
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Dynamic importance of network nodes is poorly predicted by static structural
features

van Elteren, C.; Quax, R.; Sloot, P.
DOI
10.1016/j.physa.2022.126889
Publication date
2022
Document Version
Final published version
Published in
Physica A : Statistical Mechanics and its Applications
License
CC BY

Link to publication

Citation for published version (APA):
van Elteren, C., Quax, R., & Sloot, P. (2022). Dynamic importance of network nodes is poorly
predicted by static structural features. Physica A : Statistical Mechanics and its Applications,
593, [126889]. https://doi.org/10.1016/j.physa.2022.126889

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1016/j.physa.2022.126889
https://dare.uva.nl/personal/pure/en/publications/dynamic-importance-of-network-nodes-is-poorly-predicted-by-static-structural-features(c6f7e999-060f-4a67-9213-4a17c45d492c).html
https://doi.org/10.1016/j.physa.2022.126889


Physica A 593 (2022) 126889

a
i
t
i
e
i
i
c
v

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Dynamic importance of network nodes is poorly predicted by
static structural features
Casper van Elteren a,b,∗, Rick Quax a,b, Peter Sloot b,c,d

a Institute for Advanced Study, University of Amsterdam, Amsterdam, 1012 GC, The Netherlands
b Computational Science Lab, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
c Complexity Science Hub Vienna, Vienna, Austria
d National Center for Cognitive Research, ITMO University, Saint Petersburg, Russia

a r t i c l e i n f o

Article history:
Received 26 October 2020
Received in revised form 25 November 2021
Available online 21 January 2022

Keywords:
Complex system
Information theory
Driver-node identification

a b s t r a c t

One of the most central questions in network science is: which nodes are most
important? Often this question is answered using structural properties such as high con-
nectedness or centrality in the network. However, static structural connectedness does
not necessarily translate to dynamical importance. To demonstrate this, we simulate the
kinetic Ising spin model on generated networks and one real-world weighted network.
The dynamic impact of nodes is assessed by causally intervening on node state probabili-
ties and measuring the effect on the systemic dynamics. The results show that structural
features such as network centrality or connectedness are actually poor predictors of the
dynamical impact of a node on the rest of the network. A solution is offered in the form
of an information theoretical measure named integrated mutual information. The metric
is able to accurately predict the dynamically most important node (‘‘driver’’ node) in
networks based on observational data of non-intervened dynamics. We conclude that the
driver node(s) in networks are not necessarily the most well-connected or central nodes.
Indeed, the common assumption of network structural features being proportional to
dynamical importance is false. Consequently, great care should be taken when deriving
dynamical importance from network data alone. These results highlight the need for
novel inference methods that take both structure and dynamics into account.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Understanding dynamical systems is a fundamental problem for the 21st century [1]. Despite the apparent differences
nd purposes of many real-world networked complex systems, previous research shows several universal characteristics
n networks properties such as the small-world phenomenon [2], fat-tail degree [3], and feedback loops [4]. This has lead to
he common but often implicit assumption that the connectedness of a node in the network is proportional to its dynamic
mportance [5]. For example in epidemic research, high degree nodes or ‘‘super-spreaders’’ are associated to dominant
pidemic risk and therefore deserve special attention [6]. Yet, prior research shows that the shared network characteristics
s not shared in the dynamic or functional properties that are exerted on these networks [7,8]. In particular, the dynamic
mportance of a node varies as a function of both the dynamics that exist on the network in addition to its structural
onnectedness. This effect was rigorously shown by Harush and colleagues [8]. In their study, the dynamic processes were
aried while keeping the network structure the same. Both random generated networks as well as real-world networks
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ere studied. Nodal importance was computed based on the ‘‘information flow’’ through a node. The flow through a node
ad a non-linear relation between its structural connectedness and the type of dynamics present in the system. These
esults highlight the non-intuitive and non-trivial interplay of the structure of a system and dynamics between the nodes
f a system. However, the results required full knowledge of the system, i.e. both the network structure and the dynamics
f the system are required to estimate the node with the highest dynamic importance. For a real-world system having
oth the dynamics available and the underlying network structure may be difficult. In addition, in their study the network
tructure was deemed constant. It remains unclear whether the proposed flow would generalize to systems with varying
etwork structure. In addition, the results were obtained from steady-state. For dynamical processes an out-of-equilibrium
pproach highlight how trajectories generate systemic behavior. What is needed are methods that can detect the highest
ynamic importance of a node from observations directly without knowing or assuming the underlying network or causal
tructure among variables.
A node’s dynamic (or causal) importance, is traditionally inferred by means of interventions and counterfactuals [9,10].

hrough external interventions the behavior of the system may change. That is, an intervention on a part of the system
auses a divergence of the system behavior proportional to its dynamic importance; high causal importance relates to a
arge change in the system behavior. It is common for studies using causal interventions apply so-called hard intervention
trategies [11]. In hard interventions a node is pinned to a state. This effectively removes all incoming connections to a
ode, removing all influences the system has on this node. The use of hard interventions is common in various disciplines
uch as gene-knockout experiments, epidemic spreading, network analysis and driver node identification.
Applying external interventions to identify nodes with high dynamical importance, referred to as driver nodes, is

hallenging for three reasons. First, hard interventions may cause a change in systemic behavior that does not occur
n the non-intervened behavior (e.g. see Fig. 1B) or may be impossible in practice (e.g. requiring infinite resources [12]).
his complicates theory forming on what mechanisms underlie observed systemic behavior. Second, most approaches
or causal inference assume that the causal interactions follow a particular structure without (local) loops [13–15]. This
ssumption simplifies theoretical analysis and is in many cases justified under the assumption that causes precede their
ffects in time. However, this approach assumes that the underlying causal structure is known and or accessible. If the
nderlying causal structure is not known, it has to be inferred from data which prompts problems in terms of temporal
esolution and scale. For example in a causal process where A → B → C → A, the cycle may be unrolled over time. This
effectively removes cycles. However, this requires the data to support time resolution such that it reflects unrolled (non-
cyclical) causal processes [13]. Cyclical causal structures do occur in real-world systems such as ecosystems, biological
systems, gene-regulatory systems and so on. Importantly, for many of these systems determining the correct temporal
scale for causal interactions is non-trivial. Consequently, it remains an open question on how to perform causal inference
applying these in general for cyclical causal events. Thirdly, the underlying causal structure may not be known or difficult
to determine [16]. In addition, many dynamical systems are prohibited from analytical approaches to decompose each
nodal dynamical importance directly due to the polyadic, often non-linear, interactions [17].

For closed systems, it is possible to avoid these challenges to deduce the driver node by considering cross-sectional
time series and computing the correlation of each node with the entire system out-of-equilibrium and without lossy
compression [18]. Here, a driver node is the element of the system that is correlated the most with the entire system as
a function of time. It has the maximum dynamic (causal) impact when intervened upon across all nodes. By taking the
entire system into account, any internal confounding information is implicitly accounted for; there cannot exist any other
node with more dynamic importance than the node with the highest correlation as the system is closed and external
confounding is excluded.

Shannon information theory offers profound advantages over previous approaches for defining a measure of dynamical
importance of driver node on the behavior of all other nodes [19]. Firstly and most prominently, Shannon mutual
information can quantify statistical associations among variables without bias to specific forms of association [20]. In
particular, it equals zero if and only if the full probability distribution of the system state remains exactly unchanged
regardless of the state of the node. Second, mutual information does not require a priori knowledge of the representational
base of the system. That is, it allows for direct comparison among different systems that may have different units of
measurement such as currency, density of animals, voltage per surface area and so on. Finally, it is defined for both
discrete-valued and real-valued state variables.

The concept of measuring the dynamic importance of a node through information flow is not new. Colloquially,
information flows from process X to process Y represents the existence of statistical coherence between the present
information in Y and the past of X not accounted for by the past of Y . Various methods have been proposed in the
past such as transfer entropy [21] and its derivatives [22–25]. Although originally intended as a predictive measure, the
notions of information and information flow can be extended to causal influence or dynamic importance. Previous research
developed several measures and methods for determining how much information flow between two processes is truly
causal; examples include (but not limited to) conditional mutual information under causal intervention [26], causation
entropy [27], permutation conditional mutual information [28], time-delayed Shannon mutual information [29].

These measures are commonly used to infer the information transfer between sets of nodes by possibly correcting for
a third confounding variable [11,30]. That is, informational flows are used to determine how information is transferred or
shared between pair or sets of variables. However, in polyadic settings most measures of information flow are prone to
underestimate or overestimate nodal importance [31]. Determining how much information flow is causal between source
and sink variables in polyadic settings remains difficult due to the so-called synergetic and redundant information [31,32].
2



C. van Elteren, R. Quax and P. Sloot Physica A 593 (2022) 126889

w
s
n
E
i
c
t
d

Fig. 1. (A) Driver node inference. Dynamics are simulated using kinetic Ising spin dynamics. Causal interventions (soft and hard) are shown in the left
column. Structural metrics (betweenness, closeness, degree, eigenvector centrality) each produce different driver node estimates. Integrated mutual
information predicts the driver node for soft causal interventions. High causal interventions produce different system dynamics (see B for an example)
and different driver nodes. This figure show that dynamics interact with structure to produce non-trivial driver node estimates. In addition, causal
intervention size (hard or soft) influence the observed system dynamics. (B) Effect of intervention size on system magnetization ⟨M t

⟩ =
1
n

∑
i s

t
i

ith kinetic Ising spin dynamics (see 2.1). Energy is added (gray arrow) to the nodal Hamiltonian of the blue node (s0). (top) Non-Intervened
ystem dynamics are shown with the distribution of the blue node s0 (right). (middle) Soft intervention on node s0 keeps similar dynamics as the
on-intervened system dynamics. (bottom) Hard interventions yield profound different system dynamics compared to non-intervened dynamics. (C)
xample of non-causal inflation of mutual information decay. The network structure is given by the graph inset; consisting of a system with 4 nodes
n which each node is binary variable. Node 0 has a 50/50 distribution and all other nodes copy the state of its predecessor. Node 0 has the largest
ausal influence as it can influence the state of all other nodes in the system (over time). The information content of node 3 is biased; it stores
he information from 0, but has no downstream causal effects. Yet, its information decay is similar to 1 which has one downstream node. The true
river node (0) has the largest information decay over time and is not confounded.
3
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Instead of focusing on the open problem of full information decomposition among variables [11,21,26,27,30], we
focus here on the amount of information that a node shares with the entire system. A driver node is expected to have
a corresponding high information flow from it to the system. We introduce a novel metric named integrated mutual
information (IMI) based on time-delayed Shannon mutual information with a node and the entire system over time
that captures driver nodes with the highest causal impact in ergodic systems. Additionally, we avoid the problem of
confounding information synergy with redundancy by avoiding conditional mutual information. The consequence of this
is that we quantify only how much causal impact one single node has on the entire network. In other words, we will not be
able to infer which parts of the network are impacted more than others; nor how exactly the causal influence percolates
through the network. This is nevertheless sufficient for the purpose of this study.

Using this approach it was previously shown analytically that the number of connections of a node does necessarily
not scale monotonically with its dynamical importance in infinite-sized, locally-tree-like networks (i.e. networks without
loops) [33]. For those networks, nodes with high dynamic importance were not nodes with high degree (so-called hubs).
Instead, the nodes with intermediate connectedness were identified with the highest dynamical importance. This study
extends this prior research by numerically computing information flow in finite-sized, random networks, i.e. where small
feedback loops cannot be ignored, and studies the relation between connectivity and the dynamical importance of nodes
in such networks.

The aim of this paper is to test the common (often implicit) hypothesis that the connectedness of a node is proportional
to its dynamical importance. A node’s dynamic importance is determined by simulating the (out-of-equilibrium) dynamics
of a system under causal external interventions. The distance between the system state probability distributions with and
without performing the intervention is used as a ground truth for a node’s causal influence over time (see 2.2). The
resulting causal impact score over time is compared with common network centrality metrics (appendix A.6) as well as
our proposed information-based metric.

In contrast to other studies, the proposed metrics in this study (Section 2) does not make assumptions on network
structure or type of dynamics. Small networks are used (up to 12 nodes) for which each node has an associated discrete
state whose dynamics is governed by a stochastic update rule in discrete time. Smaller network sizes have the of studying
‘‘network motifs’’ that are embedded in larger network structure [34]; understanding causal flows of smaller structures
may provide insights into larger systems consisting of a combination of smaller network structures. In addition, the use
of small network sizes offers a numerical advantage for accurate estimation of causal and information measures. In total
16 Erdös–Rényi networks are generated (10 nodes), and one real-world weighted network (12 nodes) obtained from [35].
Temporal dynamics of the nodes are simulated using kinetic Ising spin dynamics with Glauber updating for the purpose
of demonstrating a case of non-trivial relation between network connectivity and dynamic importance, but our approach
easily generalizes to any other dynamics or networks generation model.

The results show that nodes with generally nodes with high structural connectedness as measured by closeness,
betweenness, eigenvector and degree centrality are not the driver node(s). Our novel metric, IMI, achieved significantly
better performance in predicting the driver node for non-intervened dynamical systems. In addition and most importantly,
hard causal interventions lead to causal flows that differ from the non-intervened dynamics. That is, as a function of
external intervention, systemic behavior may result in ‘‘unnatural’’ system behavior that do not occur in the unperturbed
system. The proposed metric IMI does not rely on the assumptions on dynamics, nor on assumptions on structural
properties of the network. Therefore, the results of this study provide scientists of all fields a novel, reliable and accurate
metric for the identification of driver nodes.

2. Theoretical background

2.1. Terminology

In this paper, we consider a complex system as a set of discrete random variables S = {s1, s2, . . . , sn} with interaction
structure E = {(si, sk)|si, sk ∈ S}, where each si ∈ S has an alphabet A. This is also known as a (discrete) dynamical
network [36]. Please note that we use the term node and variable interchangeably referring to an element si ∈ S. The
system chooses its next state St in discrete time with probability:

p(St |St−1, . . . , St0 ) = p(St |St−1), (1)

which is also known as a first-order Markov chain. More specifically, each discrete time step, a single variable si ∈ S is
chosen with uniform probability and updated. That is,

p(St |St−1, . . . , St0 ) = p(St |St−1) =

∏
j

p(stj |S
t−1) = p(sti |S

t−1). (2)

For temporal dynamics, we adopt here the Metropolis–Hasting algorithm [37]. By drawing a proposal state St+1
= X ′

from current state St = X from a proposal distribution g(X ′
|X) and accepting the new state X ′ with probability,

A(St+1
= X ′, St = X) = min(1,

p(St+1
= X ′)g(St+1

= X |St = X ′)
p(St = X)g(St+1 = X ′|St = X)

)

= min(1,
p(st+1

i = x′)g(sti = x|sti = x′)
t+1 t ′ t

),
(3)
p(si = x)g(si = x |si = x)
4
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here x′
∈ A. If the new state is not accepted, then the next state will be set to St+1

= X . As the next state St+1

s determined through considering updating a single variable si ∈ S, the next state X ′ will be generated through the
roposal state x′ drawn uniformly from the possible states A such that g(x′

|x) = g(x|x′) = g(x′) =
1
|A|

. This means that
g(X ′

|X)
g(X |X ′) =

g(x′|x)
g(x|x′) = 1.

For our experiments, we use the kinetic Ising model which is thought to fall in the same universality class as
various other complex behaviors [38], such as (directed) percolation, diffusion, and many extensions of the model have
been used as a base for opinion dynamics, modeling neural behavior and so on. For demonstrating our primary claim
that high network connectivity does not necessarily lead to high dynamical importance, a single dynamics suffices as
counterexample.

It is nevertheless important to emphasize that our proposed driver node inference method does not depend on the
exact type of dynamics. That is, the choice for the kinetic Ising spin dynamics is arbitrary in that respect. Our methods
only require that for a given dynamics the data-processing inequality is satisfied. More details on the methods and its
assumption will follow in 2.3.

The kinetic Ising model consists of binary variables dictated by a Gibbs distribution that interact through nearest
neighbor interactions. A prominent property of the Ising model in higher dimensions (two or more) is the phase transition
from an ordered phase to a disordered phase by increasing the noise parameter β . For finite systems, the kinetic Ising
model shows a continuous phase transition from ordered to unordered system regime (Fig. 2B). The Metropolis–Hastings
update rule specifically for the kinetic Ising model equals:

p(accept X ′) =
p(X ′)
p(X)

=

{
1 if H(X ′) − H(X) < 0
exp(−β(H(X ′)) − H(X))) otherwise,

(4)

where H(S) is the system Hamiltonian defined as

H(S) = −

∑
i,j

Jijsisj − hisi. (5)

Here β is the inverse temperature 1
kbT

with Boltzmann constant kb, Jij is the interaction strength between variables si
nd sj; hi represents external influence on node i. The matrix J effectively represents the network of the system: an edge
etween si, sj ∈ S exists if |Jij| > 0. The networks considered in this study are undirected networks, which means that J

is an |S| × |S| symmetric matrix. For the randomly generated networks the edges Jij ∈ {0, 1}; for the real network data
set the edge weights are positive and negative real numbers (Section 3).

The β parameter can be seen as the (inverse) noise parameter in the system. Low values of β will induce each node
in the system to detach from the influence of its neighbors, i.e. the probability of finding a node in a state p(si = a), a ∈ A
will tend to uniform distribution as β → 0. In contrast, high values of β increases the influence a neighbor of a node may
have on determining the node’s next state.

2.2. Causal interventions and dynamic importance

We call a node a driver node for a dynamical system when it has the largest causal impact on the system dynamics. In
brief, we will determine a node’s causal impact by simulating a transient intervention and subsequently quantifying the
difference between the system dynamics under intervention and without intervention. We expect that the impact of the
driver nodes will penetrate deeper into the system and remain present longer than for nodes with lower causal impact.
Here, we define causal impact by means of external intervention on a node. The external causal intervention ϵ⃗ on node
sj ∈ S can be described as

p′

sj (s
t
i |S

t−1) = p(sti |S
t−1) + ϵ⃗δij, (6)

where δij is the Kronecker-delta, and dim(ϵ⃗) = |A|. In addition,
∑

|A|

i=0 ϵi = 0 and
∑

|A|

i=0 |ϵi| = c for some c ∈ (0, 1]. Note
only those ϵ⃗ are allowed that generate valid new probabilities, i.e. 0 ≤ p′

≤ 1.
Relative to some equilibrium distribution p(Sτ ), the effect of intervention ϵ⃗ will result in a new system state equilibrium

istribution p′(Sτ ). Subsequently the intervention is removed at a random system state, after which the distribution of
ystem states will gradually converge back to the original equilibrium. Nodes with higher dynamic importance will cause
larger difference in the system state probability distribution over time. Consequently, we quantify the causal impact of
node by integrating over time t the difference in system state distribution from the moment the intervention is released
t = τ ). Since our model is discrete in time, the integral becomes a summation. Thus, we define the causal impact of node
i ∈ S as

Γ (si) =

∞∑
t=τ

γ (sti )∆t

=

∞∑∑
DKL(p′

si (s
t
j ) ∥ p(stj ))∆t

(7)
t=τ sj∈S

5
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here DKL is the KL-divergence, and ∆t = 1 throughout the paper. KL-divergence DKL(p ∥ q) quantifies the difference
etween probability distributions and is non-negative, invariant under affine parameter transformation and zero when
= q. For example, if Γ (si) = 0 the intervention on nodes i caused no difference in any state probabilities.
The driver node can then readily be defined as argmaxsi∈S(Γ (si)). A numerical implementation of driver node

dentification is given in Section 3.2.6.
In this study we allow the intervention to evolve for some time period ∆tnudge = τ − t0 after which the nudge is

emoved (see 3.2.6 and Fig. 2 C). The intervention will transiently bring the system out of equilibrium. For ergodic systems,
he effect of the intervention will be lost from the system over time. Namely, P ′

si (S), ∀si will tend to equilibrium distribution
(S) from τ on wards. The causal impact is computed relative to this τ (Fig. 2 C). As a consequence Γ (si) will be finite for
ystems under study here, but may diverge for non-ergodic systems. The duration τ needs to be set appropriately that
he intervention is allowed to percolate through the system. Here we used τ = 15 for random networks consisting of 10
odes and τ = 25 for the real-world weighted network consisting of 12 nodes (see Section 3.1).
The time prior to τ is used for computing the causal impact on a node as the intervention could be disproportional

ffected by the act of changing the node distribution. It does not accurately reflect the causal impact of the node on the
est of the system. Only the decay after τ would be proportional to the causal impact a node has on all other nodes. The
ausal impact is therefore computed based on the decay of the causal impact relative to τ .

.2.1. Intervention size
In experiments concerned with measuring causal flows in networks, often ‘‘hard’’ causal interventions are used to

etermine the causal impact of nodes [39–42]. Hard causal interventions are those that (effectively) remove all inputs
rom a node. In contrast, soft interventions, keep the existing causal inputs intact but add an additional causal effect to
he dynamics of a variable. In general, the larger the added causal effect of the soft intervention, the more this intervention
ill ‘overpower’ the existing causal effects and hence the more the soft intervention converges to a hard intervention.

n non-linear dynamical systems the intervention size is crucial, since even small interventions can have large effects,
specially in the presence of bifurcations. In order to characterize the system without intervention as much as possible,
ne should thus aim to intervene with a minimal (but still measurable) effect. To illustrate this further, consider the
ystem depicted in Fig. 1B, where each node is update with Eq. (4). The figure shows the effect of intervention size on
he observed system dynamics. Namely, when a hard intervention is used (bottom) the system magnetizes. In contrast,
n the non-intervened system, the system magnetizes periodically, i.e. there system dynamics evolve with time periods
f magnetization and metastable switches to the other side of the magnetization. Contrasting the non-intervened system
top plot) with the bottom plot (hard) intervention, shows how the metastable behavior disappears. Soft interventions
middle plot) maintain the meta-stable behavior of the system.

There will always be a minimal intervention size for which there is a measurable (i.e. non-zero) causal effect (Eq. (7)),
iven finite amount of data. The causal impact will be maximal for hard interventions. As the intervention size is decreased
o will causal impact. We hypothesize that there exists a lower bound for the soft interventions for which there will be a
easurable causal impact. This minimal intervention size is dependent on the systems structure as well as the dynamics of

he system and is difficult to determine a priori. Yet it is important to approach this minimum because if the intervention
ize is too large, then the intervened system dynamics will diverge from the non-intervened system dynamics, losing its
epresentative capacity. Therefore, we estimate this minimum numerically, described further in Section 3.2.

.2.2. Intervention in kinetic ising model
In order to measure the causal intervention, transition probability (6) needs to be adjusted. For the kinetic Ising model,

he transition probability can be modified by adding energy to the node which results in the adjusted Hamiltonian (Eq. (5))

Hnudge sk (S) = −

∑
i,j

Jijsisj −
∑

i

hisi − ηsiδik. (8)

That is, an energy term is added to the intervened node sk by letting it interact with an external ‘spin state’ η. Both soft
nd hard interventions were used (see Section 2.2.1). For hard interventions (η → ∞) the nodal dynamics of the nudge
ode sk are no longer influenced by nearest neighbor interaction. That is, the node state for the intervened node sj will not
hange as a function of time. For soft interventions a grid-search was used with η⃗ := {η : η = 0.55 + i, i ∈ {1, . . . , 10}}
o determine a minimal yet measurable intervention strength. Once determined the same η was applied to each node in
urn and this process is repeated for all networks in the experiments.

.3. Measuring information flow

Each node in a dynamical system can be considered as an information storage unit [32,43]. For example in social
etworks gossip can be considered as information one person possesses. Similarly, disease can be present in one city
hile being absent in another. Over time through interaction, this information stored in a node will percolate throughout
he system while at the same time decaying due to noise. The longer the information of a node stays in the system, the
6
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onger it could affect the system dynamics. Therefore, dynamic impact of a node is upper-bounded by the amount of
nformation a node shares with the entire system [32,33,44].

How does one measure information stored in a node? A node si dictated by stochastic and ergodic dynamics can
e considered a random variable. In Shannon information theory information is quantified in bits, i.e. yes/no questions
oncerning the outcome of a random variable. The average information that a random variable can encode is called entropy
nd is defined as:

H(si) = −

∑
si=x

p(x) log p(x). (9)

Note all log are base 2 in this paper unless specified otherwise.
Entropy can also be interpreted as the amount of uncertainty of a random variable. In the extremes the random variable

ither conveys no uncertainty (i.e. a node always assumes the same state), or is randomly chosen between all possible
tates (uniform distribution). For example consider a coin flip. One may ask how much information does a single coin
lip encode? If the coin is fair, i.e. there is equal probability of the outcome being heads or tails, the amount of questions
eeded to determine the outcome is exactly 1. In other words, a fair coin encodes 1 bit of information. However, when
he coin is unfair the information encoded is less than one. In the extreme case where the coin always turns up heads,
he entropy is exactly 0.

The information shared between a node state si and a system state S can be quantified by mutual information
19,32,33,44,45]. Mutual information can be informally thought of as a non-linear correlation function which inherits
ts properties from the Kullback–Leibler divergence. Formally, mutual information quantifies the reduction in uncertainty
f random variable X by knowing the outcome of random variable Y [19]:

I(X : Y ) =

∑
x∈X,y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

= H(X) − H(X |Y ),

(10)

here p(x) and p(y) are the marginals of p(x, y) over X and Y respectively, and H(X |Y ) is the conditional entropy of X .
he conditional entropy H(X |Y ) is similar to the entropy; it quantifies the reduction in uncertainty of the outcome X
y knowing the outcome of Y . Please note that the yes/no question interpretation even applies to continuous variables;
lthough it may take an infinite amount of questions to determine the outcome of a continuous random variable.

.3.1. Mutual information and causality
Under some contexts, mutual information can be interpreted as being causal. For example for a Markovian, isolated

ystem consisting of two nodes S = {si, sj} where sj causally depends on the previous state of si, encoded by a
onditional probability distribution. It can be readily shown that the causal impact (7) of si on sj then reduces to mutual
nformation [19], A.2. In this study, the entire system is considered as a downstream node. Importantly, the system is
ssumed to be measured in its entirety: no confounding variables are allowed. Within this context, the node with the
ighest integrated mutual information contains more causal information than correlation information than any other
ode in the system. Since there cannot exist any other node with more mutual information over time by construction of
he system, this node must be the driver node. For any other node the measured mutual information can be (significantly)
onflated (1C). Note that for directed graphs, these methods will not work as by construction the highest mutual
nformation may be lead to wrongful identification of the driver node (see A.2).

Additionally, for directed graphs the arrow of time causes a different interpretation on what correlation with the driver
ode means in cases without unobserved variables (see A.2). For t0 + t where t > 0, integrated mutual information may
orrespond to correlation information of a driver node sender, whereas for t < 0, the mutual information relates to the
orrelation with a driver node sending information. The systems in this study, however, are systems without confounding
ossessing and undirected network structure. Consequently, information flows symmetrically across the interaction of two
odes and the driver node corresponds to the node with the highest integrated information.

.3.2. Integrated mutual information
In a network of nodes each causal relation (edge) is obviously not isolated, so confounding variables exist. Therefore,

he mutual information between a node state and a future state I(St0−t
; st0i ) cannot be interpreted purely causal in general.

amely, this mutual information could in principle be created purely by another variable st0−ω

j influencing both st0i and
t0−t , even if there exists no causal influence from st0 to any other variable.
Assuming the network itself is isolated, the only node for which the mutual information with a future system state

ould not have been fully created by a confounding variable is the driver node. That is, the driver node has the largest
utual information with the future system state. If this were fully induced by a confounding variable, then a different
ode would have to have even larger mutual information with the same future system state. In addition, this must hold
or all future system states. By definition of the driver node, this cannot be true under the condition that the system
solated.

This point is illustrated in 1 C. Note that for all other nodes, however, it is possible for its mutual information value
o be inflated due to non-causal correlations. This may result to a non-zero mutual information I(st0−t

: st ) among the
i j

7
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wo variables even if they do not depend on each other in causal manner (Fig. 1). Consequently, we define the integrated
utual information (IMI) for node (si) as the driver node, i.e. the node with the largest causal impact over time. The

corresponding information for this driver node integrated over time (
∑

∞

t=t0
I(st0+t

i ; St0 )∆t) is causal in closed systems
acking confounding variables (Fig. 1C), where St0 is the system state at some time t0, and st0−t

i is the state of a node t
way from that system state. At time t = 0 the value equals I(st0i ; St0 ) = H(sti ) for any node.
Here, undirected networks are considered. Due to detailed balance for undirected networks there exists a time

ymmetry in terms of variable dynamics. This means that for the systems considered in this study I(st0−t
i ; St0) = I(st0+t

i ; St0)
see Appendix A.2.2). It is computationally easier to compute I(st0+t

i ; St0) rather than the reverse (see section. 3.2.2). For
irected graphs, however, the meaning and interpretation of integrated mutual information changes depending on the
irection in time it is computed (see Appendix A.2.2). This effect is outside the scope of the present study and will be the
ubject of future studies. For undirected graphs, the causal impact are time invariant and is equal forward and backward
n time.

µ(si) =

∞∑
t=t0

I(st0−t
i ; St0 )∆t, (11)

For all ergodic Markovian systems the delayed mutual information I(st0−t
i ; St0 ) will always decay to zero as t → ∞

19,33]. This decay is monotonic, which follows from the data-processing inequality [19] and states that information can
ever increase in Markov chains without external information injection (Appendix A.1). The question is how fast this decay
akes place for each node (Fig. 1C), and consequently how much informational impact the node will have on the system.

Taking the entire system as a downstream ‘node’, I(St+1
; sti ) represents pure causal information flow for the driver node

s long as there are no confounding variables. For the rest of the study we will therefore use the notation I(st0+t
i ; St0 ).

. Methods and network data

.1. Network data

.1.1. Random networks
In total 16 Erdös–Rényi random networks were generated consisting of 10 nodes each. Each random network is

enerated by first drawing a random connection probability uniformly from [0,1], and then creating each possible
ndirected edge with probability r . Out of these 16 networks, ∼82 percent had a single connected component (Fig. 2).
ach edge had unitary weight.

.1.2. Real-world network: psychosymptoms
In addition to the generated random networks, we also test a small weighted network inferred from real data.

his network differs from the random networks in that it is weighted and reflecting interactions among variables as a
onsequence of a real-world process, as well as reflecting inferred interactions from real data. The network data originates
rom the Changing Lives of Older Couples (CLOC) and compared depressive symptoms assessed via the 11-item Center for
pidemiologic Studies Depression Scale (CES-D) among those who lost their partner (N=241) with still-married control
roup (N=274) [35]. Each of the CES-D items were binarized with the aid of a causal search algorithm using Ising model
eveloped by [46] and represented as a node with weighted connections (Fig. 5D). For more info on the procedure see
35,46,47]. The 11 CES-D items are (abbreviated names used in the remainder of this text in brackets): ‘I felt depressed’
depr), ‘I felt that everything I did was an effort’ (effort), ‘My sleep was restless’ (sleep), ‘I was happy’ (happy)‘, ‘I felt
onely’ (lonely), ‘People were unfriendly’ (unfr), ‘I enjoyed life’ (enjoy), ‘My appetite was poor’ (appet), ‘I felt sad’ (sad), ‘I
elt that people disliked me’ (dislike), and ‘I could not get going’ (getgo).

.2. Numerical methods

.2.1. Magnetization matching
A prominent feature of the (kinetic) Ising model is the phase change that occurs as a function of noise (Fig. 2B) [48]. In

his paper we tested whether the amount of noise would (i) affect which nodes becomes the driver node in the system,
nd (ii) whether the correct driver node could be predicted using either IMI or network centrality metrics. We tested
hree levels of noise (Fig. 2B); a low noise level (80% of the maximum magnetization), a medium noise level (70%), and a
igh noise level (60%) were used. This magnetization matching was achieved by estimating the magnetization curve as a
unction of β−1 numerically.
8
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Fig. 2. (A) Phase 1 initializes 10000 independent random Markov chains and equilibrated the chains for tn = 1000 time steps. The state distribution
s estimated at tn = 1000 over the 10000 chains. In phase 2 for system states conditional distributions are estimated for t time-steps from which
utual information is estimated I(st0+t

i ; St0 ). (B) Illustration of temperature matching. The graph depicts the conceptual transition between an ordered
tate (aligned spins) to a disordered state for the kinetic Ising on complex networks. The noise level was matched to the magnetization ratio of the
ax magnetization. For increase in temperature the noise level increases. (C) Illustration of applied interventions in an undirected 3 state system (top

ight corner). Each node is nudged according to Eq. (7). The time prior to τ ‘‘pushes’’ the system dynamics out of equilibrium. From τ onwards the
ausal impact decays proportional to the causal impact a node has on the rest of the system. (D) Generated Erdös–Rényi networks. (left) Structure
f each network, the number indicates the system id. (right)Number of triangles (feedback loops) for each system.
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.2.2. Estimating p(St0 ) and p(St0+t
|St0 )

For each noise level, N = 1000 independent Markov chains are run for simulation with 1000 steps (Fig. 2A). Each chain
was initialized with random state distribution over nodes. We are interested in out-of-equilibrium dynamics. For the Ising
model the node dynamics are symmetric in equilibrium, i.e. each node has maximum entropy. For any given trajectory,
the time-scale for the system to move from a fully magnetized state, to the opposite magnetized state, will take longer
than the dynamics that are exerted on local time scales. For short time-scales node with higher degree be more affected
by large scale changes in their environment than lower degree nodes. For larger time-scales high-degree nodes will be
frozen, and do not reflect short-time scale dynamics. In light of this, the simulations are conducted by sampling one side
of the magnetization. This has the added benefit that it reduces the sign of the intervention, i.e. interventions are made
to introduce higher entropy in each node which depends on the average magnetization in the system.

Each simulation step executes the following:

(1) Pick a node at random from the system with equal probability;
(2) Compute energy using Eq. (5);
(3) Flip the node state with probability Eq. (4).

From this set, the equilibrium distribution over states p(St0 ) was constructed in the form of sample of N system states.
For this sample of system states, Monte-Carlo methods are similarly used to construct the conditional p(st0+t

i |St0 ).
or each of the sample states Si ∈ St0 , the procedure above was repeated 100000 times for 100 time steps in the
sychosymptoms and 30 time steps for the random generated networks. All numerical experiments were repeated
trials = 20 times to provide confidence intervals for the results in all nudge conditions and temperature settings (noise
onditions).

.2.3. Time symmetry and mutual information
Thusfar, the definition of causal impact and IMI is ambiguous to the whether t is positive or negative. Namely, if the

ode state st±1
i is captured in forward in time or backward in time with respect to some state St . For undirected networks

ith Ising spin dynamics there exists time symmetry with respect to how causal influence flows through the network
ue to detailed balance (see Appendix A.2.2). However, for directed networks this is not the case. The results obtained
ere are obtained using forward simulation in time only. The detailed balance condition ensures that the results would
e symmetric when simulating the system backwards in time.

.2.4. Area under the curve estimation
The mutual information over time and KL-divergence over time were scaled for visual purposes in the range [0, 1]

er trial set. A double exponential, y = a exp(−b(t − c)) + d exp(−e(t − f )), was fitted to estimate these curves and
ubsequently IMI (Eqs. (7) and (11)) using least squares regression (Fig. 3C, 5C). The kernel showed to be a good fit as
ndicated by the low fit error (Figs. 8, 9).

.2.5. Sampling bias correction
Empirical estimates for mutual information are inherently contaminated due to sampling bias. In order to correct for

his, Panzeri–Treves correction was applied [49]. This method offer a good performance in terms of signal-to-noise and
omputational complexity.

.2.6. Driver node prediction and precision quantification
It is possible for two or more nodes to have exactly equal network structure features as well as node dynamics. For

xample consider a ring structure where each node has the exact same connectivity and all nodes have the same dynamics.
n this case each node must have the same causal effect, and it would be impossible to disentangle these nodes causally
rom one another. Similarly graphs that are similar, e.g. show high degree of structural similarity but are not isomorphic,
his causal separation may proof difficult for finite samples in stochastic settings as was discussed in 3.2.2. Consequently,
e applied a parametric bootstrap procedure to estimate driver node sets (algorithm 1).

river set estimation. The area under curve values, e.g. integrated mutual information and causal impact, were resampled
o generate bootstrap distributions (Appendix A.7). This creates a confidence interval for the integrated mutual information
nd causal impact. From these bootstrap distributions a driver node set is estimated (see algorithm 1 in Appendix A.7). The
ootstrap procedure constructs driver node set Λ iteratively by comparing the overlap φ with of the bootstrap for each
ariable with the distribution of the estimated driver node. For all experiments φ = 0.5. The driver node distribution was
aken as the bootstrap distribution with the highest mean. Variables will be included to the driver node set Λ if the overlap
etween its bootstrap distribution i and driver node bootstrap distribution j was φij > 0.5. In total N = 1e4 bootstrap trial
ere constructed of size M = ntrials = 20; for each of the trials the average was computed. For each variables a Gaussian
istribution was estimated over the N bootstrap. This distribution was used for computing the overlap with the driver

ode distribution.
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Fig. 3. (A) Jaccard score per system (see Fig. 2D for the various network structures) as a function of intervention size. Each row depicts an increase in
oise indicated by the label on the right side of the plot. On average integrated mutual information is a better predictor for the driver node than the
entrality metrics used in this study (see also Fig. 4). Additionally, centrality metric tend to become predictor for hard interventions (η = ∞), whereas
this is not the (generally) so for integrated mutual information. Hard interventions can cause different causal dynamics not present in unperturbed
system dynamics (see B/C). Integrated mutual information is based on observations of the system. The Jaccard score indicates that integrated mutual
information can infer driver nodes for unperturbed dynamics. (B) Example of typical experimental results. The figures highlight a selection from
the generated random networks form A for the low noise condition. (top) The graph structure of the system and the mutual information decay
curves (second from top). (second bottom and bottom) Show the causal impact decay for soft intervention η∗ and hard intervention η = ∞. The
ray dotted line indicates t = τ where the nudge is removed from the system, the t > τ produces causal decay proportional to a node’s causal
mportance. For soft causal interventions the inferred driver node based on integrated mutual information (second from top) is predictive for the
rue causal driver node (second from bottom) with soft causal interventions. Importantly, the causal driver node may change as a function of the
ntervention size (second bottom vs bottom plot). The centrality metrics tend to not correctly identify the driver node (see C for an example). (C)
utual information decay (I(st0+t

i ; St0+t )) (top) and causal impact (γ (sτ+t
i ) for minimal soft intervention η∗ (middle) and hard intervention (bottom).
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The bootstrap procedure cannot be applied to the network centrality metrics as there exists only one centrality rank
assignment per network structure. Therefore, the driver nodes as inferred by maximum centrality metrics is the set of
nodes (Λ) whose centrality metric (f ) equals this maximum value, i.e.

Λcent = argmaxfcent (x) := {x ∈ S : fcent (s) ≤ f (x)∀s ∈ S} (12)

here f is the centrality function which assigns a real value to each node in the system. For degree centrality,

fdeg (ai) =

∑
j

aij (13)

here aij is the weighted connectivity between node i and j in the adjacency matrix A of the network. If aij > 0 node i
and j are connected. In this study degree, betweenness, closeness or eigenvector centrality were used. (see Appendix A.6
for the formal definitions for the centrality measures).

Ground truth comparison. The ground truth values are the driver node estimations for the causal impact bootstrap
distribution. Each estimator also generated a driver node set estimation. That is for integrated mutual information,
degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, the bootstrap distribution generates
an estimated driver set. To evaluate the performance of these estimators, an overlap score was computed with the
ground-truth (causal impact estimation) using the Jaccard similarity metric:

J =
A ∩ B
A ∪ B

. (14)

A Jaccard score of 1 means perfect overlap, i.e. the driver node set identified by causal impact and predictor set by IMI
or one of the centrality metrics are identical. Conversely, a Jaccard score of 0 means completely disjoint driver-sets.

For every network, intervention size and temperature the similarity metric we computed the Jaccard score per
predictor. Additionally, the relative performance ratio of the IMI predictor was evaluated by

Rcent = JIMI − Jcent (15)

here Jcent is the Jaccard score of the structural metrics (betweenness, closeness, betweenness, eigenvector centrality).
his performance indicator falls within [−1, 1] range: A value of −1 would indicate that the centrality metric correctly
dentified the driver node set; a score of 0 would indicate equal performance for the driver node identification between
centrality metric and IMI; a score of 1 would indicate a correct identification of the driver node for IMI, but a false

dentification of the centrality metric. The ratios were bootstrapped (N = 100000) and tested for significance at α = 0.01.
he driver node inferred performance is bound between (0, ∞).

.2.7. Software
A general toolbox was developed for analyzing any discrete systems using IMI, e.g. Susceptible–Infected–Recovered [50],

andom Boolean networks [51]. The core engine is written in 3.07a with python 3.9.4 and offers C/C++ level performance,1

or more information see https://github.com/cvanelteren/information_impact.

. Results

.1. Random network results

Driver node inference accuracy is depicted in Fig. 3A for both IMI and the network centrality measures. Three crucial
bservations can be made from the Jaccard scores. First, for nearly all systems there exists an intervention size for which
MI obtains a Jaccard score of 1 (perfect true driver node inference), whereas this is not always the case for the centrality
etrics, see e.g. system 3, 7, 15. Secondly, IMI is predictive nearly only for soft intervention sizes, i.e. intervention sizes
maller or of similar order of magnitude as the existing forces acting on nodes(i.e. their degree in the J interaction matrix).
n contrast, centrality metrics are mainly predictive for hard interventions. The statistical results reflect these observations
Fig. 4A and B).

In Fig. 3B average decay curves are shown for IMI (top) and different intervention sizes (middle) and hard interventions
bottom) for the systems 2, 5, 12. Their network structure is depicted in Fig. 3B (top). Comparing hard interventions
bottom) with a more moderate intervention strength (middle) in system 2, shows that the driver node can significantly
iffer depending on the intervention size applied to the system. The order of the causal importance is noticeably different
or the minimal intervention η∗ versus the strong intervention η = ∞ (middle and bottom plot in Fig. 3B).

1 cvanelteren.github.io
12
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Fig. 4. (A) Bootstrap results for driver node inference score Rcent = JIMI − Jcent per intervention size and for all interventions and noise levels(B). A
ernel density is fitted for each distribution and integrated over the interval [−1, 0]. An inference ratio of 1 indicates that IMI is better a predicting
he driver node than the structural metric and vice versa for a score of 0. Significant intervals are indicated by a asterisk * (α = 0.01). Except for
he hard interventions (η = ∞) intervention size IMI is a better predictor than any of the network structural features.

.2. Real-world network: psychosymptoms results

The psychosymptoms system reveals similar results to the random networks (Fig. 5). Namely, for medium to high
oise level IMI yielded significantly higher Jaccard scores than centrality metrics for low causal intervention (Fig. 5C/D,
≪ 0.01), while not for hard interventions. In contrast, hard interventions yield different causal structures altogether
hich do not reflect non-intervened dynamics (Fig. 5A/B). For example the true driver node under hard interventions

dentify ‘dislike’ (medium and high noise) to be the driver node (Fig. 5A). Whereas for low causal intervention ‘sad’ is
dentified as driver node (Fig. 5A). This implies that intervention itself has impact on what causal structure is observed
nd that the intervention can show systemic behavior not present in the non-intervened system. The soft intervention
f η = 0.1 was too low to provide proper resolution for identification of driver nodes in the low noise setting (Fig. 5A).
ard intervention in low noise condition did provide a different driver node than the soft intervention. The grid-search
or optimal η∗ was insufficient for the psychosymptom network and should be investigated in future studies.

In addition, the change in driver node observed in Fig. 5A highlights one major flaw in centrality metrics: they cannot
ccount for a change in driver nodes due to a change in dynamics. The implicit assumption on dynamics that each
entrality metric holds, provides only one estimate per network structure. In contrast, IMI does not depend on what
13
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echanisms generate system dynamics. Instead, it uses the distribution dictated by these system dynamics which match
he true driver nodes.

Fried and colleagues postulated that ‘lonely’ was the gateway from which information spreads through the network,
.e. bereavement was embodied mainly by ‘loneliness’ which then percolated its effect to the other symptoms [35].
ince the data was cross-sectional, the comparison with the results from this study relies on the assumption that binary
ynamics are representative of the absence and presence of psychological symptoms. If correct, the results from this study
ive a causal perspective on the associative results from [35]. The results from this study postulate that ‘depr’, ‘lonely’
nd ‘sad’ have similar causal effect for moderate to high thermal noise.
It is important to emphasize that a quantification is given in terms of absolute effect size and not directed effects. This

eans that nudging for instance ‘sleep’ has some effect X on the psycho-symptom network, in what direction that effect
s, or whether it has a positive or negative effect on the bereavement score / cognitive load of the patient is not clear, and
hould be the subject of future studies (see Appendix A.4).

. Discussion

Structural metrics can be considered as implicitly assuming a particular dynamics [52,53]. For example, the eigenvector
entrality has a clear analytical connection with linear dynamics, such as a simple diffusion process. Betweenness
entrality on the other hand can be considered to assume that causation between nodes is transmitted mainly along
he shortest paths between pairs of nodes (see Appendix A.6), such as in message or package routing. Finally, many more
etwork centrality metrics have been developed based on specific dynamics, such as current and flow centrality measures.
hus, such network structural metrics could indeed be used, but a careful analysis of the dynamic equations is required
o assess which centrality measure (if any) turns out appropriate.

The results from this study show that high degree nodes with Ising spin dynamics tend to actually not be a driver
ode for small interventions. In this model it can be understood since high degree nodes exhibit ‘‘frozen’’ behavior; their
arge(r) number of neighbors effectively sum up to a constant and strong force towards the majority state. Consequently, a
onstant (soft) intervention will be relatively ineffective with hubs. For non-intervened Ising dynamics, it makes intuitive
ense that the dynamics are driven by the nodes which are neither ‘‘frozen’’ (hubs) nor are poorly connected (low-degree
odes), which is reflected by the soft intervention setting. This insight is specific to the Ising system but illustrates that the
nformation flow and causal flow of a system is not merely determined by the connectedness of a node in the network.
ather, the connectedness of the entire system in addition to inter-node dynamics combined are crucially important for
ausal flows and driver node identification.
The results further imply that for unperturbed dynamics structural metrics may not be predictive for determining the

ausal importance of nodes. Soft interventions revealed different causal structure than hard interventions (Fig. 3 5). For
ard interventions, structural metrics do become predictive for causal importance for the networks studied here. However,
he dynamics of these systems are shown to deviate from the non-intervened dynamics, causing system dynamics that
re not representative of the non-intervened system. This can be seen in the causal influence in Figs. 3 and 5 where
he causal influence for hard interventions is opposite to soft causal interventions. Consequently, if the aim is to provide
nderstanding to the information flows for non-intervened dynamics, then hard interventions are not preferred.
In addition, the results imply that in order to achieve maximum impact for a fixed ‘intervention’ budget (injected

nergy), choosing the high degree nodes is not necessarily optimal. The adjusted Hamiltonian (Eq. (8)) introduces a bias
n low degree nodes. Here, a causal intervention was performed by adding fixed energy to the Hamiltonian. For fixed
ntervention size η = c , the causal impact on the nodal distribution will be relatively higher for nodes with low degree
han nodes with higher degree. Higher degree nodes may have higher causal effect in principle if the same probability
ass is changed. However, moving the same probability mass scales non-linearly in kinetic Ising (Eq. (5)). For a limited

intervention budget’ it is preferred to locate those elements of the system that reaches maximal causal effect.
For, some systems, however, the inferred driver node never matched the true driver node(s) (e.g. system 8 in Fig. 3).

his could be due to two main reasons. First a grid-search was applied for the intervention size. It was argued that there
ould be a minimal intervention η∗ which would lead to a measurable effect. It is possible that the parameter space used
ere missed the intervention size that provided enough resolution to accurately determined the driver node(s). Second,
he numerical procedure for driver node inference could be optimized. The overlap of distribution was set to φ = 0.5,
o infer the driver node set Λ, to prevent false positives for driver node identification due to noise in observed system
tates. However, the choice of parameter was not optimized and could lead to ambiguous driver node inference. System
in particular was most nodes in the network had a similar connectivity pattern, and as such causal isomorphy occurs,

.e. the causal importance of a node is indistinguishable from any other node in the system. The bootstrap estimates led to
igh level but not perfect of overlap (see Appendix A.7). Consequently, if φ was set differently, the inferred driver nodes
ould be improved. In future studies, we aim to further look into what how this numerical procedure could be improved
or inferring driver nodes in dynamical networks particularly for causal isomorphic nodes.
14
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Fig. 5. (A) Causal impact versus integrated mutual information for different noise levels and intervention sizes. The inferred driver node is indicated
above each figure with a dot. For low noise level the numerical estimates were too noise and driver estimation was inaccurate. For intermediate to
high noise level, causal impact scale linearly with integrated mutual information for soft interventions. Causal driver node was wrongly predicted
for hard interventions by integrated mutual information. Notice how the causal flows change as a function of intervention size (top versus bottom
plot). (B) Driver node identification in real-world network of psychosymptoms for medium noise as a function network features (top 4 subplots)
and integrated mutual information (middle), and true causal driver nodes per intervention size (bottom). Integrated mutual information correctly
identified the driver node with soft interventions, but not for high interventions. Only betweenness centrality correctly identified the true driver
node for high causal interventions. (C) Bootstrap distributions for driver node inference score as function of intervention size across noise levels.
A score of 1 indicates that integrated mutual information identified the driver node correctly, but the structural metric did not, and vice versa for
a score of −1. In red kernel density estimates are indicated and integrated over [−1, 0]. The asterisk (*) indicates a significant better inference
core for integrated mutual information (α < .01). Integrated mutual information was a better predictor than any of the network features for soft
interventions. (D) Bootstrap distribution for driver node inference score as function of temperature and nudge size. The integrated mutual information
was a significant better predictor across noise and intervention size (α < 0.05 indicated by *).

5.1. Limitations

The systems considered are discrete and ergodic. IMI assumes that the data-processing inequality holds for the system
(Section 2.3.2). The data-processing inequality in ergodic systems ensures that I(st0+t

i ; St0 ) monotonically approaches zeros
s t → ∞ (see Appendix A.1). As a consequence IMI will always be finite for ergodic systems. For non-ergodic systems,
he data-processing inequality can only guarantee that I(st0+t

i ; St0 ) never increases as a function of t . Namely, the data-
rocessing inequality ensures that no local manipulation of information may increase the information content of a signal.
his implies that as t → ∞, IMI may not converge for nodes with non-zero baselines. For these non-ergodic systems,
owever, it may be possible determine the driver nodes by considering finite time-scales, or subtracting the asymptotic
value and reporting it separately.
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Furthermore, this study only considered information flows undirected systems. For directed systems, the largest
integrated mutual information may in fact not be the driver node due to correlation. In Appendix A.2 an integrator
is node is considered, where the integrator stores the system information but lacks any causal outgoing connections.
The information storage capacity in this node will be higher than any other node due to its increased alphabet. If this
integrator node encodes a copy operator, its information decay will result in the highest integrated mutual information
while lacking any causal potential. In the systems considered here, this situation cannot occur. That is, for undirected
systems information flow has equal potential along an edge. Any causal effect a node has in undirected dynamical systems,
will percolate to all neighbors of a node. For directed graphs the information flow is not time symmetric as detailed balance
cannot be ensured. Consequently, the use of forward mutual information I(st0+t

i : St0 ) may lead to false estimates of driver
odes in these cases. For undirected graphs, if there would exist a node with higher integrated mutual information, its
ausal impact will also be higher and as such it would be the driver node. The asymmetry of information flow, and the
ompound nature of both correlation and causation restricts the use of integrated information undirected graphs.
In addition, the focus on short-time scales biases information processing to less constrained nodes. By measuring the

ystem out-of-equilibrium, the system dynamics for the kinetic Ising model has the tendency to ‘‘freeze’’ the behavior
f nodes as a function of increasing degree. For undirected systems, this assumption seems sensible as the higher causal
otential for hubs forms at the same time a higher constraint for switching its state. The flip probability of node si in
he kinetic Ising model as a function of degree will tend to zero given that the neighborhood is congruent with the
ode’s current state. Measuring the system in equilibrium, will therefore result in nodes with higher degree to have lower
nformation decay. In contrast, out-of-equilibrium a node state will have lower variability and consequently less causal
ffect on the instantaneous system states. Therefore, the driver node identification through integrated mutual information
re only valid for non-equilibrium kinetic Ising spin dynamics with undirect network structures. Since the Ising spin
ynamics falls within a larger universality class, such as (directed) percolation. This implies that the results from this
tudy may apply to different dynamical systems sharing the same core assumptions.
Systems of size at most n = 12 were used. The size of the system was chosen due in order to provide high reliability

f the probability distributions. In addition, larger graphs can be decomposed in various different network motifs [34]. It
s believed that these motifs form the ‘‘computational’’ buildings blocks for larger complex systems under the assumption
f nearest neighbor interactions. That is, understanding the motifs would gain insights in how a macroscopic property
merges from local interactions. The aim of this study was to relate structural connectedness to dynamic importance; the
xact nature or occurrence of motifs were not the focal point. In real-world systems, however, it is exactly the composition
nd interaction of these motifs that are vital to complex systems. Here, the motifs were implicit on the real-world network
nd the generated structures. We leave it up to future work to map out the driver nodes of common network motifs in
ifferent dynamics and relate the structural importance to the dynamical importance.

. Conclusions

Our results indicate that dynamic importance cannot necessarily be reliably inferred from network structural features
lone, demonstrated here using kinetic Ising spin dynamics. The goal of this paper was to show that structural methods
an provide unreliable estimates of the driver node in dynamical systems. The results from this study show that the
ommon assumption of structurally central or well-connected nodes being simultaneously dynamically most important
s not necessarily true. This implies that we cannot abstract away the dynamics of a dynamic system before inferring driver
odes. The proposed information theoretic metric, integrated mutual information (IMI), was better able identify the driver
ode for non-intervened dynamics in systems. Importantly, IMI does not require knowing the dynamics equations and/or
he network structure of the system. It is instead calculated directly from a cross-section of time-series of the system
ithout interventions. The proposed metric could potentially be useful in applications with rich data sets and where
erforming interventions are infeasible or impractical.
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ppendix A

.1. Data-processing inequality

The data-processing inequality can be used to show that no clever manipulation of the data can improve the inferences
ade from that data (see for more detail [19]).

efinition 1. Random variables X → Y → Z are said to form a Markov chain if the conditional distribution of Z depends
only on Y and is conditionally independent of X . Specifically, X, Y , Z form a Markov chain if the joint probability can be
written as:

p(x, y, z) = p(x)p(y|x)p(z|y) (16)

Theorem 1 (Data-Processing Inequality). If X → Y → Z, then I(X; Y ) ≥ I(X; Z).

Proof. By the chain rule, the mutual information can be expanded in two different ways:

I(X; Y ; Z) = I(X; Z) + I(X; Y |Z)
= I(X; Y ) + I(X; Z |Y )

(17)

Since X and Z are conditionally independent given Y , we have I(X; Z |Y ) = 0. Conversely, if I(X; Y |Z) ≥ 0, this would
give

I(X; Y ) ≥ I(X; Z). (18)

hus we only have equality if and only if I(X; Y |Z) = 0 for Markov chains. Similarly, one can prove that I(Y ; Z) ≥ I(X; Z)■.

orollary 1. If Z = g(Y ) → I(X; Y ) ≥ I(X; g(Y ))

roof. X → Y → g(Y ) forms a Markov chain. ■

This result implies that no function g(Y ) can increase the information about X .

orollary 2. If X → Y → Z, then I(X; Y |Z) ≤ I(X; Y )

From Eq. (17) it is noted that I(X; Z |Y ) = 0 due to the definition the Markov chain and I(X; Z) ≥ 0. Therefore:

I(X; Y |Z) ≤ I(X; Y )■ (19)

The dependence of X and Y is decreased or remains unchanged by the observation of a ‘‘downstream’’ random variable
. For any complex system in which the state distribution follows a Markov chain, i.e. X t0 → X t0+1

→ · · · → X t0+∞. The
utual information I(X t0; X t0+t ) will always decay to zero as t → ∞.

.2. A note on causality and mutual information

.2.1. Mutual information and causal bivariate interaction
Mutual information decays to causal interactions for simple bivariate interactions. For Markovian systems, the future

tate of the system is independent of its past given its present (Eq. (2)). Therefore, we can write [19]

p(st+1
j |St ) = p(st+1

j |sti ). (20)

t+1 t t t+1 t
For any two nodes si, sj ∈ S, the KL-divergence DKL(p(sj |si ) ∥ p(sj )) reduces to I(si ; sj ).
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T
s

Fig. 6. Example of time symmetry in directed and undirected networks. Fig. 6a shows the asymmetry that occurs when information flow is directed.
he time before the system state t < t0 can be interpreted as information sending. Namely, nodes that have the most impact on the current system
tate St0 . In contrast, information for t > t0 as information receiving; nodes that receive information from St0 . The most striking example is node 4
which has a sharp decay for t < t0 but a relatively fat tail for t > t0 . This change is due to the difference in meaning of the IMI, e.g. sending vs
receiving.
Fig. 6b shows that for undirected networks there is no difference between node importance before or after t0; information flows both directions..

Theorem 2. Esi [DKL(p(st+1
j |sti ) ∥ p(stj ))] = I(st+1

i ; stj ) when si and sj have no common neighbors.

Proof.

Esti [DKL(p(st+1
j |sti ) ∥ p(stj )] = Esti )

[
Est+1

j |sti

[
log

p(st+1
j | sti )

p(st+1
j )

]]

=

∑
sti

p(sti )
∑
st+1
j

p(st+1
j | sti ) log

p(st+1
j | sti )

p(st+1
j )

=

∑
sti

p(sti )
∑
sj

log p(st+1
j | sti ) log p(s

t+1
j | sti ) −

∑
st+1
j

p(st+1
j ) log p(st+1

j )

= H(st+1
j ) − H(st+1

j | sti )

= I(st+1
j : sti )■.

(21)

A.2.2. Mutual information and time symmetry
The methods applied in the main text imply that the metric can be used symmetrically. In this study time-delayed

mutual information was performed in a ‘forward’ manner for practical purposes. Namely, the system state was simulated
for positive t from some t0. For undirected networks there is a symmetry with regard to where information flows.
Information is not bounded by any directionality of edges (Fig. 6(a)).

It is important to emphasize that this (generally) is not the case for directed networks. For kinetic Ising models
detailed balance is not guaranteed and as such mutual information may be conflated for integrated nodes (see A.2.3).
If information is constricted to flow in one direction, the mutual direction of time simulation is crucial. Additionally,
directed networks show that the metric can be applied for different purposed. This can be seen in Fig. 6, where forward
simulations gives ‘information sinks’ and backward simulation provides ‘information sources’. IMI in directed networks
will provide information about what nodes receive the most information over time, i.e. the correlation of a node with
‘‘sending’’ information. In contrast, simulating backwards shows what nodes have most impact on the instantaneous state
of the system. This dual-use of information will be the focus of future studies.
18
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Fig. 7. Integrated mutual information for ‘‘integrators’’ may fail to identify driver node for directed graphs (B) but not for undirected (A). Each node
in the system is governed by kinetic Ising spin with σ (t) = {σ1(t), σ2(t)}. In B, the integrator node copies the system state (J1,σ2 = Jσ2,2 → ∞).
As the integrator has no causal outgoing connections, integrated mutual information does not reflect the driver node. For directed graphs, detailed
balance cannot be ensured violates one of the assumptions of integrated mutual information. In A, detailed balance is ensured and the integrator
node reflects the driver node.

A.2.3. Integrated mutual information and integrator nodes
As noted in A.2.2 the driver node can only be determined for ergodic systems with symmetric edges, that is the

interaction Jsi,sj = Jsj,si∀si, sj ∈ S. For directed graphs (i.e. non-symmetric edge weights) integrated mutual information
may be conflated and produce a wrong estimate for the driver node. These cases are, however, outside the scope of the
manuscript, and undirected integrators can readily be identified by integrated mutual information.

Consider the system S(t) = {s1(t), s2(t), σ (t)} where integrator σ (t) = {σ1(t − 1), σ1(t − 1)} with H(σ ) = −Js1,σ1s1σ1 −

Js2,σ2σ2s2, and each node is governed by kinetic Ising spin dynamics (see Fig. 7). The node σ (t) is the integrator node that
consists of two ‘‘sub-nodes’’ that connects to node s1, s2 separately. Note that the interaction weight J can be adjusted.
The traditional kinetic Ising spin dynamics are obtained for Ji,j = 1 we obtain the traditional kinetic Ising spin dynamics,
and as Ji,j → ∞ the dynamics tend to a copy operator. In addition, the weights may be set such that a directed graph is
obtained (see Fig. 7B).

We consider two cases. First the case where σ contains no outgoing causal connections, that is Jσ1,1 = Jσ2,2 = 0. In
the extreme case where the integrator is a copy operator (Jσ1,1 = Jσ2,2 → ∞), the integrator σ stores information the
system, but has itself no causal impact. Integrated mutual information in this setting cannot be used as a driver node
identification as the shared mutual information with the system is merely correlational.

For undirected edges, however, e.g. Jσ1,1 = J1,σ1 = 1, Jσ2,2 = J2,σ2 = 1 (Fig. 7A), integrator node will have the highest
causal potential as the impact of an intervention on the integrator can percolate through the system. Integrated mutual
information correctly identifies the driver node. Note that the size of the connection weights matters. As Jσi,i = Ji,σi → ∞

the interaction the integrator node will tend to a copy operator. For a copy operator the dynamics of the system will
degenerate. In this setting, the out-of-equilibrium dynamics will be non-existing as the dynamics of si and sj will be frozen
through the edge with the integrator. This will results that out-of-equilibrium, the system state will merely be copied and
no transient dynamics will be possible. Information flows will not occur as the relative entropy will be zero. This setting
violates detailed balance. Relaxing the interaction J , enables detailed balance and we see under these conditions the driver
node is correctly identified (Fig. 7A). The integrator node’s causal impact can flow due to the detailed balance.

In conclusion, directed edges violates detailed balance and consequently integrated mutual information will not be able
to identify the driver node as the node with the highest mutual information through forward inference, i.e. I(st0+t

: St0 ).
i
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d

A

Fig. 8. Average mean squared error ±2SEM per system.

odes with the highest causal impact are correctly identified through integrated mutual information for kinetic Ising spin
ynamics on undirected network structures where detailed balance is ensured.

.2.4. Time reversibility and detailed balance
In order to show that I(st+1

i ; St ) = I(st−1
i ; St ), we have to show that p(St+1

∗
|St

∗
) = p(St−1

∗
|St ).

Two-sided Markov chains. For a positive recurring Markov chain {St : t ∈ N} with transition matrix P and stationary
distribution π , let {St

∗
: t ∈ N} a stationary version of this chain, i.e. S0 ∼ π . We can construct a two-sided extension of

St by defining a shift k ≥ 1, extending the process S backwards in time: St
∗
(k) = St−k

∗
with 0 ≤ k < ∞. It is true that by

stationarity St−k
∗

has the same stationary distribution as St : we arrive at {St
∗

: t ∈ Z}.

Detailed balance. Let {St
∗

: t ∈ Z} be a two-sided extension of a positive recurrent Markov chain with transition matrix P
and stationary distribution π . A transition from state i to j is denoted with notation i → j.

p(S1
∗

= j|S0 = i) = p(S1
∗
(k = 1) = j|p(S0

∗
(k = 1)) = i)

= p(S0
∗

= j|S−1
∗

= i)

=
p(S−1

∗
= i|S0

∗
= j)p(S0

∗
= j)

p(S−1
∗ = i)

=
πj

πi
Pi→j

(22)

In other words the time-reverse Markov chain is a Markov chain with transition probabilities:

Pi→jπi = πjPj→i (23)

This is also known as detailed balance. In the manuscript, ergodic systems are used and therefore satisfy the
time-symmetry. This results that I(st+1

i ; St ) = I(st−1
i ; St ).

A.3. Data correction and fit errors

A.4. Validation of psychosymptoms

The results from this study imply that for low thermal noise not enough resolution was possible to reliably estimate
the driver node. For medium to high noise levels, the ‘sad’ emerged as the driver node.

In the original study, the bereavement score was most affected by ‘lonely’, and showed weak negative associations
with ‘happy’ and ‘effort’ (Fig. 10 adopted from [35]). Consequently, it seems that medium to high thermal noise is most
congruent with the original study. Fried and colleagues postulated that ‘lonely’ was the gateway from which information
spreads through the network, i.e. bereavement was embodied mainly by ‘loneliness’ which then percolated its effect to
the other symptoms. Since the nature of the data was cross-sectional, the comparison with the results from this study
relies on the assumption that binary dynamics are representative of the absence and presence of psychological symptoms.
20
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Fig. 9. Average mean squared error ±2SEM for psychosymptom system.

Fig. 10. Main results from Friend and colleagues [35]. The network represents the output from a Multiple Indicators Multiple Causes (MIMIC) model.
The red lines indicate significant direct effects of spousal loss on Center for Epidemiological Studies Depression Scale(CES-D items); standardized
estimates of these affects are represented in red below the symptoms. There was no significant loading of loss on the latent factor D. For more info
ee [35].

f correct, the results from this study give a causal perspective on the associative results from [35]. The results from this
tudy postulate that ‘depr’, ‘lonely’ and ‘sad’ have similar causal effect for moderate to high thermal noise.
It is important to emphasize that a quantification is given in terms of absolute effect size and not directed effects. This

eans that nudging for instance ‘sleep’ has some effect X on the psycho-symptom network, in what direction that effect
s, or whether it has a positive or negative effect on the bereavement score / cognitive load of the patient is not clear, and
hould be the subject of future studies.
As a final note, the field of psychometrics is concerned with relating how observables (e.g. behavior, responses on

uestionnaires, etc) relate to theoretical cognitive constructs such as intelligence or mental disorders. A common approach
n understanding high level phenomena such as depression is to use a latent variable model, i.e. assuming some high
bstract feature to be the cause of the observables (or vice versa). Only recently has this paradigm shifted from a latent
ariable model to a network based approach [16,54,55]. Marsman et al. recently reconciled these two approached by
howing statistical equivalence between the Ising model and canonically used latent variable models in psychometrics
56]. The two approaches thus highlight different aspects in theory building; measurement invariance and correlation
tructure may be interesting from a common cause approach but not from a network perspective which is more interested
21
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n dynamical aspects of the system. Both approaches, however, aid in highlighting different aspects of the psychological
onstructs.

.5. Code manual

Accompanying this paper, I developed a general framework for analyzing discrete systems using IMI. The code is
ritten in python 3.7.2 and uses cython 0.28.2 for c/c++ level performance. The code is freely available on cvanelteren.
ithub.ioincludes the latest build instructions.hat follows here is a brief overview of the framework.

.6. Structural methods

Network analysis has traditionally resulted in analyzing the structure of the network. A fundamental concept within
etwork science is centrality, and how to measure the centrality of nodes has become an essential part of understanding
etworked systems such as social networks, the internet, biological networks, traffic and ecological networks. At its core,
centrality measure quantifies the ‘importance’ of a node based on some structural property. It allows ranking nodes
ased on a real-valued function.
There is, however, a long-standing debate concerning what centrality metrics actually measure for networked systems

6,52,53,57] . From a network theoretical perspective most centrality measures, e.g. betweenness, closeness, eigenvector
nd degree centrality, essentially classify the ‘walk structure’ of a network [52,53]. A walk from node i to node j is a

sequence of adjacent nodes that begins with i and ends with j. The structure of walks can be divided along different
criteria. For example a trail is a walk in which no edge (i.e. adjacent pair of nodes) is repeated. In contrast, a path is a
trail in which no node is visited more than once. Similarly, one could define a walk structure by only using the shortest
path from one node to another, or by using random movements between nodes (random walks).

Alternatively, from a complex systems perspective, centrality metrics implicitly assume dynamics on the network
tructure. Betweenness centrality for example, computes centrality based on how often a node acts as a bridge along
he shortest path between two other nodes. If one assumes that the network has dynamics D where information between
odes follows the shortest path, this metric may be a valid description to use and identify dynamically important nodes.
In the best case, a centrality metric is fully predictive for identifying important nodes a complex system. Consequently,

he centrality metric can be used to understand the system. However, an issue with the use of centrality metrics is
etermining which centrality metric to use. Consider for example Fig. 1A; different centrality metrics can identify different
odes as most central. This has lead to the common observation that some centrality measures can ‘get it wrong’ when the
im is to predict dynamical important structure in networked systems. Additionally, the ranking produced through some
entrality metric does not quantify inter-rank differences. This potentially leads to underestimation of nodal influence
hen used in dynamic context [6].
We will show how centrality measures have no meaningful prediction power of the most causal node in nodes dictated

y the Gibbs measure. We are aware that centrality measures do not embody the full extent of what structural methods
mbody, or what network science in particular has to offer. However, many structural methods share the common
haracteristics listed above, i.e. they quantify the walk structure of a network. For our analysis, we used the weighted
ariants of degree centrality, betweenness centrality, information centrality, and eigenvector centrality. What follows is
brief description of commonly used centrality metrics.

.6.1. Degree centrality
Degree centrality is the best-known measure of all the centrality measures. It is often thought that degree centrality

s indicative for the dynamic importance of a node. This intuition is based on the concept of flow: the more connection
node has, the more interaction potential that node has and therefore the more important a node must be. Freeman
efined centrality measure as the count of the number of edges incident upon a given node [58]:

cdegi =

∑
j

aij (24)

here aij is the row/column of node i in the adjacency matrix A of the network. Please note that the entries aij are weighted
nd not binary.

.6.2. Betweenness centrality
Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest path between two

ther nodes. It was introduced as a measure for quantifying the control of communication among humans in social
22
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etworks by Freeman [58]. Nodes that have a high probability to occur on a randomly chosen shortest path between
wo randomly chosen vertices have a high betweenness. Formally, this can be written as:

cbetwi =

∑
j,k

σ (j, k|i)
σ (j, k) (25)

here σ (j, k) represents the number of shortest paths between node j and k, and σ (j, k|i) is the subset that goes through
ode i. We use the normalized version of betweenness that divides the betweenness score by the number of pairs of
ertices (not including node i);

cbetwi =
1
Z

∑
j,k

σ (j, k|i)
σ (j, k)

Z =
((n − 1)(n − 2))

2

(26)

.6.3. Closeness centrality
Closeness centrality is defined as the reciprocal sum of the length of the shortest paths between the node i and all

ther nodes in the network j ∈ N:

cclosei =
1∑N

j d(i, j)
. (27)

rom a complex system perspective it assumes that information is transferred along its shortest paths. A node with short
istance to many other nodes will be able to quickly transfer its information to other nodes in the network.

.6.4. Eigenvector centrality
Eigenvector centrality is the most difficult centrality measure to give an intuitive feeling for. Where A is the adjacency

matrix of the system, eigenvector centrality of node i is defined as:

cevi =
1
λ

∑
j

aijxj ↔ Ax = λx (28)

For any square matrix of rank n, the matrix will have at most n eigenvector–eigenvalues pairs. A common choice for
eigenvector centrality is motivated by The Perron–Frobenius theorem, and involves choosing the eigenvector x with the
argest eigenvalue λ [59,60]. This has the desired property that if A is irreducible, or equivalently if the network is strongly
onnected, that the eigenvector x is both unique and positive.
The sign and size of the eigenvalue are important for the relation between the value and importance of a node. In linear

ifferential equations negative eigenvalues correspond to non-oscillatory exponentially stable solutions. In contrast, in
ifference equations it indicates an oscillatory behavior. Geometrically speaking, negative eigenvector embodies a linear
ransformation across some axis.

Intuitively speaking, eigenvector centrality quantifies the influence of a node in the network. It assigns relatives scores
o all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score
f the node in question than equal connections to low-scoring nodes. A high eigenvector score implies that the node is
onnected to many other nodes that themselves have high scores. Google PageRank and Katz centrality are variants of
igenvector centrality [61]. A node with high eigenvector centrality is not necessarily a node that has many connection
incoming or outgoing). For example a node may have a high eigenvector centrality if it has few connections, but those
onnections are connected to nodes that are of high importance.

.7. Bootstrap distributions

A total of 10000 bootstrap samples were conducted with replacement. For each nodal bootstrap distribution a gaussian
ernel density was estimated. The node with the highest causal impact was chosen as the initial driver set Λ. Then the
verlap φ between this driver node and the remaining nodes in the system was computed iteratively. We considered the
verlap φ = 0.5 or higher was sufficient for the node was to be considered causally similar to the driver node. Therefore,
he proposed node will be included in the driver node set if φ ≥ 0.5.
23
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.7.1. Numerical procedure

A.7.2. Erdös-Rényi networks
Bootstrap distribution kernel density estimates for Erdös-Rényi networks. X indicates area under the curve for mutual

nformation or causal impact respectively. Note x here refers to the input variable which are the area under curves either
for integrated mutual information (η = 0) or for causal impact η > 0.
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Fig. 11. Bootstrap distribution for psychosymptom network. Driver node is indicated by a dotted line.

A.7.3. Psycho networks
Note x here refers to the input variable which are the area under curves either for integrated mutual information

(η = 0) or for causal impact η > 0 (see Fig. 11).

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.physa.2022.126889.
Extra information containing the background of centrality metrics and its implicit assumptions; from a complex

systems perspective, each centrality metric can be viewed to implicitly assume a dynamic on a graph. This has profound
implications for analyzing the output of many metrics in network science. The document also contains background
information on the real-world network of psychosymptoms; from where it was obtained and how the data was collected.
Importantly, the supplementary information contains additional analysis of time assymmetries in information flows for
directed graphs. Lastly, it contains bootstrap distributions for the estimates used in the study.
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