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Abstract

We solve the quantum-mechanical antiferromagnetic Heisenberg model with spins posi-
tioned on vertices of the truncated icosahedron using the density-matrix renormalization
group (DMRG). This describes magnetic properties of the undoped C60 fullerene at half
filling in the limit of strong on-site interaction U. We calculate the ground state and cor-
relation functions for all possible distances, the lowest singlet and triplet excited states,
as well as thermodynamic properties, namely the specific heat and spin susceptibility.
We find that unlike smaller C20 or C32 that are solvable by exact diagonalization, the
lowest excited state is a triplet rather than a singlet, indicating a reduced frustration
due to the presence of many hexagon faces and the separation of the pentagonal faces,
similar to what is found for the truncated tetrahedron. This implies that frustration may
be tuneable within the fullerenes by changing their size. The spin-spin correlations are
much stronger along the hexagon bonds and exponentially decrease with distance, so
that the molecule is large enough not to be correlated across its whole extent. The spe-
cific heat shows a high-temperature peak and a low-temperature shoulder reminiscent
of the kagomé lattice, while the spin susceptibility shows a single broad peak and is very
close to the one of C20.
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1 Introduction

The C60 buckminsterfullerene molecule, where 60 carbon atoms sit on the vertices of a trun-
cated icosahedron, is a prominent molecule with a wealth of chemical and nanotechnological
applications [1–3], and is also of interest in terms of correlated-electron physics. A lattice of
C60 molecules becomes superconducting when doped with alkali metals [4–7], with a critical
temperature of around 40K. This is unusually high for a typical phononic mechanism, so that
an electronic mechanism that results from an on-site Hubbard interaction U is under discus-
sion as well [8, 9]. At half filling (no doping), a strong U is well-known to cause electron
localization via the Mott mechanism and the resulting low-energy properties are described by
the antiferromagnetic spin-1/2 Heisenberg model

H = J
∑

〈i j〉

Si · S j , (1)

where Si is the spin operator at site i, J = 4t2/U > 0 is the exchange integral and t is the
hopping integral between nearest-neighbour sites i and j.

However, the prototypical Mott systems are transition metal oxides with strong Coulomb
repulsion in a narrow d-band, while in carbon atoms, we are dealing with a valence p-band.
As a consequence, while the nearest-neighbour hopping parameters are estimated around 2−3
eV, the Hubbard repulsion U is estimated to be around 9 eV [10–12], which would place the
system into the intermediate-coupling range. Still, since solving the full Hubbard model for 60
orbitals on a 2D-like geometry is a hard problem, we may attempt to understand the Heisen-
berg approximation first. Other authors have argued that there should only be a quantitative
difference [12], since the system is finite. The Hartree-Fock solution shows a phase transition
to magnetic order at Uc/t ≈ 2.6 [13]. This seems to indicate that local moments may be
already well-formed for a fairly small U . As soon as they are formed, mean field is biased to-
wards an ordered solution, but we expect the exact ground state of this finite system to always
be a singlet.

Apart from trying to approximate the Hubbard model, a spin model on a fullerene-type
geometry is interesting on its own, being connected to the problem of frustrated spin systems.
These arise on non-bipartite geometries like the triangular, kagomé or pyrochlore lattice, with
building blocks of three-site clusters that cannot accommodate antiferromagnetic bonds in a
commensurate fashion. This tends to induce spin-liquid states that are disordered and non-
trivial [14–21]. In fullerenes, we instead find 12 pentagon clusters that are also frustrated due
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to the odd amount of sites. This has no strict correspondence in the 2D plane, since a tiling by
regular pentagons is not possible. However, a Cairo tiling is possible by irregular pentagons,
resulting in two bonds J and J ′ [22]. While non-bipartite, this lattice can be divided into two
inequivalent sublattices, tends to show ferrimagnetic order, and is thus quite different from
our case [22].

A frustrated spin system is still quite challenging for a theoretical description. For example,
the infamous sign problem [23] inhibits an efficient simulation with the Quantum Monte Carlo
technique. However, tensor-network approaches do not suffer from it. C60 is in particular well-
suited to a solution using the density-matrix renormalization group (DMRG) [24] due to its
finite and very manageable amount of sites.

The truncated icosahedron is part of the icosahedral group Ih. To its members belong two
of the Platonic solids, the icosahedron with 12 sites and the dodecahedron with 20 sites (which
is also the smallest fullerene C20) [25]. The former has only triangular plaquettes, the latter
only pentagonal ones, and both are small enough to be solved by full diagonalization if spatial
symmetries are exploited to reduce the Hilbert space size [26]. Ih also has 5 members within
the Archimedean solids, of which the icosidodecahedron with 30 sites (triangular and pentago-
nal faces) has been the subject of particularly intense study [27–31], since this is the geometry
of the magnetic atoms in the Keplerate molecules {Mo72V30}, {Mo72Cr30} and {Mo72Fe30},
with S = 1/2,3/2 and 5/2 respectively [32–34]. It is solvable by exact diagonalization for
S = 1/2 [27]. Small fullerenes up to C32 can also be solved by exact diagonalization [35,36],
but have different symmetries. Finally, the truncated tetrahedron is a 12-vertex Archimedean
solid, which is not a member of Ih, but has a geometry that is similar to C60 [13,37,38], con-
sisting out of four triangles separated by hexagons. For this reason, it is often also counted as
a fullerene C12. All these smaller molecules offer a very useful comparison and benchmark.

Each fullerene Cn contains n/2− 10 hexagons and 12 pentagons [39], so that for n ≥ 44
the number of hexagon faces starts to dominate. For n→∞, we can expect that the fullerene
properties approach those of a hexagonal lattice. But without undertaking the full calculation,
it is impossible to say where exactly the crossover happens or what properties might be retained
in the large-n limit. In fact, the small fullerenes up to C32 do not behave monotonously [35]:
For example, the ground-state energy for C26 and C28 is larger than for C20 and the first excited
state for C28 is a triplet instead of a singlet.

In this paper, we present the solution of the Heisenberg model on the C60 geometry. Previ-
ous works treated the problem classically [12] or approximately [23], while our calculation is
very precise for the ground state. Jiang and Kivelson solved the t− J model on C60 [8], which
should coincide with our result at half filling. However, they discussed very different questions;
and we further present results for the lowest excited states as well as thermodynamics.

Due to two dissimilar types of nearest-neighbour bonds, the corresponding hopping inte-
grals may be slightly different, t1 ≈ 1.2 t2, leading to different exchange couplings J1 6= J2
[12,40]. For simplicity, we ignore this fact and use a homogeneous J = J1 = J2 for all bonds.
The correlations along the bonds turn out to be nonetheless very different as a consequence
of the geometry, as will be seen below. We take J = 1 as the energy scale, giving all energies
in units of J and all temperatures in units of J/kB, where kB is the Boltzmann constant.

2 Ground state and correlation functions

2.1 Technical notes

Our code incorporates the spin-SU(2) symmetry of the model following Ref. [41], which re-
duces both the bond dimension of the matrix-product state (MPS) representation of the wave-
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function and the matrix-product operator (MPO) representation of the Hamiltonian. The latter
can be further reduced using the lossless compression algorithm of Ref. [42]. It gives only a
small benefit of 8% reduction for H itself, with the resulting maximal MPO bond dimension
of χ (H) = 35× 32 (from 38× 35). The benefit for H2 is larger, yielding χ

�

H2
�

= 564× 468
(reduced from 1444× 1225, hence by 55%). With these optimizations, the ground state can
be found quite efficiently and we can take the variance per site

∆E2/L =
�


H2
�

− E2
�

/L, (2)

as a global error measure that is immune to local minima.
Since DMRG requires a linear chain of sites, we must map the C60 vertices onto it, which

creates long-range spin-spin interactions across it. The important factors to consider are: 1.
the maximal hopping range (the bandwidth of the corresponding graph), 2. the average hop-
ping range, 3. the fact that DMRG is particularly good for nearest-neighbour bonds on the
chain, so that a representation where the sites i and i + 1 are connected should be beneficial
(this will also be practical for finite-temperature calculations further below). Our mapping
is an infalling spiral on the Schlegel diagram, such that the first and last site have maximal
distance, and is shown in Fig. 4. We have also tried out the mapping of Jiang and Kivel-
son [8] and a graph compression using the Cuthill-McKee algorithm [43]; and find similar
MPO compression and ground state convergence results. A random permutation of the sites,
on the other hand, leads to a representation with a large MPO bond dimension which the
compression algorithm is unable to decrease, and the convergence becomes much worse. For
a benchmark with a system solvable by exact diagonalization, we compare a similar spiral
mapping for the icosidodecahedron with the mapping used by Exler and Schnack [29,44] and
find that both approaches come within 99.97% of the exact S = 1/2 ground-state energy [22]
at a bond dimension of χSU(2) = 500. Thus we conclude that as long as the numbering of
the sites is reasonable and more or less minimizes the hopping distances, the dependence on
the numbering itself is small and an inaccuracy that results from a suboptimal numbering can
simply be compensated by moderately increasing the bond dimension. This is in line with the
conclusions of Ummethum, Schnack and Läuchli [29]. Finally, we note that by checking the
energy variance (Eq. 2) and the distribution of spin-spin correlations at a given distance (see
Sec. 2.3), we have good independent error measures.

Interestingly, we find that the number of required subspaces per site in the DMRG sim-
ulation is similar to the Heisenberg chain (around seven), but each subspace requires large
matrices (with 3500 ∼ 4000 rows/columns, see Tab. 1). This makes the simulation very
memory-intensive, requiring several hundred GB of RAM for good precision.

2.2 Energy

The ground state lies in the singlet sector with Stot =
∑

i 〈Si〉 = 0 (see Tab. 1). The en-
ergy per spin is found to be E0/L = −0.51886. This is lower than the previous result of
E0/L = −0.50798 obtained by a spin-wave calculation on top of the classical ground state [23].

Looking at the change in ground-state energy with molecule size, we may compare with the
truncated tetrahedron C12 (E0/L = −0.475076), C20 (E0/L = −0.486109) and C32 (E0/L =
−0.4980 [35]), and recognize that the value indeed slowly approaches the one for the hexago-
nal lattice E0/L ≈ −0.55 [45]. On the other hand, it is quite close to the much smaller icosahe-
dron (E0/L = −0.515657) which has the same icosahedral symmetry, but only contains trian-
gular plaquettes. Finally, the icosidodecahedron has the highest energy E0/L = −0.441141 [22],
probably due to the strong frustration.
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Table 1: Properties of the ground state and the lowest eigenstates: total energy E,
energy density E/L, the gap to the ground state, the total spin Stot, the full bond
dimension χSU(2) with spin-SU(2) symmetry, the maximal bond dimension of the
largest subspace χsub,SU(2), the effective bond dimension χeff that would be required
when not exploiting the symmetry, the energy variance per site (Eq. 2), and the
overlap with the ground state.

E E/L gap Stot χSU(2) χsub,SU(2) χeff ∆E2/L GS overlap

-31.131(7) -0.51886(1) - 0 10000 3966 43146 8 · 10−5 -
-30.775(6) -0.51292(7) 0.356(0) 1 10000 3770 44302 1.9 · 10−4 0
-30.440(9) -0.50734(9) 0.690(8) 0 10000 3582 46846 1.6 · 10−4 ∼ 10−8

-30.3(2) -0.505(3) 0.8(2) 2 5000 1855 24546 1.4 · 10−3 0

2.3 Correlation functions

The truncated icosahedron is an Archimedean solid, so that all of its sites (vertices) are equiv-
alent; but since two hexagons and one pentagon come together at a vertex, there are two
different nearest-neighbour bonds: one that is shared between the two hexagons and two
that run between a pentagon and a hexagon (with the total count of 30 and 60, respectively,
see Fig. 3 and Fig. 4). We shall call them “hexagon bonds” (H-bonds) and “pentagon bonds”
(P-bonds). The wavefunction must respect this geometry, but as the mapping to a chain intro-
duces a bias, this only happens for a sufficiently large bond dimension. Thus, we can average
over the respective bonds and take the resulting distribution width as a measure of error, with
a δ-distribution expected in the limit of χ →∞. Figure 1 shows the result for distances up to
d = 4, from which we see that for the given bond dimension, the distributions have already
become sufficiently sharp.

Similarly, we have up to five distinct types of bonds for the remaining distances d = 2−9. In
the numerics, they can be distinguished as distinct peaks in the distribution of the correlations
〈S · Sd〉 (Figs. 1 and 2). Up to d = 4 we classify them by a sequence of H- and P-bonds. For
example, at d = 2 we have two PP-bonds by going along the P-bonds twice, ending up in the
same-face pentagon of a given vertex; and four HP-bonds, by going along H and P (in any
order), ending up in the same-face hexagon (see Fig. 3).

A striking pattern is that the path that can be labelled by alternating H- and P-bonds has
the strongest correlations at each d. Such a path is possible up to d = 7; and up to d = 3,
it ends in the same-face hexagon. Hence, it seems that since the hexagons are not frus-
trated, putting a lot of correlation into these bonds can lower the energy more effectively.
In fact, the sequence of intrahexagon values is closely matched by the infinite Heisenberg
chain [46] or the L = 6 Heisenberg ring. On the other hand, the bonds involving pentagons
are closely matched by the values of the dodecahedron. Figure 5 shows a comparison. As a
consequence of this, the ground-state energy can actually be naively approximated by taking
E0 ≈ 30 〈S · Sd=1〉 [chain] + 60 〈S · Sd=1〉 [dodecahedron] ≈ −32.739, coming within 95% of
the precise DMRG value.

Finally, we also note that for d = 5, 6,7 the correlations acquire mixed signs and for d = 8, 9
the staggered antiferromagnetic order is flipped, i.e. we have 〈S · Sd=8〉< 0 and




S · Sd=9

�

> 0.
Overall, the pattern is very similar to the truncated tetrahedron, where the maximal dis-

tance is d = 3, the stronger correlations are also found for the same-face hexagon bonds; and
a mixed sign is acquired for d = 3 (see Fig. 5).

Looking at the decay of the correlations with distance, we find ξ∼ 1.4 when an exponential
fit
�

� 〈S · Sd〉
�

�∼ exp (−d/ξ) is applied to the maximal absolute values and ξ∼ 1.2 if it is applied
to bond-averaged values (see inset of Fig. 5) Previously, ξ = 3 ∼ 4 was proposed [23] based
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Table 2: Comparison of the singlet and triplet gaps for various polyhedra with L
vertices. The smaller value is underlined.

polyhedron L singlet gap triplet gap

trunc. tetrahedron (C12) 12 0.896 0.688
icosahedron 12 0.533 0.900
dodecahedron (C20) 20 0.316 0.514
icosidodecahedron 30 0.047 0.218
trunc. icosahedron (C60) 60 0.691 0.356

on a strong-coupling Quantum Monte Carlo study of the single-band Hubbard model. The
truncated tetrahedron and the dodecahedron have larger excitation gaps, but the maximum
possible distance is d = 3 and d = 5, respectively, so that they are correlated over practically
their whole extent (see Fig. 5). The icosidodecahedron has a small gap, but the behaviour of
the correlations is very similar to the dodecahedron. An exponential fit does not give good
results for these small molecules. For C60, the smallest gap is actually about as large as for the
dodecahedron, but the maximal distance is d = 9 and the drop-off across the whole molecule
is larger. In this sense, the C60 spin state is disordered.

The fullerenes Cn have a kind of thermodynamic limit n → ∞, where we expect that
the magnetic properties should approach the properties of the hexagonal lattice with Néel or-
der [47], which should be detectable by large spin-spin correlations in a finite system. Clearly,
we are still far away from that limit: The pentagons disrupt the bipartiteness and lead to a
disordered state instead.

3 Lowest triplet and singlet excitations

By fixing Stot = 1, we can compute the lowest excited state in the triplet sector and look
at its properties as well. We limit ourselves to the expectation value of the local spin 〈Si〉
and the nearest-neighbour correlation functions. The values of 〈Si〉 are shown in Fig. 6. We
observe that a good part of the angular momentum (about 60%) localizes on a 20-site ring
along a “meridian” of the molecule. As this breaks the spatial symmetry, we conclude that the
lowest Stot = 1 state is degenerate beyond the three components of the spin projection, i.e.
has a multiplicity > 1 of its irreducible point group representation. The symmetry should be
restored when averaging over the whole degenerate subspace.

The icosahedral group has the irreducible representations A (1), T (3), F (4) and H
(5) [48], where the brackets indicate the multiplicity. The members of the icosahedral group
that are solvable by exact diagonalization behave as follows: The lowest triplets of the icosa-
hedron transform as T2g , T1u and T2u; of the dodecahedron as T2g , Fu, T2u [26]; and of the
icosidodecahedron as Ag , Hu, Hg [22]. Hence, while the lowest triplet is 3-fold degenerate for
the former two, it is nondegenerate for the latter. Our results indicate that the lowest triplet
of C60 is again degenerate.

Finding out its irreducible representation requires either to work within a symmetry-adapted
basis or to construct the whole multiplet of excited states. Since the degeneracy is at least 3-
fold, we would need at least the lowest four eigenstates in the S = 1 sector to a precision that
is smaller than the gap to the next triplet state. Since the degeneracy of the excited states is
of no crucial physical importance, we do not attempt this procedure in our work.
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d = 2 HP/PH, 0.15461±8.2e-05
d = 3 PHP, -0.06194±8e-05
d = 3 HPH, -0.15425±0.000113
d = 3 PPH/HPP, -0.04955±0.000104
d = 4 PPHP/PHPP, 0.00124±5.2e-05
d = 4 HPPH, 0.03744±8.5e-05
d = 4 PHPH/HPHP, 0.05621±0.0001

Figure 1: Histogram of the spin-spin correlation function 〈S · Sd〉 in the ground state
for distances d = 1 to 4 and the various types of C60 bonds. For the meaning of
the labels, see Fig. 3 and the explanation in the text. The standard deviation of the
distribution is taken as the error measure in the legend. The binsize is 0.003.
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d = 6 , -0.02312±0.000132
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d = 7 , -0.02437±0.000178
d = 7 , 0.00976±8.5e-05
d = 7 , 0.02361±0.000169
d = 8 , -0.02673±0.000199
d = 8 , -0.02343±0.000177
d = 9 , 0.02645±0.000198

Figure 2: Histogram of the spin-spin correlation function 〈S · Sd〉 in the ground state
for distances d = 5 to 9 and the various types of C60 bonds. The standard deviation
of the distribution is taken as the error measure in the legend. The binsize is 0.0005.
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Figure 3: Neighbourhood of a given site (black circle) showing the various types of
bonds (cf. Fig. 1).
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Figure 4: Visualization of the spin-spin correlation function 〈S · Sd〉 in the ground
state for distances d = 1,2, 3,4 in real space on the planar Schlegel projection of C60.
The plot for d = 1 also shows the chosen enumeration of the sites.

We find that the symmetry-breaking 20-site ring is remarkably robust in our DMRG simula-
tion and arises from different random starting states and for different site enumerations. In a
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〈S
·S

d
〉

+0.0003

C12 strong

C12 weak

dodecahedron

icosidodecahedron
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C60 others

Heisenberg chain L =∞
Heisenberg ring L = 6
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0.0

0.2

0.4 C60 maximal values

C60 bond-averaged

Figure 5: Comparison of the spin-spin correlation function between different ge-
ometries: analytical values for the infinite Heisenberg chain [46], numerically exact
values for the L = 6 Heisenberg ring, C12 (truncated tetrahedron) and the dodec-
ahedron [26]. The icosidodecahedron values are according to our own DMRG cal-
culation. The C60 alternating HP bonds are formed by alternating jumps along H
and P (cf. Fig. 3), starting with H; and link two sites within a hexagon up to d = 3.
Note that the icosidodecahedron has two inequivalent bonds for d = 2,3, 4, but the
correlation along the second-type bond is very small and is omitted. The weak bond
for C12 at d = 3 is +0.0003 and thus barely visible. The inset shows an exponential
fit for the distance dependence of the C60 spin-spin correlations, either by taking the
maximal values for each d or by taking bond-averaged values.

realistic setting, we expect that the spatial symmetry would in any case be at least slightly bro-
ken by the Jahn-Teller effect, so that such a state may split from the degenerate subspace. In
fact, for doped C60, one observes the same preference for a localization of the excess electron
along a 20-site ring [49], whereas in our case this happens to a doped spin (excess angular
momentum).

A striking property of Heisenberg spins on smaller icosahedral molecules [22,26], as well
as for smaller fullerene geometries [35], is that the first excited state is not a triplet, but
rather a singlet, a signature of frustration connected to spin-liquid behaviour [14,50–52]. The
icosidodecahedron has in fact a large amount of singlet states below the first triplet [22]. On
the other hand, for the truncated tetrahedron, the first excited state is a triplet for S = 1/2.

We therefore calculate the first excited state in the singlet sector (Stot = 0) as the lowest
state of the Hamiltonian H̃ = H + Ep

�

�E0

�


E0

�

� with a sufficiently large energy penalty Ep > 0
that must be larger than the neutral gap. The result is shown in Tab. 1. The neutral gap
∆S=0 = E1 (Stot = 0)− E0 (Stot=0) = 0.691 turns out to be significantly larger than the singlet-
triplet gap ∆S=1 = E0 (Stot = 1) − E0 (Stot=0) = 0.356 (cf. the other polyhedra in Tab. 2).
We attribute this behaviour to the reduced frustration of the C60 molecule due to the large
amount of hexagonal faces. Furthermore, we note that all the pentagonal faces are completely
separated by the hexagons, so that regions with adjacent frustrated pentagons that are present
in smaller fullerenes are broken up in C60.
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d = 1

0.50 0.45 0.40 0.35 0.30 0.25 0.000 0.008 0.016 0.024 0.032

Figure 6: Left: Visualization of the nearest-neighbour spin-spin correlations 〈S · Sd=1〉
in the lowest triplet state, Stot = 1. The 20-site ring of altered correlations is high-
lighted with arrows. Right: Visualization of the local spin 〈Si〉 in the same state.

Looking at the spin-spin correlations in the Stot = 0 excited state in Fig. 7, we note that
the singlet excitation is also characterized by a 20-site ring with altered correlations, albeit
differently positioned. Once again, this indicates degeneracy and we can compare to the small
molecules. Starting from the ground state, the lowest singlets of the icosahedron and dodec-
ahedron both transform as Au, Hg , Ag [26]; and of the icosidodecahedron as Ag , Au, T1u [22].
The former two show 5-fold degenerate excited singlets, while the latter shows a nondegen-
erate one; and C60 is once again more similar to the smaller molecules.

4 Thermodynamics

4.1 Technical notes

We incorporate finite temperatures into the DMRG code using standard techniques [53]. By
doubling the degrees of freedom, we go from a description using the wavefunction to a de-
scription using the density operator. This density operator is again purified into a state vector,
but all operators act on the physical sites only, so that the additional “ancilla” sites are automat-
ically traced over when taking expectation values using the state

�

�β
�

= exp (−βH/2)
�

�β = 0
�

.
The entanglement entropy between the physical sites and the ancillas becomes equal to the
thermal entropy. Finally, we can initiate the state at infinite temperature β = 1/T = 0 by
taking the ground state of the entangler Hamiltonian

Hβ=0 =
∑

i

Si · Sa(i), (3)

where a (i) indicates the ancilla site attached to the physical site i.
We then apply a propagation in β using the TDVP (time-dependent variational principle)

algorithm [54]with a step size of dβ = 0.1. At each time step we have the choice of whether to
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d = 1

0.50 0.45 0.40 0.35 0.30 0.25

Figure 7: Visualization of the nearest-neighbour spin-spin correlations 〈S · Sd=1〉 in
the first excited singlet state, Stot = 0. The 20-site ring of altered correlations in the
lower part is highlighted with arrows.

apply the two-site algorithm which allows to dynamically grow the bond dimension from the
initial product state; or the one-site algorithm which does not increase the bond dimension,
but is much faster. Since an upper limit must be in any case set on the bond dimension in
the calculations, it is no longer useful to use the two-site algorithm once it saturates. At this
point we switch to the faster one-site algorithm (typically around β = 6− 10). There is also
the technical question of whether to incorporate the ancillas as separate sites (at the cost of
longer-ranged hopping) or as “super-sites” [53]. We take the super-site approach for better
accuracy.

The TDVP algorithm is known to get stuck in a product state without being able to build up
the initial entanglement [21]. We find that this happens whenever the sites i and i+1 are not
connected by a nearest-neighbour bond. Since we have chosen super-sites and a numbering
where i and i + 1 are always connected (see Sec. 2.1), this problem does not appear in our
computations.

To strike a balance between accuracy and running time, we can limit the bond dimension
per subspace to χsub,SU(2) ∼ 300 − 600, rather than limiting the total bond dimension. This
ensures that the largest matrix is at most χsub,SU(2)×χsub,SU(2) and the duration of the remaining
propagation can be estimated. The downside is that the resulting χSU(2) at each site does not
in general correspond to the χSU(2) lowest singular values and has to be seen as an order-of-
magnitude estimate. A benchmark of this approach for the numerically solvable C20 is given in
Appendix A. Table 3 shows the parameters that were used in the thermodynamic calculations.

The relevant quantities are the partition function

Zβ =



β
�

�β
�

, (4)

the internal energy
E (β) = 〈H〉β = Z−1

β




β
�

�H
�

�β
�

, (5)

the specific heat per site (or per spin):

c (T ) =
C (T )

L
=

1
L
∂ E
∂ T
=

1
L
β2
� 


H2
�

β
− 〈H〉2β

�

, (6)
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Table 3: Parameters of the thermodynamic calculations. For an explanation of the
bond dimensions, see Tab. 1. The underlined values were fixed.

χsub,SU(2) χSU(2) χeff

300 ∼ 2000 ∼ 16000
400 ∼ 3000 ∼ 20000
600 ∼ 4700 ∼ 36700
1163 3000 ∼ 13600
1507 4000 ∼ 17500

and the zero-field uniform magnetic susceptibility

χ =
1
L

lim
B→0
∇B ·M=

1
L
β
� 


S2
�

β
− 〈S〉2β

�

, (7)

where M is the magnetization at a given external field strength B and the Hamiltonian is
changed to H → H −B · S, with the total spin S:

M= 〈S〉B,β = Z−1
B,β




β = 0
�

�S e−β(H−B·S)
�

�β = 0
�

. (8)

While the specific heat could be exactly calculated using the squared Hamiltonian average



H2
�

β
, in practice this becomes quite expensive at every β-step, so we use a numerical differ-

entiation of E (β) with spline interpolation instead.

4.2 Specific heat

The result for c (T ) is shown in Fig. 8 and is compared to smaller molecules that exhibit a
two-peak structure: For the truncated tetrahedron they are so close to each other that they
cannot be resolved, while being distinct for the dodecahedron. For C60, we find instead a high-
T peak (around T ∼ 0.58) and low-T shoulder (around T ∼ 0.15− 0.19). The high-T peak
can be attributed to the energy scale given by J = 1 and is a general feature of Heisenberg
chains [53, 55, 56]. The low-T peak can be attributed to the second scale of the energy gap.
This can also be compared to the specific heat of the icosidodecahedron, which has three
peaks [28, 30, 31]. The middle peak points to the presence of another gap in the region of
low-energy states which is absent in the other systems.

We recall that for a two-level system given by the Hamiltonian H = diag (0,∆), the specific
heat has a Schottky peak at T/∆ ≈ 0.417. In other words, a maximum appears when the
temperature is tuned to the middle of the gap ∆. This is roughly consistent with the gap
values given in Tab. 1. The fact that we have a shoulder rather than a clear peak implies
that several states of close energy contribute to c (T ), i.e. a comparatively high density of
states close to the first excited state. In fact, we can see that as the bond dimension in the
DMRG calculation is increased, we are able to better describe the low-lying states, leading to
a flattening of a very shallow peak to a shoulder. Furthermore, we can say that the states in
this vicinity must be singlets or triplets, since the quintet gap lies even higher (see Tab. 1).

The icosidodecahedron has been called “kagomé on a sphere” [27], since both geometries
have corner-sharing triangles, and several attempts have been made to relate the two systems
to each other [30,31]. The low-energy properties of the kagomé lattice are not entirely clear,
however: Some results point to a gapped state with a singlet-triplet gap of 0.13 and a very
small neutral gap of ∼ 0.05 [18, 19, 57], others to a gapless phase [58–62]. In the case of
a molecule, a fair comparison should in any case be to a finite kagomé plaquette that has a
finite-size gap.
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Figure 8: Specific heat of C60 for different bond dimensions (Eq. 6). The grey ver-
tical lines indicate the triplet, singlet and quintet gaps with respect to the ground
state. The dotted vertical line indicates 0.417 times the lowest gap (triplet). For the
parameters, compare Tab. 3.

The low-temperature behaviour of the specific heat is consequently also very difficult to
establish. What is well-established is the position of the main peak at T ≈ 0.67 [16, 63, 64]
and a shoulder below it at T ∼ 0.1− 0.2. At a very small T ∼ 0.01 another peak is found in a
finite system which moves up to merge with the shoulder as the system size is increased [64],
while tensor-network calculations directly in the thermodynamic limit show no such peak in
the first place [63]. The shoulder below the main peak is remarkably similar to the shape
that we obtain for C60. We also note that the main peak lies below T = 1 for both C60 and
the kagomé lattice, while it is above T = 1 for the icosidodecahedron [28]. Since the specific
heat is a function of eigenvalues only, we may wonder if the geometry of six triangles around
a hexagon of the kagomé lattice leads to a similar eigenvalue distribution as for C60 (which
has three pentagons around each hexagon) for singlet and triplet excitations that contribute
around T ∼ 0.1− 0.2. On the other hand, the large number of singlets close to the kagomé
ground state [65] is clearly better matched by the strongly frustrated icosidodecahedron.

4.3 Spin susceptibilty

Figure 9 shows the result for the susceptibility χ (T ). It can be interpreted in a similar way, the
difference being that singlet states do not contribute anymore. Moreover, it is easy to show
that for high temperatures, χ (T ) follows a universal Curie law χ (T ) ∼ 3/4 · T−1, while for
T → 0 we expect χ → 0, since the ground state is a spin singlet and not susceptible to small
fields. In between, χ (T ) should have at least one peak. We observe that it is positioned at
a higher temperature for the truncated tetrahedron due to the larger singlet-triplet gap (see
Tab. 2). The dodecahedron and C60, on the other hand, are remarkably close, though χ (T )
tends to be slightly larger for C60 and does not go to zero as fast for very small temperatures,
which we ascribe to the smaller singlet-triplet gap.
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Figure 9: Zero-field uniform magnetic susceptibility C60 (Eq. 7) for different bond
dimensions. Parameters as in Fig. 8.

5 Conclusion

We have presented a solution of the Heisenberg model on the C60 fullerene geometry. The
spin-spin correlations in the ground state can be determined very accurately using DMRG and
indicate that the C60 molecule is large enough not to be fully correlated across its full ex-
tent. The strongest correlations are found along an alternating path of hexagon and pentagon
bonds, a consequence of the fact that the hexagons are not frustrated. Furthermore, for large
distances, we find a deviation from the staggered sign pattern of an antiferromagnet.

Most strikingly (and unlike smaller fullerenes), the first excited state is a triplet and not a
singlet, indicating weaker frustration. This can be attributed to the large number of unfrus-
trated hexagon faces, suggesting that frustration is tuneable in small fullerenes as a function of
their size. Still, we find that the ground state of C60 is disordered with a very short correlation
length of ξ≈ 1.2∼ 1.4.

Thus, taking the point of view of the pentagons we can say that the frustration is signifi-
cantly lowered because all the pentagonal faces are separated from each other by hexagons.
On the other hand, taking the point of view of the hexagons we can say that a Néel-like state
is prevented by the perturbing pentagonal faces, and one would need larger fullerenes to ap-
proach the honeycomb lattice limit.

In terms of thermodynamics, we find a two-peak structure of the specific heat, similar
to what is found for the dodecahedron or the kagomé lattice down to T ∼ 0.1 − 0.2. The
low-temperature feature is very shallow for C60, forming a shoulder, which indicates relatively
densely lying singlet and triplet excited states. The spin susceptibility shows a broad peak very
similar to the dodecahedron, but approaches zero less rapidly for T → 0.

All the properties of C60 are quite different from the icosidodecahedron, which is highly
frustrated, with many low-energy singlet states, a non-degenerate first excited singlet and

14

https://scipost.org
https://scipost.org/SciPostPhys.10.4.087


SciPost Phys. 10, 087 (2021)

triplet, as well as a three-peak structure in the specific heat. On the other hand, we observe
much similarity to the truncated tetrahedron: Most notably, the lowest excited state is a triplet
and the spin-spin correlations follow the same pattern of being stronger for the same-face
hexagon and acquiring a mixed sign for large distances.

We have not attempted to find out the spatial symmetry transformations of the lowest
eigenstates, but can conclude that the ground state is non-degenerate, while the first excited
singlet and triplet are degenerate, based on the breaking of spatial symmetries or its absence.
Another open question is whether the frustrated pentagons can still measurably affect any
properties of Cn in the large-n limit. DMRG is well equipped to answer these questions and
solve the Heisenberg model for even larger n, or for fullerene dimers [66]. Another system
that is well-suited for DMRG is the encapsulation of magnetic rare-earth atoms by fullerenes
or fullerene-like molecules [67–69], inasfar these can be simulated by the Heisenberg model.

We also attempted to solve the full Hubbard model on the C60 geometry, but find that
the variance per site is several orders of magnitude higher, so that one would also require an
even higher bond dimension at a higher numerical complexity of twice the local Hilbert space
size, while probably still tolerating larger errors. An improvement that can bring us closer
to the Hubbard case at half filling could in principle be achieved by including higher orders
in 1/U . Up to O

�

U−3
�

, we have J = 4t2/U − 16t4/U3 and a next-nearest-neighbour term
J ′ = 4t4/U3 [70–72] which may again increase frustration. At O

�

U−5
�

a biquadratic term is
induced whose inclusion would be quite difficult.

Another intriguing question is how the properties of the undoped C60 are related to the
results of Jiang and Kivelson [8] that show an attractive pair binding in the doped system. Such
pair binding is also present for the truncated tetrahedron [37,73], is weak for the cube [37], but
absent for the dodecahedron [73]. This means that one has to study excitations that result from
removing electrons within the t-J model, rather than flipping spins. One can hope to relate
the attractive pair binding to a geometrical feature like the weak frustration (which C60 and
the truncated tetrahedron have in common) and perhaps establish a picture that is analogous
to the famous relation between resonating valence bond states and superconductivity [74].
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A Specific heat of C20

As a benchmark of the thermal DMRG algorithm, we calculate the specific heat of the do-
decahedron and show the results in Fig. 10. While the ground state offers no challenge for
DMRG and converges in a matter of seconds, the β-propagation is more demanding and we
see that a high bond dimension is required to get the precise location and height of the low-
temperature peak. However, even smaller bond dimensions are able to qualitatively capture
the general two-peak structure. The implication for C60 is that while we cannot claim that the
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Figure 10: Specific heat of the dodecahedron for different bond dimensions. The
bond dimension per subspace was limited to χsub,SU(2) = 300, 400,500, 600,800.
The grey vertical lines indicate the first 1000 eigenenergies relative to the ground
state, En − E0. The dotted vertical lines indicate the peak positions from Ref. [26].
To obtain the exact result, we used the Kernel Polynomial Method [75] with 1000
lowest eigenstates, 1000 Chebyshev moments and 1000 random vectors.

finite-temperature results are numerically exact, since a much higher bond dimension may be
required to achieve such precision, we expect that the qualitative behaviour should be captured
as well.
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