ϕ �→ψ))

Proof See Appendix B.

Using item 2 in Corollary 2 and Exp� we can show that (ϕ �→�ψ) →
�(ϕ �→ ψ) is valid in the class of rewind models. The validity of this principle
can be proved directly from Definition 9, which ensures that the most similar ϕ-
histories25 to histories passing through a moment pass through the same moments.
Note that the converse implication is not valid: suppose that we scheduled a lecture
on Tuesday at 1pm and our default choice behavior is to follow the schedule. Then,
“If I were not sick, I would be teaching” is settled true on Tuesday at 1pm, even
though “If I were not sick, it would be settled that I would be teaching” may be false
(e.g., because there is a possibility that our bike breaks down on the way to school).

To see why the addition of the criterion regarding the number of independent
events leads to the invalidity of Exp�, consider another example.

Example 3 Suppose that there is a basket containing an apple, a banana, an orange,
and a grapefruit on a table. Next to the basket there is a jar containing three pieces of
paper with the choices orange+grapefruit, orange+apple, grapefruit+banana writ-
ten on them. Bob can pick one piece of paper and is given the fruits written on it.
After Bob makes his choice, Ann can pick one of the remaining fruits from the basket.
Assume that Bob picks the orange+grapefruit-paper and Ann picks the banana.

Example 3 is illustrated in Fig. 5. In the figure, Bob is agent 1 and his non-vacuous
choices are og1 (pick the orange+grapefruit-paper), oa1 (pick the orange+apple-
paper), and gb1 (pick the grapefruit+banana-paper). Ann is agent 2 and her

25By “ϕ-history” we mean a history on which ϕ is true at the time of evaluation.
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non-vacuous choices are a2 (pick the apple), b2 (pick the banana), g2 (pick the
grapefruit), and o2 (pick the orange). The actual history (thick line) is h2. In our ter-
minology, both Bob and Ann are unconstrained agents—none of their actions are
deviant. At m2, there are no citrus fruits in the basket. But what if there were? Accord-
ing to Definition 10, the most similar history to h2 satisfying this condition is h3,
where Bob picks the orange+apple-paper and Ann picks the banana—as she does at
m2/h2. At t2/h3 it is settled that Ann can pick a banana, so “If there was a citrus fruit
in the basket, it would be settled that Ann could pick a banana” is true at m2/h2. But
consider the index m2/h1 where Ann picks the apple instead of the banana. Again,
what if there was a citrus fruit in the basket? Reasoning as before, the most similar
history to h1 satisfying this condition is h5, where Bob picks the grapefruit+banana-
paper and Ann picks the apple. Since there is no banana in the basket at t2/h5, “If
there was a citrus fruit in the basket, Ann could pick a banana” is false at m2/h1, and
so “It is settled that, if there was a citrus fruit in the basket, Ann could pick a banana”
is false at m2/h2.

To conclude this section, let us highlight a potential problem for our proposal
emerging from Fig. 5. We have seen that, according to Definition 10, h3 is the most
similar history to h2 on which Bob does not choose the orange+grapefruit-paper. So,
“If Bob had picked a different piece of paper, then Ann would pick the banana” is
true at m2/h2. But this is a counterintuitive conclusion: if Bob had picked a different
piece of paper, he might have picked the grapefruit+banana-paper, in which case
Ann could not even pick a banana!

We view this as a modeling issue: since choosing a banana over an apple is not the
same type of choice as choosing a banana over a grapefruit, the two choices should
not be labeled the same way (see the discussion of menu dependence in rational
choice theory [21, 28, 40]). If we change the labeling, then the weaker (and unprob-
lematic) “If Bob had picked a different piece of paper, then Ann might pick the
banana” is true at m2/h2.26

This suggests the introduction of the next condition: for all i ∈ Ag and m, m′ ∈
Mom,

1. Identity of Overlapping Menus: if Actsm
i ∩ Actsm′

i �= ∅, then Actsm
i = Actsm′

i .

According to this condition, if an agent has the same type of choice available at
two different moments, then the menus of alternative choices available to the agent at

26 To be sure, suppose that we label Ann’s choice at t2/h3 as b′
2 (choosing a banana over a grapefruit)

instead of b2 (choosing a banana over an apple). In addition, for simplicity, assume that every agent i has
a vacuous choice vci at all moments after t2. Then, it is not difficult to see that histories h3, h4, h5, and h6
are equally similar to h2: these histories have the same past overlap with h2 (they all branch off from h2
at m1); the same number of agents make them branch off from h2 (namely 1, i.e., Bob); the same number
of independent events occur on them (namely the events corresponding to the agents’ vacuous choices);
finally, the same number of deviant actions are performed on them (namely 0). Since these are all the
histories on which Bob picks a different piece of paper at t1 and Ann picks a banana only on h3, we indeed
conclude that, if Bob had picked a different piece of paper, then Ann might have picked a banana—the
unwanted conclusion that Ann would have picked a banana does not follow. (Of course, according to this
reasoning, we should also replace the label a2 at t2/h5 with a′

2).
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those moments must be the same. The model in Fig. 5 does not satisfy this condition
because Ann has two different but overlapping menus at m2 and m3, that is, {a2, b2}
and {b2, g2} respectively. Interestingly, as proved in Appendix B, Exp� remains
invalid in the class of independence models satisfying the condition of identity of
overlapping menus. In fact, the countermodel presented there satisfies a stronger
condition: for all m, m′ ∈ Mom,

2. Uniformity of menus: if tm = tm′ , then Actsm = Actsm′
.

While the condition of identity of overlapping menus is a desirable condition, the
condition of uniformity of menus is not: as illustrated by Example 3, depending on
what happens at a moment, different actions may become executable in the future.

4 A Refinement: From Independence to Influence

The definitions of similarity we introduced in the previous Section differ in how
they treat choices of unconstrained agents. Definition 10 can be understood as fixing
the choices of unconstrained agents when reasoning about counterfactual situations.
On the other hand, Definition 9 does not keep track of the actions of unconstrained
agents on the actual history. Despite this difference, a crucial assumption that both
definitions of similarity rely on is that the evaluation of choice-driven counterfactu-
als depends on the default choice behavior of the agents. Do these definitions still
make sense when evaluating a choice-driven counterfactual on a history where one
or more agents behaved deviantly in the past? Should we ignore any past deviation
from default choice behavior or take it into account when evaluating a choice-driven
counterfactual? Consider the following variant of our running example.

Example 4 Everything is as in Example 1, except that, besides the two biased coins,
Max can also choose a fair coin—and he knows this. Max’s choice rule is the same:
choose the coin that makes David lose. After Max makes his choice (and flips his
chosen coin), David can choose to either leave or stay and play another round of the
game with Max. Suppose that David nominates Max and bets heads but Max makes
a mistake and flips the fair coin, which, lucky for David, lands heads. Then David
chooses to leave the game.

How should we evaluate the following counterfactual after David leaves the game?

(C2) If David were to bet heads again, he would lose (Xdo(bh1)�→ XXL).

Figure 6 depicts the relevant part of a model representing Example 4 needed to
evaluate conditional C2. Max’s choice of flipping the fair coin is represented by the
action type fc2; David’s choices to leave and to stay are represented by the action
types l1 and s1 respectively. The fair coin from the first game lands heads on all the
depicted histories h1-h9, while the fair coin from the second game lands heads on
histories h3 and h7. The actual history is h1 (the thick line), where Max mistakenly
flips the fair coin (which lands heads) and David decides not to play another round
of the game.
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Fig. 6 The diagram represents a relevant portion of Example 4. After Max flips the fair coin at the end of
the first game (moment m1), David has a choice to either leave (l1) or stay (s1), followed by another round
of the game described in Example 4

According to either Definition 9 or Definition 10, C2 is true at t2/h1: the most
similar history to h1 on which David bets heads during the second game is h5, where
XXL is true at t2.27 It is not clear that this is the correct judgement about C2 given that
Max mistakenly flipped the fair coin in the first game. The main issue is that neither
definition of similarity takes into account the fact that the counterfactual is evaluated
at a history along which Max acted deviantly. This raises a question about what Max
would do in the second game. There are different ways to answer this question:

1. Forget that Max’s actual choice was deviant and assume that he is still con-
strained by his choice rule (i.e., he would flip the coin that makes David
lose).

2. Assume that Max would make the same mistake and flip the fair coin.
3. Assume that Max would make a mistake, but we cannot tell which one (e.g., he

might flip the fair coin or the tails coin).
4. Assume that Max is no longer a constrained agent, so the only conclusion we

can draw is that Max might flip any of the available coins.

27Note that Xdo(bh1) is false at t2/h1. Of course, the successor of m2 on h1 is not represented in Fig. 6. It
is assumed that the game is over at m2/h1 and so the next choice for David on h1 does not involve betting
heads.
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Without further details about why Max made the deviant choice in the first game,
it is not clear which of the above options is best. Perhaps Max made a fleeting mis-
take and there is no further explanation, which would suggest that option 1 is the
best. There might be a systematic problem with the coins (e.g., they are labeled incor-
rectly), which would suggest that either option 2 or option 3 is the best. Finally,
options 4 is best if Max’s deviant action is some type of signal that he is no longer
being guided by his choice rule.

Remark 2 Counterfactuals like C2 play an important role in the analysis of strategic
reasoning in game theory [7, 10, 39, 41, 43, 45, 54]. A central question in this lit-
erature is: What do the players expect that their opponents will do if an unexpected
point in the game tree is reached? One answer (forward induction) is that players
rationalize past behavior and use it as a basis for forming beliefs about future moves
[3, 4, 47]. A second answer (backward induction) is that players ignore past behavior
and reason only about their opponents’ future moves [1, 9, 37, 47]. These differ-
ent answers roughly correspond to the four different options listed above explaining
Max’s deviant choice. Forgetting that Max made a deviant choice and assuming he
will be guided by his choice rule (option 1) is analogous to the assumptions under-
lying backward induction reasoning (the second answer). The other options can
be viewed as different ways to rationalize Max’s surprising choice, as in forward
induction reasoning (the first answer).

In our framework, option 1 is implicitly assumed in both Definition 9 and Defi-
nition 10. Option 4 is best understood as Max transitioning from a constrained to an
unconstrained agent, which requires a revision of Max’s dev function. We leave the
revision of the dev function to future work and suggest a way to represent options 2
and 3.

The reasoning underlying options 2 and 3 can be captured by generalizing Def-
inition 10: When we suppose that David will bet tails, we follow the actual course
of events up to the moment when David leaves the game, intervene on his choice
by making sure that he will bet tails in the second game, fix all the actions of the
unconstrained agents and the fact that Max acted deviantly in the game, and then let
the future unfold according to the agents’ default choice behavior. The key idea is
that Max’s deviant choice in the first game overrides his default behavior in the sec-
ond game by fixing the fact that his choice will be deviant. Similarly, according to
Definition 10, the choices of unconstrained agents are held fixed in counterfactual
situations.

Both ideas can be captured by adding a relation between agent-moment pairs,
where (i, m) is related to (j, m′) means that i’s choice at m influences j ’s choice at
m′: On the one hand, Max’s deviant choice at m1 influences him to make a deviant
choice at m4. On the other hand, Definition 10 requires that an unconstrained agent’s
choice at a moment m on a history h influences that agent to make the same type
of choice at tm on the most similar histories to h. This leads us to the following
definitions.
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Definition 11 (Influence relation) Let F = 〈T , act,dev〉 be an SLDn frame and Ag

be defined as above. An influence relation for Ag in F is a relation

�⊆ (Ag × Mom) × (Ag × Mom)

such that, for all (i, m), (j, m′) ∈ Ag × Mom,

1. (i, m) � (j, m′) whenever i and j are the same agent, who is unconstrained at
both m and m′, where m and m′ occur at the same instant (i.e., i = j , i ∈ Ag(m),
j ∈ Ag(m′), and tm = tm′);

2. otherwise, (i, m) � (j, m′) only if i and j are constrained agents at, respectively,
m and m′, where m′ occurs either at the same time or later than m (i.e., i /∈
Ag(m), j /∈ Ag(m′), and m′′ ≤ m′ for some m′′ ∈ tm).28

For (i, m), (j, m′) ∈ Ag × Mom, we will write (i, m) �I (j, m′) when 1 holds
and (i, m) �D (j, m′) when 2 holds.

Definition 12 (Fixed actions) Let F = 〈T , act,dev〉 be an SLDn frame and Ag be
defined as above. For any index m/h ∈ Ind and agent i ∈ Ag let

fixedm/h
i : Ag × Mom → 2Acts

be defined as follows:

1. fixedm/h
i (j, m′) = {act(m/h)(i)} if (i, m) �I (j, m′) and act(m/h)(i) ∈

Actsm′
j ;

2. fixedm/h
i (j, m′) ⊆ Actsm′

j ∩ dev(m′) if (i, m) �D (j, m′) and act(m/h)(i) ∈
dev(m);

3. fixedm/h
i (j, m′) = ∅ otherwise.

When (i, m) � (j, m′), then fixedm/h
i (j, m′) are the actions that are “fixed” for j

at m′ given the influence of (i, m) on (j, m′) and the action that i performs at m/h.
In case 1 (where i = j is unconstrained at both m and m′ occurring at the same
time), the fixed action is the action type that is performed by agent i at m/h. In case
2 (where i and j are constrained agents), what is fixed is the fact that agent j will
choose a deviant action at m′, given that i’s action at m/h was deviant.

We can now refine the function n indep in a natural way:

n indep∗(h, h′) = �
m∈h

|{(j, m′) ∈ Ag × h′ | there is i ∈ Ag s.t. (i, m) � (j, m′)

and act(m′/h′)(j) ∈ fixedm/h
i (j, m′)}|

The function n indep∗(h, h′) counts the number of agents on h′ that are “prop-
erly influenced” by agents on h, in the sense that they perform an action from their

28One can imagine generalizations of this definition where, for instance, unconstrained agents may influ-
ence constrained agents. However, we use this simpler definition since it covers the cases that we have in
mind for this paper; a full analysis of influence would require a separate paper.
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set of fixed actions (if non-empty). It is not difficult to see that, if �D= ∅, then
n indep∗(h, h′) = n indep(h, h′).

Going back to Example 4, suppose that (2, m1) � (2, m4) and fixedm1/h1
2

(2, m4) = Acts
m4
2 ∩ dev(m4) (in line with option 3 above). That is, if 2 chooses

deviantly at m1, then 2 will choose deviantly at m4. Then, n indep∗(h1, h5) <

n indep∗(h1, h2) = n indep∗(h1, h3) = n indep∗(h1, h4), since 2 chooses deviantly
at m4 on all of h2, h3, and h4 (as 2 does at m1 on h1) but not at m4 on h5. Hence,
histories h2, h3, and h4 are more similar to h1 than h5, and so the counterfactual C2
is false at m2/h1 according to Definition 10 using n indep∗ in place of n indep.

5 Conclusion

In this paper, we studied the semantics and logical properties of choice-driven coun-
terfactuals in a stit logic with action types, instants and deviant choices. Following
Lewis [30], we interpreted counterfactual statements using a relation of relative simi-
larity on histories. We introduced two definitions of similarity motivated by different
intuitions about how choice rules guide the agents’ actions in counterfactual situ-
ations: the Rewind History intuition and the Assume Independence intuition. We
showed how to adapt our definitions to situations in which some agents perform a
deviant action. We have highlighted the subtle issues that arise when merging a logic
of counterfactuals with a logic of branching time and agency.

There are a number of interesting technical questions that arise concerning our full
language L�→

SLDn
. One question concerns whether L�→

SLDn
is strictly more expressive

than LSLDn over our class of models. For instance, consider the formula ¬ϕ �→ ⊥,
which says that ϕ is true at all indices occurring at the instant of evaluation (cf.
[30, p. 22]). Note that at any index m/h in any model M there is an n ∈ N such that
m ∈ succn(m0). This means that M, m/h |= ¬ϕ �→ ⊥ iff M, m/h |= Yn�Xnϕ.
Thus, in any model and index we can find a formula of LSLDn that is equivalent to
¬ϕ �→ ⊥ at that index. Of course, n (and, hence, the formula of LSLDn) varies
depending on the index. This suggests that comparing the expressive power of L�→

SLDn

and LSLDn over our models is not straightforward.
A second question concerns the possibility of a sound and complete axiomatiza-

tion of rewind (resp. independence) models with respect to our full language. We
do have a sound and complete axiomatization of SLDn frames (Definition 4) in a
language without counterfactuals (Theorem 1). For our full language, we identified
some core validities (Proposition 2 and Proposition 3) and an interesting formula
that distinguishes rewind and independence models (Proposition 4). Since our defini-
tions of similarity (Definition 9 and Definition 10) involve counting (deviant) actions
along different histories, we expect that a complete axiomatization (if there is one)
will require an extension of our language.

Another direction for future research is to explore applications of the logical
framework developed in this paper. Branching-time logics with both agency operators
and counterfactuals are a powerful tool to reason about complex social interactions.
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In particular, logics of this sort seem to be necessary to clarify complex moral and
legal ideas, such as the concept of responsibility [2, 11, 12, 20, 32] and “could have
done otherwise” [5]. In addition, the discussion in Section 4 and Remark 2 suggests
that a stit logic with counterfactuals may be fruitfully used to incorporate strategic
reasoning in stit, thus advancing recent research connecting stit and game-theory,
see, e.g., [19, 29, 48, 51]). We conjecture that the latter application may call for a
framework combining our approach to the semantics of counterfactuals with exten-
sions of stit logics with epistemic operators [23, 27, 50] and probabilistic belief
operators [13].

Appendix: A Completeness of SLDn

In this appendix we prove that the axiom system SLDn is complete with respect to
the class of all SLDn frames.29 The proof consists of two parts. First, we show that
SLDn is sound and complete with respect to a class of Kripke models (called pseudo-
models). By elaborating on a technique presented by [24], we then prove that every
pseudo-model in which a formula ϕ ∈ LSLD is satisfiable can be turned into an SLDn

model in which ϕ is satisfiable.

A.1 Pseudo-Models

Pseudo-models consist of a non-empty set W of possible states representing moment-
history pairs partitioned into equivalence classes by an equivalence relation R�.
Intuitively, every equivalence class of R� represents a moment. Besides R�, pseudo-
models feature the following elements: two accessibility relations, denoted RX and
RY, modeling, respectively, what happens next and what happened a moment ago;
a function fdo assigning to every possible state the profile that is performed at that
state; finally, a function fdev assigning to every state a set of deviant individual
actions.

Remark 3 We adopt the following standard notation. For any set S, element s ∈ S,
and relation R ⊆ S × S, R(s) = {s′ ∈ S | sRs′}. For any number n ∈ N, Rn ⊆ S × S

is defined recursively by setting: wR0v iff w = v; wRn+1v iff there is u ∈ S s.t.
wRnu and uRv.

Definition 13 (Pseudo-model) A pseudo-model is a tuple 〈W, R�, RX, RY, fdo,

fdev, ν〉, where W �= ∅, R� is an equivalence relation on W , RX and RY are binary
relations on W , fdo : W → Ag-Acts is the action function, fdev : W → 2Acts is the
deviant-choice function, and ν : Prop → 2W is a valuation function. For any w ∈ W

and i ∈ Ag, let:

29The proof that SLDn is sound with respect to the class of all SLDn frames is a matter of routine validity
check and it is thus omitted.
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Actsw
i = ⋃{fdo(w

′)(i) ∈ Actsi | w′ ∈ R�(w)} be the actions available to
agent i at R�(w);
Actsw = ⋃

i∈Ag Actsw
i be the individual actions executable at R�(w).

Define RAg ⊆ W × W by setting: for all w, w′ ∈ W , wRAgw
′ iff wR�w′and

fdo(w) = fdo(w
′). The elements of a pseudo-model are assumed to satisfy the

following conditions:

1. Properties of RX and RY: for all w, w1, w2 ∈ W ,

1.1. Seriality of RX: there is w′ ∈ W such that wRXw′.
1.2. RX-functionality: if wRXw1 and wRXw2, then w1 = w2.
1.3. RY-functionality: if wRYw1 and wRYw2, then w1 = w2.
1.4. Converse: w1RYw2 iff w2RXw1.

2. Independence of Agents: for all w ∈ W and α ∈ Ag-Acts, if α(j) ∈ Actsw for
all j ∈ Ag, then there is w′ ∈ R�(w) such that fdo(w

′) = α.
3. No Choice between Undivided Histories: for all w1, w2, w3 ∈ W , if w1RXw2

and w2R�w3, then there is v ∈ W such that w1RAgv and vRXw3.
4. Properties of fdev: for all w, w′ ∈ W and i ∈ Ag,

4.1. Moment-invariance: if wR�w′, then fdev(w) = fdev(w
′).

4.2. Executability of Deviant Actions: fdev(w) ⊆ Actsw.
4.3. Availability of Non-deviant Actions: Actsw

i \ fdev(w) �= ∅.
4.4. (In)determinism of Choice Rules: if Actsw

i ∩ fdev(w) �= ∅, then |Actsw
i \

fdev(w)| = 1.

Definition 14 (Truth for LSLDn in a pseudo-model) Given a pseudo-model M , truth
of a formula ϕ ∈ LSLDn at a state w in M , denoted M, w |= ϕ, is defined recursively.
Truth of atomic propositions and the Boolean connectives is defined as usual. The
remaining clauses are as follows: where � ∈ {�, X, Y},

M, w |= do(ai) iff fdo(w)(i) = ai

M, w |= dev(ai) iff ai ∈ fdev(w)

M, w |= �ϕ iff for all w′ ∈ W, if wR�w′, then M, w′ |= ϕ

Theorem 2 The axiom system SLDn, defined by the axioms and rules in Table 2, is
sound and complete with respect to the class of all pseudo-models.

The proof of Theorem 2 is entirely standard: soundness is proved via a routine
validity check and completeness is proved via the construction of a canonical model
for SLDn (see [8, Chapter 4.2]). We only provide the definition of the canonical
model for SLDn and leave the rest to the reader. Let W be the set of all maximal
consistent sets of SLDn. Where w ∈ W and � ∈ {�, X, Y}, define w/� = {ϕ ∈
LSLDn |�ϕ ∈ w}.
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Definition 15 The canonical SLDn model is a tuple
〈
Wc, Rc

�, Rc
X, Rc

Y, f c
do, f

c
dev, ν

c
〉
,

where

• Wc = W and νc : Prop → 2Wc
is s.t., for all w ∈ Wc, w ∈ νc(p) iff p ∈ w;

• where � ∈ {�, X, Y}, Rc
� ⊆ Wc × Wc is s.t., for all w, w′ ∈ Wc, wRc

�w′ iff
w/� ⊆ w′;

• f c
do : Wc → Ag-Acts is s.t., for all w ∈ Wc, f c

do(w) = α iff do(α) ∈ w;
• f c

dev : Wc → 2Acts is s.t., for all w ∈ Wc and ai ∈ Acts, ai ∈ f c
dev(w) iff

dev(ai) ∈ w.

A.2 From Pseudo-Models to SLDn Models

Call a pointed pseudo-model any pair M, w such that M is a pseudo-model and w

a state in M . By Theorem 2, for any SLDn-consistent formula ϕ, there is a pointed
pseudo-model M, w such that M, w |= ϕ. We want to show that M can be trans-
formed into an SLDn model in which ϕ is satisfiable. To build stit models from Kripke
models similar to our pseudo-models, Herzig and Lorini [24] use a construction con-
sisting of two preliminary steps: (1) the relevant Kripke model is unraveled30 in order
to ensure that the relation RX generates a treelike ordering of the equivalence classes
of R� (recall that these represent moments); (2) from a certain point on along the
relation RX in the unraveled model, every equivalence class of R� is forced to be
a singleton. Step (2) guarantees that there is a one-to-one correspondence between
states in the unraveled model and indices in the stit model built from it. The presence
of the operator Y in the language of SLDn requires us to refine the unraveling proce-
dure in step (1). We present the said refinement in details (Steps 1 and 2 below) and
only sketch the rest of the proof (Steps 3 to 4 below), which proceeds (except for a
few minor modifications) as in [18, Appendix A.1.2].

Step 1: Extended language and complexity measures

Our first task is to define an unraveling procedure u that takes a pointed pseudo-
model M, w and a formula ϕ ∈ LSLDn and returns a pointed pseudo-model uϕ(M, w)

satisfying:

(P 1) M, w |= ϕ iff uϕ(M, w) |= ϕ.

The idea is roughly as follows: we first identify the earliest state w′ needed to
determine whether ϕ is true at w; then, we unravel RX around the R�-equivalence
class of w′. To make this work, we need to extend our language and introduce three
complexity measures of the formulas in the extended set L′

ALD: (i) the Y-depth of ϕ

is needed to identify w′ and the state corresponding to w in the unraveled model;

30A standard definition of unraveling can be found in [8, p. 63]. Herzig and Lorini’s [24] definition is a
generalization of the latter definition.
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(ii) the size of ϕ and (iii) the c-size of ϕ are needed to define a well-founded strict
partial order <S

c on L′
ALD. The proof that our unraveling procedure satisfies P 1 will

be on <S
c -induction on ϕ (cf. Proposition 6).

Definition 16 (Extended language) Let Prop and Acts be as before. The set L′
SLDn

is generated by the following grammar:

p | do(ai) | dev(ai) | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | Xϕ | Yϕ | � ϕ

where p ∈ Prop and ai ∈ Acts.

The evaluation rule for �ϕ in the class of pseudo-models is as follows:

M, w |= �ϕ iff for all v, u ∈ W s.t. wRXv and vRYu, M, u |= ϕ

Accordingly, �ϕ ↔ XYϕ and �ϕ ↔ ϕ are valid on all pseudo-models.

Definition 17 (Y-depth of ϕ ∈ L′
SLDn

) The Y-depth d(ϕ) of ϕ ∈ L′
SLDn

is defined as:

d(p) = d(do(ai)) = d(dev(ai)) = 0

d(¬ϕ) = d(�ϕ) = d(Xϕ) = d(ϕ)

d(�ϕ) = d(Yϕ) = d(ϕ) + 1

d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}

Definition 18 (Size of ϕ ∈ L′
SLDn

) The size S(ϕ) of ϕ ∈ L′
SLDn

is defined as:

S(p) = S(do(ai)) = S(dev(ai)) = 1

S(¬ϕ) = S(�ϕ) = S(ϕ) + 1

S(�ϕ) = S(Xϕ) = S(Yϕ) = S(ϕ) + 2

S(ϕ ∧ ψ) = S(ϕ) + S(ψ) + 1

Definition 19 (c-size of ϕ ∈ L′
SLDn

) The c-size c(ϕ) of ϕ ∈ L′
SLDn

is defined as:

c(p) = c(do(ai)) = c(dev(ai)) = 0

c(¬ϕ) = c(�ϕ) = c(Xϕ) = c(Yϕ) = c(�ϕ) = c(ϕ)

c(ϕ ∧ ψ) = c(ϕ) + c(ψ) + 1

Definition 20 For any ϕ, ψ ∈ L′
SLDn

, we set: ϕ <S
c ψ iff either c(ϕ) < c(ψ) or

(c(ϕ) = c(ψ) and S(ϕ) < S(ψ)).

Lemma 1 <S
c is a well-founded strict partial order between the formulas of L′

SLDn
.

Proof Straightforward from Def. 20.

Lemma 2 For any ϕ ∈ L′
SLDn

and n ∈ N such that n ≥ d(ϕ), there is ϕ′ ∈ L′
SLDn

s.t. (1) ϕ ↔ ϕ′ is valid on any pseudo-model, (2) d(ϕ′) = n, and (3) c(ϕ′) = c(ϕ).
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Proof Immediate from the fact that ϕ ↔ �ϕ is valid on any pseudo-model, that
d(�ϕ) = d(ϕ) + 1, and that c(�ϕ) = c(ϕ).

Step 2: Unraveling procedure

We adopt the following notation: where M, w is a pointed pseudo-model and ϕ ∈
L′

SLDn
,

1. d(w, ϕ) is the greatest number n satisfying: n ≤ d(ϕ) and there is a v ∈ W such
that wRn

Yv (equiv. vRn
Xw);

2. where n = d(w, ϕ), s(w,ϕ) ∈ W is the state v satisfying: wRn
Yv (equiv. vRn

Xw).31

Definition 21 (d(w, ϕ)-unraveling) Let M, w be a pointed pseudo-model and ϕ ∈
L′

SLDn
. The d(w, ϕ)-unraveling of M, w is the tuple

M(w,ϕ) =
〈
W(w,ϕ), R

(w,ϕ)

� , R
(w,ϕ)
X , R

(w,ϕ)
Y , f

(w,ϕ)
do , f

(w,ϕ)
dev , ν(w,ϕ)

〉

where:

• W(w,ϕ) is the set of all sequences −→wn = w1w2 . . . wn s.t. w1R�s(w,ϕ) and
wiRXwi+1, where 1 ≤ i < n;

• R
(w,ϕ)

� ⊆ W(w,ϕ) ×W(w,ϕ) is s.t. −→wnR
(w,ϕ)

�
−→vm iff n = m, wiR�vi for i ≤ n, and

fdo(wi) = fdo(vi) for i < n;
• R

(w,ϕ)
X ⊆ W(w,ϕ) × W(w,ϕ) is s.t. −→wnR

(w,ϕ)
X

−→vm iff −→vm = −→wnvm and wnRXvm;
• R

(w,ϕ)
Y ⊆ W(w,ϕ) × W(w,ϕ) is s.t. −→wnR

(w,ϕ)
Y

−→vm iff −→wn = −→vmwn and wnRYvm;
• f

(w,ϕ)
do : W(w,ϕ) → Ag-Acts is s.t. f

(w,ϕ)
do (−→wn) = fdo(wn)

• f
(w,ϕ)
dev : W(w,ϕ) → 2Acts is s.t. f

(w,ϕ)
dev (−→wn) = fdev(wn)

• ν(w,ϕ) : Prop → 2W(w,ϕ)
is s.t. −→wn ∈ ν(w,ϕ)(p) iff wn ∈ ν(p).

Let σ(w,ϕ) be the sequence w1w2 . . . wn s.t. w1 = s(w,ϕ), wn = w, and n =
d(w, ϕ) + 1.32

Remark 4 The construction of M(w,ϕ) and σ(w,ϕ) ultimately depends on w and d(ϕ).
Hence, if d(ϕ) = d(ψ), then M(w,ϕ) = M(w,ψ) and σ(w, ϕ) = σ(w, ψ).

We will use the following lemma repeatedly later on.

Lemma 3 LetM, w be a pointed pseudo-model and ϕ ∈ L′
SLDn

. For all−→wn inM(w,ϕ)

and v in M , if wnR�v, then there is −→vn in M(w,ϕ) such that vn = v and −→wnR
(w,ϕ)

�
−→vn .

31Observe that the uniqueness of such state is guaranteed by the functionality of RY.
32The existence of σ(w,ϕ) is guaranteed by the way W(w,ϕ) is built and the uniqueness of σ(w,ϕ) by the
functionality of RX.
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Proof The proof proceeds by an easy induction on n and relies on the fact that M

satisfies condition 3 from Def. 13 (i.e., no choice between undivided histories).

Proposition 5 For any pointed pseudo-model M, w and ϕ ∈ L′
SLDn

, M(w,ϕ) is a
pseudo-model.

Proof The proof follows immediately from Def. 21 and from the fact that M is a
pseudo-model. To illustrate, we check that M(w,ϕ) satisfies condition 2 from Def. 13
(i.e., independence of agents): Let −→wn ∈ W(w,ϕ) and α ∈ Ag-Acts be s.t., for all j ∈
Ag, there is −→vnj

∈ R
(w,ϕ)

� (−→wn) s.t. f (w,ϕ)
do (−→vnj

)(j) = α(j). Then, by the def. of R
(w,ϕ)

�
and f

(w,ϕ)
do , for all j ∈ Ag, there is vnj

s.t. vnj
∈ R�(wn) and fdo(vnj

)(j) = α(j).
Since M satisfies condition 2 from Def. 13, it follows that there is u ∈ R�(wn) s.t.
fdo(u) = α. By Lem. 3 and the def. of f

(w,ϕ)
do , we conclude that there is −→

un ∈ W(w,ϕ)

s.t. un = u, −→
unR

(w,ϕ)

�
−→wn, and f

(w,ϕ)
do (

−→
un) = fdo(u) = α.

The next three lemmas will be key to prove Proposition 6 below.

Lemma 4 Let M, w be a pointed pseudo-model. For any v ∈ W and ϕ, ψ ∈ L′
SLDn

,

if wR�v and d(ϕ) = d(ψ), then (1) M(w,ϕ) = M(v,ψ) and (2) σ(w,ϕ)R
(w,ϕ)

� σ(v,ψ).

Proof (1) It is not difficult to see that, by condition 3 from Def. 13 (i.e., no choice
between undivided histories), if wR�v and d(ϕ) = d(ψ), then d(w, ϕ) = d(v, ψ)

and s(w,ϕ)R�s(v,ψ). In tandem with Def. 21, the latter fact entails that M(w,ϕ) =
M(v,ψ). (2) Since the last element of σ(w, ϕ) is w and wR�v, it follows from Lem.
3 that there is −→vn ∈ W(w,ϕ) s.t. vn = v and σ(w, ϕ)R

(w,ϕ)

�
−→vn (so n = d(w, ϕ) + 1 =

d(v, ψ) + 1). By the def. of σ(v, ψ) and the functionality of RX, this entails that−→vn = σ(v, ψ). Hence, σ(w, ϕ)R
(w,ϕ)

� σ(v, ψ).

Lemma 5 Let M, w be a pointed pseudo-model. For any v ∈ W and ϕ, ψ ∈
L′

SLDn
, if wRXv and d(ψ) = d(ϕ) + 1, then (1) M(w,ϕ) = M(v,ψ) and (2)

σ(w, ϕ)R
(w,ϕ)
X σ(v, ψ).

Proof (1) It is not difficult to see that, by the def. of d(w, ϕ) and s(w,ϕ) and the
functionality of RX and RY, if wRXv and d(ψ) = d(ϕ)+1, then d(v, ψ) = d(w, ϕ)+
1 and S(w,ϕ) = S(v,ψ). Given Def. 21, the latter fact entails that M(w,ϕ) = M(v,ψ). (2)
Immediate since σ(w, ϕ) and σ(v, ψ) have the same initial state, RX is functional,
and wRXv.

Lemma 6 Let M, w be a pointed pseudo-model. For any ϕ, ψ ∈ L′
SLDn

, if d(ψ) =
d(ϕ) + 1, then M(w,ψ), σ(w,ψ) |= ϕ iff M(w,ϕ), σ(w,ϕ) |= ϕ.

Proof If d(w, ψ) = d(w, ϕ), then M(w,ψ) = M(w,ϕ) and σ(w,ψ) = σ(w,ϕ) by Def.
21, whence the result. If d(w, ψ) �= d(w, ϕ), then d(w, ψ) = d(w, ϕ) + 1 by the
def. of d(w, ϕ). Let n = d(w, ϕ), so that d(w, ψ) = n + 1. By the def. of s(w,ϕ)

335Choice-Driven Counterfactuals



and s(w,ψ), s(w,ϕ)R
n
Xw and s(w,ψ)R

n+1
X w, and so s(w,ψ)RXs(w,ϕ) by the functional-

ity of RX. Consider now M(w,ψ). It is easy to check that the two-element sequence
s(w,ψ)s(w,ϕ) is s.t. (1) s(w,ψ)s(w,ϕ) ∈ W(w,ψ) and (2) S(w,ψ)S(w,ϕ)(R

(w,ϕ)
X )nσ (w, ψ).

Let

M(w,ψ,ϕ) =
〈
W(w,ψ,ϕ), R

(w,ψ,ϕ)

� , R
(w,ψ,ϕ)
X , R

(w,ψ,ϕ)
Y , f

(w,ψ,ϕ)
do , f

(w,ψ,ϕ)
dev , ν(w,ψ,ϕ)

〉

be the submodel of M(w,ψ) generated by s(w,ψ)s(w,ϕ) via R
(w,ψ)

� and R
(w,ψ)
X .33

Obviously, σ(w,ψ) ∈ W(w,ψ,ϕ). In addition, since M(w,ψ,ϕ) is obtained by “cutting”
M(w,ψ) in the past taking into account the Y-depth of ϕ (recall that n = d(w, ϕ)), we
have that:

1. M(w,ψ), σ(w,ψ) |= ϕ iff M(w,ψ,ϕ), σ(w,ψ) |= ϕ.

Now, define a mapping f : W(w,ψ,ϕ) → W(w,ϕ) by setting: for every −→wm ∈
W(w,ψ,ϕ), f (−→wm) = w2w3 . . . wm. That is, f (−→wm) is the sequence obtained by
eliminating the first element of −→wm. We now prove the following facts:

2. for all −→wm ∈ W(w,ψ,ϕ), f (−→wm) ∈ W(w,ϕ);
3. f (σ(w,ψ)) = σ(w,ϕ);
4. the function f is a bounded morphism from M(w,ψ,ϕ) to M(w,ϕ).

Proof of 2. Let −→wm = w1w2 . . . wm ∈ W(w,ψ,ϕ), so f (−→wm) = w2 . . . wm. By the
def. of W(w,ψ,ϕ), for all i s.t. 2 ≤ i < m, wiRXwi+1. In addition, since M(wψ,ϕ) is
generated by S(w,ψ)S(w,ϕ) via S(w,ψ) and S(w,ψ), w1w2S(w,ψ)S(w,ψ)S(w,ϕ). Hence,
w2R�S(w,ϕ).

Proof of 3. Straightforward from the def. of σ(w,ϕ) and σ(w,ψ), since s(w,ψ)RXs(w,ϕ).

Proof of 4. Let � ∈ {�, X, Y}. We need to prove that, for all −→wn,
−→vm ∈ W(w,ψ,ϕ),−→

uk ∈ W(w,ϕ), ai ∈ Acts, and p ∈ Prop,

4.1 if −→wnR
(w,ψ,ϕ)

�
−→vm, then f (−→wn)R

(w,ϕ)

� f (−→vm);

4.2 if f (−→wn)R
(w,ϕ)

�
−→
uk , then there is −→vm ∈ W(w,ψ,ϕ) s.t. f (−→vm) = −→

uk and
−→wnR

(w,ψ,ϕ)

�
−→vm;

4.3 f
(w,ψ,ϕ)
do (−→wn) = f

(w,ϕ)
do (f (−→wn)) and f

(w,ψ,ϕ)
dev (−→wn) = f

(w,ϕ)
dev (f (−→wn));

4.5 −→wn ∈ ν(w,ψ,ϕ)(p) iff f (−→wn) ∈ ν(w,ϕ)(p).

33That is, M(w,ψ,ϕ) is the smallest submodel of M(w,ϕ) such that (1) S(w,ψ)S(w,ϕ) ∈ M(w,ϕ,ψ) and (2) for

all −→wn,
−→vm ∈ M(w,ϕ,ψ), if −→wn ∈ M(w,ϕ,ψ) and either −→wnR

(w,ϕ)

�
−→vm or −→wnR

(w,ϕ)
X

−→vm, then −→vm ∈ M(w,ϕ,ψ).
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The only relatively tricky part is 4.2 when � = �. The proof is as follows:
Let −→wn = w1w2 . . . wn ∈ W(w,ψ,ϕ) and −→

uk = u2u3 . . . uk ∈ W(w,ϕ) be s.t.
f (−→wn)R

(w,ϕ)

�
−→
uk . By the def. of W(w,ψ,ϕ), w1RXw2. In addition, by the def. of R

(w,ϕ)

� ,
w2R�u2. Hence, by condition 3 from Def. 13, there is v ∈ W s.t. w1RAgv and
vRXu2. It is not difficult to check that the sequence v

−→
uk is s.t.: (1) v

−→
uk ∈ M(w,ϕ,ψ),

(2) −→wnR
(w,ψ,ϕ)

� v
−→
uk , and (3) f (v

−→
uk ) = uk .

By standard results in modal logic [8, Prop. 2.14], fact 4 implies that

M(w,ψ,ϕ), −→wn |= χ iff M(w,ϕ), f (−→wn) |= χ

for all −→wn ∈ W(w,ψ,ϕ) and χ ∈ L′
SLDn

. Hence, M(w,ψ,ϕ), σ(w,ψ) |= ϕ iff M(w,ϕ),

σ(w,ϕ) |= ϕ by fact 3, and so M(w,ψ), σ(w,ψ) |= ϕ iff M(w,ϕ), σ(w,ϕ) |= ϕ by
fact 1.

We are now ready to prove the central proposition of this part.

Proposition 6 For any pointed pseudo-model M, w and ϕ ∈ L′
SLDn

, M, w |= ϕ iff

M(w,ϕ), σ(w,ϕ) |= ϕ.

Proof The proof is by <S
c -induction on ϕ. The cases in which ϕ := p, ϕ := do(ai),

and ϕ := dev(ai) follow immediately from Def. 21 and the fact that w is the last
element of σw,p. For the inductive cases, we assume the following inductive hypoth-
esis (IH): if M, v is a pointed pseudo-model and ψ ∈ L′

SLDn
is s.t. ψ <S

c ϕ,

then M, v |= ψ iff M(v,ψ), σ(v,ψ) |= ψ . We omit the proof for the case in which
ϕ := ¬ψ , which follows immediately from Remark 4. The other cases are as
follows:

1. ϕ := ψ ∧ χ .
Suppose, without loss of generality, that d(ψ) ≤ d(χ). Then, by Lem. 2,

there is ψ ′ ∈ L′
SLDn

s.t. (1) ψ ↔ ψ ′ is valid in the class of pseudo-models, (2)
d(ψ ′) = d(χ), and (3) c(ψ ′) = c(ψ) < c(ψ)+ c(χ)+1 = c(ψ ∧χ). It follows
from (3) that (A) ψ ′ <S

c (ψ ∧ χ) and χ <S
c (ψ ∧ χ) and from (2) that (B)

d(ψ ∧ χ) = max{d(ψ), d(χ)} = d(χ) = d(ψ ′). Given these facts, we reason
as follows:

M, w |= ψ ∧ χ

iff M, w |= ψ and M, w |= χ by def. of truth
iff M, w |= ψ ′ and M, w |= χ by (1)
iff M(w,ψ ′), σ(w,ψ ′) |= ψ ′ and M(w,χ), σ(w,χ) |= χ by IH, given (A)
iff M(w,ψ∧χ), σ(w,ψ∧χ) |= ψ ′ and M(w,ψ∧χ), σ(w,ψ∧χ) |= χ by Remark 4
iff M(w,ψ∧χ), σ(w,ψ∧χ) |= ψ and M(w,ψ∧χ), σ(w,ψ∧χ) |= χ by (1), given

Prop. 5
iff M(w,ψ∧χ), σ(w,ψ∧χ) |= ψ ∧ χ by def. of truth
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2. ϕ := �ψ .
Since d(ψ) = d(�ψ), we can use Lemma 4:

M, w |= �ψ

iff for all v s.t. wR�v, M, v |= ψ by def. of truth
iff for all v s.t. wR�v, M(v,ψ), σ(v,ψ) |= ψ by IH

iff for all v s.t. σ(w,�ψ)R
(w,�ψ)

� σ(v,ψ), M(w,�ψ), σ(v,ψ) |= ψ by Lem. 4 and the

def. of R
(w,�ψ)

�
iff for all −→vn s.t. σ(w,�ψ)R

(w,�ψ)

�
−→vn , M(w,�ψ), −→vn |= ψ with n = d(v, ψ) + 1

iff M(w,�ψ), σ(w,�ψ) |= �ψ by def. of truth

3. ϕ := Xψ .
For this case, we exploit the following facts: (A) ψ ↔ �ψ is valid in the

class of pseudo-models, (B) �ψ <S
c Xψ , since c(�ψ) = c(ψ) = c(Xψ) and

S(�ψ) = S(ψ) + 1 < S(ψ) + 2 = S(Xψ).

M, w |= Xψ

iff for all v s.t. wRXv, M, v |= ψ by def. of truth
iff for all v s.t. wRXv, M, v |= �ψ by (A)
iff for all v s.t. wRXv, M(v,�ψ), σ(v,�ψ) |= �ψ by IH, given (B)

iff for all v s.t. σ(w,Xψ)R
(w,Xψ)
X σ(v,�ψ), by Lem. 5 and the

M(w,Xψ), σ(v,�ψ) |= �ψ def. of R
(w,Xψ)
X

iff for all −→vn s.t. σ(w,Xψ)R
(w,Xψ)
X

−→vn , with n = d(v,�ψ) + 1
M(w,Xψ), −→vn |= �ψ

iff for all −→vn s.t. σ(w,Xψ)R
(w,Xψ)
X

−→vn , M(w,Xψ), −→vn |= ψ by (A), given Prop. 5
iff M(w,Xψ), σ(w,Xψ) |= Xψ by def. of truth

The remaining cases are proved in a similar way. In particular, the case in which
ϕ := Yψ follows from Lemma 5 and the fact that RY is the converse RX, while the
case in which ϕ := �ψ follows from Lemma 6 and the fact that �ψ ↔ ψ is valid
on any pseudo-model.

Step 3: Dividing histories

We now want to show that a pseudo-model like M(w,ϕ) (where ϕ ∈ LSLDn) can be
turned into an SLDn model. The idea is simple: we take equivalence classes deter-
mined by R

(w,ϕ)

� as moments and we show that R
(w,ϕ)
X induces a treelike ordering on

moments. Before doing this, we take an extra step to ensure that the states in W(w,ϕ)

and the moment-history pairs in the resulting SLDn model will be in a one-to-one
correspondence.

Definition 22 (X-depth of ϕ ∈ LSLDn) The X-depth x(ϕ) of ϕ ∈ LSLDn is defined as:

x(p) = x(do(ai)) = x(dev(ai)) = 0

x(¬ϕ) = x(�ϕ) = x(Yϕ) = x(ϕ)

x(Xϕ) = x(ϕ) + 1
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Definition 23 Let M, w be a pointed pseudo-model and ϕ ∈ LSLDn . Then, M(w,ϕ,x)

is the tuple obtained from M(w,ϕ) by replacing R
(w,ϕ)

� with the relation R
(w,ϕ,x)

�
defined by setting, for all −→wn,

−→vm ∈ W(w,ϕ),

−→wnR
(w,ϕ,x)

�
−→vm iff

{−→wnR
(w,ϕ)

�
−→vm if n ≤ d(w, ϕ) + x(ϕ) + 1

−→wn = −→vm otherwise

So, in M(w,ϕ,x), all sequences of length n > d(w, ϕ) + x(ϕ) + 1 belong to a
singleton equivalence class of R

(w,ϕ,x)

� . It is immediate to check that M(w,ϕ,x) is
still a pseudo-model. In addition, the next proposition follows straightforwardly from
Proposition 5 and from the fact that R(w,ϕ)

� -equivalent states are separated in M(w,ϕ,x)

by taking into account the modal X-depth of ϕ.

Proposition 7 For any pointed pseudo-model M, w and ϕ ∈ LSLDn , M, w |= ϕ iff
M(w,ϕ,x), σ(w,ϕ) |= ϕ.

Step 4: From pseudo-models to SLDn models

Let ϕ ∈ LSLDn be an SLDn-consistent formula and M, w a pointed pseudo-model s.t.
M, w |= ϕ. Then, M(w,ϕ,x), σ(w,ϕ) |= ϕ by Prop. 7. Define T = 〈Mom, m0, <〉 so
that:

• Mom is the quotient set of W(w,ϕ) by R
(w,ϕ,x)

� ;
• m0 = [s(w,ϕ)] is the equivalence class in Mom of the one-element sequence

s(w,ϕ).
• < ⊆ Mom×Mom is s.t., for all [−→wn], [−→vm] ∈ Mom, [−→wn] < [−→vm] iff all prefixes of

length n of sequences in [−→vm] are in [−→wn] (i.e., iff n < m and, for all −→
um ∈ [−→vm],−→

un ∈ [−→wn]).
It is not difficult to check that T is a DBT structure. In addition, there is a one-

to-one correspondence between possible states in the pseudo-model M(w,ϕ,x) and
indices in T . To see this, where n ∈ N and h ∈ HistT , let h(n) be the n-th moment on
h.34 Any index [−→wn]/h can then be re-written as h(n)/h. Finally, let z = d(w, ϕ) +
x(ϕ) + 1. Observe that Definition 23 and the functionality of R

(w,ϕ)
X ensure that, for

all n > z, h(n) is a singleton (we write −−→wh(n) for its only element). Define a mapping
ω : IndT → W(w,ϕ) by setting: for all h(n)/h ∈ IndT ,

ω(h(n)/h) is the prefix of length n of −−−−→wh(n+z).

Intuitively, the function ω finds, for every index h(n)/h, the “witness” of h in h(n).
It does so by picking a singleton moment on h that occurs later than h(n) and by

34Formally, h(n) is defined inductively as follows: h(0) = m0; h(n + 1) = succh(h(n)).
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selecting the prefix of length n of its unique element.35 It is an easy exercise to prove
that ω is a bijection. We write ω−1 for its inverse.

Now, where T is defined as dabove, define M = 〈T , act,dev, π〉 so that:

• act : IndT → Ag-Acts is s.t. act(h(n)/h) = f
(w,ϕ)
do (ω(h(n)/h));

• dev : Mom → 2Acts is s.t. dev([−→wn]) = f
(w,ϕ)
dev (−→wn);

• π : Prop → 2Ind
T

is s.t. h(n)/h ∈ π(p) iff ω(h(n)/h) ∈ ν(w,ϕ)(p).

Proposition 8 M is a SLDn model.

Proof We noticed above that T is a DBT structure. It is immediate to see that the
function dev is well defined because f

(w,ϕ)
dev satisfies condition 4.1 from Def. 13. In

addition, dev also satisfies conditions 3, 4, and 5 from Def. 4 because f
(w,ϕ)
dev satis-

fies the corresponding conditions 4.2, 4.3, and 4.4 from Def. 13. For the remaining
conditions the proof can be easily adapted from the proof of Proposition A.1.23 in
[18, p. 211].

Proposition 9 For all formulas ψ ∈ LSLDn and indices h(n)/h inM,

M, h(n)/h |= ψ iff M(w,ϕ,x), ω(h(n)/h) |= ψ

Proof The proof is by induction on the complexity of ψ . The cases for proposi-
tional variables, Boolean connectives, and formulas like do(ai) and dev(ai) follow
straightforwardly from the def. of M. The proof for the cases in which ψ := �χ

and ψ := Xχ can be easily adapted from the proof of Proposition A.1.24 in [18, pp.
211-212]. Finally, the case in which ψ := Yχ is analogous to the case in which
ψ := Xχ .

Proposition 9 and the fact that M(w,ϕ,x), σ(w,ϕ) |= ϕ entail that M, ω−1(σ(w,ϕ)) |=
ϕ. Since ϕ is an arbitrary SLDn-consistent formula and M is an SLDn model, we can
then conclude that SLDn is complete w.r.t. the class of all SLDn models.

B Proofs of Propositions 3 and 4

Proof of Proposition 3 We only present the proof for the left-to-right direc-
tion of DisX and for Cen1, as the remaining cases are similar. Let M =
〈〈Mom, m0, <〉 , act,dev, �, π〉 be either a rewind model or an independence model
and m/h an index in M. Recall that, for any h ∈ Hm, succh(m) is the successor of
m on history h and that tm is the instant to which m belongs. Definition 2 ensures
that, for any h ∈ Hm and h′ ∈ Hm′ , tm = tm′ iff tsucch(m) = tsucch′ (m′). Below, we will
repeatedly use this fact without explicit mention.

35The prefix of length n of −−−−→wh(n+z) is an element of h(n) by the definition of <.
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(DisX, L-R) If M, m/h |= X(ϕ �→ψ), then M, succh(m)/h |= ϕ �→ψ . There
are two cases. Case 1: There is no h′ ∈ Hist s.t. M, tsucch(m)/h′ |= ϕ. Then, there is
no h′ s.t. M, tm/h′ |= Xϕ, otherwise M, tsucch(m)/h′ |= ϕ, against the hypothesis.
Hence, M, m/h |= Xϕ �→ ψXψ by Def. 8 (i). Case 2: There is h′ ∈ Hist s.t.
M, tsucch(m)/h′ |= ϕ ∧ ψ and, for all h′′ ∈ Hist, if M, tsucch(m)/h′′ |= ϕ ∧ ¬ψ ,
then h′′ ��h h′. If M, tsucch(m)/h′ |= ϕ ∧ ψ , then M, tm/h′ |= Xϕ ∧ Xψ . Take any
h∗ ∈ Hist s.t. (∗) M, tm/h∗ |= Xϕ ∧ ¬Xψ . We want to show that h∗ ��h h′. By the
def. of truth, (∗) implies that M, tsucch(m)/h∗ |= ϕ ∧ ¬ψ , and so h∗ ��h h′ by our
hypothesis. Hence, M, m/h |= Xϕ �→ψXψ by Definition 8 (ii).

(Cen1) Assume that M, m/h |= ♦ϕ ∧ ♦ψ . Then, (∗) there is h′ ∈ Hm s.t.
M,m/h′ |=ϕ∧♦ψ. Take any h′′ ∈Hm. We want to show that M, m/h′′ |=ϕ�→ψ♦ψ .
Given (∗), the vacuous case is excluded. So, consider any history h∗ s.t. (2)
M, tm/h∗ |= ϕ ∧ ¬♦ψ . We want to show that h∗ ��h′′ h′. Since M, m/h′′ |= ♦ψ

and M, tm/h∗ �|= ♦ψ , h∗ /∈ Hm, i.e., h∗ branches off from h′′ earlier than m. Since
h′ ∈ Hm, this means that past ov(h′′, h′) ⊃ past ov(h′′, h∗), and so (3) h∗ ��h′′ h′
by Def. 9. Since h∗ is an arbitrary history satisfying (2), (1) and (3) suffice to con-
clude that M, m/h′′ |= ϕ �→ψ . Hence, M, m/h |= �(ϕ �→ψ), as h′′ is an
arbitrary history in Hm.

Proof of Proposition 4: Part 1 To see that Exp� is valid on any rewind model,
let M = 〈〈Mom, m0, <〉 , act,dev, �R

〉
be a rewind model and m/h any index

in M. Assume that M, m/h |= �¬ϕ ∧ (ϕ �→ψ�ψ). We have to show that
M, m/h |= �(ϕ �→ψψ). Since M, m/h |= ϕ �→ψ�ψ by hypothesis, there are
two cases. Case 1: There is no h′ ∈ Hist s.t. M, tm/h′ |= ϕ. Then, for any h′′ ∈ Hm,
M, m/h′′ |= ϕ �→ψ by Def. 8 (i). Hence, M, m/h |= �(ϕ �→ψψ) by Def. 7.
Case 2: There is h′ ∈ Hist s.t. (1) M, tm/h′ |= ϕ ∧ �ψ and (2) for all h′′ ∈ Hist
s.t. M, tm/h′′ |= ϕ ∧ ¬�ψ , h′′ ��R

h h′. Take any h∗ ∈ Hm. We want to show that
M, m/h∗ |= ϕ �→ψψ . By (1), we know that (3) M, tm/h′ |= ϕ ∧ ψ . So, consider
any h′′′ ∈ Hist s.t. (4) M, tm/h′′′ |= ϕ ∧ ¬ψ . We want to prove that h′′′ ��R

h∗ h′, i.e.,
that h′ ≺R

h∗ h′′′ and h′′′ �≺R
h∗ h′. In order to prove that h′ ≺R

h∗ h′′′ we need to prove
the following:

past ov(h∗, h′) ⊃ past ov(h∗, h′′′), or

past ov(h∗, h′) = past ov(h∗, h′′′) and n sep(h∗, h′) < n sep(h∗, h′′′), or

past ov(h∗, h′) = past ov(h∗, h′′′) and n sep(h∗, h′) = n sep(h∗, h′′′) and

n dev(h′′′) < n dev(h′).

Observe that:

(a) M, tm/h′′′ |= ϕ ∧ ¬�ψ by (4), and so h′′′ ��R
h h′ by (2). By the definition of

�R
h , it follows that h′≺R

h h′′′, i.e., that

past ov(h, h′) ⊃ past ov(h, h′′′), or

past ov(h, h′) = past ov(h, h′′′) and n sep(h, h′) < n sep(h, h′′′), or

past ov(h, h′) = past ov(h, h′′′) and n sep(h, h′) = n sep(h, h′′′) and

n dev(h′′′) < n dev(h′).
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(b) Since h, h∗ ∈ Hm, for all m′ ≤ m, the initial segment of h up to m′ and the
initial segment of h∗ up to m′ are equal.

(c) past ov(h, h′) = past ov(h∗, h′). In fact, M, m/h |= �¬ϕ by hypothesis,
while M, tm/h′ �|= �¬ϕ by (1). Hence, h′ must branch off from h at some
moment m′ < m. Since, by (b), the initial segment of h up to m′ is the same as
the initial segment of h∗ up to m′, h′ must also branch off from h∗ at m′. Thus,
h ∩ h′ = h∗ ∩ h′.

(d) past ov(h, h′′′) = past ov(h∗, h′′′): analogous to (c).
(e) num sep(h, h′) = num sep(h∗, h′). In fact, by (b), h and h∗ are undivided

at all moments m′′ < m. By the condition of no choice between undivided
histories, this means that, for all such m′′, act(m′′/h) = act(m′′/h∗). Now, as
we have seen in item (c), there is a moment m′ < m s.t. h′ branches off from
both h and h∗ at m′. Since act(m′/h) = act(m′/h∗), it follows that, for all i ∈
Ag, act(m′/h)(i) �= act(m′/h′)(i) iff act(m′/h∗)(i) �= act(m′/h′)(i). Hence,
|{i ∈ Ag | act(m′/h)(i) �= act(m′/h′)(i)}| = |{i ∈ Ag | act(m′/h∗)(i) �=
act(m′/h′)(i)}|.

(f) num sep(h, h′′′) = num sep(h∗, h′′′): analogous to (e).

From items (c) to (f) it follows that h′≺R
h h′′′ iff h′ ≺R

h∗ h′′′; from this and item (a)
it follows that h′ ≺R

h∗ h′′′. The proof that h′′′ �≺R
h∗ h′ proceeds in a similar way.

Proof of Proposition 4: Part 2 To see that Exp� is invalid in some independence
model, consider Fig. 7. Assume that: (1) for any agents i ∈ Ag \ {1} and moment m′,
Actsm′

i = {vci}, (2) for any moment m′ not depicted in the figure Actsm′
1 = {vc1},

and (3) for any moment m′, dev(m′) = ∅. It is not difficult to check that the defined
structure is an SLDn frame. As shown in the figure, let p be true at t2/h5, t2/h6,
t2/h11, t2/h12 and q be true at t2/h5, t2/h6, t2/h7, and t2/h8. Then, t2/h1 |= �¬p

and t2/h1 |= p�→�q. In fact, (1) the most similar history to h1 where p is true
at time t2 is h5, as all unconstrained agents (i.e., all agents) do the same types of
action on h1 and h5 at all times, and (2) �q is true at t2/h5. On the other hand,
t2/h1 �|= �(p�→ q). Consider, in fact, history h3: The most similar history to h3
where p is true at time t2 is h11, as all unconstrained agents do the same types of

Fig. 7 An independence model not satisfying Exp�
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action on h3 and h11 at all times. Since q is false at t2/h11, t2/h3 �|= p�→ q.
Therefore, t2/h1 �|= �(p�→ q).

Remark 5 The model depicted in Fig. 7 satisfies the conditions of uniformity of
menus and of identity of overlapping menus from Section 3.2. Hence, Exp� remains
invalid in the class of independence models satisfying these conditions.
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