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Abstract: The "Ising model" refers to both the statistical and the theoretical use of the same equation.
In this article, we introduce both uses and contrast their differences. We accompany the conceptual
introduction with a survey of Ising-related software packages in R. Since the model’s different
uses are best understood through simulations, we make this process easily accessible with fully
reproducible examples. Using simulations, we show how the theoretical Ising model captures local-
alignment dynamics. Subsequently, we present it statistically as a likelihood function for estimating
empirical network models from binary data. In this process, we give recommendations on when to
use traditional frequentist estimators as well as novel Bayesian options.

Keywords: ising model; alignment; dynamics; binary; networks; computational; estimation;
Bayesian; frequentist

1. Introduction

The Ising model (named after Ernest Ising. Ironically, Ising concluded that the model
was unfit for physics and left science. It was to his surprise that he had become famous
through the work of other scientists on the same model [1]) has attracted widespread
scientific attention for several decades [1–7]. Early fascination arose because it was not
suspected that such a simple model could produce interesting behaviours. Once its sur-
prisingly complex dynamics were established and used to model magnetic properties, it
became one of the most taught and studied models within physics [4,6].

Since its origin in physics, it has spread to several other sciences [5,6,8–12]. Its appli-
cations roughly fall into one of two categories. First, it is used as a theoretical model of
empirical phenomena. Second, it is used as a data analytic model that provides a statistical
likelihood function for dependencies between binary variables. This two-fold use can be
explained by its characteristic of being a maximum entropy distribution [12]. From ther-
modynamics, we know that physical processes maximise entropy [13], which motivates
its modeling applications. Additionally, information theory motivates the maximization
of entropy given incomplete information [14]. Thus, there is a correspondence between
different interpretations of maximum entropy and the Ising model’s applications.

In this paper we focus on its recent use in the expanding literature on network model-
ing and network psychometrics [15,16]. Here, we see its two-fold use both as a theoretical
model of political beliefs, attitudes, and depression [17–19], and as a psychometric data
analytic tool [7,20–23].

Both uses have been accompanied by software developments that make these tech-
niques accessible to researchers. However, as of yet there exists no systematic treatise
that illustrates the dual use of the Ising model in psychological applications. The current
paper aims to fill this gap; in the spirit of "learning by simulating", we show readers how
to computationally study both the theoretical and statistical properties of the model. We
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focus on the freely accessible programming language R, where we survey relevant software
packages and illustrate their use [24].

The paper proceeds as follows: In the first part we introduce the Ising model as a
theoretical model of alignment. Afterwards we explicate the theoretical model by presenting
an overview of software packages and employ these to simulate the dynamics of alignment.
We finish the section on its theoretical use by discussing mean-field approximations, en-
coding and practical application.The fourth part of the paper surveys the statistical use of
the Ising model by discussing software related to network psychometrics for binary data.
Throughout the sections, text boxes exemplify how the software packages are used. We
conclude the paper by discussing the practical differences between the statistical and the
theoretical Ising model.

2. The Theoretical Ising Model

In this section, we introduce the Ising model as a theoretical model. Conceptually,
we view it as a network governed by the process of local alignment. In the next part of the
section, we introduce software relevant to deriving local alignment dynamics and show how
we can summarise the dynamics as a cusp catastrophe model. Lastly, we discuss variable
encodings and illustrate its extensive applications in climate and opinion research.

2.1. A Conceptual Introduction

We begin with Figure 1, which shows a general network consisting of five nodes
(circle) and six edges (lines connecting the circles). It is general in the sense that nodes and
edges can represent any suitable features. As our example, we follow [19], who interprets
nodes as attitude elements (such as beliefs, feelings, and behaviours) and edges as their
pairwise tendency to align. Following this, we can understand, e.g., a vegetarian attitude as
the alignment of meat consumption with beliefs and feelings towards the meat producing
industry, climate, health, etc. [19].

If two nodes are connected by an edge, we say they are neighbours. Furthermore, each
node i is associated with a variable Xi. More importantly, the Ising model assumes that
Xi is dichotomous. Most commonly, Xi is encoded as 1 and −1. For instance, we can code
positive-attitude elements with 1 and a negative value with −1. We refer to the value of Xi
with xi. Alternative encodings and their implications are discussed later in this section.

Figure 1. A simple network with five nodes and six edges. Its current configuration is
xxx = [−1, 1, 1, 1, 1].

In Figure 1, the current configuration is xxx = [−1, 1, 1, 1, 1]. This is 1 out of 25 = 32 pos-
sible configurations. In general, there are 2n possible configurations for n nodes. The Ising
model specifies the probability distribution over all network configurations P(XXX = xxx).
Where XXX is a vector representing all possible configurations XXX = [X1 . . . Xp].

2.2. A Model of Alignment

The central assumption of the theoretical Ising model is: the alignment of the cur-
rent configuration determines how likely it is to occur. Alignment refers to cases where
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neighbours have the same values (i.e., 1, 1 or −1, −1), whereas divergence happens when
neighbours have different values (i.e., −1, 1 or 1, −1). In our simple example, we observe
four aligned cases and two that are non-aligned.

The central term of the Ising model is the potential function H, which models align-
ment as follows (The negative signs in H is the standard notation for the Ising model. It
comes from a thermodynamic interpretation where states with the lowest energy/H are
the most likely. Note that it is cancelled out by the additional minus sign we see in the
exponent of Equation (2)):

H(xxx) = −∑
i

αxi − ∑
<i,j>

ωi,jxixj (1)

where ω encodes the network structure. If ωi,j = 0, then i and j are unconnected. If ωi,j 6= 0,
they are connected with the value of ωi,j, reflecting the edge strength. Hence, ∑<i,j> ωi,j
means that we sum up all neighbours (six pairs in our case). Finally, α is the external
field parameter, which can also be interpreted as an intercept. It gives nodes a directional
preference regardless of their neighbours. We see that aligned neighbours and alignment
with the external fields make positive contributions to H (assuming all ω parameters are
positive). From the full Ising equation, we see that H drives up the overall probability of
the configuration:

P(XXX = xxx) =
e−βH(xxx)

Z
(2)

The numerator in Equation (2), Z, sums up all configurations, making sure that the
probabilities sum up to 1:

Z = ∑
XXX

e−βH(xxx)

This term is called the normalizing constant or the partition function. With more
than 20 nodes, Z becomes intractable to calculate due to the 2n computations. Many of
the later mathematical tricks that we encounter—sampling methods, expected values, and
pseudo-likelihoods—are essentially ways of avoiding the computation of Z.

Equation (2) also contains the β parameter, which we refer to as the alignment weight
because it weighs the importance of H on P(XXX = xxx). We show this in the next section. The β
parameter is often referred to as the inverse temperature due to its original ferromagnetic
interpretation [1], and sometimes as the density parameter [25].

The Ising model enables us to understand how alignment processes and external
influences interact. To do so, we must study which network configurations arise when
the external field α and alignment weight β are varied. We encourage readers to construct
their own simulations and insights. In the next section, we will make this process easy and
available. To assist us, Table 1 gives an overview of relevant functions in R.

Table 1. Software packages in R relevant in the simulation of Ising Dynamics. We relate functions to
their packages using the ‘::’ notation from R. To access a function, we first install its package with
install.package(“Example”) then load the package with library("Example").

Package::Function() Description

IsingSampler::Isingsampler() Flexible Ising state sampler
bayess:isinghm() Metropolis–Hastings Sampler
igraph::make_lattice() N dimensional lattice structures
igraph::sample_small_world() Watts–Strogatz model
parSim::parSim() Easy simulations and multi-core
ggplot2::ggplot() Visualisation
set.seed() Reproduces random numbers
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3. Simulating Ising Dynamics

In this section we simulate dynamical processes using an Ising model. This requires
two elements: a network structure and the dynamics that determine the progression of
the system over time. The network structure is encoded as an adjacency matrix in ω from
Equation (2).

3.1. Network Structures

Choosing a network structure is an empirical question that depends on what is being
modelled. Ref. [26] discusses commonly found network structures in physics, biology, and
social science. Here, we will focus on two simple but general network structures: lattices
and the Watts–Strogatz model [27]. Lattices are n-dimensional grid structures (see Figure 2
for a 2D lattice) often used in physics to model atoms. Social and biological networks
have been argued to satisfy small-world properties, having both high local clustering and
low average distance between nodes. We are not aware of any characteristic structure for
psychological networks, although small-world networks have been observed [28,29]. Due
to its popularity across disciplines we use it for our simulations. We can obtain small-world
networks starting with a ring lattice (see Figure 2) followed by randomly rewiring edges.
If this process is continued, we obtain a random graph. Between the ring lattice and random
graph, we find the small-world network. It has the local clustering of the ring lattice and
low average distances from the random graph. Obtaining small-world properties as a mix
of a ring lattice and random graph is referred to as the Watts–Strogatz model. In Text Box 1,
we show how lattices and small-world networks are easily generated in R. We also show
how to weigh the edges, which is needed to model connections of varying strengths.

Box 1. How to construct common network structures in R [30].

Using Igraph, we can create lattices and small-world networksa [30].

1. make_lattice() allows us to create lattice structures of any size and dimension;
2. With sample_small_world(), we generate various networks by varying the

rewiring probability p. When p = 1, we obtain a random network and with
p = 0, we obtain a ring lattice. For in-between values of p, we obtain small-
world networks that inherit the local clustering of ring lattices and the short
average distance of random networks. For illustrations, see Figure 2;

3. Running example: We create a small-world network, which we use for
simulations later in the paper. We create differences in edge weights with
the apply() functionb.

library("igraph")
library("magrittr")
set.seed(4343)
n_nodes <- 40
sw_network <- igraph::sample_smallworld(dim = 1,
size = n_nodes,
nei = 2,
p = 0.3) %>%
as_adjacency_matrix() %>% as.matrix() %>%
apply(c(1,2),function(x) x * #make weighted network
rnorm(1, mean = 1, sd = 0.3))

sw_network[lower.tri(sw_network)] <- #Forcing symmetrical around
t(sw_network)[lower.tri(sw_network)] #diagonal

a Annotated and fully reproducible code is found in the supplementary material at https://osf.io
/4z9u2/. This includes all visualisation codes.

b We use the pipe operator "%>%" from the magrittr package. Alternatively, with R version 4.1,
"|>" is a default operator. For explanations, see www.datacamp.com/community/tutorials/pip
e-r-tutorial (accessed 04-08-2021)

https://osf.io/4z9u2/
https://osf.io/4z9u2/
www.datacamp.com/community/tutorials/pipe-r-tutorial
www.datacamp.com/community/tutorials/pipe-r-tutorial
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Figure 2. On the left, a two-dimensional lattice structure. On the right, a small-world and a random
network are created from a ring lattice by varying the rewiring probability of edges.

3.2. Equilibrium Configurations

Once we have determined a network structure ω, we initiate a random configuration.
Using Markov chain Monte Carlo algorithms, we can then update the network configurations
sequentially such that the system’s time spent in a configuration is equivalent to its Ising
probability. This way we create a dynamic Ising system unfolding in time (For a smooth
dynamics visualisation of an Ising system with varying β see http://bit-player.org/2019/gl
aubers-dynamics. Unfortunately, R is not suited for similar fast dynamics image updating).

We can use the dynamic system to study the stable states it settles into over time. We
refer to these as equilibrium configurations [31,32]. Understanding dynamics means studying
the equilibrium configurations as we vary its parameters (β and α). To aid this, we will
summarise network configurations through their mean-field: x̄xx. This is the average value
of all nodes. For example, if x̄xx = 1, all nodes are in state 1, and if x̄xx = −1, all nodes are −1.
These two values indicate perfectly aligned states. If x̄xx ≈ 0, on the other hand, nodes are
randomly fluctuating. In Text Box 2, we show how to simulate the dynamics of x̄xx as we
vary α and β.

Box 2. How to sample states from an Ising system [33].

We can easily study the average behaviour of an Ising system using four R-
functionsa.

1. We generate a network structure, ω, by using one of our earlier introduced
methods (see Text Box 1);

2. With IsingSampler(), we draw n states from an Ising distribution, assum-
ing ω, α, and β;

3. We use ParSim() as a convenience function [33]. It automates the process
of looping over sequences of α and β. For extensive simulations, it also
allows for multi-core processing;

4. Lastly, ggplot() is used to visualise results. Figure 3 shows the result of
looping over β, while Figure 4 shows a similar plot for α;

5. Running example: Using our previously generated network, we can simu-
late data as follows. See the supplementary material for the full simulation
using parSim().

library("IsingSampler")
samp <- IsingSampler(n = 1000, #sample size
graph = sw_network,
thresholds = rep(0,nrow(sw_network)),
beta = 2,
responses = c(-1L, 1L))#encoding
mean_spin <- apply(samp, 1, function(x) mean(x))

a Annotated and fully reproducible code, including all visualisations, can be found in the supple-
mentary materials at https://osf.io/4z9u2/.

http://bit-player.org/2019/glaubers-dynamics
http://bit-player.org/2019/glaubers-dynamics
https://osf.io/4z9u2/
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3.3. Dynamics of β: A Pitchfork Bifurcation

Figure 3 shows the distribution of x̄xx for different values of β (we have assumed α = 0).
The resulting pattern is known as a pitchfork bifurcation. A bifurcation refers to qualitative
shifts in equilibrium points [31]. The shift happens around β = 0.225. Below this point,
the equilibrium is composed of nodes randomly fluctuating, leading to x̄xx ≈ 0. For β > 0.225,
two equilibria diverge towards −1 and 1. Conceptually, the Ising system shifts from a
disordered (x̄xx = 0) to an ordered state (x̄xx± 1) as β is increased. The change from disorder
to order occurs suddenly at a critical point (this is not very clear from our simulation).
This critical point has some remarkable properties that have driven the physical interest in
the Ising model [1,2,5]. To our knowledge, disorder to order critical points have not been
quantitatively identified for social or psychological phenomena.

Figure 3. Result of sampling x̄xx from an Ising distribution, with α = 0 and varying β between 0.00
and 0.06. The simulation assumes the small-world network structure of 40 variables from Text Box 1.
Deviations from x̄xx become more likely for smaller networks and the pitchfork shape less pronounced.

Qualitatively, [8] uses the pitchfork bifurcation to model attitude polarisation. This
follows from the idea that our attitudes (e.g., towards vegetarianism) are shaped by aligning
network elements. Furthermore, if we interpret β as involvement, then an increase in
involvement leads to more aligned and stronger attitudes. If this process takes place
in multiple people with slight initial differences, we expect their attitudes to polarise—
following the bifurcation—as involvement increases. Lastly, since β amplifies H, it also
weighs the importance of α if that is a non-zero. If the external field is sufficiently strong
relative to the connections, then an increase in β leads to nodes being aligned with their
respective external fields rather than their neighbours (for further discussion, see [34]).

3.4. Dynamics of α: Hysteresis

Otherwise, socio-psychological research tends to focus on the behaviours of the Ising
system in the aligned phase—we give multiple examples of this later. Here, the question
is about how external influences, α, interact with the alignment-driven network. We can
easily adapt the code from Text Box 2 to study the dynamics of α. Results are presented
in Figure 4. More importantly, for this simulation, we assume a high β so we are in the
alignment-ordered phase. Figure 4 shows that the system has two tipping points, at α = −1.5
and 1.5 [35]. Below and above the tipping points, the system is aligned with the external
field. Between the tipping points, the system can be aligned in both directions; as to which
one will depend on the history of the system [36]. This dynamic is called hysteresis. We can
understand it better by considering our perception of ambiguous stimuli [37].
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Figure 4. Result of sampling x̄xx from an Ising distribution with β = 2 (ordered phase) and varying α

between −6 and 6. The simulation assumes the small-world network structure of 40 variables from
Text Box 1. We see the outline of a hysteresis effect.

If we look across the illustrations in Figure 5, we will at some point experience a
sudden transition between perceiving a face and a full human posture. Similar to the Ising
system, the transition point depends on our starting point. What we perceive between the
transition points ambiguously depends on history, similar to the states of our Ising system
between −1.5 and 1.5. Furthermore, just after our perception has changed, if we return our
gaze to the previous picture, our change in perception is not reversed. Rather, the change
in perception persists. To undo the change, we need to go back several figures. This also
applies to our Ising system: once we change α past one tipping point, we need to turn back
to the other tipping point in order to reverse the change. That is the challenge of hysteresis:
it is hard to reverse.

Figure 5. A series of ambiguous stimuli used by [37] to illustrate hysteresis. By looking across the
illustrations in the figure, one will experience a transition in perception. This transition point depends
on the direction we started from. Figures that are in between the transition points are ambiguous.

3.5. Summarising the Dynamics as a Cusp

So far, we have simulated two cases. We found a pitchfork bifurcation when we varied
β while keeping α = 0. We also found hysteresis as we varied α, with β = 2. Although this
simulation approach is pedagogically useful, it has two shortcomings: (1) It does not
give us a mathematical expression relating x̄xx, α, and β. (2) It is cumbersome to repeat
the simulation for many combinations of α and β. We can overcome both problems and
achieve a relatively simple expression for the dynamics through a mean-field approximation
(MFA) [38,39]. In Appendix A, we derive the MFA and perform a graphical bifurcation
analysis to derive the dynamics. The central mathematical assumption of the MFA is that
nodes interact with a mean field instead of their neighbours. This mean field approximates
the effect of the individual interactions between nodes. This is computationally convenient
as we avoid computing H(X) and Z. The mean field is composed of x̄ and the average
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number of neighbours for the network, d̄. Mathematically, we approximate H as follows
(see Appendix A for further explanation):

H(xxx) = − ∑
<i,j>

ωi,jxixj ≈ −∑
i

xi x̄d̄ (3)

With this simplification and a few extra mathematical steps, we can determine the
expected equilibrium points as we systematically vary α and β. The approximation works
better for denser and larger networks [39]. We see the results in Figure 6. Figure 6A shows
the hysteresis dynamics arising as we vary α while keeping β = 2; Figure 6B shows the
pitchfork bifurcation appearing from varying β with α = 0. Lastly, we can integrate the
pitchfork and hysteresis into a single model, as seen in Figure 6C, to get a complete picture
of the Ising dynamics. This is the so-called cusp–catastrophe model [31,40].

We can use it to summarise the dynamics of local alignment as follows. The transition
from an disordered to an ordered state governed by alignment happens suddenly at a
critical point as we increase β (pitchfork bifurcation). In the disordered phase, we have
linear control over the system’s state through the external field. We lose this control
in the alignment’s ordered phase. Here, perturbations of the external field have little
impact—the system becomes resilient. That is, until we reach a tipping point after which
the entire systems flips. Therefore, alignment induces both resilience but also the capacity
for "dramatic" changes [41]. Furthermore, alignment induces two tipping points between
which the system’s state depends on its history. This also means that once we pass a tipping
point, the change is hard to reverse. The dramatic and hardly reversible changes that are
obtained in this region of the model space have inspired the naming of the model as a
catastrophe model.

Figure 6. The cusp catastrophe model (C) presents a unified picture of the alignment dynamics
arising from the dynamical Ising model. It encompasses pitchfork bifurcation (B) and hysteresis (A).

3.6. Variable Encoding

A key assumption of the Ising model is that nodes are dichotomous. However,
different encodings are possible. Ref. [42] provides a thorough discussion of this matter,
which we will briefly summarise here. There are two generally used options, (1,−1) and
(1, 0). The different encodings make different theoretical assumptions about the dynamics.
Nevertheless, we can always transform between different encodings once one is chosen.
Ref. [43] covers the mathematical details which are implemented in IsingFit::LinTransform().
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We can understand the different consequences of (1,−1) and (1, 0) by considering how
they impact the H, and consequently P(X) (we leave α out, assuming it to be 0):

H(xxx) = − ∑
<i,j>

ωi,jxixj (4)

The alignment of 1 and −1 encoded states decreases H (−xixj = −(1 · 1) = −(−1 ·
−1) = −1). This implies an increased probability of the configuration. Thus, configu-
rations with many neighbours aligned at 1 or −1 become likely to occur. We therefore
say that the system "wants" to align in both these directions. This is different for variable
states coded as (1, 0). In this case, the alignment of positive states 1 decreases H, but the
alignment of 0 does not. In fact, H is unchanged by unaligned and 0 aligned neighbours
(−xixj = −(0 · 0) = −(1 · 0) = 0). Hence, the system does not "want" to align at 0,
although it does want to align at 1. This is useful when we model a binary system that
only "wants" to align in one direction. Present versus absent symptoms have been modelled
this way [18]. In contrast, if the system "wants" to align in either of the directions, then the
(−1, 1) encoding provides a better description of the system. Positive versus negative politi-
cal attitudes have been modelled with this encoding [8,17]. The crucial choice of whether to
use the (0, 1) versus (−1, 1) configurations depends on whether one theoretically expects
negative states to increase alignment; for political attitudes, the hypothesis that negative feel-
ings of a political candidate increase the negative cognitions of that candidate is plausible;
meanwhile, for depression, the hypothesis that the absence of one problems causes the
absence of another may be less plausible.

3.7. Theoretical Applications

We can regard the theoretical Ising model as a system archetype [44]: a common struc-
ture (alignment process in a network) producing a characteristic behaviour (cusp dynamics).
Knowledge of system archetypes can help theoretical progress in psychology, a feat many
authors have called for [45–50]. This is because system archetypes allow researchers to skip
the difficult step of crafting a novel model by recognizing that their phenomenon fits an
existing one. We see this in a diverse range of fields such as economy [10,51,52], molecular
biology [9,53,54], social sciences [11], and biological ecology [55–57]. Within psychology,
the Ising model has a long-standing tradition of making a good first approximation within
opinion research. Both within and across groups of people, opinions are argued to follow
alignment processes [17,19,36,58]. More specifically, alignment has repeatedly been linked
to our need for consistency of beliefs and aversion towards ambiguity [17,19]. Once this cor-
respondence is established, many hitherto unrelated opinion phenomena can be integrated.
For instance, ref. [17] argues that the Ising framework can explain cross-pressures, spillover
effects, partisan cues, and ideological differences in attitude consensus. Similarly, ref. [59]
argues that an Ising model of attitudes can explain the "mere thoughts" effect, cognitive
dissonance, heuristic reasoning, and systematic reasoning. As mentioned, this work is
extended by [8] who integrates facts about persuasion to explain political polarisation.

Similar ideas are found in climate research where the notion of tipping points has
seen growing attention [60]. Early climate research focused on detecting and preventing
environmental tipping points, which can have catastrophic consequences due to their
sudden and hardly reversible nature [35,61–63]. One strategy of prevention is the enabling
of large-scale societal changes. Once again, this has been theorised as possible due to our
alignment-driven opinions, which give rise to social tipping points [64,65].

Taken together, these different lines of research converge on the point that opinion
dynamics can be approximated by the Ising model. However, we also caution that opinion
dynamics are likely to be more complex than any single simple model [66,67]. Therefore, we
should regard the Ising model of opinions as a good first approximation while recognising
its limitations. Further progress is likely to involve a combination of system archetypes
providing a more thorough account of the complexities.
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4. The Statistical Ising Model

In this section, we move from the theoretical to the statistical use. We first introduce
the statistical application and its software implementations. Table 2 gives an overview
of software packages related to statistical Ising estimation. We end this section with
some general recommendations for choosing software. Central factors shaping this choice
are sample size, network architecture, and further analysis options. We first motivate the
recommendations by introducing network psychology, frequentist and Bayesian Ising
estimations. As in the previous section, text boxes introduce the software packages in R.

4.1. A Decade of Statistical Ising Models

The Ising model has played an important role for network applications in psychol-
ogy [15,58,68], where it formed the basis of the estimation of psychometric networks [16,20,69].
Over the last decade, there has been an exponential increase in articles based on network
psychometrics [16]. The approach offers an alternative to the standard psychometric view
in which psychometric variables are represented as effects of a latent variable [7,70]. Al-
though network psychometrics represents an abstract statistical toolkit that can be used
independently of one’s antecedent theory, it aligns naturally with the view that psycho-
logical constructs, e.g., depression or conservatism, emerge from networks of causally
interacting elements. These elements could be disorder symptoms [15] or our feelings,
behaviours, and beliefs [19]. Because we cannot directly observe the interactions between
variables, the psychometric challenge is to measure and estimate these. The general so-
lution is to compute the conditional dependence structure from observed data [16,20]. This
structure is chosen because it is uniquely identified, in contrast with directed acyclic graphs,
and easier to interpret compared to unconditional dependency networks [20]. As we will
see, this structure can be estimated from binary data using the Ising model.

4.2. eLASSO Estimation

We can now disregard the alignment interpretations of the Ising model we introduced
in the previous section. Instead, we can view the Ising model as a probability distribution
that is governed by main effects (α parameters) and pairwise interactions/edges (parame-
ters in ω). The model then simply describes the joint probability distribution of a set of
variables. We can use it to estimate the so-called pairwise Markov Random Field (pMRF)
for binary variables [20,71]. The pMRF represents the probability distribution in terms of
pairwise conditional dependencies between variables. Thus, the edges in ω represent the
pairwise dependency after controlling for all other variables (e.g., partial correlations for
continuous variables), while absent edges reflect conditional independence [72].

Ref. [69] introduced the estimation of pMRFs using the Ising model to the context of
network psychometrics. Similar approaches have been used under various names (homo-
geneous association model, log-multiplicative association model) in other fields [73–75].
Within network psychometrics, ref. [69] developed the elASSO estimator for binary data,
which combines pseudo-likelihood estimation with LASSO (Least Absolute Shrinkage
Selection Operator) [76]. This combination is now the default estimation process and has
since been expanded to ordinal, continuous, and mixtures of variables [23,77].
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Table 2. Software packages in R relevant to estimating Ising models from binary data.

Package::Function() Description Pros Cons Encoding

IsingFit::IsingFit() eLASSO estimation
Small–medium samples
detecting present edges

Applicable to >20 variables

Large samples
Interpreting absent edges

(1, 0)

psychometrics::Ising() Full maximum likelihood Large samples
Extensive further analysis options

Small samples
Max of 20 variables

Any

mgm::mgm() eLASSO For mixtures of binary, continuous, and ordinal
variables

Large samples
Interpreting absent edges

(1, 0)

rIsing::Ising() eLASSO
Small–medium samples
Detecting present edges

Applicable to >20 variables

Large samples
Interpreting absent edges

(1, 0)

rbinnet::select_structure() Bayesian estimation
Slap and spike prior

Evidence of absent edges
Model uncertainty

Prior information use

Work in progress
Prior information dependent

(1, 0)

BGGM::explore(type = “binary”) Bayesian estimation
F-matrix prior

Evidence of absent edges
Model uncertainty

Prior information use

Prior information dependent (1, 0)

BDgraph::bdgraph() Bayesian model selection
G-wishart Prior

Model uncertainty
Prior information use

Prior information dependent (1, 0)

IsingFit::LinTransform() Transforms between (1, 0) and (1, −1) encodings Works with unregularised models (psychometrics) Any
NetworkComparisonTest::NCT() Group comparison test Works with eLASSO models
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Understanding eLASSO is quite straightforward if one is familiar with logistic regres-
sion (see [78] for an introduction). Ref. [69] uses the Ising model as a likelihood function to
derive the conditional probability of an observed binary variable given all other measured
variables. In Figure 7, this conditional probability is shown for each node of a simple three-
node network. More importantly, if x1, x2, and x3 are observed variables, this equation
translates directly into a logistic regression. Hence, we can estimate β and α with one
regression per node. A caveat is that we will have two estimates per edge, βij and β ji,
because each node serves both as the dependent and independent variables. However,
they will converge as sample size goes to infinity. To solve this and complete the adjacency
matrix ω, [69] uses the and-rule: any edge is the average β if both βij and β ji are non-zero,
otherwise ωij = 0. A benefit of this node-wise approach is that we avoid computing Z.
Consequently, a pseudo-likelihood estimation is needed for large networks.

Figure 7. With a pseudo-likelihood estimation, we first estimate the neighbourhood of each node.
This is performed through one logistic regression per node (here, we consider a simple three-node
example). The bottom panel shows how we combine the neighbourhoods into a single network
model, ω, through the AND rule: an edge is present if both βij and β ji are non-zero. This step is
necessary because each node is both the dependent and independent variables; hence, we have two
β estimates.

This multiple logistic regression approach makes it apparent that we are performing
multiple testing. This is a central difficulty in hypothesis testing because it inflates the
rate of false positives. This issue was recognised by [69] who remedied this problem
through LASSO regularisation. This procedure shrinks estimates towards zero, lowering
the amount of detected edges and their strengths. The amount of shrinkage depends
on a parameter ρ. Choosing the optimal ρ is performed through information criteria-
based model selection. This approach to model selection depends on a hyper-parameter γ.
More importantly, this parameter must be set by the analyst as it regulates the error-type
control for eLASSO, which means it determines whether false positives or negatives are
preferred. Lower γ favours more edges, while higher γ favours stronger shrinkage and
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hence, sparser networks. Therefore, a low γ increases the false-positive rate, while a high
γ inflates the false-negative rate. We will see that each estimator has a corresponding
error-type controller.

In Text Box 3, we perform eLASSO estimation based on the sample from Text Box 2.
We use the default of γ = 0.25. The result as well as the original network we generated in
Text Box 1 are shown in Figure 8. We see that eLASSO recovers the network well, with two
false negatives and no false positives. It should be noted that β is usually not identified
when we fit statistical Ising models, therefore we do not get an estimate of it. The only
exception to this is psychometrics, which allows for its estimation from multi-group data
(we will discuss this option later).

The main argument for LASSO is its limiting effect on over-fitting for smaller samples,
leading to better out-of-sample generalisability [79]. The sparsity induced by LASSO has
also been argued to help to interpret networks as only the most important edges remain [69].
Hence, LASSO is advisable when the goal is to identify important present edges in small to
medium samples.

Box 3. How to perform eLASSO estimation with IsingFit.

eLASSO with Isingfit() in Ra.
eLASSO is implemented in the IsingFit package [69]. It has the advantage of being
easy to use since it only requires a single hyper-parameter γ to be set. It uses a
(0, 1) encoding and performs list-wise deletion in the case of missing data. Group
comparisons of eLASSO models can be executed with the NetworkComparisonTest
package.
Running Example: Using Isingfit(), we can recover the assumed network
structure generated in Text Box 1. More importantly, for ease of interpretation
and estimation, we use a simpler six-node network generated by altering the
n_nodes argument. We can then re-sample 1000 states and fit an eLASSO model
using IsingFit(). Figure 8 shows the original network (right) and a network
estimated with the default value of γ = 0.25. We see that our estimated network
recovers most present edges and generates no false positives.

library("IsingFit");
samp_ising0 = IsingFit(samp,
gamma = 0.25, #default
AND = TRUE)
a Annotated and fully reproducible code is found in the supplementary material at https://osf.io

/4z9u2/. This includes all visualisation code.

Figure 8. To the right, the "true" network structure (Text Box 1), which we simulated at 1000
observations per node from Text Box 2. To the left, we estimated the network using γ = 0.25.

https://osf.io/4z9u2/
https://osf.io/4z9u2/
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For larger samples, controlling over-fitting through LASSO becomes less important. In-
stead, researchers should consider which additional analyses are required (group comparisons,
measurement invariance, predictability, missing data handling). In particular, psychometrics
and BGGM, which we will cover later, offer extensive additional functionalities.

Besides sample size, the choice of estimator also depends on the theoretical importance
of absent edges (or negligibly small effects cf. [80]). Since eLASSO shrinks estimates towards
zero, it increases the number of absent edges. The issue for estimated networks is that
absent edges arise for two theoretically distinct reasons: (1) the lack of power to detect an
existing effect, or (2) the correct detection of zero relation between variables. Since both
cases are typically visualised as an absent edge, they are hard to distinguish in practise.
This is problematic because they require different conclusions. In the former, we should
remain uncertain, while we can build our confidence in no-effects in the latter. Problems
arise when they are conflated as we get fooled into building unwarranted confidence in
no-effects. Ref. [81] documents several instances of this issue in the literature.

4.3. Bayesian Estimation

We can distinguish the absence of evidence from the evidence of absence with the
Bayesian estimation. This is implemented in BDgraph, Rbinnet, and BGGM. Their central
difference to eLASSO is their computation of multiple hypotheses per edge ωij. Rbinnet
evaluates H0 : ωij = 0 and H1 : ωij 6= 0. BGGM can perform an expanded three-hypotheses-
per-node test: H1 : ωij = 0, H2 : ωij > 1 and H3 : ωij < 1. In all cases, we can use H1 to
clearly separate the evidence of absence from the absence of evidence.

A central component of Bayesian statistics is prior probabilities allowing researchers
to influence the estimation process with background knowledge, as coded in a prior
distribution over the parameters of the model. Unless the sample is very large, in which
case the prior’s impact becomes negligible, the priors pull estimates towards the center of
the prior distribution. Network models involve many parameters, which makes it tricky to
set individual prior probabilities. Additionally, little work has been performed on how to
set priors for network psychometrics. Here, we suggest one computational workaround.
In Text Box 5, we show how to easily compute a robustness analysis. That is, we repeat
the analysis with different analysis choices (e.g., priors) to see if the results are robust in
these changes.

We first perform Bayesian estimation with rbinnet, which is followed by a robustness
analysis of the result [82]. We use rbinnet to compute two hypotheses per edge, H0 : ωij = 0
and H1 : ωij 6= 0. As explained in Text Box 4, we can use the hypotheses to generate a novel
edge-uncertainty graph (introduced in [83]). The estimation depends on a prior-inclusion
and precision parameter, which we must specify. In Text Box 5, we examine the robustness
of the results on changes in the prior-inclusion and precision parameters.
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Box 4. How to perform Bayesian Ising estimation using rbinnet. We show this information in three
edge-uncertainty graphs in Figure 9.

Bayesian Estimation with rbinneta.
rbinnet is a new package for the Bayesian estimation of Ising models [82]. First, it
uses pseudo-likelihood estimation to find good candidate values for each edge
through the fit_pseduolikelihood() function. Once the candidate values are
found, we compute the edge hypotheses, H0 : ωij = 0 and H1 : ωij 6= 0,
with select_structure(). This requires 3 parameters to be set: a prior edge
inclusion probability with a default of 0.5, a prior variance intercept, and a
precision parameter.
Using the select_strucuture() output, we construct three edge uncertainty
plots based on Bayes factors (BF). The inclusion BF of an edge, ωij, is computed
as BFωij =

H1
H0

, i.e., it computes how many times more an edge is likely to be
included compared to not being included. Vice versa, smaller values indicate
that we have evidence for an absent edge. Following [82], we say that BF > 10
is evidence of inclusion. BF < 0.1 is evidence of an absent edge. Between 10 and
0.1, we remain uncertain about the nature of edges. We show this information
in three edge-uncertainty graphs in Figure 9. Blue edges indicate evidence of
inclusion, grey means we are uncertain, while red is evidence of exclusion.
The simulation is based on the 1000 samples we took earlier.
Running example: We can perform a Bayesian estimation of our simulated data
with two functions from rbinnetb:

library("rbinnet") #rbinnet in not on CRAN yet.
#must be installed from GitHub (done in analysis script).
df_final <- as.matrix(samp)
starting <- fit_pseudoposterior(x = df_final,
prior_var = 1)$sigma
obj <- select_structure(x = df_final,
sigma = starting,
omega = 0.5,
prior_var_intercepts = 1,
precision = 0.975,
output_samples = TRUE,
number_iterations = 5e3,
number_burnin_iterations=100,
hierarchical = FALSE)
a Annotated and fully reproducible code is found in the supplementary material at https://osf.io

/4z9u2/. This includes all visualisation code.
b Note that we changed the n_nodes argument in Text Box 1 from 40 to 6 for this estimation.

https://osf.io/4z9u2/
https://osf.io/4z9u2/
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Box 5. Robustness analysis of rbinnet results. We see the results in Figure 10.

Robustness analysis with parSima. Statistical estimation inevitably involves
difficult analysis choices. In these cases, checking whether results are robust
on different choices is a good strategy. The main downside is the extra effort
and the results required to explain. We can ease the process with the parsim
package [33]. It automatically loops over conditions and stores outputs. Here,
we demonstrate this functionality with rbinnet. We first specify a range of prior
inclusion probabilities and precision values to loop over. For each run, we store
the posterior inclusion probability per edge. We see the results in Figure 10,
which reveals four robustly included edges, two non-robust (smeared out),
and nine robustly excluded variables.

a Annotated and fully reproducible code is found in the supplementary material at https://osf.io
/4z9u2/.

Figure 9. Result of rbinnet used to construct edge uncertainty plots. The edges of coloured graphs

represent the inclusion Bayes factor BF =
P(ωij 6=0)
P(ωij=0) . The red graph indicates the evidence of absence

of an edge (BF < 0.1). The blue graph provides the evidence of inclusion of an edge (BF > 10). The
grey graph shows the absence of evidence (0.1 < BF < 10).

https://osf.io/4z9u2/
https://osf.io/4z9u2/
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Figure 10. Robustness analysis based on rbinnet. The robustness of posterior inclusion probabilities
is studied for various combinations of prior inclusion probabilities and precisions. We see that
four edges have consistently high posterior inclusion probabilities (robust)—which are also the
strongest in the assumed structure. Two edges have their probabilities "smeared out", indicating
non-robustness. Finally, nine edges have robustly low posterior inclusion probabilities.

The second Bayesian option is the BGGM (we refer to the general R-package, not
the specific estimation procedure of [84]). This package allows not only for exploratory
estimation, as we have covered so far, but also for the confirmatory analysis of a pre-
specified structure. It is a flexible function that accepts continuous, ordinal, binary, and a
mixture of variable types. BGGM also offers a range of extra analysis options; for instance,
missing data handling, group comparisons, and node predictability. In Text Box 6, we use
BGGM to perform exhaustive hypothesis testing. That is, we test three hypotheses per
edge: H1 : ωij = 0, H2 : ωij > 1, and H3 : ωij < 0. As explained in the text box, we used
the three hypotheses to create the stacked bar plot of Figure 11.

Box 6. Bayesian Ising estimation using BGGM.

Bayesian Estimation with BGGMa.
BGGM is a general Bayesian network estimator [84]. Using BGGM::explore(),
we can perform a model search, which returns a distribution over likely network
structures. It uses a matrix-F prior distribution with a single parameter for
the analyst to set. If we want a single model to plot, we use BGGM::select().
In this process, we must set a Bayes factor cut-off for the inclusion of edges—the
error-type control parameter of BGGM(). Here, we use BGGM to execute an
exhaustive search of three hypotheses per edge. We summarise the information
in the stacked bar plot in Figure 11. In this case, the absence of evidence is
displayed as equal evidence across hypotheses.
Running example: We use two functions to perform model search and selection
with BGGMb:

library("BGGM")
explore_network <- explore(samp,
type = "binary",
iter = 5000)
selected_network <- select(explore_network,
alternative="exhaustive",
bf_cut = 3)

a Annotated and fully reproducible code is found in the supplementary material at https://osf.io
/4z9u2/. This includes all visualisation code.

b Note, we changed the n_nodes argument in Text Box 1 from 40 to 6 for this estimation.

https://osf.io/4z9u2/
https://osf.io/4z9u2/
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Figure 11. With BGGM, we compute three hypotheses per edge: H1 : ωij = 0 (grey), H2 : ωij > 1
(blue), and H3 : ωij < 0 (red). The absence of evidence then amounts to equal probabilities across the
edge hypotheses.

4.4. Maximum Likelihood Estimation

Lastly, it is also possible to estimate Ising models using the maximum likelihood esti-
mation (MLE) with psychometrics. This is a frequentist estimator without LASSO. In Text
Box 7, we demonstrate this and explain the pruned MLE estimation. This offers a versatile
package that bridges statistical network modelling with structural equation modelling
(SEM) [85]. Following SEM, psychometrics allows for model-constraining, which is useful
for group comparisons and measurement invariance testing, among others. A noteworthy
feature of Ising models is that we can identify β through constraints. This requires multiple
group data where we then constrain the network structure and external fields in order to
be equal. We illustrate how this is executed in the analysis script. In Text Box 7, we estimate
a fully saturated and pruned model and compare their fit using psychometrics::compare().

4.5. Summary of Recommendation

In this section, we have covered the use of the Ising model as a likelihood function
for parameter estimation. As we have seen, several R packages have implemented Ising
estimation methods. The choice of Ising estimator depends on the research question and
data. The central question is if further analysis is needed (missing data handling or group
comparisons, for instance). In particular, psychometrics and BGGM offer extensive analysis
options. Secondly, we highlighted that sample size and interpretability of absent edges are
important to estimator choice. eLASSO is well-established and easy to use in small to
medium sample sizes where present edges are in focus. For larger samples, full maximum
likelihood is preferred over eLASSO. If absent edges are of theoretical importance, Bayesian
estimators are good options as they compute the evidence of absence directly.
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Box 7. Pruned maximum likelihood estimation using psychometrics. The comparison results are
shown in Table 3.

Maximum likelihood estimation with psychometricsa.
psychometrics offers several options for both estimation and further analyses.
Here, we focus on pruned MLE estimation. With pruning, we first estimate a
saturated model, then non-significant edges are removed before the entire model
is re-estimated without them. Performing this in psychometrics involves three
steps: model specification → run model → prune model. For our analysis,
we first specify a model using the ising() function. At this stage, we choose
encoding, parameters, optimiser, missing data handling. Once the model is set
up, we execute it with runmodel().
Running example: We estimate a fully saturated model (degrees of freedom =
0) and a pruned model using our previously generated data. For the pruning,
we assume a significance level of 0.05, which we control using false discovery
rates (fdr). We then find the preferred model by comparing their fit indices.
The comparison results are shown in Table 3b.

model_setup <- Ising(samp)
model1 <- model_setup %>% runmodel()
model2 <- model_setup %>%
prune(alpha = 0.05,
adjust = "fdr") %>% runmodel()
psychometrics::compare(model1,model2)

a Annotated and fully reproducible code is found in the supplementary material at https://osf.io
/4z9u2/. This includes all visualisation code.

b Note, we changed the n_nodes argument in Text Box 1 from 40 to 6 for this estimation.

Table 3. Output of model comparison using psychometrics. We estimated a saturated model (DF = 0)
and a pruned model (DF = 39) from data generated in Text Box 2. A comparison of the two models’
fit indices (AIC and BIC) shows that the pruned model is preferred as it has both lower AIC and BIC.

Model DF BIC AIC

Model 1: saturated 0 4965 4862
Model 2: Pruned 11 4909 4858

5. The Practical Gap between Statistical and Theoretical Ising Use

In the paper, we have discussed both the statistical and theoretical uses of the Ising
model. Although mathematically identical, they will often be used separately. This is
because the statistical Ising model provides little evidence for the theoretical one. The theo-
retical model assumes that the system is alignment-driven based on which we can derive
the cusp dynamics. To verify the theoretical model, we should ideally study a system over
time in order to observe alignment and its consequent bifurcation and hysteresis behaviour.
Subsequently, the statistical model can play an important role in parameter estimation.
But the statistical model alone does not provide strong evidence for the theoretical model.
This is because of the statistical equivalence between the network, latent variable, and
item response-models [7]. The central tenet of the statistical model is that it makes weak
assumptions, and consequently yields weak evidence for any specific data-generating
structure such as the theoretical Ising model. This is also its strength. This means that
it is a suitable tool whenever we want to explore our data and we have little intuition
about the data-generating mechanism. In these cases, we can avoid additional theoretical
assumptions—unlike latent variable models, directed acyclic graphs, etc.—by estimating
the pRMF, which is always uniquely identified. This makes the statistical Ising model

https://osf.io/4z9u2/
https://osf.io/4z9u2/
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a powerful exploratory tool: it identifies a correct data pattern regardless of what the
underlying data-generating mechanism is. This result can then inspire and constrain fur-
ther hypotheses that typically need more substantive information through experimental
manipulations or time-series data.

Author Contributions: Conceptualization, A.F., D.B., S.E. and H.L.J.v.d.M.; methodology, A.F.;
software, A.F.; validation, D.B., S.E. and H.L.J.v.d.M.; formal analysis, A.F.; writing—original draft
preparation, A.F.; writing—review and editing, A.F., D.B., S.E. and H.L.J.v.d.M.; supervision, D.B.,
S.E. and H.L.J.v.d.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Denny Borsboom’s NWO Vici Grant No. 181.029, and Sacha
Epskamp’s NWO Veni Grant No. 016-195-26.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data is simulated using the code found on our OSF.

Acknowledgments: We thank Karoline Huth for her help with using rbinnet and visualising its results.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
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Appendix A

Here, we briefly derive the mean-field approximation (MFA) of the Ising model (The
derivation is inspired by Simon Dedeo’s course on renormalization: www.complexityexpl
orer.org/courses/67-introduction-to-renormalization/). It consists of two parts. We first
derive the MFA expression, which we subsequently perform a bifurcation analysis of in
order to determine its expected equilibrium points.

To derive the MFA, we re-write H as the sum of "alignment" for each node i (we
assume α to be 0, and we omit the double negative sign of the exponent):

H(xxx) = ∑
<i,j>

ωi,jxixj = ∑
i

∑
j

ωi,jxixj = ∑
i

xi ∑
j

ωi,jxj (A1)

The central assumption of the MFA is that nodes interact with an approximation of
their neighbours. This approximation is the mean-field, x̄, multiplied by the average number
of neighbours in the system, ω̄. We approximate the neighbour interaction term as follows:

∑
i

xi ∑
j

ωi,jxj ≈∑
i

xiω̄x̄ (A2)

Conceptually we replace our fine grained description of the system by aggregating the
nodes into a single mean field. In this process, we throw out information about individual
variation. For a discussion of the MFA’s validity under various network structures, see [39].

We can now inset our re-written H into the Ising equation:

P(XXX = xxx) =
exp(β ∑i xiω̄x)

Z
(A3)

www.complexityexplorer.org/courses/67-introduction-to-renormalization/
www.complexityexplorer.org/courses/67-introduction-to-renormalization/
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The final step is to eliminate Z. We can accomplish this by obtaining the expected
value of a node. We start by finding the probability that a single node is positive:

P(x) =
exp(βxiω̄x)

Z
= (A4)

1
Z ∏

i
exp(βxiω̄x) = (A5)

1
Z
· (exp(βx1ω̄x) · exp(βx2ω̄x) · exp(βx3ω̄x) . . . ) (A6)

Each factor gives the probability of its corresponding node being positive. We see that
this probability is equal for all nodes:

P(xi = 1) =
1
Z

exp(1βω̄x) (A7)

Based on this, we can obtain the expected value of the node E(xi). This is the sum
over each possible state value multiplied by its respective probability. Since each node has
two states, 1 and −1, we obtain:

E(xi) = 1 · P(xi = 1) + (−1 · P(xi = −1)) =
1
Z

exp(βω̄x)− 1
Z

exp(−1βω̄x) (A8)

We eliminate 1
Z by using 1 = P(xi = 1) + P(xi = −1). This leads us to an expression

where 1
Z cancels out in the end:

E(xi) =
1
Z exp(βω̄x)− 1

Z exp(−βω̄x)
1

=

1
Z exp(βω̄x)− 1

Z exp(−βω̄x)
P(xi = 1) + P(xi = −1)

=

1
Z exp(βω̄x)− 1

Z exp(−βω̄x)
1
Z exp(βω̄x) + 1

Z exp(−βω̄x)
=

exp(βω̄x)− exp(−βω̄x)
exp(βω̄x) + exp(−βω̄x)

Lastly, we use a trigonometric rule to rewrite the expression in terms of tanh(). This
gives us the final mean-field approximation where we also re-inset α:

E(xi) = tanh(βω̄x + α) (A9)

We can think of the MFA as a difference equation that predicts x̄ at the next time
point given the current mean spin: xt+1 = tanh(βω̄xt + α). The goal is then to find the
equilibrium points. They are the values of xt such that it is equal to xt+1, i.e., the output
is not changed from the input. A bifurcation analysis amounts to determining these
equilibria as we vary β and α [31]. We take a graphical approach where we plot tanh()
together with the diagonal y = x. The diagonal is useful because it generally shows where
xt+1 = x. Therefore, we can find the equilibria of tanh() by seeing where it intersects with
the diagonal. Figure A1 shows tanh() in blue for different values of β, assuming α = 0.
For low values of β, we see one intersection so that one equilibrium at x̄ = 0. As β increases,
three equilibriums arise around 1, 0, and −1. It is important to notice that 0 is an unstable
equilibrium, so we do not expect the system to be in this state (see [31] for an explanation).
To construct a bifurcation plot, we systematically plot the equilibria as a function of β.
By doing so, we obtain Figure A2 showing the pitchfork bifurcation we simulated earlier
(see Figure 3). Following the same method but varying α, we can obtain the hysteresis plot
of Figure 6A. Lastly, we trust [31] in that we can integrate our bifurcation analyses into the
cusp catastrophe model.
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Figure A1. Equilibrium plots for tanh() with varying β.

Figure A2. The bifurcation plot resulting from plotting equilibrium points of the MFA while varying
the alignment weight β.
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