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Abstract

On October 1, 2019, the IceCube Collaboration detected a muon track neutrino with
high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal
disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (ZTF), was
indicated as the most likely counterpart of the IceCube track. More recently, the follow-
up campaign of the IceCube alerts by ZTF suggested a second TDE, AT2019fdr, as a
promising counterpart of another IceCube muon track candidate, IC200530A, detected on
May 30, 2020. These are the second and third associations between astrophysical sources
and high-energy neutrinos after the compelling identification of the blazar TXS 0506+056.
Here, the search for ANTARES neutrinos from the directions of AT2019dsg and AT2019fdr
using a time-integrated approach is presented. As no significant evidence for space clustering
is found in the ANTARES data, upper limits on the one-flavour neutrino flux and fluence
are set.

Introduction - High-energy cosmic neutrinos are a unique probe of the high-energy universe:
their detection is critical to identify the acceleration sites of cosmic rays and to discover distant
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sources otherwise inaccessible with γ-rays. Several milestones have been achieved in the field of
neutrino astronomy in the past decade, which also opened new unresolved questions.

The IceCube Collaboration has detected an isotropic high-energy cosmic neutrino flux with a
high level of significance in several diffuse flux searches [1, 2]. A mild excess, consistent with the
IceCube findings, has been seen also in the ANTARES data [3]. However, the sources responsible
for the diffuse cosmic signal have not been yet identified.

In 2017, a ∼200 TeV IceCube muon neutrino was found positionally coincident with the
direction of a known blazar in a flaring state, TXS 0506+056 [4, 5]. Soon after, the IceCube
Collaboration reported a compelling evidence for an earlier neutrino flare from the same direction
found in the archival data [6]. This led to the first association of high-energy neutrinos with an
astrophysical source. However, the expected neutrino emission from the blazar TXS 0506+056
can only contribute to the IceCube cosmic neutrino flux for less than 1% [6]. The region around
TXS 0506+056 was studied also by the ANTARES Collaboration, yielding no significant corre-
lation in time and/or space with the IceCube neutrinos [7].

In 2020, a new likely association between an IceCube neutrino, IC191001A, and an astro-
physical source, the tidal disruption event (TDE) AT2019dsg, was announced [8]. Soon after,
a second TDE, ZTF19aatubsj/AT2019fdr, hereafter referred to as AT2019fdr, was found po-
sitionally coincident with another IceCube neutrino, IC200530A [9]. TDEs are rare transient
phenomena that occur when a star passes close enough to a supermassive black hole and is dis-
rupted by the strong tidal forces (for recent reviews see [10, 11]). The accretion process onto the
black hole involves about half of the stellar mass and, in some cases, results in a relativistic jet.
Consequently, both jetted and non-jetted TDEs are observed. Since TDEs show non-thermal
radio emission, they have been suggested as promising sources of ultra-high energy cosmic rays
and high-energy neutrinos (see [12] and references therein). Nonetheless, the contribution to
the IceCube diffuse flux from the TDEs detected before AT2019dsg and AT2019fdr has been
constrained to be at most ∼1.3% (∼26%) in the jetted (non-jetted) TDE case [13].

The detection of IC191001A, a ∼200 TeV muon neutrino with 59% probability of being of
astrophysical origin, registered by IceCube on October 1, 2019 [14, 15], triggered dedicated follow-
ups by multiple telescopes, including the Zwicky Transient Facility (ZTF) [16, 17]. While several
optical transients were found within the 90% localisation uncertainty of the neutrino direction
(∼26 deg2) by ZTF, the TDE AT2019dsg, being one of the few ever detected radio-emitting
TDEs, was soon identified as the most promising candidate neutrino source [15, 8]. Analogously,
IC200530A, a ∼80 TeV muon neutrino with 59% probability of being of astrophysical origin,
detected by IceCube on May 30, 2020 [14, 18], was followed by ZTF, which indicated AT2019fdr
as the likely counterpart of the neutrino event [9].

AT2019dsg and AT2019fdr were first discovered by ZTF on April 9, 2019 [19] and on April 27,
2019 [20], respectively. The TDEs showed a luminosity peak in the optical/UV bands, and ap-
peared to have reached a luminosity plateau by the time of the neutrino detections, which
happened ∼150 days and about one year after the peak, respectively [8, 20]. As detailed in [8],
after the discovery, AT2019dsg was also detected in several follow-up observations in optical/UV,
X-rays and radio, indicating particle acceleration to relativistic energies. The probability of find-
ing by chance a radio-emitting TDE as bright as AT2019dsg in bolometric energy flux and in
coincidence with the IceCube neutrino was estimated to be 0.2%. The expected neutrino flux
from AT2019dsg has been calculated for different models of multi-messenger emission both in the
jetted [21, 22] and non-jetted [23] TDE cases. The most optimistic scenarios predict a neutrino
fluence of ∼10−2 GeV cm−2.

In this letter, the ANTARES follow-up of these findings is presented. In particular, the
ANTARES data collected since the discovery of AT2019dsg and AT2019fdr are investigated to
look for a steady neutrino emission from the direction of the TDEs.
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Detector and data sample - The ANTARES neutrino telescope [24] is a three-dimensional
array of 885 photomultiplier tubes (PMTs) located 40 km off-shore from Toulon, France, below
the surface of the Mediterranean Sea. The 10-inch PMTs are distributed along 12, 450 m long,
vertical lines anchored to the sea-bed at a depth of about 2500 m and held taut by a buoy at
the top, instrumenting a total volume of ∼0.01 km3. The neutrino detection principle is based
on the collection of the Cherenkov light induced by relativistic charged particles produced in
neutrino interactions within and around the instrumented volume. The information provided by
the position, time and collected charge of the signals in the PMTs is used to infer the direction
and energy of the incident neutrino.

Different neutrino flavours and interactions leave distinct signatures in the detector. Two
event topologies can be identified in the ANTARES telescope: tracks and showers. Tracks
are originated by the passage in water of relativistic muons produced in charged current (CC)
interactions of muon neutrinos. The long lever arm of the track topology allows to reconstruct
the parent neutrino direction of high-quality selected events with a median angular resolution
of 0.4◦ for energies above 100 TeV [25]. All-flavour neutral current (NC) as well as νe and
ντ CC interactions induce showers, characterised by an almost spherical light emission around
the shower maximum, with an elongation of a few metres. A median angular resolution of ∼3◦
for high-quality selected events with energies between 1 TeV and 0.5 PeV is achieved for this
topology [25].

The search for neutrinos from the direction of AT2019dsg (AT2019fdr) presented in this
letter includes both track-like and shower-like events recorded in ANTARES from the day of
the discovery of the TDE, 2019 April 9 (2019 April 27), until the day of the last available fully-
calibrated ANTARES data, 2020 February 29, corresponding to a livetime of 315 (298) days.
The track and shower events are selected using the criteria described in [25]. The selection is
optimised to minimise the neutrino flux needed for a 5σ discovery of a point-like source emitting
with an energy spectrum ∝ E−2.0ν . Cuts are applied on the zenith angle, the angular error
estimate and parameters describing the quality of the reconstruction. In the shower channel,
an additional cut is applied on the interaction vertex, required to be located within a fiducial
volume slightly larger than the instrumented volume. A total of 413 (390) tracks and 8 (7)
showers, resulting from the selection, are employed in the search for a cluster of events from the
direction of AT2019dsg (AT2019fdr).

Search method - The location of AT2019dsg (RA = 314.26◦, δ = 14.20◦) and of AT2019fdr
(RA = 257.28◦, δ = 26.86◦) has been investigated to search for spatial clustering of events above
the known background expectation following an unbinned maximum likelihood ratio approach.
The likelihood describes the ANTARES data in terms of signal and background probability
density functions (PDFs) and is defined as:

logL =
∑

J∈{tr ,sh}

∑
i∈J

log
[
µJsigS

J
i +NJBJi

]
− µsig, (1)

where SJi and BJi are the values of the signal and background PDFs for the event i in the sample
J (tr for tracks, sh for showers), µJsig and NJ are respectively the number of unknown signal
events and the total number of data events in the J sample, and µsig = µtr

sig + µsh
sig is the total

number of fitted signal events. The PDFs have been built using the 2007-2020 ANTARES data
and Monte Carlo production in order to ensure sufficient statistics. The signal and background
PDFs are given by the product of a directional and an energy-dependent term. While atmospheric
neutrino events appear randomly distributed on the sky, neutrinos from point-like sources are
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expected to accumulate around the source position. The energy information helps to distinguish
signal from background, as a softer energy spectrum is predicted for atmospheric neutrinos with
respect to the expected signal [26]. An unbroken power law neutrino spectrum, Φν(Eν) ∝ E−γν ,
is assumed in this analysis for the signal emission, with γ being one of the three tested spectral
indices, γ = 2.0, γ = 2.5, or γ = 3.0. The same definition of the PDFs used in the ANTARES
9-year point-source analysis [25] is employed in this search. The spatial signal PDF is a spline
parametrisation of the point-spread function. It is defined as the PDF to reconstruct an event at
a given angular distance from its original direction due to reconstruction uncertainties, and it is
derived from Monte Carlo simulations of ∝ E−γν cosmic neutrinos. The background is assumed to
be uniform in right ascension, and the distribution of the sinus of the declination of the selected
data is employed as spatial background PDF. Monte Carlo simulations of ∝ E−γν energy spectrum
cosmic neutrinos (signal) assuming neutrino flavour equipartition at Earth and of atmospheric
neutrinos using the spectrum of [27] (background) are used to derive the energy PDFs. In the
likelihood maximisation, the number of signal events, µsig, is the only free parameter. The test
statistic, Q, is defined from the likelihood as:

Q = 2 log

[
L(µsig = µ̂sig)

L(µsig = 0)

]
, (2)

where µ̂sig is the best-fit value that maximises the likelihood. The significance of the potential
spatial cluster at the location of the TDE is estimated by means of pseudo-experiments (PEs)
– pseudo-data sets of data randomised in time to eliminate any local clustering due to potential
sources. The fraction of background-only PEs with a value of Q larger than the one obtained
with the data gives the significance (p-value) of the cluster.

The 5σ discovery potential of the search, n5σ, is defined as the mean number of injected signal
events needed for a 5σ discovery in 50% of the PEs. The obtained values are n5σ = 3.6 and
n5σ = 3.4 for AT2019dsg and AT2019fdr, respectively, assuming an E−2.0ν neutrino spectrum,
while ∼40% more events are needed for the softer spectrum E−3.0ν .

Results - Figure 1 shows the distribution of the ANTARES events close to the location of
the sources. In both cases, only one event has been detected within 5◦ from the TDE. The event
close to AT2019dsg (AT2019fdr) is a track-like event, located at a distance of 1.7◦ (2.3◦) from
the source, and was registered on February 11, 2020 (September 25, 2019). The information on
the two events is reported in Table 1.

Table 1: ANTARES event within an angular distance ∆Ψ < 5◦ from AT2019dsg (first row) and
AT2019fdr (second row). For each ANTARES event, the table reports the topology, equatorial
coordinates (RA, δ), angular distance ∆Ψ from the TDE, Modified Julian Date (MJD), date
(dd/mm/year), and fraction f of selected data events with energy estimator values larger than
that of the event.

Source topology (RA, δ)
deg

∆Ψ
deg MJD date

dd/mm/year f

AT2019dsg track (315.8, 13.4) 1.7 58890.99 11/02/2020 0.35

AT2019fdr track (259.6, 27.8) 2.3 58751.08 25/09/2019 0.15

The likelihood method fits less than one signal event at the direction of both TDEs for the
three tested values of the spectral index γ = 2.0, γ = 2.5, and γ = 3.0. At the location of
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Figure 1: Distribution of ANTARES events in equatorial coordinates around the position of
AT2019dsg (left) and AT2019fdr (right). The orange lines depict the one and five degree distance
from the source position, indicated as a grey star. Only track-like events (blue points) have been
detected within 5◦ from the location of the sources. The dashed circles around the events indicate
the angular error estimate on the track reconstructed direction.

AT2019dsg, the largest deviation from the background expectation is obtained for an E−3.0ν

spectrum, with a number of fitted signal events µ̂sig = 0.7 and a p-value of 8.9% corresponding
to 1.3σ significance (in the one-sided convention). The lowest p-value (6.7%) at the location of
AT2019fdr is observed for an E−2.0ν spectrum, with a number of fitted signal events µ̂sig = 0.5,
yielding a significance of 1.5σ (in the one-sided convention).

Table 2 summarises the results of the searches in terms of best-fit number of signal events
and p-value, and reports the upper limits on the one-flavour neutrino flux normalisation, Φ0,
for three values of γ, where the neutrino flux has been parameterised as Φν = Φ0

(
Eν

1GeV

)−γ
.

Moreover, upper limits are set on the one-flavour neutrino fluence, F , defined as the integral in
time and energy of the neutrino energy flux:

F =

∫ tmax

tmin

∫ Emax

Emin

Eν · Φν dEν dt = ∆t · Φ0 ·
∫ Emax

Emin

Eν ·
(

Eν
1 GeV

)−γ
dEν , (3)

where Emin and Emax are the boundaries of the energy range containing 90% of the expected
signal events for the given γ, and ∆t is the livetime of the search.

The absence of any significant detection of neutrinos from AT2019dsg is consistent with
all proposed emission models for the TDE, being their predictions much below the ANTARES
neutrino detection threshold [21, 22, 23]. The expected neutrino fluence resulting from those
models is too low to be constrained by the upper limits set in this analysis.

Conclusions - The ANTARES follow-up of AT2019dsg and AT2019fdr, the TDEs recently
indicated as the most likely counterparts of two high-energy IceCube neutrinos, IC191001A and
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Table 2: Results of the search at the location of AT2019dsg and AT2019fdr in terms of best-
fit number of signal events µ̂sig, p-value, 90% C.L. sensitivity and upper limits on the one-
flavour neutrino flux normalisation Φ90%C.L.

0 (in units of GeV−1cm−2s−1), and on the one-flavour
neutrino fluence F90%C.L. (in units of GeVcm−2), for different values of the spectral index γ. The
boundaries, Emin and Emax, of the energy range containing 90% of the expected signal events,
employed in the calculation of the fluence, are listed in the last column.

Source Results

Name γ µ̂sig p-value Φ90%C.L.
0 F90%C.L. log(Emin

GeV ) - log(Emax
GeV )

sensitivity limit sensitivity limit

AT2019dsg 2.0 < 0.1 12.4% 7.3× 10−8 1.0× 10−7 14 19 3.6 - 6.6

2.5 0.2 10.2% 1.5× 10−5 2.2× 10−5 29 43 2.8 - 5.5

3.0 0.7 8.9% 1.2× 10−3 2.0× 10−3 230 380 2.1 - 4.7

AT2019fdr 2.0 0.5 6.7% 8.5× 10−8 1.3× 10−7 15 23 3.6 - 6.6

2.5 0.5 7.9% 2.1× 10−5 3.0× 10−5 39 55 2.8 - 5.5

3.0 0.6 9.1% 2.0× 10−3 3.0× 10−3 360 540 2.1 - 4.7

IC200530A, has been presented. The ANTARES data collected since the discovery of AT2019dsg
and AT2019fdr have been investigated to look for a steady neutrino emission from the direction
of the TDEs, resulting in no evidence for signal in the data. Given the non-detection, 90% C.L.
upper limits on the one-flavour neutrino flux and fluence have been set. Recent models proposed
to explain the multi-messenger observations from AT2019dsg predict a neutrino emission well
below the ANTARES sensitivity and can not thus be constrained by the upper limits set in this
analysis. Nevertheless, alternative search methods such as stacking and time-dependent analyses
will provide an effective way to enhance the discovery potential using the existing data. Moreover,
a significant improvement in sensitivity is expected from the upcoming next generation neutrino
telescope, KM3NeT [28], thanks to its larger effective area combined with an excellent angular
resolution [29].
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