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Gravitational waves (GWs) from merging black holes allow for unprecedented probes of strong-field
gravity. Testing gravity in this regime requires accurate predictions of gravitational waveform templates in
viable extensions of general relativity. We concentrate on scalar Gauss-Bonnet gravity, one of the most
compelling classes of theories appearing as the low-energy limit of quantum gravity paradigms, which
introduces quadratic curvature corrections to gravity coupled to a scalar field and allows for black hole
solutions with scalar charge. Focusing on inspiraling black hole binaries, we compute the leading-order
corrections due to curvature nonlinearities in the GW and scalar waveforms, showing that the new
contributions, beyond merely the effect of scalar field, appear at first post-Newtonian order in GWs. We
provide ready-to-implement GW polarizations and phasing. Computing the GW phasing in the Fourier
domain, we perform a parameter-space study to quantify the detectability of deviations from general
relativity. Our results lay important foundations for future precision tests of gravity with both parametrized
and theory-specific searches.

DOI: 10.1103/PhysRevD.103.L121503

I. INTRODUCTION

Gravitational waves (GWs) from merging black hole
(BH) binaries are exploring new frontiers in strong-field
gravity, e.g., [1].Akey challenge is to testwhether Einstein’s
theory of general relativity (GR) describes gravity accu-
rately at all scales accessible to BHs, and to discover
signatures of quantum gravity. Several BH mergers have
already been detected by the LIGO and Virgo interferom-
eters [2–6]. We anticipate an ever-increasing number and
high-precision measurements starting with the upcoming
fourth observing run of the GW detector network.
To detect and to measure the properties of merging BH

binaries, we crucially rely on detailed theoretical models to
interpret GW signals. At present, models to test gravity are
mostly null tests against GR, with parametrized deviations
from GR waveforms. These tests are performed only on
single coefficients [7–9] and thus, such strategies remain
limited when interpreting theoretical constraints. Therefore,
there is an urgent need to compute inspiral-merger-ring-
down waveforms from alternative theories of gravity in

order to allow for an informed mapping of parametrized
approaches to extensions of GR, consistent theory-specific
comparisons against observations, and for a systematic
search of quantum gravity signatures in GW detections.
In this paper, we provide, for the first time, analytical

waveforms that include the effect of nonlinear curvature
corrections to inspiraling binaries beyond the weak-
coupling limit, for a well-motivated class of beyond GR
theories. These theories contain contributions from the
Gauss-Bonnet (GB) topological invariant class through the
scalar RGB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ, which respects
the Lorentz and CPT symmetries (this differs from the
dynamical Chern-Simons theory [10,11], for instance), and
is coupled to a dynamical scalar. Scalar Gauss-Bonnet
(SGB) gravity theories are ghost-free and arise in the low-
energy limit of quantum gravity paradigms such as string
theories and loop quantum gravity [12–14], which makes
them promising effective theories at the energy scales
relevant for astrophysical BHs. In SGB theories, BHs
can spontaneously scalarize [15,16] or develop scalar hair
[14,17–22]. The scalar and higher-curvature contributions
modify the BH binary’s dynamics and GWs, making BH
mergers the most interesting avenue to test these theories.*b.shiralilou@uva.nl
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Previous work on analytical models in SGB gravity has
focused on the leading-order contributions to BH binary
waveforms [23], which are impacted only by the scalar field
and not by the curvature nonlinearities, and on computing
the Lagrangian for the dynamics [24]. The effects of an extra
scalar field on GWs of binary inspirals have also been
analytically computed in scalar-tensor (ST) theories [25–29],
where, however, only neutron stars scalarize.
The first numerical relativity simulations of SGB gravity

used an effective-field-theoretical treatment [30,31] or the
decoupling limit [32] due to challenges in the time evolution
formulation for general couplings [33,34]. Recent progress
in the formulation of the SGB as a well-posed initial value
problem [35,36] was used in the first numerical evolution of
the nonlinear field equations [37].
This work makes important progress on three fronts:

(i) We compute, for the first time, analytical waveforms
during the inspiral stage of binary evolution with the effect
of higher-curvature corrections. Previous work in [23]
captured only the corrections due to the scalar field.
(ii) Our calculation and methods are not limited to the
small-coupling approximation; they are applicable to all
coupling strengths that lie within the theoretical bound
[14,17] as well as general couplings that remain uncon-
strained. (iii) We perform a parameter-space study by
varying the coupling parameter, coupling function, and
BH masses, for scalar as well as tensor radiation-dominated
inspirals. We further demonstrate that the effect of the GB
scalar is distinct from the scalar in ST theories due to
explicit GB-coupling-dependent terms. This has conse-
quences for interpreting GW signals from BH–neutron-star
binaries [38].
Using the post-Newtonian (PN) approach, we compute

the scalar and tensor waves to half and one relative PN
order [∼Oð1=cÞ and ∼Oð1=c2Þ, where c is the speed of
light used here as the formal PN expansion parameter],
respectively. We also calculate the GW phasing, to which
measurements are very sensitive, as well as the polarization
waveforms. Our results include higher-order strong-field
effects than previously computed, which are critical for
GWmeasurements. Such effects in alternative theories may
mimic biases in fundamental source parameters when
analyzing with GR-only waveforms. This work lays the
foundation for potential discoveries and provides the
framework for computing new stringent constraints on
nonlinear curvature effects of gravity.

II. BLACK HOLE BINARIES IN SCALAR
GAUSS-BONNET THEORY

The gravitational action with the GB higher-curvature
terms is

S ¼
Z

d4x
c3

ffiffiffiffiffiffi−gp
16πG

½R − 2ð∇ϕÞ2 þ αfðϕÞRGB�: ð1aÞ

The coupling constant α has dimensions of length squared.
Choosing the coupling function fðϕÞ ¼ e2ϕ=4 corresponds
to Einstein dilaton Gauss-Bonnet gravity [14], and
fðϕÞ ¼ ϕ to shift symmetric SGB (SSGB) gravity [17].
The skeletonized matter action [39] Sm describing two

BHs labeled by A, B added linearly to S is

Sm ¼ −c
Z

MAðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdx

μ
Adx

ν
A

q
þ ðA ↔ BÞ: ð1bÞ

Here xμA is the world line of particle A. With this ansatz, the
self-gravity of the compact objects enters through the
scalar-dependent mass MAðϕÞ. In the weak-field limit, it
can be expanded as

MAðϕÞ ¼ mA

�
1þ α0Aδϕþ 1

2
ðα0A2 þ β0AÞδϕ2

�

þOðδϕ3Þ; ð2Þ

with δϕ the perturbation of ϕ around its background value
ϕ0 and mA the asymptotic value of the mass. The scalar-
charge parameter and its derivative are defined as

α0A ¼ dlnMAðϕÞ
dϕ

����
ϕ¼ϕ0

; β0A ¼ dαAðϕÞ
dϕ

����
ϕ¼ϕ0

: ð3Þ

Within the small-coupling approximation, the explicit
form of the scalar charge α0A for nonspinning BHs has been
derived to fourth order in the coupling in [24]. To the leading
order, α0A ≡ −αf0ðϕ0Þ=2m2

A for all coupling functions.

III. GRAVITATIONAL AND
SCALAR RADIATION

To compute the dynamics and gravitational radiation of
BH binaries in the theory (1), we introduce the gothic
metric gαβ ¼ ffiffiffiffiffiffi−gp

gαβ and decompose it in the weak-field
limit as gμν ¼ hμν þ ημν, where ημν is the flat metric and hμν
is the tensor perturbation. Specializing to harmonic gauge,
where ∂νgμν ¼ 0, we write the field equations derived from
action (1) in a relaxed form [40], finding that

□hαβ ¼ 16πG
c4

ð−gÞTαβ
m þ Λαβ

GB þ Λαβ
GR; ð4aÞ

□ϕ ¼ 4πG
c4

Sm;ϕffiffiffiffiffiffi−gp −
αf0ðϕÞ

4
RGB; ð4bÞ

where Λαβ
GR contains terms that are quadratic in hαβ and its

derivatives [40] and Tαβ
m is the stress-energy tensor derived

from the matter action in Eq. (1b). For the explicit GB
contribution to the metric field equation, we find

BANAFSHEH SHIRALILOU et al. PHYS. REV. D 103, L121503 (2021)

L121503-2



Λαβ
GB ¼ −8αð−gÞ�R̂�cαβd∇cdfðϕÞ

þ∇cϕ∇dϕð2gαcgβd − gαβgcdÞ; ð5Þ

where, �R̂�cαβd is the gauge-fixed dual Riemann tensor. The
formal solutions to Eq. (4) are computed with the retarded
Green’s function approach

hμνðt;xÞ¼ 1

4π

Z
sμνðt0;x0Þδðt0− tþjx−x0j=c2Þ

jx−x0j d4x0; ð6Þ

where sμν denotes the source terms on the right-hand side of
(4a), and similarly for the scalar field. The integral in
Eq. (6) extends over the past light cone of the field point
ðct;xÞ. To calculate the solution of the integral, we split the
spacetime into three regions: (i) the strong-field zones close
to each of the BHs [at the boundaries of these zones, we
extract the massesMAðϕÞ, and treat their interior regions as
a skeletonized worldline [39,41]], (ii) the near-zone, where
the separation between source and field point is less than
the characteristic wavelength of the GWs, and (iii) the far
zone at larger distances. With this splitting, we can use the
post-Newtonian direct integration of the relaxed Einstein
equations (DIRE) [42] formalism to divide the integration
of Eq. (6) into four different calculations, corresponding to
the near and far zone contributions for each relative
location of the source and field points.
More specifically, to turn the formal solutions of Eq. (6)

into a practical scheme, we make the PN assumption
that hμν and δϕ are small, and perturbatively expand the
nonlinear terms in sμν and its scalar analog using the formal
expansion parameter 1=c2, keeping terms up to the relative
first PN order. We follow the methods of [42] for evaluating
the four different contributions to the integrals, and
compute the equations of motion from the 1PN
Lagrangian given in Ref. [24] to eliminate accelerations.
The technical details of the calculations are given in [43].
The energy radiated in tensor (T) and scalar (S) waves is

computed from

_E ¼ _ET þ _ES ¼
c3R2

32πG

I
½ _hijTT _hijTT þ _ϕ2�d2Ω; ð7Þ

where R is the distance between the source and the far zone
field point i.e., the detectors, and TT denotes the transverse-
traceless projection. In the following, we specialize to
circular-orbit binary systems. Analogous to ST theories
[44], we define the binary parameters

ᾱ≡ ð1þα0Aα
0
BÞ; γ̄≡−2

α0Aα
0
B

ᾱ
; β̄A≡1

2

β0Aðα0BÞ2
ᾱ2

; ð8Þ

where Δm ¼ mA −mB, with the conventionmA < mB, and
m ¼ mA þmB is the total mass. We obtain, omitting
corrections of Oðc−4Þ,

_ET ¼ F̄N

�
1þF 1PN

GR −
16β̃þv̄2

3c2
−
10γ̄v̄2

3c2
−
ϵf0ðϕ0Þv̄6
G2ᾱ5=2c2

×

�
8S1;1;0þ

16S3;1;0

3ᾱ
−
261ðS1;0;1−2ηS1;0;−1Þ

7

��
; ð9Þ

_ES ¼ F̄D

�
S2
− −

2S2
−ð20β̃þþ5γ̄−2ηÞ

3

v̄2

c2

þð4S2þ−54S2
−Þ

5

v̄2

c2
−
8S−

γ̄
ðS−β̃þþSþβ̃−Þ

v̄2

c2

−
v̄6

c2
ϵf0ðϕ0Þ
G2ᾱ5=2

�
32S3;1;0S2

−

3ᾱ
þηΔmSþS−S1;1;0

8m

	�
: ð10Þ

Here, η ¼ mAmB=m2 is the symmetric mass ratio. Note that
the circular-orbit velocity v̄ ¼ ðGmᾱωÞ1=3 differs from its
GR definition by a factor of ᾱ. The leading-order energy
flux in tensor radiation is F̄N ¼ 32η2v̄10=ð5Gc5ᾱ2Þ, where
N denotes the Newtonian-order contribution. The contri-
bution up to 1PN order F 1PN

GR is given, e.g., in [45]. The
prefactor of the leading-order flux of scalar radiation due to
dipole emission is F̄D ¼ 4η2v̄8=ð3Gᾱc3Þ. We have also
defined

S� ¼ α0A � α0B
2

ffiffiffī
α

p ; β̃� ¼ β̄Að1 − Δm
m Þ � β̄Bð1þ Δm

m Þ
2

;

ϵ ¼ α

m2
; Sa;b;c ¼ aSþ þ

�
b
Δm
m

þ c

	
S−; ð11Þ

where ϵ is the dimensionless coupling parameter.
Our result for the energy fluxes has a similar structure to

those of a ST theory (see [27,28]) but differ through the
additional ϵ-dependent terms entering first at relative 1PN
order.This feature can be used in distinguishing the two
theories when analyzing BH–neutron-star binaries. We also
note that the scaling of the GB contributions in the PN
expansion is Oðc−2Þ, irrespective of the value of the
coupling. However, due to the different scaling with v̄,
the GB contributions (∼v̄6) are suppressed at large sepa-
ration compared to the other 1PN terms (∼v̄2).
From the Lagrangian in [24], we derive the circular-orbit

binding energy [43] to Oðc−2Þ,

E ¼ −ηmv̄2
�
E1PN
GR þ ð2β̃þ − γ̄Þv̄2

3c2
þ 11S3;1;0v̄6

3ᾱc2
ϵf0ðϕ0Þ
G2ᾱ5=2

�
;

ð12Þ

where E1PN
GR is the 1PN correction in GR [45].

IV. GRAVITATIONAL WAVE PHASING

The GW measurements are very sensitive to the
phase evolution of the waveform. An approximation for
the phasing can be derived from energy balance
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dEðv̄Þ=dt ¼ −F ðv̄Þ, which is valid as long as _ω=ω2 ≪ 1.
This yields the differential equations

dφ
dt

−
v̄3

Gᾱm
¼ 0;

dv̄
dt

þ F ðv̄Þ
E0ðv̄Þ ¼ 0: ð13Þ

We solve this system in the Taylor T4 approximation [46]
by expanding the entire ratio F ðv̄Þ=E0ðv̄Þ to 1PN order and
solving Eq. (13) numerically for the phase evolution.
As the parametrized tests of gravity are mainly based on

waveforms in the Fourier domain, we also compute the
Fourier domain phase ψðfÞ at the dominant GW frequency
f ¼ ω=π in the stationary phase approximation (SPA) [47]
by using

ψðfÞ ¼ 2πft0 − ϕ0 þ 2

Z
v0

vf

ðv3f − v3ÞE
0ðvÞ

F ðvÞ dv: ð14Þ

The subscript 0 refers to a reference point in the binary
evolution. To solve for the GW phase from (14), we
distinguish systems whose inspiral is driven by scalar-
dipolar versus tensor-quadrupolar radiation, with the scalar-
dipolar-driven (DD) regime relevant for

v̄2DD ≪
5c2S2

−ᾱ

24
or fDD ≪

�
5

24

	
3=2 c3S3

−
ffiffiffī
α

p

πGm
: ð15Þ

At higher frequencies, the system is quadrupole driven
(QD). The phase evolution in the QD regime for equal
masses (mass ratio q ¼ mA=mB ¼ 1) is given by

ψQD
q¼1¼

3c5ᾱ
128v̄5ξ̄

�
1þ20v̄2

9c2

�
1247

336ξ̄
−
3

2
þ
�
980

336ξ̄
−
1

6

	
η

þ
�
448

336ξ̄
−
4

3

	
γ̄þ2

�
896

336ξ̄
þ4

3

	
β̃þ

�
−
25c1PNS ᾱv̄2

54ξ̄c2

−
40Sþv̄6

c2
f0ðϕ0Þϵ
g2ᾱ5=2

�
12

ξ̄
þ495ð1−2ηÞ

28ξ̄
þ88

ᾱ

	�
; ð16Þ

with ξ̄ ¼ 1þ S2þᾱ=6. The full expression for arbitrary
masses and for the DD regime is given in Ref. [43]. We
note that the QD phasing has contributions from 1PN scalar
flux indicated as c1PNS . We calculated the scalar waveform
to 0.5PN order, leaving this contribution undetermined.
Following the strategy employed for 2PN tidal effects [48],
we will keep all the other 1PN terms and set the missing
contributions to zero. The c1PNS term is expected to have a
similar structure to other terms and possibly depend on the
parameter Sþ. The inclusion of this term would increase the
overall energy flux and thus the phase differences between
SGB and GR.

V. READY-TO-USE GRAVITATIONAL WAVE
POLARIZATIONS

In the time domain, GW detectors measure the linear
combination of polarization waveforms hþðtÞ and h×ðtÞ.
We derive the two GW polarizations from the solution to
Eq. (6) solved explicitly in [43]. To 1PN order, we obtain

hþ;× ¼ 2Gμ
Rc2

v̄2

c2

�
H0þ;× þ v̄

c
H1=2

þ;× þ v̄2

c2
H1þ;×

þ v̄6

c2
ϵf0ðϕ0Þ
24G2ᾱ5=2

H1
þ;×GB þOðc−3Þ

�
; ð17Þ

where the normal to the orbit differs from the radial
direction to the observer by an inclination angle {. The
coefficients of the plus polarization are

H0þ ¼ H0
þðGRÞ; H1=2

þ ¼ H1=2
þðGRÞ;

H1þ ¼ H1
þðGRÞ þ

2

3
ðγ̄ þ β̄þÞð1þ cos2ðiÞÞ cosð2φÞ;

H1
þðGBÞ ¼ 192½ðcosð2iÞ þ 3Þ cosð2φÞS2;1;0 þ sin2ðiÞS3;1;0�

þ 32S3;1;0½ðcos2ðiÞ þ 1Þ cosð2φÞ − 3sin2ðiÞ�
þ 18½ð2ηþ 1ÞS− þ ð1 − 2ηÞSþ�
× ½2sin2ð2iÞ cosð2φÞ
− sin2ðiÞðcosð2iÞ þ 3Þð3 cosð4φÞ þ 1Þ�; ð18Þ

and for the cross polarization, they are

H0
× ¼ H0

×ðGRÞ; H1=2
× ¼ H1=2

×ðGRÞ;

H1
× ¼ H1

×ðGRÞ þ
4

3
cosðiÞ sinð2φÞ

�
γ̄ þ 2βþ − 2

Δm
m

β−

�
;

H1
×ðGBÞ ¼ cosðiÞf2 sinð2φÞ½9sin2ðiÞðS108;52;0 − 3

þ ð2ηþ 1ÞS− þ ð1− 2ηÞSþÞ�
− 27sin2ðiÞ sinð4φÞ½ð2ηþ 1ÞS− þ ð1− 2ηÞSþ�g:

ð19Þ

In Fig. 1, we show the GW polarization and phase
evolution in time. Exemplarily, we choose an intermediate
coupling value ϵ ¼ 0.03 for a BH binary with m ¼ 15 M⊙
and q ¼ 1=2. We also show a comparison to the 1PN
waveforms within GR. The evolution starts at a GW
frequency of f ¼ 10 Hz, i.e., when the GWs would first
enter the sensitivity band of current ground-based GW
detectors. We observe that the dephasing of the waves starts
early in the evolution, while the difference between the
amplitudes remains relatively small until the binary reaches
frequencies of around f ≈ 60 Hz, after which the GB
phasing and amplitude increase rapidly and the difference
with GR waveform becomes significant.
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VI. IMPACT OF HIGHER-CURVATURE
GRAVITY ON GWs

Considering EDGB and SSGB theories, we study the
impact of the GB coupling parameter on the phase
evolution of quasicircular BH binaries in the Aþ LIGO
sensitive frequency band [49].
Requiring regular BH horizons limits the coupling

parameter to ϵ < 0.619 in EDGB [14] and ϵ≲ 0.3 in
SSGB [17]. Simulations of BH mergers predict a bound
on the coupling of ϵ≲ 0.03 (i.e.,

ffiffiffi
α

p ≲ 3.2 km for an
equal-mass binary of 20 M⊙) from current GW observa-
tions [30,31]. This is consistent with the GW-based con-
straints of [50] and constraints from low-mass x-ray
binaries [51].
Here, we choose ϵ ¼ 0.03, in correspondence with

Fig. 1, and also ϵ ¼ 0.005. As we will show, the latter
choice marks the threshold for detectability of SGB phase
modifications for many low-mass BH binary systems. We
use the explicit result of [24] for the scalar charges, valid to
first order in the coupling. As we are mainly interested in
the behavior of the theory at high-curvature regimes (i.e.,
low BH masses), we choose a total mass of m ¼ 15 M⊙
and vary the individual BH masses for mass ratios
q ¼ 1; 1=2; 1=4. For the binaries with q ¼ 1, the scalar
radiation is very small, as S− vanishes in this case.
The GB corrections to the inspiral phase evolution are

determined by the GB coupling parameter α ¼ ϵm2, which

also sets the scalar charges. For instance, the threshold (15)
indicates that for a relatively large ϵ, those systems with
1=2 ≤ q < 1 are DD when they enter the LIGO band. Yet
for small ϵ, having a DD regime and transition to QD in the
ground-based detector bands requires low-mass-ratio bina-
ries with individual BHs as light as 2 M⊙. This means that
for such small couplings, binary BHs are typically QD
systems in the ground-based detector bands, yet mixed
binaries may have a DD regime. For example, in the case of
15 M⊙ BH binaries with ϵ ¼ 0.1, the q ¼ 1=2 system is a
DD inspiral that transitions to the QD regime, and the q ¼
1=4 case is DD throughout the entire inspiral.
In Fig. 2, we show the phase evolution of binary BHs in

EDGB gravity as compared to the corresponding phase in
GR to 3.5PN order, for the aforementioned choices of ϵ. To
isolate the GB effects, we also compare the phasing with
that of GR to 1PN order. The upper frequency bound is
chosen as fmax ¼ 2ð63=2πmÞ−1 ≈ 586 Hz, and to simplify
the comparison, all phases are aligned with the 1PN equal-
mass phase in GR at the minimum frequency limit. These
systems represent the most relevant regime for the majority
of binaries observable with the current detectors LIGO/
Virgo/KAGRA.
We only show the EDGB phase evolution as the phase

difference between the SSGB and EDGB theories is
relatively small compared to the overall phase evolution.
This is to be expected as we are using a first-order

FIG. 1. The time evolution of GW signal for a m ¼ 15 M⊙ binary with q ¼ 1=2 and ϵ ¼ 0.03, and the corresponding GW frequency
evolution. The blue dashed curve indicates the EDGB waveform and the black curve the 1PN GR waveform. The orbit is viewed edge-
on (i ¼ π=2) and t ¼ 0 indicates the time corresponding to f ¼ 10 Hz. The shaded colored regions correspond to different snapshots of
the waveform.
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approximation to α0A. We note here that for q ≠ 1 binaries,
this difference is within the limit of detectability once
having ϵ > 0.1; i.e., for ϵ ¼ 0.01 the phases differ by
Oð10Þ GW cycles.
As shown in Fig. 2, the SGB phases are always less than

their 1PN GR analog, decreasing the overall phase of an
equal-mass BH binary by ∼322 GW cycles if ϵ ¼ 0.03,
and by ∼9 GW cycles if ϵ ¼ 0.005. As can be seen from
the plot, this phase difference increases significantly for
q ≠ 1 binaries, which also emit energy through scalar
dipole radiation. Overall, decreasing the value of ϵ results
in smaller deviations from the GR phase. For very small
values of the coupling parameter (not shown here) such as
ϵ ¼ 0.001, the change in the number of GW cycles of
binaries with q < 1=2 is of the order of several cycles,
making the GB effects still within the limit of detectability.

VII. CONCLUSIONS

We have studied GWs from BH binary inspirals for
gravity theories with higher-curvature corrections charac-
terized by the coupling of the GB invariant to a scalar
field. We have computed novel signatures from nonlinear
curvature corrections to 1PN order beyond the leading

quadrupole emission in the gravitational waveform, and to
0.5PN order in the scalar waveform, in addition to scalar
effects considered in previous work [23]. We have provided
ready-to-implement 1PN inspiral GW templates. By deriv-
ing the SPA gravitational phase and evaluating it for
examples of BH binaries in SSGB and EDGB theories,
we have shown that the inspirals are accelerated compared
to the 1PN GR case, with the deviation being strongly
dependent on the coupling parameter of the theory.
Our results are not restricted to specific choices of the

coupling function or to the weak-coupling limit. In par-
ticular, they allow us to investigate a wide class of SGB
gravity including those that yield spontaneously scalarized
BHs [15,16], a truly nonlinear effect that is suppressed by a
weak-coupling treatment. Thus, our work lays the founda-
tion to explore dynamical scalarization or descalarization of
BH binaries [32] during the early inspiral.
Our results provide a critical first step toward construct-

ing inspiral-merger-ringdown GW templates at high-cur-
vature regimes and provide a useful benchmark for
numerical relativity simulations of the merger phase
[43]. By further showing that the scalar-charge-induced
dipole radiation as well as the higher-curvature effects
are potentially observable in Aþ LIGO=Virgo=KAGRA

FIG. 2. Top: GW inspiral phase ψðfÞ as a function of frequency f for a m ¼ 15 M⊙ binary with q ¼ 1 (solid lines), q ¼ 1=2 (dashed
lines), and q ¼ 1=4 (dot-dashed lines), with ϵ ¼ 0.03 (left) and ϵ ¼ 0.005 (right). The red curves indicate EDGB gravity. In blue, we
show the corresponding 1PN GR phase, and in black, the 3.5PN GR phase. Bottom: GW phase difference between EDGB ψEdGB and
1PN GR ψGR shown for aforementioned systems.
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sensitivity bands, we have provided the baseline for more
extensive parameter estimation studies, which we have left
for future work, for both ground-based and multiband GW
observations.
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