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A B S T R A C T   

Additive manufacturing has attracted much attention in the last decade as a principal growing sector of complex 
manufacturing. Precise layer-by-layer patterning of materials gives rise to novel designs and fabrication strate-
gies that were previously not possible to realize with conventional techniques. Using suitable materials and 
organized variation in the printing settings, parts with time-dependent shapes that can be tuned through envi-
ronmental stimuli can be realized. Given that these parts can either change their shape over time to a pre- 
programmed three-dimensional shape or revert to an initial design, this process has become referred to as 
four-dimensional (4D) printing. In this regard, the commonly-used polylactic acid (PLA) polymer has been 
recognized as a compelling material candidate for 4D printing as it is a biobased polymer with great shape 
memory behavior that can be employed in the design and manufacturing of a broad range of smart products. In 
this review, we investigate the material properties and shape memory behavior of PLA polymer in the first 
section. Then, we discuss the potential of PLA for 4D printing, including the principles underlying the strategy for 
PLA-based printing of self-folding structures. The resulting materials exhibit response to environmental stimulus 
as well as temperature, magnetic field, or light. We additionally discuss the impact of geometrical design and 
printing conditions on the functionality of the final printed products.   

1. Introduction 

The popularity of 3D printing has continuously increased since its 
origin in the early 1980s [1–4]. Since then, 3D printing has found 
diverse applications in manufacturing processes [5–7], product devel-
opment and prototyping [8,9], and biotechnology [10,11]. In the 
meantime, novel applications have emerged rapidly in 3D printing 
techniques using advanced materials. Commonly-used 3D printing 
techniques in current practice include stereolithography (SLA), selective 
laser sintering/melting (SLS/SLM), laser engineering net shape (LENS), 
fused deposition modeling (FDM), material jetting (MJ), etc. [12–15]. 
Technologies for realizing these printing techniques have continued to 
become cheaper and more accessible. 

An exciting recent development is 4D printing or precisely- 
controlled 3D printing in which materials can be deformed when 
exposed to an external stimulus [2,16–18]. Although 3D printing 

techniques have been demonstrated for a multitude of materials 
including plastics, metals, and even ceramics, most materials cannot be 
applied to 4D printing because they do not exhibit sufficient shape 
change in the presence of stimuli such as humidity, temperature change, 
or an external magnetic field [2,19,20]. Candidate materials have to be 
printable and also exhibit “smartness”, or the ability to be precisely 
manipulated by a stimulus [21,22]. Attempts continue to identify such 
smart materials to support the development of 4D printing technology 
[17,23–25]. 

Shape memory polymers (SMPs) have the ability to deform from an 
initial shape into a stress-free, temporally maintained shape until shape 
recovery is triggered by an external stimulus [26–28]. In particular, 
internal stress is built up during the programming process, and the 
stored energy can be released and provides the driving force in the shape 
recovery step. These shape changes are often achieved by varying 
temperature through a so-called transformation temperature. The 
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part-specific process of transforming from a primary shape to an altered 
shape (and vice versa) in the presence of a stimulus is referred to as 
‘programming’ [29–31]. SMPs, including those discussed in this review, 
are programmable and can achieve the desired shape transformation 
based on the printing techniques or the mechanical deformation of the 
fabricated product. Alternative materials include shape memory alloys 
(SMAs); however, SMPs have advantages such as lower cost, lower 
density, enabling greater recovery deformation, being biodegradable, 
and responding to more diverse stimuli [9,26]. SMPs have even shown 
potential for creating parts that automatically respond to environmental 
stimuli without the need for auxiliary actuation systems that demand 
additional power and hardware. There are currently two principal lim-
itations of SMPs including low actuation stress and also long shape 
memory cycle time. Ongoing research is exploring associations between 
the composition and microstructure of SMPs to overcome these current 
limitations [32–35]. In this regard, polymer selection plays a key role in 
achieving programmable 4D printed structures. 

From the polymer family, PLA has appeared as a compelling candi-
date for 4D printing thanks to its broad applications in 3D printing and 
low cost [36]. Although the shape-memory properties of PLA have been 
surveyed and reported, limited research exists on its application to shape 
deformation after 3D printing [37,38]. Much previously-published 
literature in this regard uses a blend of PLA with other polymers, like 
polyurethane (PU), to enhance shape recovery and to reduce the glass 
transition temperature (Tg) of PLA, thereby increasing its sensitivity to 
thermal programming [37,39]. The first section of this review 

introduces PLA and its properties, particularly its shape memory 
behavior. Then, the second part investigates the application of PLA to 4D 
printing processes with emphasis placed on the impact of parameters – e. 
g., layer thickness, printing speed, nozzle, temperature, etc. – on 4D 
printing performance. 

2. Polylactic acid (PLA) 

2.1. Shape memory behavior 

Several inherent properties are prerequisites for choosing any poly-
mer to be programmed via printing. Viscoelasticity is the main charac-
teristic of polymers giving them the ability to recover from a deformed 
state [40]. Polymer chains typically exhibit a specific response when 
exposed to an external force. Such an inherent response provides a 
polymer with a unique signature in terms of shape-memory behaviors. 
These signatures vary between families of polymers; however, tailoring 
the architecture of a polymer for a specific shape memory behavior 
continues to be an ongoing challenge. With current fabrication tech-
nologies, it has become possible to tailor polymer architectures for 
controlling shape memory properties [41,42]. In general, 
heat-responsive shape memory polymers can be described by one of 
three fundamental mechanisms, including the (I) dual-state (DSM), (II) 
dual-composite (DCM), and (III) partial-transition (PTM) mechanisms, 
as illustrated in Fig. 1 [36,43]. Silicone can be given as an example of the 
DSM. Since its Tg is below 0 ◦C, it is in a rubbery state at room 

Fig. 1. Summary of mechanisms used for explaining 
shape memory behavior of heat-responsive poly-
mers. (I) Dual-state mechanism (DSM) refers to 
materials that are relatively flexible and deformable 
above the Tg and hard upon cooling below this 
temperature (e.g., silicon) [45]; (II) 
Dual-component mechanism (DCM) corresponds to 
classes of materials with a soft and hard segmental 
structure in which each block can respond to tem-
perature individually, e.g. polyurethane (PU) and 
olefin-block copolymers [46,47]; and (III) 
Partial-transition mechanism (PTM) refers to mate-
rials where heating may stop at a temperature 
within the transition range instead of complete 
transition taking place in the DSM and DCM in cases 
(I) and (II) [48]. In this figure: (a) shows the original 
sample at low temperatures, (b) is the sample upon 
heating and compressing, (c) is the sample after 
cooling and constraint removal, and (d) is the sam-
ple after heating for shape recovery [43]. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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temperature. If it is cooled and distorted below its Tg, it can maintain the 
distorted shape even if the distortion constraint is removed. Then, if it is 
heated to room temperature, it can reach its original shape. The DCM 
can be applied to ethylene-vinyl acetate (EVA) or PU which contain 
soft/hard segments. The shape memory effect can be achieved if at the 
temperature of interest the hard segment is elastic and the stiffness of the 
soft segment is significantly changed by heating, glass transition, or 

melting. A typical example ot PTM is poloxamer 407 (P407). If it is 
heated at a temperature within the transition range, the softened parts 
act as the transition component, and the un-softened part acts as the 
elastic component that stores elastic energy [44]. 

Designing a shape memory polymer requires fine-tuning the prop-
erties of materials. Tg and melting temperature (Tm) are two inherent 
properties that largely determine the shape memory response of 

Fig. 2. Classification of poly(lactic acid) (PLA) 
relative to other biodegradable polymers. Biode-
gradable polymers are classified into two types ac-
cording to their origins: petrochemical or 
renewable. Some biodegradable from petrochem-
ical resources are polycaprolactone (PCL), poly 
(glycolic acid) (PGA), and poly(butylene succinate- 
co-adipate) (PBSA). Biodegradable polymers ob-
tained from renewable resources are classified into 
three families: from biomass and animals (proteins 
and polysaccharides, e.g., starch, chitosan, cellu-
lose, gelatin, lignocellulose), from biotechnology 
(PLA), and from microorganisms (e.g., poly 
(hydroxyalkanoates) (PHAs)).   

Fig. 3. The cycle of PLA, from synthesis to the end-of-life: 90 % of the total lactic acid produced in the world is currently obtained from bacterial fermentation of 
sugar. Two types of polymerization including ring-opening and condensation are usually used. 
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polymers [49]. The shape memory behavior of polymers is dependent on 
the presence of partially reversible covalent bonds and supra-molecular 
interactions [50]. By carefully and precisely crafting such properties, it 
is possible to enhance the shape memory behavior of polymer systems. 
For instance, by enhancing thermal conductivity the time to induction of 
shape recovery can be reduced. The elaborate material design may also 
yield shape memory polymers that respond to alternative impulses such 
as electricity, light, magnetism, and moisture [51]. 

Bio-based and biodegradable polymers have attracted significant 
attention in both academia and industry over the past decades [52–55]. 
Polylactic acid (PLA) is the most notable bio-sourced and biodegradable 
polymer in this family. PLA is best known as a biodegradable, biocom-
patible, and bio-based aliphatic polyester [56]. Fig. 2 displays the place 
of PLA between other biodegradable polymers. PLA was discovered in 
1845 but commercialized in the early 1990s by the Cargill and the Dow 
Chemical Companies (TDCC) that launched the world’s first PLA plant in 
Nebraska (Cargill Dow LLC) [57]. In 2005, Cargill bought out TDCC and 
the manufacturing company was re-named NatureWorks. Today, the 
principal producers of PLA in the world include NatureWorks (Ingeo), 
Total Corbion (Luminy), Synbra (BioFoam), Futero, Danimer Scientific 
LLC, Hisun, and Weforyou. The total annual production of PLA is 
currently estimated to be 200 kton/year. The global market for PLA was 
estimated to be USD 2.23 billion in 2017 and it is expected to grow by a 
stable compound annual growth rate (CAGR) of greater than 20.5 % 
from 2018 to 2026. Although packaging is the main application for PLA 

in terms of volume, a report published in 2019 forecasted that the global 
market for PLA in 3D printing will expand at a CAGR of 19.3 % from 
2018 to 2028 [58,59]. 

2.2. PLA properties 

PLA is derived from lactic acid, or 2-hydroxy propionic acid, by 
bacterial fermentation from renewable resources such as corn, potato, 
cassava, and rice, as outlined in Fig. 3. Due to the presence of a chiral 
carbon, lactic acid has two enantiomers denoted as D- and L-lactic acid as 
shown in Fig. 4. From these enantiomers, lactide can be obtained via a 
two-step synthesis including oligomerization of lactic acid followed by 
cyclization [60]. Accordingly, three stereoisomers of lactide can be 
obtained, including L-lactide, D-lactide, and meso-lactide, as illustrated 
in Fig. 4. 

Thus, three different grades of PLA can be synthesized including poly 
(D-lactic acid) (PDLA), poly(L-lactic acid) (PLLA), and a racemic polymer 
containing a random sequence of body enantiomers called poly(D, L- 
lactic acid) (PDLLA). Some properties of PLA are directly affected by 
variation in its stereochemistry. For example, there is no chain regu-
larity for PDLLA and therefore it cannot be crystallized, while PLLA and 
PDLA are semi-crystalline PLAs. The melting point of PLA can be 
modulated by blending PLLA and PDLA. The variation of the melting 
point in this stereocomplex-PLA is 50 ◦C higher than that of PLLA and 
PDLA [61]. Since melting behavior has a significant effect on the 

Fig. 4. Chemical structure of the stereoisomers of lactic acid (or 2-hydroxy propionic acid) and lactide (a), PLLA (b), and PDLA (c).  

Fig. 5. Ring-Opening Polymerization (ROP) of lactide to produce PLA.  
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printability of polymers, a wide range of 4D printed products would be 
expected by using different families of PLA. 

Specific applications for PLA in 3D and 4D printing depend on its 
underlying molecular structure, which in turn depends on the methods 
employed for PLA synthesis. Two main techniques are used for synthe-
sizing PLA including polycondensation of lactic acid and ring-opening 
polymerization (ROP) of lactide [62,63]. Polycondensation is a simple 
approach, but the resulting PLA has a relatively low molecular weight 
(approximately 20,000 g/mol), the polymerization time is bur-
densomely long (typically more than 30 h), and water formed as a 
by-product must be eliminated to avoid further molecular weight 
reduction [64]. The second method, ROP, is the most-used technique 
consisting of the formation of lactide from lactic acid followed by 
ring-opening polymerization of lactide for obtaining 
high-molecular-weight PLA [62], as outlined in Fig. 5. 

PLA variants used in 3D printing applications are generally produced 
via the ROP technique, and consequently should be more precisely 
referred to as “polylactide” rather than “poly(lactic acid)”. Examples of 
commercial PLA options for 3D printing include three grades fabricated 
by NatureWorks, including variants 3D450, 3D850, and 3D870 having 
physical properties summarized in Table 1 [65]. 

For printing PLA, one needs to have a close look at its properties. PLA 
is a thermoplastic polymer that exhibits nearly 90 % light transmission 
comparable to that of glass. Its density is between 1.19 and 1.43 g/cm− 3 

depending on the exact manufacturing process. Its elastic modulus 
ranges between 2000 and 3500 MPa [66]. Its onset temperature of 
degradation (Tonset) is between 240 and 260 ◦C, which is sufficiently 
high to support its application in shaping processes. Values for these 
physical properties are representative of averages; precise values are 
sensitive to the relative content of D-lactide co-monomer within the 
polymer, which can depend on the manufacturing process. Table 2 
summarizes variation in Tg and Tm for PLA consisting of varying ratios of 
co-monomers [67]. 

The molecular weight of PLA also significantly governs its Tg. It was 
recognized that the value of Tg for PLA has been shown to increase with 
increasing molecular weight up to a saturating weight between 80,000 
and 100,000 g/mol, as illustrated in Fig. 6. 

Above a threshold concentration of D-lactide co-monomer, PLA loses 
its ability to crystallize. More specifically, at 10 % mole percent con-
centration of D-lactide, PLA becomes amorphous. Moreover, different 
tacticities for PLA exhibit different Tg and Tm, as summarized in Table 3. 
Thermal properties of PLA are thus considerably affected by the syn-
thesis procedure and post-crystallization process. While these variations 
may seem to be a hindrance to reliable fabrication, the manufacturing 
and processing dependence of PLA’s characteristics introduce opportu-
nities for tailoring properties for shape memory applications. For 
instance, prior literature has shown that PLA properties can be tuned 
through the addition of micro- and nano-particles or blending PLA with 
other polymers [69,70]. 

Most published research on shape memory properties of PLA inves-
tigate blends of PLA with other polymers such as PU and poly(ε-capro-
lactone) (PCL). These blends improve the shape recovery ratios (defined 
as the ability to recover the permanent shape) by decreasing the Tg of the 
resulting PLA. The most important parameter relating to the shape 
memory properties of PLA is its Tg. Below Tg, PLA possesses a permanent 
shape due to its ordered crystalline structure. Above Tg, PLA assumes a 
temporary shape because of intensified chain mobility. The melting 
temperature of PLA can also be considered as a transition temperature 
for shape memory applications. Given that Tm for PLA is approximately 

Table 1 
Properties of three well-known commercially available PLA variants manufac-
tured by Ingeo™ for 3D printing [65].  

Properties 3D450a 3D850 3D870 

Specific Gravity (g/cm3) 1.32 1.24 1.22 
MFR, g/10 min (210 ◦C, 2.16 kg) 18–26 7–9 9–15 
Peak Melt Temperature (◦C) 165 165–180 165–180 
Glass Transition Temperature (◦C) 55–60 55–60 55–60 
Tensile Strength (MPa) NA 50 40 
Tensile Elongation, % NA 3.31 NA 
Tensile Modulus (MPa) NA 2315 2685 
3D Printing Temperature (◦C) NA 190–230 190–230  

a Commercialized in 2019. 

Table 2 
The average values of glass transition temperature (Tg) and melt temperature 
(Tm) for various PLA copolymers [67].  

Copolymer ratio Tg (◦C) Tm (◦C) 

100/0 (L/D,L) 63 178 
95/5 (L/D,L) 59 164 
90/10 (L/D,L) 56 150 
85/15 (L/D,L) 56 150 
80/20 (L/D,L) 56 125  

Fig. 6. Variation of Tg (a) and Tm (b) of PLA in different reports as a function of its molecular weight [68].  

Table 3 
Values of Tg and Tm for PLAs having various tacticity.  

Tacticity Tg (◦C) Tm (◦C) 

Isotactic 60 170 
Syndiotactic 45 153 
Atactic 55 amorphous  
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160 ◦C, shape-memory applications near this transition exclude most 
biological applications where lower temperatures are required. Another 
challenge in exploiting Tm as an activating temperature is that PLA is 
typically in a semi-crystalline state including amorphous regions below 
this transition [43,71,72]. Generally, there are two domains in shape 
memory polymers: shape-fixing and shape-switching parts. The 
shape-fixing parts or net points are responsible for maintaining dimen-
sional stability during distortion and recovery. The shape-switching 
parts consist of the long polymeric chains which store elastic energy. 
It is worth mentioning that the crystallization of long PLA chains can act 
as the net points [73–75]. 

Besides the synthesis variation described above, there are several 
alternative methodologies suggested in the literature for improving the 
programming behavior of PLA such as blending with other polymers, 
chemical or physical modification of PLA, and addition of nanofillers 
during the polymerization of PLA [76–78]. Different blends can improve 
the properties of PLA, specifically including non-biodegradable poly-
mers that can improve the mechanical and thermal disadvantages of 
PLA. Candidate non-biodegradable polymers for blending with PLA 
include polyolefins [79–82], vinyl polymers [83,84], elastomers (e.g., 
polyolefin elastomer) [85] and rubbers (e.g., acrylonitrile–butadiene 
rubber, isoprene rubber) [86,87]. Biodegradable polymers that have 
been proposed for blending with PLA include polyanhydrides [88,89], 
aliphatic polyesters [90,91], aliphatic-aromatic copolyesters [92,93], 
elastomers, and rubbers [94]. The addition of nanofillers such as 
nanoclays, carbon nanotubes, nanocellulose, and inorganic nano-
particles [95–97] can also support overcoming the intrinsic drawbacks 
of PLA. For example, Cellulose nanocrystals (CNC) and silver (Ag) 
nanoparticles have improved gas barrier properties and antimicrobial 
activity in PLA-based films [98,99]. Nanoclays and carbon nanotubes 
have also been shown to improve thermal [100] and mechanical prop-
erties [101,102]. The shape of the nanofillers can affect the properties of 
the PLA-based polymer composites. 

3. 4D printing of PLA 

3.1. What is 4D printing? 

4D printing was initially defined as 3D printing with the ability to 
alter a structural property or functionality over time [21,103–105]. To 
modify a 3D-printed structure and function after printing, materials 
must have unique characteristics that make them responsive to external 
stimuli. Such responsiveness can enable printed devices to be activated 
with specialized functions after the fabrication process. As 3D printing 
has been applied to SMPs, these materials can now be fabricated in 
complicated 2D and 3D shapes, as exemplified in Fig. 7, supporting 
novel transformations – and associated applications – upon being 
exposed to external impulses. 3D printers with multiple extruders sup-
port even more unique applications by fabricating parts that interlace 
SMPs with other materials. 

4D printing in principle supports greater design freedom and can be 
applied to novel applications using adaptive materials, and improves 
capabilities of the printed products. By using conventional 3D printing 
techniques and selecting a material that responds accordingly to an 
environmental parameter such as moisture, temperature, pressure, or 
magnetic field, supplementary hardware is not required [106–108]. For 
example, SMPs can be programmed after printing to be flat to support 
packing and transportation, and then reverted to their intended func-
tional shape. Such characteristics have engendered research interest for 
applications such as soft robotics, photovoltaic solar cells, deployable 
aerospace structures, and printable actuators for use in medical devices, 
textiles, defense, and aerospace [109]. 

3.2. 4D printing of PLA 

Developing a new smart material for 4D printing is likely a time- 
intensive endeavor that requires iterative testing. Even if a material of 
suitable properties is identified and synthesized, the material must be 
able to be converted into a form that can be printed (e.g. PLA filament in 

Fig. 7. Schematic overview of the 4D printing process of an origami pyramid; 
First, a conventional 3D printer fabricates a flat (origami) structure using SMP. 
Then an exposure to an external stimulus (like light or temperature) activates 
the smart materials and modifies the shape or function (in this case a pyra-
mid shape). 

Fig. 8. 4D printing of PLA material enables the fabricated objects to change the 
shape or functionality after the printing process using various internal or 
external stimuli. This figure categorizes the 4D printing of PLA material into; 1) 
Printing techniques: Material extrusion, Material Jetting, Vat photo-
polymerization. 2) The stimulus for activation: thermal, magnetic field, and 
optical. 3) The application domains: medical devices, actuators, origami, and 
smart structures. 
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the case of FDM printing). Such material must possess the capability of 
being configured into a well-defined shape when exposed to an external 
stimulus. Common stimuli in 4D printing applications are heat and 
water, with shape changes often transitioning between flat shapes and 
3D objects. 

PLA is a compelling material for FDM-3D printing due to its desirable 
properties including low Tg and shape memory [44,110–112]. Given 
that PLA is a well-established material for 3D printing, its application to 
4D printing depends mostly on part design rather than any basic science 
associated with developing novel materials. PLA presents other advan-
tages, including biocompatibility, biological inertness, and biodegrad-
ability, that suggest its applications to the biomedical field as well 
[113–117]. Fig. 8 highlights classes of the fabrication methods, stimuli, 
and applications for 4D printing of PLA material. The fabrication 
methods are categorized into the groups of material extrusion (e. g. 
fused deposition modeling-FDM/fused filament fabrication-FFF), mate-
rial jetting (e. g. Inkjet), and vat photopolymerization (e. g. liquid crystal 
display-LCD). Applications span the micro-to macro-scale and include 
diverse areas of interest such as medical devices, smart actuators, and 
structures for prototyping. 

PLA retains a permanent shape in a glassy state below Tg; however, 
once above Tg, PLA becomes sufficiently pliable to achieve deformation 
into a transient, alternative form. This temporary shape can be set if the 
force supporting the deformation is maintained as the temperature is 
reduced below Tg. Likewise, the original, permanent state can be 
restored upon reheating above Tg and removing this force [118–120]. 
Hanon et al. reported that 3D printed products can have a high 
dimensional accuracy of up to 98.81 % that indicates the great 

capability of PLA for commercial FDM 3D printing process as a high 
quality and inexpensive method for producing parts [121]. Fig. 9 (A) 
represents a very simple example of the programming process for a logo 
fabricated by an FDM printer: by heating above Tg the logo can be 
programmed into a compressed or extended state, and by subsequently 
re-heating the logo can be reverted to its initial form. Given its 
biocompatibility and biodegradability, an especially compelling 4D 
printing application of PLA is surgical staples [122,123]. Fig. 9 (B) 
shows the concept for a monolithic, PLA-based suture with a 
self-tightening mechanism. For any 4D printing applications, the 
magnitude of shape-change can be tuned through non-uniform material 
filling and by strategically designing the interior lattice specifically in 
terms of its density and morphology [9,106]. 

Internal strain and stress created during conventional FDM-based 3D 
printing have been exploited to induce pattern formation [17,39,104]. 
In FDM printing, a filament is extruded through a heated nozzle. Upon 
extrusion on a print bed or previously-deposited layer, PLA cools and 
solidifies. The environmental conditions have a direct impact on the PLA 
polymer during the manufacturing process. For example, the humidity 
has a considerable effect on the material properties such that PLA is 
stronger in a dry atmosphere but very rigid. Therefore, the sample can 
break more easily in a dryer environment [124–126]. In this process, 
internal stress and strain are created due to traction forces created by the 
motor feeding the filament, which typically poses an undesirable effect 
in 3D printing signified by the shrinkage of parts upon cooling. Fig. 10 
(A-B) exemplifies the shrinkage of a regular lattice upon removal from a 
water bath at 70 ◦C [17,39]. Such stored strain and stress can be utilized 
to make active shape change without requiring programming via an 

Fig. 9. (A) The programming process of a 3D printed ‘drxl’ logo fabricated by an FDM 3D printer; (1) first it is compressed, or (2) expanded after it has been heated 
above its Tg (70 ◦C), adjusted in shape, and then cooled, with (3) both shapes reverting to the initial shape when reheated to 70 ◦C in the absence of an applied force, 
reproduced from Ref. [122]; (B) Monolithic 3D printed staple, fabricated by FDM printer, with a tightening function enabled through heating and deformation, 
reproduced from Ref. [9]. 
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additional external force. By controlling strain in a 3D printed structure, 
the energy released upon heating the material above Tg can drive the 
desired change in shape. For example, Zhang et al. demonstrated that a 
2D lattice could be controllably transformed into a flower-like 3D 
structure upon re-heating. As shown in Fig. 10 (C-D), PLA strips were 

printed via FFF-based 3D printing on a paper sheet in a series of petals 
oriented radially outward from a central point. Upon cutting the outline 
of the strips into the paper and heating the sheet with the PLA upward, 
the strips folded upward into a flower-like structure upon removing the 
heat and cooling to room temperature. When the structure was 

Fig. 10. Example of the strain-induced unfolding of 
a PLA-based component, manufactured by an FDM 
printer. (A) Irregular, the temporary shape of a 
folded two-dimensional (2D) lattice upon removal 
from 70 ◦C water, (B) Recovered, the initial shape of 
the 2D lattice when re-immersed in 70 ◦C water, 
exhibiting a shape memory effect, reproduced from 
Ref. [39]; (C) The initial shape of the sheet with 
strips oriented radially outward from a central 
point, (D) The final flower-like 3D shape achieved 
after heating and cooling the structure, reproduced 
from Ref. [127].   

Fig. 11. The functionality and applications of the programmed origami structures, fabricated by FDM printer, (A) The application of 4D printed origami pyramid for 
grasping an object, reproduced from Ref. [129], (B) Shape recovery process of Miura-origami structure at 90 ◦C temperature, reproduced from Ref. [130], (C) Shape 
recovery process of two origami models from folded to flat state, reproduced from Ref. [131]. 
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re-heated, the flower structure reverted its planar configuration [17, 
127,128]. 

Mehrpouya et al. [129] also fabricated a foldable origami product 
using PLA filament and an FDM 3D printer. In particular, they pro-
grammed the printed structures using external mechanical forces so that 
they can be activated upon reaching the transition temperature and 
restored to their initial flat shape. This approach can be applied in the 
design and fabrication of various smart products. Fig. 11(A) shows the 
functionality of the programmed origami pyramid that can be used as a 
gripper for grasping an object. Liu et al. [130] also designed and fabri-
cated a Miura-origami sheet using PLA with shape memory behavior. As 
shown in Fig. 11(B), the deformed tessellation specimen recovers the 
initial S-shape at the temperature of 90 ◦C in 22 seconds. In another 
study, Xin et al. designed and fabricated origami structures that could 
store strain and then release it via temperature stimulus. Fig. 11(C) il-
lustrates the deployment process of the printed structures upon heating 
in hot water. The programmed structures recovered the initial flat shape 
in less than 20 seconds (depending on the design and geometry). 

Xin et al. applied a photopolymerization 3D printer to fabricate chiral 
metamaterials with a photocurable polylactic acid (PLA)-based shape 

memory polymer and using a light-curing 3D printer. The fabricated 
structures were programmable and tenable with the capability of 
bending in a large deformation with application to biomaterials as well 
as organs and tissues [132–136]. Fig. 12 (A) shows a cylindrical shell 
with auxetic behavior that can mimic blood vessels with similar me-
chanical properties and geometry. This figure exemplifies that the 
deformed structures, after stretching, twisting, and compressing, can 
perfectly recover their initial shape. Barletta et al. fabricated a complex 
geometry with potential as a stress-absorber using an FDM printer. 
Fig. 12 (B) illustrates the shape recovery process of the deformed sample 
in the hot water bath and the experimental results proved that the PLA 
component with various core designs has a proper shape memory effect 
so that it can retrieve the initial shape after any deformation quickly. 
Among different parameters, the activation temperature was found the 
most effective parameter with a high recovery time in a very short time 
[137–140]. Wu et al. also investigated the application of PLA material 
for the fabrication of self-expansion vascular stents using an FDM printer 
and a water-solvable support material. The PLA printed stent was 
capable of expanding in both longitudinal and radial directions below 
the glass temperature, and then it could recover the original cylindrical 

Fig. 12. (A) The shape recovery process of the fabricated cylindrical shell using an LCD 3D printer, reproduced from Ref. [132]; (B) The schematic of the smart 
sandwich structure and the time-dependent recovery process of a deformed sample in a hot water bath, reproduced from Ref. [137]; (C) The deformation and shape 
recovery process of a PLA stent, reproduced from Ref. [141]. 
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shape up to 98 % above 65 ◦C. Fig. 12 (C) shows the initial printed 
sample, deformation and shape recovery process [141]. 

The combination of PLA with other polymers can provide an op-
portunity to enhance the functionality or add the other properties of the 
material. There are some studies on 4D printing of the modified PLA 
with various applications as well as biomedical and tissue engineering 
fields [17,142–146]. Novel 4D applications have been demonstrated 
combination of PLA with other polymers to enhance material func-
tionality and properties. An exciting direction is tissue engineering via 
3D printed parts that integrate a bioactive component with PLA. For 
example, Senatov et al. [31] fabricated combined PLA with hydroxyap-
atite (HA), a bioactive component that enhances osseointegration and 
improves the modulus of the composite. More specifically, the authors 
combined PLA with 15 % HA concentration as a candidate material for 
potentially repairing bone defects. Fig. 13 (A) shows a sample structure 
printed with this material combination via the FFF-based 3D printing 
process. Compression tests were performed on these structures to 
characterize shape recovery after heating above Tg. After a single 
compression cycle, parts exhibited a shape recovery of greater than 98 
%. In comparison to PLA-only parts, the composite structures exhibited 
greater yield strength and Young’s modulus and ultimately withstood 
larger numbers of compression cycles before being destroyed. These 
favorable characteristics suggest potential self-healing functionality that 
could be favorable in biomedical applications that require the preven-
tion of crack propagation. Bodkhe and Ermanni [147] investigated a 
separate composite material for potential biomedical applications that 
can simultaneously achieve actuation and sensing. The investigated 
material combined PLA and polyesteramide (PEA) for shape-memory 
with added barium titanate (BT) nanoparticles to support piezoelectric 
sensing. The composite material was prepared as ink that was loaded 
into a syringe barrel for deposition via electric poling-assisted additive 
manufacturing (EPAM). Fig. 13 (B) shows a flat mesh fabricated with 96 
wt% PLA plus 4 wt% PEA. After heating the mesh to 90◦ C in an oven and 
rolling it into a cylinder, a cylindrical shape could be fixed upon cooling 
to room temperature. When heated again to 90◦ C, the sheet reverted to 
its initial flat shape. 

In an alternative composite that incorporated nanoparticles, Wei 
et al. [148] applied an inkjet 3D printer followed by UV curing in order 

to introduce Fe3O4 nanoparticles in PLA ink for enabling remote part 
heating via an externally applied, alternating magnetic field. Parts were 
printed through direct-write techniques using inks prepared from PLA 
with Fe3O4 nanoparticles introduced. As illustrated schematically in 
Fig. 14(A), ultraviolet light is applied in the printing process to induce a 
cross-linking reaction that supports shape-memory behavior. Through 
this process, the authors fabricated various complex shapes such as the 
stent tube with a diameter of 2.4 mm and 12.8 mm length as presented 
on the left side. As outlined in Fig. 14(B), nanoparticles in the PLA ink 
enable shape recovery through the application of a 30 kHz alternating 
magnetic field to induce heating that reverts a compressed cylinder into 
a cylinder with a circular cross-section [148,149]. In a separate example 
combining PLA with Fe3O4 nanoparticles, Zhao et al. [150] fabricated a 
tracheal scaffold by applying PLA/Fe3O4 filament via FDM printing. 
Similarly, by applying a 30 kHz alternating magnetic field, a flat scaffold 
can be induced to revert to its initial cylindrical shape within 35 s as 
shown in Fig. 14 (C). The motivation for this design is the possibility of 
implanting such a scaffold in the body in its temporary configuration 
and then applying an alternating magnetic field to restore a cylindrical 
shape that is adapted to fit the soft-tissue target within the body. 

3.3. The effect of printing parameters 

As 3D printing has grown in popularity, many 3D printer manufac-
turers have appeared with novel printing technologies and printable 
materials. Printers exist for many types of 3D printing with options 
suitable for both industrial and hobbyist applications. Different printers 
offer varying amounts of user control in the printing process through 
tunable parameters in software. Examples of such parameters include 
infill pattern, layer thickness, extruder nozzle temperature, extruder 
speed, build plate temperature, cooling fan speed, and several outline 
shells. Through iterative adjustment of these parameters, the quality of 
the print can be tailored according to the desired properties of a product 
[151]. For instance, increasing infill percentage can increase the effec-
tive density of a part, and reducing layer thickness can improve the 
quality of fine features on a design. While extensive literature has been 
published on the impact of parameter selection on print quality and 
mechanical properties, few studies exist on the impact of processing 

Fig. 13. (A) The recovery process of a 3D printed PLA/HA scaffold after the compression test and heating to above Tg, reproduced from Ref. [31]; (B) The shape 
recovery process of printed PLA/PEA structure at 90◦, reproduced from Ref. [147]. 
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parameters on shape memory effects. 
PLA filaments that are extruded in 3D printing decrease their length 

and thicken their diameter when heated above their Tg. The percentage 
decrease in length can in principle be tuned by varying printing pa-
rameters such as the extrusion and activation temperatures and the layer 
thickness [151,152]. Van Manen et al. [153] investigated the effect of 
printing patterns and parameters on the functionality of designed parts. 
Fig. 15(A) illustrates the concept of shape programming during the 
printing process so that the fabricated object can have self-bending or 
self-twisting based on pre-designed printing orientations (top). Also, 
strain in these layers depends strongly on basic printing parameters 
including nozzle temperature, layer thickness, and activation tempera-
ture as shown at the bottom. In another study, Leist et al. [122] printed 
PLA samples of varying thickness using an FDM 3D printer with in-plane 
dimensions of 10 mm width and 40 mm length. As shown in Fig. 15(B), 
samples with thicknesses of 800, 1000, and 1200 μm were prepared as 
cantilevers. Upon heat activation at 65 ◦C, cantilevers were nominally 
bent to a 90◦ angle and subsequently cooled to room temperature to 
achieve a programmed terminal angle α. Upon submersion in a heated 
water bath, the bent cantilever reverts to an unbent state with an 

associated angle α′. As shown in Fig. 15(B), cantilevers exhibited large 
temperature- and thickness-dependent variation in this terminal angle 
α′. In general, increased cantilever thickness yielded a lower bending 
angle and slower bending rates. Both the bending angle and rate for each 
cantilever thickness increased in higher temperature baths [122,138, 
154]. 

Wu et al. [155] tested variation in shape-recovery ratio Rr and the 
maximum shape-recovery rate Vm for 3D printed PLA for varying layer 
thickness H, raster angle Ɵ, deformation temperature Td, and recovery 
temperature Tr. Fig. 15(C) shows the schematic of deformed and shape 
recovered samples on the top, and also the curves obtained for Rr as a 
function of time under identical deformation temperatures but varying 
recovery temperatures, raster angles, and layer thicknesses on the bot-
tom [155]. Curves a and b– corresponding to the highest recovery 
temperatures – exhibit the most complete recovery at the fastest rate. 
These data highlight that among tested parameters, recovery tempera-
ture most significantly impacted the shape-recovery ratio for PLA. In the 
study, the Tg of PLA was measured to be approximately 63.5 ◦C ac-
cording to dynamic mechanical analysis (DMA). For curves a and b 
where Tr exceeds this temperature, the PLA is heated into a rubbery state 

Fig. 14. (A) A schematic of printing process UV cross-linking PLA/Fe3O4 ink (left), SEM image of a 4D printed structure (right), reproduced from Ref. [148]; (B) 
Shape recovery process of 4D printed nanocomposite cylinder under a magnetic field, reproduced from Ref. [148]; (C) 3D printed PLA/Fe3O4 scaffold and the shape 
recovery process, reproduced from Ref. [150]. 
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with sufficient chain mobility to support prompt recovery to the original 
shape. At 70 ◦C, Rr exceeded 90 % within 30 s and reached a maximum 
value of 98 %. In contrast, for curves c and d where Tr is less than Tg, 
adequate chain mobility cannot be achieved and so only partial recovery 
at a lower rate is observed. For instance, at 55 ◦C, Rr did not reach 25 % 
after nearly 3 minutes [155]. 

Fig. 16(A) shows the design and programming process of a 3D 
printed origami structure reported by Mehrpouya et al. [129]. The planar 
structure consists of a square surrounded by four triangles, each of 
which shares an edge with the square. Through heating in a water bath, 
the folded structure can be reverted into its planar form, i.e. the pro-
grammed sample can restore its initial flat shape in almost 30 seconds. 
The right side of this figure illustrates a variation in recovery ratio in 
several independently considered printing parameters, including acti-
vation temperature, layer height, nozzle temperature, and total thick-
ness. It shows that an increase in the activation temperature, layer 
height, and nozzle temperature can significantly enhance the shape 

recovery ratio of the printed structures while the increase of the total 
thickness of the structure can have an opposite effect on the shape re-
covery process. Fig. 16(B) also represents the impact of recovery tem-
perature on the shape recovery behavior of the deformed sample. As 
visible, the Miura-origami sheet is deformed to a flat 2D shape, and then 
the temperature stimulus iduces recovery of its initial S-shape. The plot 
of shape recovery vs. time shows that the deformed specimen can 
recover its initial shape significantly faster at a higher temperature 
(90 ◦C) compared to the other temperatures. However, using very hot 
water, over a temperature of 95 ◦C, can create permanent damage due to 
crystallization in the material during the heating process [108]. 

3.4. Advantages and challenges 

By introducing temporal variation into the part specification and 
design, 4D printing enables a multitude of novel and unique applica-
tions. Despite its novelty, the fabrication process for 4D printing is 

Fig. 15. (A) Shape transformations can be programmed during the printing process to fabricate either self-bending or self-twisting depending on the exact orien-
tation of a top layer on a multi-ply print (top), Various parameters impact strain in the multi-ply panels including nozzle temperature, layer height, and activation 
temperature (bottom), reproduced from Ref. [153]; (B) Shape recovery process of a flat PLA sample: first, the flat printed sample is programmed at a 90◦ angle in the 
water at 70 ◦C, then cooled down to Tg to keep the new form. For the recovery process, the cantilever was submersed again in the bath and the bending angle (α′) was 
recorded after 45–60 s intervals. (Bottom) Variation in the unbending angle for 800, 1000, and 1200 μm thick PLA cantilevers exposed to 65 ◦C, 75 ◦C, and 85 ◦C 
water. Reproduced from Ref. [122]; (C) Variation of the shape-recovery ratio Rr of PLA samples with time under varying conditions including (1) Td = 55 ◦C, Tr =

70 ◦C, θ = 0◦, H = 300 μm; (2) Td = 55 ◦C, Tr = 65 ◦C, θ = 30◦, H = 100 μm; (3) Td = 55 ◦C, Tr = 60 ◦C, θ = 45◦, H = 200 μm; and (4) Td = 55 ◦C, Tr = 55 ◦C, θ = 15◦, 
H = 150, θ = 15◦, H = 150 μm, reproduced from Ref. [155]. 
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essentially identical to 3D printing. Temporal variation is enabled 
through the careful design of a 3D-printed part with a suitable choice of 
printing material [21,156]. As outlined in this review, even 
well-established 3D printing materials such as PLA can function as smart 
materials for supporting 4D printing projects using various printing 
methods, even inexpensive FDM printers. Nonetheless, expanding ma-
terial options is a principal challenge for further expansion of 4D 

printing. Beyond identifying a material that responds favorably to an 
external stimulus, certain applications will require materials that 
respond to specific stimuli. Augmenting the catalog of materials avail-
able for 4D printing – in terms of mechanical properties and associated 
stimulus – is a key direction for the future development of 4D printing 
[157]. Especially for in vivo biomedical applications, identifying mate-
rials that can preserve shape-memory properties over large numbers of 

Fig. 16. The design and shape recovery process of the printed origami structures; (A) The fabrication, programming, and activation printed pyramid (left), The 
recovery ratio of the specimens for different activation temperatures, nozzle temperatures, layer heights, and total thickness (right), reproduced from Ref. [129], (B) 
Shape recovery behavior of printed Miura-Origami sheet versus time (in 15 s) at various recovery temperatures (70 ◦C, 80 ◦C, and 90 ◦C), reproduced from Ref. [130]. 
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deformation cycles is critically important. 
Additionally, further customization in change-inducing stimuli must 

be achieved to be able to remotely and precisely trigger and control 
shape changes. User-level challenges in 4D printing stem largely from 
the difficulty of designing a structure that will facilitate the desired 
transformation into a targeted shape. In practice, achieving elaborate 
transformations requires building supplementary components to sup-
port material programming, printing with multiple materials, and 
implementing innovative printing techniques and interfaces for 
achieving motions such as folding, curling, twisting, and linear expan-
sion and shrinkage. The application of multiple SMPs can provide a great 
opportunity for designing more complex 3D motion, e.g. mechanical 
meta-structures, and control the temporal evolution of the 3D structure 
to match the geometrical complexity of the printed structure, such as 3D 
printed structures with different shape recovery behavior [134,158]. 

At the design phase, sophisticated calculations and modeling are 
required for simulating transformations given a specific design and 
associated material properties and constraints. Without adequate 
simulation tools, 4D printing can present a hopelessly complicated 
process for even simple tasks [159]. Even at present, deformations that 
have been demonstrated in 4D printing applications have been limited 
to simple transformations such as self-folding and bending. The future 
success of 4D printing will depend critically on the continued develop-
ment of tools for precisely modeling responses of printed objects to 
external stimuli [160]. Besides, creativity in designs will help to develop 
a new generation of smart products with a diverse range of applications 
in various fields and industrial domains. Fig. 17 represents the potential 
and future applications of the 4D printing technology of PLA 
biopolymer. 

4. Summary 

4D printing has generated substantial excitement and attention since 
its recent introduction. Diverse applications have been demonstrated 
using various printing methods, materials, and actuation mechanisms. 
These applications have sparked interests in 4D printing in a variety of 
fields, notably including biomedical engineering. Developments ach-
ieved specifically with PLA – an inexpensive, biodegradable, and well- 
established polymer – highlight the promise for further development 
of 4D printing. Thanks to its excellent shape memory properties, 
biocompatibility, and easy processing, PLA will remain a compelling 
material for further development of 4D printing designs. Beyond PLA, 
exciting research continues to introduce materials and approaches such 
as composites that combine PLA with nanomaterials for achieving novel 
designs. 
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