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Low-energy collisions of Rydberg atom-ion systems are investigated theoretically. We present the parameter
space associated with suitable approaches for the dynamics of Rydberg atom-ion collisions, i.e., quantum,
Langevin, and classical exchange regimes, showing that for the lowest reachable temperatures a classical
treatment is appropriate. A quasiclassical trajectory method is used to study charge exchange cross sections
for Li∗-Li+ and Li∗-Cs+ at collision energies down to 1 K. For cold collisions we find the charge exchange cross
section deviating from the n4 geometric scaling. Furthermore, for low-energy collisions, we find both an influence
of the ionic core repulsion as well as variations for two different models used for describing the electron-core
potential.

DOI: 10.1103/PhysRevA.103.043323

I. INTRODUCTION

More than a century ago, after systematically studying
atomic spectral lines, Rydberg gave a glimpse into the in-
triguing physics of highly excited states of atoms, nowadays
known as Rydberg states [1]. Occurring in interstellar space
and plasma, Rydberg states of atoms (Rydberg atoms) and
their peculiar properties find significance in a diversity of sub-
jects reaching from astrophysics to quantum computing [2–8].
Their exaggerated properties facilitate studies of many-body
physics in cold atomic samples as well as on the single atom
level in optical tweezers [9,10]. Even more exotic structures,
such as ultralong-range Rydberg molecules showing a unique
molecular bond caused by the elastic scattering of the Rydberg
electron with a neutral atom [11–16] and Rydberg states of
charged particles have been achieved [17].

New hybrid atom-ion experiments open up a path to in-
vestigate Rydberg-ion collisions at low temperatures. Two
distinct approaches have crystallized: either a quasi-free ion
is created from an ultracold atomic gas via photoionization of
Rydberg atoms and subsequently measured via time-of-flight
[18,19], or the ion is confined inside the radio-frequency elec-
tric fields of a Paul trap [20,21]. These scenarios are suitable
for studying the most intriguing properties of Rydberg-ion
interaction and controlling and tailoring such interaction. For
instance, it is possible to engineer repulsive Rydberg-ion inter-
action to cool trapped ions or for realizing atom-ion quantum
logic gates [22,23]. In addition, although in a different range
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of collision energies, the study of charged-neutral interactions
is relevant for the formation of antihydrogen from the scatter-
ing of positronium atoms with antiprotons [24–26].

In fact, already in the 1970s Rydberg-ion collisions were
the object of intense research, although in very different con-
ditions. Cross-beam experiments allowed one to study charge
transfer between Rydberg atoms and single charged ions [27]
as well as principal (n) and angular quantum number (l)
changing collisions [28]. Similarly, combining Rydberg atoms
with highly charged ion beams, e.g., Ar9+, the collision cross
section [29] and the charge exchange rate was determined
[30]. Furthermore, the orientation of Rydberg atoms towards
the ion projectile, controlled with electric and magnetic fields,
has been studied [31,32]. In these pioneering works, the pro-
jectile velocity was of the same order as the average velocity
of the Rydberg electron (∼n−1 a.u.). Thus, and due to ex-
perimental possibilities at that time, typical collision energies
were limited to �100 eV ≈106 K. At the same time, a classical
trajectory approach assuming a pure Coulombic interaction
between the colliding particles was developed to character-
ize the charge-transfer and impact-ionization cross sections.
However, it was primarily applied to ion-H∗ collisions [33].
Later, models were extended with tailored pseudopotentials
accounting for the role of core electrons in the Rydberg atom
and ion, which allowed one to calculate the state changing
collision cross section after binning the classical phase space
at the final propagation time [34]. However, none of these the-
oretical approaches explored the nature of the charge-transfer
process between an ion and a Rydberg atom at cryogenic and
low temperatures.

In this paper, we present a quasiclassical trajectory (QCT)
approach for charge exchange and l mixing in Rydberg-ion
collisions at low temperatures. The method is applicable down
to temperatures ∼1 K, thus exploring a novel dynamical
regime in ion-Rydberg systems. Moreover, from calculat-
ing the number of contributing partial waves, we draw the
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parameter space associated with the applicability of different
classical and quantum mechanical methods as a function of
the collision energy and Rydberg principal quantum number.
As a result, we find that for typical temperatures for Bose-
Einstein condensation (∼100 nK), Rydberg-ion collisions are
satisfactorily described from a classical framework.

II. A PHASE DIAGRAM FOR SCATTERING METHODS
ON ION-RYDBERG COLLISIONS

The long-range potential for atom-ion collisions is given
by the induced dipole-charge interaction plus the centrifugal
barrier as

V (r) = −C4

r4
+ L(L + 1)

2μr2
, (1)

with partial wave L, reduced mass μ, and C4 = α(n)/2, where

α(nl ) = a1(n − δl )
7

(
1 + a2

n − δl
+ a3

(n − δl )2

)
(2)

stands for the polarizability of the Rydberg atom in the prin-
cipal quantum number n and angular momentum state l; a1,
a2, and a3 represent asymptotic coefficients for a given atom
[35]; and δl is the quantum defect for the l state.

The potential in Eq. (1) presents a maximum that when
equated to the collision energy leads to an estimation of the
number of partial waves relevant for the collision under con-
sideration as

L ≈ 2
√

μC1/4
4 E1/4

col . (3)

Let us assume that for L � 20 most of the relevant quantum
effects on the scattering observables are washed out. There-
fore, any scattering event requiring more than 20 partial waves
may be treated classically. Indeed, from Eq. (3) it is possible to
obtain the threshold collision energy in which such condition
is satisfied as

Ecol =
(

L

2
√

μ

)4

C−1
4 . (4)

Therefore, Eq. (4) determines the borderline between the
quantal and classical regimes, which is shown as the lower
solid line in Fig. 1.

Coulomb vs Langevin

The collision of a Rydberg atom and an ion may lead to
a charge-transfer process in which the Rydberg electron is
captured by the ion, A∗ + B+ → A+ + B∗. Let us assume, for
the sake of simplicity, a resonant-charge exchange process, in
which the total potential energy of the Rydberg electron (in
a.u.) reads as

U (r1, r2, R) = − 1

|r1| − 1

|r2| + 1

R
, (5)

where R is the interatomic distance, r1 is the vector position
of the Rydberg electron with respect to its ionic core, and r2

represents the vector position of the Rydberg electron regard-
ing the ion, as is schematically shown in Fig. 2. When the
potential energy is equal to the binding energy of the Rydberg
electron − 1

2n2 , then the charge transfer occurs. In particular, it
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FIG. 1. Parameter space associated to suitable approaches for the
dynamics of Rydberg-ion collisions. The upper part of the diagram
(orange in the online version) shows the region where a classical
treatment based on Coulomb interaction is appropriate including
(dashed line) or excluding (solid line) core interaction. In white is
shown the region where the classical treatment is adequate, but in
this case assuming the expected induced dipole-charged interaction
through the celebrated Langevin capture model. The region below
the white one (blue in the online version) represents the param-
eter space in which a quantum treatment is required. The results
are for Li(nS)-Li+ collision regarding the applicability of different
approaches for the dynamics. Note, the crossover from classical
exchange to Langevin is independent of the ion species.

occurs at the midpoint of the vector joining the Rydberg core
and the ion, as shown in the inset of Fig. 2, and hence one
finds

U (R∗/2, R∗/2, R∗) = − 1

2n2
→ R∗ = 6n2. (6)

FIG. 2. Schematic representation of Rydberg-ion collisions. The
ion is considered the projectile with impact parameter b moving
with a velocity v towards the Rydberg atom, placed at the origin of
coordinates. The Rydberg electron’s position is labeled as r1 from
the Rydberg core, whereas r2 represents its position from the ion.
The inset represents a one-dimensional perspective of the charge
exchange process: the electron moves through the potential barrier
at a given ion-Rydberg distance.
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R∗ is the length scale associated with the classical charge-
transfer process. Therefore, the charge exchange cross section
is ∝n4, which corresponds to the scaling law of the geometric
cross section based on the Rydberg orbit size. It is worth
noting that the derivation is based on a barrierless model,
i.e., the collision is assumed to occur in an s-wave regime
or at zero impact parameter. Similarly, neglecting the ion-ion
repulsion term one finds that R∗ = 8n2.

On the other hand, using the Langevin model [36], a
Rydberg-ion scattering process, as a neutral-charge interac-
tion system, is initially dominated by the long-range induced
dipole-charge interaction, which reads as

V (r) = −α(n)

2r4
, (7)

where we have made explicit the dependence of the Ryd-
berg polarizability with the principal quantum number. In this
scenario, the Langevin capture model is applicable, and the
capture radius, known as the Langevin impact parameter, is
given by

bL =
(

2α(n)

Ecol

)1/4

, (8)

where Ecol stands for the collision energy.
The classical exchange process is energy independent,

whereas the Rydberg-ion Langevin collision depends on the
energy. Therefore, it is possible to find a collision energy at
which the length scale matches with the one for Langevin
collision (

2α(n)

Ecol

)1/4

= 6n2. (9)

This energy defines the lower bound of the validity of the
classical exchange process, which is depicted as the dashed
line in Fig. 1 for Li∗-Li+ collisions. In addition, neglecting
the ion-ion repulsion the term pushes further down the lower
bound for the validity of the classical exchange process as is
shown in Fig. 1 as the upper solid line. As a result, Li∗-Li+

collisions may be treated with the classical exchange process
down to Ecol ∼ 10 K for n � 50, whereas it is only valid for
Ecol � 30 K for lower principal quantum numbers.

III. THEORETICAL APPROACH

We use a QCT method to simulate Rydberg-ion collisions.
In this approach, the dynamics of the nuclei in the electronic
potential energy surface is described classically while the
initial conditions for the trajectories correlate with the quan-
tum state of the system via the semiclassical approximation.
Indeed, the same procedure is employed to calculate the final
quantum state of the system from the position of the trajectory
in the classical phase space [37–39]. The QCT method finds
application in systems described by large numbers of partial
waves [39,40].

The interaction between the electron and each of the two
ionic cores is described by the following pseudopotential:

Vie(r) = −Z (r)

r
− αc

2r4

(
1 − e−(r/rc )6)

, (10)

which is obtained from Ref. [41]. The first term represents
a screened Coulomb interaction, whereas the second stands
for the interaction between the Rydberg electron and the core
electrons. In particular, αc is the polarizability of the core, rc

stands for the radius of the core, and

Z (r) = 1 + (z − 1)e−a1r − r(a3 + a4r)e−a2r, (11)

where z is the nuclear charge of the Rydberg atom. ai and
rc are parameters taken from Ref. [41]. We note that ai and
rc have l dependence. Nonetheless, we keep the parameters
constant during a collision. For the ion-ion interaction we use
a Coulomb potential

Vii(R) = A 1

R
, (12)

where the attenuation factor 0 � A � 1 controls the repulsion
strength between the cores [42].

Each collision is initialized by placing the Rydberg core
at the origin of coordinates and the Rydberg electron in the
turning point of its orbit

r1 = n2 + n
√

n2 − l (l + 1), (13)

where the velocity is given by the angular momentum.

v1 =
√

l (l + 1)

n2 + n
√

n2 − l (l + 1)
. (14)

We randomly sample the direction of the position �r1/|�r1| and
the velocity �v1/|�v1|, while ensuring �r1 · �v1 = 0. Furthermore,
the phase of the electron orbit is randomized.

The ion is initialized at �R0 = bêy + R0,zêz, where b is the
impact parameter, with velocity −vêz, as visualized in Fig. 2.
R0,z is chosen sufficiently large, such that the Coulomb po-
tential is less than 10% of the collision energy Ecol = 1

2μv2

and in addition R0,z > 10r1. Following Refs. [43,44], we prop-
agate the particles using a fourth-order step size adaptive
Runge-Kutta method. The simulation ends when the separa-
tion between the Rydberg core and the ion is larger than R0,z.
We exclude events in which the energy fluctuations between
the start and end of the collision (Einit − Eend )/Einit exceeds
5%. Finally, we evaluate the binding energies of the two
subsystems to extract the reaction channel and the quantum
state.

Trajectories for exemplary Rydberg-ion collisions are
shown in Fig. 3. (a) Two-particle distance d between
(A+ − e−) Rydberg core electron, (B+ − e−) ion electron, and
(A+ − B+) Rydberg core ion for Ecol = 25 000 K. During the
collision, the electron is shared between the ionic cores for
less than a period before it charge transfers. A much slower
collision with Ecol = 50 K is shown in (b), where the electron
is shared for hundreds of orbits, before it ends up at one of the
ions. It can be seen that in about 22.5 ns the distance of closest
approach for the ionic cores is reached, as a result of the core
repulsion. In (c), the z − y projection of the same trajectory
is shown for ion, Rydberg core, and Rydberg electron. The
initial elliptical orbit is affected by the (near homogeneous)
far field of the ion.

Rydberg-ion collisions show three scattering channels:
(i) charge transfer A∗(n, l ) + B+ → A+ + B∗(n′, l ′);
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(a)

(b) (c)

FIG. 3. Trajectories for Li+-Li∗ (90D) collisions from QCT sim-
ulations. Fast collision (a) at Ecol = 25 000 K with (orange in the
online version) Rydberg core-ion, (blue in the online version) Ry-
dberg core-electron, and (green in the online version) ion-electron
distance d . Cold collision (b) and (c) at Ecol = 50 K. (b) Zoom-in
(t ∈ [18, 27] ns) with same coloring as (a). (c) Trajectories in z-y
direction for t ∈ [0, 26] ns. Rydberg core (orange) initially at origin
and ion (green in the online version) propagating in −z direction.
Electron trajectory starting at (circle) t = 0, (red in the online ver-
sion) initial orbits, (purple in the online version) electron motion in
far field of the ion, (blue in the online version) continued propaga-
tion, and (brown in the online version) final motion before capture at
t ≈ 26 ns.

(ii) quenching (n-changing and l-mixing collisions in Ry-
dberg physics) A∗(n, l ) + B+ → A∗(n′, l ′) + B+; and

(iii) ionization A∗(n, l ) + B+ → A+ + B+ + e−.
We discriminate the reaction products by calculating the en-
ergy of the subsystems A+ + e− and B+ + e− after a collision.
The probability for the scattering channel χ at impact param-
eter b (opacity function) is obtained by Monte Carlo sampling
of the initial conditions as

Pχ (b) = Nχ (b)

N (b)
± δNχ (b), (15)

δNχ (b) =
√

Nχ (b)[N (b) − Nχ (b)]

N (b)3
, (16)

where N is the total number of trajectories, Nχ (b) denotes the
number of trajectories resulting in channel χ , and δNχ (b) is
the error estimator. Subsequently, the reaction cross section
is given by

σ = 2π

∫ bmax

0
Pχ (b)b db, (17)

where bmax is the maximum impact parameter at which the
channel χ plays a role on the scattering. In this work, Eq. (17)
is solved numerically.

IV. RESULTS

The cross section for charge exchange is investigated as
a function of the collision energy using the QCT method

FIG. 4. Charge-exchange cross section for Li∗n=90-Li+ collisions.
Numerical trajectory simulation (squares and blue in the online
version) with Coulomb Rydberg core-ion interaction A = 1.0, and
(diamonds and orange in the online version) without core-ion interac-
tion A = 0.0. Dashed lines are fits with σ/n4 = a(Ecol )b + c(Ecol )d ,
with fit parameters a, b, c, and d . Inset: energy-dependent ratio R
between the cross section neglecting core-ion interaction and the
results including it. Dashed line (green online version) is a fit with
R = a(Ecol )b for region Ecol � 100 K, with free parameters a and b.
Errors originate from Eq. (16).

outlined above. We start with the study of Rydberg-ion colli-
sions in Li∗-Li+ for 90D Rydberg states. In Fig. 4 the cross
section for (squares) Coulomb core repulsion (A = 1) and
(diamonds) no core interaction are presented for energies
reaching from 500 K down to 1 K [45]. In this figure, we
notice that the inclusion of Coulomb core repulsion leads to
smaller charge-exchange cross sections for collision energies
�100 K. Indeed, this can be correlated with the results of
the barrierless model in which the inclusion of the ion-core
repulsion leads to smaller charge-exchange cross sections, as
has been argued in Sec. II. In addition, we find that the charge-
exchange cross section shows the same trend as a function
of the collision energy independently on the initial angular
momentum state of the Rydberg electron.

To further examine this behavior, we have calculated the
ratio R between the theoretical models, and the results are
shown in the inset of Fig. 4. Here, it is observed that both
theoretical models agree with each other for collision energies
�100 K. Therefore, 100 K seems to define a threshold energy
from which the Rydberg-ion core repulsion does not play a
role in the dynamics of charge-exchange processes. Further-
more, we observe that the cross section strongly depends on
the collision energy in stark contrast to the barrierless models.
In particular, the deviation from barrierless models is more
tangible for low-energy collisions.

In the case of Langevin collisions, following Eq. (17),
one finds that σ ∝ √

α. For the case at hand, taking into
account that the polarizability of a Rydberg atom scales
as n7 it is easy to prove that σ ∝ n7/2. As a result the
Langevin cross section scales less dramatically with n than
the present charge-exchange model. In particular, assuming
a 50% probability for charge exchange [42], the Langevin
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FIG. 5. Charge-exchange cross section for Li∗-Li+ collision as a
function of principal quantum number n for (squares and blue in the
online version) Ecol = 20 K and (diamonds and orange in the online
version) Ecol = 104 K. Dashed lines are fits with Eq. (18) and the
solid line is a fit with c2 = 4 fixed. The inset shows the deviation of
c2 as a function of the collision energy, where c2 = 0 corresponds to
geometric scaling. Errors originate from Eq. (16).

model results in larger cross sections, e.g., σL/n4(500 K) �
100 and σL/n4(100 K) � 200, which is expected due to the
attractive force between the induced dipole and the ion.

To elucidate the scaling of the charge-exchange cross sec-
tion with the principal quantum number n, we have computed
the charge-exchange cross section at a given collision energy
as a function of n, and the results are presented in Fig. 5.
For (diamonds) high-energy collisions with Ecol = 10 000 K
we find σ ∝ n4 corresponding to the geometric cross sec-
tion given by the barrierless model (see Sec. II), whereas
for (squares) low-energy collision at Ecol = 20 K a devia-
tion from the geometric scaling law is visible. Therefore,
the geometric cross section is only a good estimation of the
charge-exchange cross section for high-energy collisions. To
quantify this observation, we repeat the simulation for various
collision energies and the resulting charge-exchange cross
section is fitted as

σ/n4 = c1nc2 , (18)

where ci are fitting parameters. The resulting parameter c2

is shown in the inset of Fig. 5 as a function of the collision
energy. As a result, the geometric scaling is recovered for
energies �5000 K where c2 ≈ 0. Thus, this collision energy
determines the lowest energy in which the barrierless models
are reliable estimators of the charge-exchange cross section.
For low-energy collisions, the n dependence of the scaling
parameter c2 changes significantly with the collision energy.
In particular, the lower the collision energy, the less steep is
the cross section’s dependence with n. Indeed, for a collision
energy of 20 K the cross section scales ∝n3.

Next, we study the final state distribution of the Rydberg
atom after charge transfer. To this end, focusing on Li(nD)-
Li+ collisions, we compute the final state distribution of
principal quantum numbers n′ of the product Rydberg atoms

FIG. 6. Principal quantum number n′ distribution for charge-
exchange collisions in Li∗-Li+, initially in n = 90 and collision
energies Ecol = 2–10 000 K as indicated in the legend.

as a function of the collision energy, and the results are shown
in Fig. 6. The figure shows that the populated states after
charge transfer are closely distributed around the Rydberg
atom’s initial state, i.e., n = 90, independently of the collision
energy. However, the distribution broadens for higher colli-
sion energies. For instance, for a collision energy of 104 K
(bottom distribution), the distribution is widely spread about
n ± 4 (FWHM) around n′ = 90. Furthermore, the product
state distribution shows a clear asymmetry towards higher
principal quantum numbers, which can be rationalized by
considering that the energy difference between consecutive
Rydberg states scales as n−3. Therefore, higher principal
quantum numbers are closer in energies than lower ones,
which leads to higher population and spread.

Ion-Rydberg collisions may lead to quenching collisions
as summarized in Sec. III. These comprise all collisions, after
which the electron is confined to its original core and both
n and l , or only one of them has changed. We simulate the
quenching cross section for various collision energies and
present the results in panel (a) of Fig. 7 with the Rydberg
atom initially in 90D. It is worth pointing out that for these
calculations, the initial Rydberg-ion distance was increased by
an order of magnitude in comparison with charge-exchange
ones to account for convergence of the final l state. For
Ecol = 10 K we find σ/n4 ≈ 1.6(0.6) × 105, exceeding the
charge-exchange cross section by about four orders of mag-
nitude. This giant cross section results from the tiny energy
gap between inelastic channels and the ion’s electric field’s
effect on the Rydberg electron orbit. For hot collisions
with energies approaching the characteristic velocity of the
Rydberg electron ve the cross section decreases in agreement
with results from hot Rydberg-ion experiments [46].

We vary the initial n state of the Rydberg atom for a
fixed collision energy and simulate the quenching cross sec-
tion as is presented in Fig. 7(b). For 100 K (diamonds), the
cross section increases with n, following a power law with a
scaling exponent of about five, shown as a dashed line. Our
results are in agreement with hotter collisions with projectile
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(a)

(b)

FIG. 7. Angular momentum number l-mixing cross section as
a function of (a) collision energy. The dashed (blue in the online
version) line indicates the characteristic electron velocity ve = 1/n.
Effect of the initial principal quantum number on the l-mixing cross
section (b). Dashed (red in the online version) line shows a power
law σl-mix ∝ n5. Errors originate from Eq. (16).

velocities similar to the electron orbit velocity found in
Na+-Na∗ collisions [47].

Next, we study the distribution of the final angular momen-
tum quantum number, l ′, for collisions with n′ = n (l-mixing
collisions) for different collision energies as is shown in
Fig. 8. For charge-exchange processes, panel (a), we find for
10 K (top histogram) a widespread distribution of angular

(a)

(b)

FIG. 8. Angular quantum number l ′ distribution for collisions
with n′ = n either (a) from charge exchange or (b) l-mixing collision.
Initial state is 90D and with collision energies Ecol = 10–10 000 K as
indicated in the legend.

FIG. 9. Charge-exchange cross section for Li∗-Li+ and Li∗-Cs+

(90D) collisions using (green and red, respectively, in the online
version) Coulomb or (blue and orange, respectively, in the online
version) pseudopotential to model the electron-ion interaction. Errors
originate from Eq. (16).

momenta below l ≈ 60, whereas higher l ′ are sparsely found.
For hotter collisions, at 500 K (medium histogram), the l ′
distribution migrates to higher values, and for 1000 K (bottom
histogram) we find the peak of the population distribution at
the highest allowed states. This is in correspondence with
the localization of n′ for low-energy collisions, as shown
in Fig. 6. On the contrary, as shown in panel (b), l-mixing
collisions show a narrower distribution of angular momentum
states at higher collision energies, in correspondence with
the dominant role of dipole allowed transitions. Whereas, for
lower collision energies, the dipole selection rule does not
dominate the dynamics, leading to a wider distribution of the
final angular momentum states [46].

So far we have assumed that the interaction between the
Rydberg electron and the ions (core of the Rydberg atom
and ion) is dominated by a pseudopotential including effects
of core valence electrons. However, the same scenario can
be studied assuming a pure Coulomb interaction [33,42,48].
To elucidate the role of the pseudopotential we simulate
low-energy Li∗-Li+ collisions assuming a pure Coulomb in-
teraction and a pseudopotential and present the obtained
charge-exchange cross section as a function of the collision
energy in Fig. 9. In this figure, it is noted that pure Coulomb
interaction (circles) leads to lower charge-exchange cross sec-
tions than when a pseudopotential (squares) is employed. This
discrepancy can be exploited to elucidate the effects of the
pseudopotential directly on scattering observables. In partic-
ular, studying the Rydberg-ion charge-exchange process at
low-energy collisions would be possible to identify and pos-
sibly isolate the effects of the pseudopotential by comparing
the measured charge-exchange cross section with the classical
calculations presented in this work.

Finally, we study nonresonant charge-exchange processes.
In particular, we simulate Li∗-Cs+ collisions for Coulomb
potential and for the pseudopotential for which we adjust the
parameters of Eq. (10) for the electron-Cs+ interaction. The
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obtained cross sections are shown in Fig. 9 for (triangles)
Coulomb and (diamonds) pseudopotential. The first observ-
able effect is that the nonresonant charge-exchange cross
section is systematically lower than the resonant one, as we
expected. In particular, the difference is more palpable at
low-energy collisions Ecol � 10 K. This effect can be under-
stood by considering that in the case of the pseudopotential,
the interaction of e−-Li+ and e−-Cs+ is different, prohibit-
ing resonant charge exchange. However, if one assumes
a pure Coulomb interaction, the resonant and nonresonant
charge-exchange cross section agree with each other since
the electron-ion interaction is the same, and only the reduced
mass varies. The second observation is to realize that for
collision energies �100 K, the difference between resonant
and nonresonant charge exchange vanishes in agreement with
the results of Fig. 4.

V. SUMMARY AND CONCLUSIONS

A study on cold Rydberg-ion collisions has been presented.
We have identified the parameter space for the quantum
regime, Langevin regime, and classical exchange regime,
which reveals classical models’ applicability for the lowest
energies in Rydberg-ion collisions. For cold collisions, our
numerical results show a strong effect of the core repulsion
on the charge-exchange cross section at collision energies
�100 K. At similar collision energies, the electron-ion inter-
action model becomes essential, and we see differences in the
charge-exchange cross section using a pseudopotential or a
Coulomb potential. Furthermore, we have found a deviation
from the geometric scaling law predicted by the barrierless

model for collisions at energies �5000 K. In addition, we
have computed l-mixing cross sections in an energetic regime
never explored before. As a result, we have been able to extend
previous estimations on the cross section’s dependence with
the principal quantum number and the distribution of the final
angular momentum states of the Rydberg atom into the cold
regime.

Our results indicate that it is possible to fit pseudopotentials
by comparing experimental resonant charge-exchange cross-
section measurements with the classical model presented here.
In particular, it will be interesting to study cold Rydberg-
ion collisions experimentally to understand the electron-core
interaction potential. In particular, ions in higher groups of
the periodic table could deepen our description of atomic
potentials beyond alkalies. A particular interest may be found
in alkaline-earth-metal ions, abundant in cold atom-ion hybrid
experiments. While atomic potentials can be conveniently
obtained using polarizability measurements, low-energy Ry-
dberg atom-ion collisions might be a supportive approach to
access atomic potentials.
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