
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Permutohedra for knots and quivers

Jankowski, J.; Kucharski, P.; Larraguível, H.; Noshchenko, D.; Sułkowski, P.
DOI
10.1103/PhysRevD.104.086017
Publication date
2021
Document Version
Final published version
Published in
Physical Review D
License
CC BY

Link to publication

Citation for published version (APA):
Jankowski, J., Kucharski, P., Larraguível, H., Noshchenko, D., & Sułkowski, P. (2021).
Permutohedra for knots and quivers. Physical Review D, 104(8), [086017].
https://doi.org/10.1103/PhysRevD.104.086017

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1103/PhysRevD.104.086017
https://dare.uva.nl/personal/pure/en/publications/permutohedra-for-knots-and-quivers(ad4bc699-9e80-44aa-8e96-d9c683d3b3e4).html
https://doi.org/10.1103/PhysRevD.104.086017


Permutohedra for knots and quivers
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The knots-quivers correspondence states that various characteristics of a knot are encoded in the
corresponding quiver and the moduli space of its representations. However, this correspondence is not a
bijection: more than one quiver may be assigned to a given knot and encode the same information. In this
work we study this phenomenon systematically and show that it is generic rather than exceptional. First, we
find conditions that characterize equivalent quivers. Then we show that equivalent quivers arise in families
that have the structure of permutohedra, and the set of all equivalent quivers for a given knot is parametrized
by vertices of a graph made of several permutohedra glued together. These graphs can be also interpreted as
webs of dual three-dimensional N ¼ 2 theories. All these results are intimately related to properties of
homological diagrams for knots, as well as to multicover skein relations that arise in the counting of
holomorphic curves with boundaries on Lagrangian branes in Calabi-Yau three-folds.

DOI: 10.1103/PhysRevD.104.086017

I. INTRODUCTION

Knots and quivers play an important role in high energy
theoretical physics. Knots often arise in the context of
topological invariance and can be related to physical
objects—such as Wilson loops, defects, and Lagrangian
branes—in gauge theories and topological string theory.
Quivers may encode interactions of Bogomol’nyi-Prasad-
Sommerfield (BPS) states assigned to their nodes, or the
structure of gauge theories. These two seemingly different
entities have been recently related by the so-called knots-
quivers correspondence [1,2], which identifies various
characteristics of knots with those of quivers and moduli
spaces of their representations. The knots-quivers
correspondence follows from properties of appropriately
engineered brane systems in the resolved conifold that
represent knots, thus it is intimately related to topological
string theory and Gromov-Witten theory [3,4], and has
been further generalized to branes in other Calabi-Yau
manifolds [5,6] (see also [7]). Other aspects and proofs (for

two-bridge and arborescent knots and links) of the knots-
quivers correspondence are discussed in [8–11].
If there is a correspondence between two types of

objects, such as knots and quivers, an important immediate
question is how unique both sides of this correspondence
are. Examples of two different quivers of the same size that
correspond to the same knot were already identified in [2],
which means that the knots-quivers correspondence is not a
bijection. In this paper we study this phenomenon system-
atically and find conditions that characterize equivalent
quivers (i.e., different quivers that correspond to the same
knot). It turns out that these conditions lead to an interesting
local and global structure of the set of equivalent quivers.
We stress that the equivalent quivers that we consider in this
paper are of the same size m, such that their nodes are in
one-to-one correspondence with generators of HOMFLY-
PT homology of a given knot. One can always use certain
q-identities to construct quivers of larger size that encode
the same generating functions of knot polynomials, how-
ever this phenomenon has already been studied (see [2,4])
and it is not of our primary interest.
Let us thus consider a matrix C of size m (equal to the

number of HOMFLY-PT homology generators of a given
knot), such that entries Cij are numbers of arrows between
nodes i and j of a symmetric quiver corresponding to this
knot. We characterize the local equivalence of quivers by
showing that some of the quivers equivalent to C are
encoded in matrices C0, such that C and C0 differ only by a
transposition of two elements Cab and Ccd, whose values
differ by one and which satisfy a few additional conditions.
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From each such equivalent matrix C0 one can determine
another set of equivalent matrices C00, etc. This procedure
produces a closed and connected network of equivalent
quivers in a finite number of steps. It follows that any two
equivalent quivers from this network differ simply by a
sequence of transpositions of elements of their matrices.
Furthermore, we find that the network of such equivalent

quivers has an interesting global structure. We show that
equivalent quivers arise in families that form permutohedra.
Recall that a permutohedron Πn is the (n − 1)-dimensional
polytope, whose vertices are labeled by permutations σ ∈ Sn
and whose edges correspond to transpositions of adjacent
elements. Permutohedron Π2 consists of two vertices con-
nected by an edge, Π3 is a hexagon, and Π4 is a truncated
octahedron (shown in Fig. 1). In our context, each vertex of a
permutohedron represents a quiver matrix and each edge
connects equivalent quivers (which are related by a trans-
position of two appropriate elements). Every permutohedron
arises from a particular pattern of transpositions of elements
of quiver matrices, or equivalently from some particular way
of writing a generating function of colored superpolynomials
for a given knot. For a given knot, there are typically several
ways of writing a generating function of colored super-
polynomials, which lead to different permutohedra con-
nected by the quivers they share. Examples of such graphs
for torus knots 91 and 111 are shown in Figs. 2 and 3, and we
call them permutohedra graphs.
We find that the above mentioned conditions that

characterize equivalent quivers have interesting interpreta-
tions in both knot theory and topological string theory. In
the knot theory, these conditions are related to the structure
of the (uncolored and S2-colored) HOMFLY-PT homology
of a knot in question, and they have a nice graphical
manifestation at the level of homological diagrams: they are
the center of mass conditions for homology generators. On

the other hand, these conditions can be also expressed in
terms of multicover skein relations that arise in the counting
of holomorphic curves with boundaries on a Lagrangian
brane in Calabi-Yau three-folds. These connections provide
a new link between homological invariants of knots,
Gromov-Witten theory, and moduli spaces of quiver
representations. Moreover, equivalent quivers correspond-
ing to a given knot represent dual three-dimensional (3D)
theories with N ¼ 2 supersymmetry, as discussed analo-
gously in [3,12–14]. One can therefore interpret permuto-
hedra graphs as webs of dual 3D N ¼ 2 theories.
As mentioned above, the appearance of permutohedra

can be interpreted at the level of generating functions of
colored superpolynomials. More precisely, we show that
each of them can be decomposed into a piece that encodes a
given permutohedron, coupled to another piece that itself
has a structure of a motivic generating function for a
smaller quiver that we refer to as a prequiver. All equivalent
quivers corresponding to a given permutohedron are
obtained from the same prequiver in the procedure of
splitting that involves specifying some particular permu-
tation—this is the reason why permutohedra arise.
From the above introductory remarks, or simply from

Figs. 2 and 3, it follows that the appearance of equivalent
quivers is not an exception, but rather a common and
abundant phenomenon. This also means that one should
regard the whole set of equivalent quivers as a knot
invariant, rather than one particular quiver from this class;
moduli spaces of all such equivalent quivers encode the

FIG. 1. Permutohedron Π4. Its vertices are labeled by permu-
tations of elements f1; 2; 3; 4g, and the different colors of edges
correspond to different types of transpositions ðijÞ (for
1 ≤ i < j ≤ 4). Vertices connected by an edge differ by one
transposition of neighboring elements.

FIG. 2. Permutohedra graph for a 91 torus knot. It consists of
two series of permutohedra Π2, Π3, and Π4 connected in the
middle, and several other permutohedra Π2.

FIG. 3. Permutohedra graph for an 111 torus knot. It consists of
two series of permutohedra Π2, Π3, Π4, and Π5 connected in the
middle, and several other permutohedra Π2 and Π3.
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same information about the corresponding knot. The
number of equivalent quivers that satisfy the above men-
tioned conditions grows fast with the size of the homo-
logical diagram: it appears that the unknot and trefoil are
the only knots such that corresponding quivers are unique,
while some knots with six or seven crossings already have
over 1000 00 such equivalent quivers (see the last column
of Table I). For a given knot, the number of equivalent
quivers that we consider is of the order of the size of the
largest permutohedron in the permutohedra graph. For
example, we find that the largest permutohedra for ð2; 2pþ
1Þ torus knots are two Πp, which means that the number of
equivalent quivers for this family grows factorially as 2p!.
Apart from the number of equivalent quivers, in Table I

we also present the number of pairings and symmetries for
various knots that we analyze in the paper. By pairings we
mean quadruples of generators in the homological diagram
that satisfy the center of mass condition mentioned above;
this is a necessary, but not sufficient, condition of local
equivalence (i.e., the equivalence of quiver matrices that
differ by one transposition of their elements). On the other
hand, by symmetries we mean quadruples of homology
generators that satisfy sufficient conditions of local equiv-
alence—the presence of symmetry means that an appro-
priate transposition of matrix elements indeed produces an
equivalent quiver. In particular, we conjecture (and verify to
high p) that the numbers of pairings and symmetries for
ð2; 2pþ 1Þ torus knots are, respectively, p2ðp − 1Þ=2
and pðp2 − 1Þ=3.
Finally, we also extend our analysis to quivers for knot

complements [11], which encode Ẑ invariants for knot

complements (also referred to as FK invariants) [15–17].
We show that for ð2; 2pþ 1Þ torus knots, the equivalence
conditions that we find in this paper yield an interesting
relation between quivers discussed above (that arise in the
original knots-quivers correspondence) and quivers for
knot complements.
Note that in principle there might exist other equivalent

quivers, which are not related by a series of transpositions
that we mentioned above (e.g., they might be related by a
cyclic permutation of a length larger than 2, such that some
transpositions of elements of the quiver matrix, which arise
from a decomposition of such a permutation, do not
preserve the partition function). However, based on the
evidence discussed in what follows, we conjecture that such
equivalent quivers do not arise.
This paper is structured as follows. Section II provides a

necessary background on knot homologies, knots-quivers
correspondence, and multicover skein relations. In Sec. III,
we focus on local equivalences and formulate the local
equivalence theorem, which states that the appropriate
transpositions of elements of a given quiver matrix lead
to equivalent quivers. In Sec. IV we discuss how these local
equivalences lead to the global structure: we show that
equivalent quivers arise in families that form permutohedra
which are glued into larger graphs that parametrize all
equivalent quivers for a given knot. In Sec. V we present
examples of such a global structure and illustrate how
permutohedra of equivalent quivers arise and are glued
together for various knots. In turn, in Sec. VI we consider
examples of local equivalences and determine them for
some particular quivers for infinite families of ð2; 2pþ 1Þ

TABLE I. The number of pairings, symmetries, and equivalent quivers that we have found for ð2; 2pþ 1Þ torus
knots, twist knots, and 62; 63; 73 knots.

Knot Pairings Symmetries Equivalent quivers

Unknot 01 0 0 1
Torus knots T2;2pþ1 31 0 0 1

51 2 2 3
71 9 8 13
91 24 20 68
111 50 40 405
131 90 70 2 684
151 147 112 19 557

..

. ..
. ..

. ..
.

ð2pþ 1Þ1 p2ðp − 1Þ=2 pðp2 − 1Þ=3 ∼2p!
Twists knots TK2jpjþ2 41 1 1 2

61 24 16 141
81 105 61 36 555

Twists knots TK2pþ1 52 8 6 12
72 52 34 1 983

Stand-alone examples 62 46 36 3 534
63 101 72 142 368
73 86 67 109 636
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torus knots and twist knots, as well as 62; 63, and 73 knots.
Section VII reveals relations of our results to knot comple-
ment quivers and FK invariants. In the Appendix we
present the lists of all equivalent quiver matrices for knots
52 and 71, as well as particular choices of quiver matrices
for infinite classes of twist knots. We also provide a
Mathematica file [18] with a search algorithm that finds
all equivalent quiver matrices for a given knot. The input is
the quiver matrix of a knot and its homological degrees a
and q. The output is a graph representing the equivalent
quivers as nodes and the symmetries between them as
colored edges. If the number of equivalent quivers is large
(say over 1 000) we provide a function which just counts
the number of quivers and gives a list of symmetries.

II. PREREQUISITES

In this section we summarize the background material on
knot homologies, knots-quivers correspondence, and multi-
cover skein relations, as well as introduce the notation that
will be used throughout the paper.

A. Knot homologies

The knots-quivers correspondence, which is of our main
interest in this work, is inherently related to knot homologies.
Let us therefore present first a few basic facts about them.We
are especially interested in colored HOMFLY-PT homol-
ogies, denoted HR

ijkðKÞ for a knot K, where R is a repre-
sentation (labeled by aYoungdiagram) referred to as the color
[19,20]. In this paper we only consider symmetric represen-
tations R ¼ Sr, and in various formulae we simply use the
label r instead of Sr. In particular, byGrðKÞwe denote the set
of generators of the Sr-colored homology. While the explicit
construction of colored HOMFLY-PT homologies has not
been provided to date, strong constraints on their structure
follow from conjectural properties of associated differentials
that relate various generators. In particular, these constraints
enable the computation of colored superpolynomials and
HOMFLY-PT polynomials for various knots. Colored super-
polynomials are defined as follows:

Prða; q; tÞ ¼
X
i;j;k

aiqjtk dimHSr
ijkðKÞ≡

X
i∈GrðKÞ

aa
ðrÞ
i qq

ðrÞ
i tt

ðrÞ
i ;

ð2:1Þ

wherevariablesa and q are those that appear inHOMFLY-PT
polynomials, t is the refinement (Poincaré) parameter, andwe

refer to triples ðaðrÞi ; qðrÞi ; tðrÞi Þ as homological degrees of the
generator i ∈ GrðKÞ. In the uncolored case r ¼ 1 we simply

write ðai; qi; tiÞ≡ ðað1Þi ; qð1Þi ; tð1Þi Þ. For a large class of knots
the linear combination ti − ai − qi=2 is constant for each
i ∈ G1ðKÞ; such knots are called thin [19].
For a given color r, it is useful to plot colored HOMFLY-

PT generators on a planar diagram, such that the generator

i ∈ GrðKÞ is represented by a dot in position ðqðrÞi ; aðrÞi Þ
(and possibly decorated by the value tðrÞi ). The structure of
differentials mentioned above also imposes constraints on
the form of such diagrams. In particular, in the uncolored
case all generators are assembled into two types of
structures, referred to as a zig-zag and a diamond [20].
The zig-zag consists of an odd number of generators, while
each diamond consists of four generators. The homological
diagram for each knot consists of one zig-zag and some
number of diamonds. For example, homological diagrams
for ð2; 2pþ 1Þ torus knots consist of only one zig-zag
made of 2pþ 1 generators, while a diagram for a 41 knot
consists of one diamond and a zig-zag made of only one
dot. We will present examples of homological diagrams for
these and other knots in what follows.
For t ¼ −1, colored superpolynomials reduce to colored

HOMFLY-PT polynomials that take the form of the Euler
characteristic

Prða; qÞ ¼ Prða; q;−1Þ ¼
X
i;j;k

aiqjð−1Þk dimHSr
ijkðKÞ:

ð2:2Þ
We stress that by using Prða; q; tÞ and Prða; qÞ we denote
reduced polynomials (equal to 1 for the unknot). We use this
normalization throughout the paper except in Sec. VII, where
using the unreduced normalization is more appropriate. We
also consider generating functions of colored superpolyno-
mials and colored HOMFLY-PT polynomials defined by

PKðx; a; q; tÞ ¼
X∞
r¼0

xr

ðq2; q2Þr
Prða; q; tÞ;

PKðx; a; qÞ ¼
X∞
r¼0

xr

ðq2; q2Þr
Prða; qÞ: ð2:3Þ

Including q-Pochhammer symbols, ðq2; q2Þr ¼
Q

r
i¼1

ð1 − q2iÞ, in denominators provides a proper normalization
for the knots-quivers correspondence as defined in [1,2].

B. Knots-quivers correspondence

The knots-quivers correspondence is the statement that
to a given knot one can assign a quiver in such a way that
various characteristics of the knot are expressed in terms of
invariants of this quiver (or invariants of moduli spaces of
its representations). As already noticed in [2], this corre-
spondence is not a bijection, and several quivers may
correspond to the same knot. In this work we explain how
to identify all such equivalent quivers and reveal the
intricate structure they form. However, let us first present
a relevant background on quiver representation theory, and
explain how it relates to knots.
A quiver, Q ¼ ðQ0; Q1Þ, consists of a set of nodes Q0

and a set of arrows Q1. Each arrow connects either two
different nodes, or a node to itself—in the latter case it is
called a loop. We denote by Cij the number of arrows from
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the node i to the node j, and treat it as an element of a
matrix C. Quivers that arise in knots-quivers correspon-
dence are symmetric, which means that for each arrow
i → j for i; j ∈ Q0 there exists an arrow in the opposite
direction, j → i; in this case the matrix C is symmetric.
In quiver representation theory one is interested in the

structure of moduli spaces of quiver representations. Let us
consider a symmetric quiver Q with m nodes and arrows
determined by amatrixC.We assign to each node i a complex
vector space of dimension di; them-tuple d ¼ ðd1;…; dmÞ is
referred to as the dimension vector. Furthermore, for such a
quiver we construct the following generating series:

PQðx;qÞ¼
X
d

ð−qÞd·C·d xd

ðq2;q2Þd

≡ X
d1;…;dm≥0

ð−qÞ
P

m
i;j¼1

Cijdidj xd11 � ��xdmm
ðq2;q2Þd1 � ��ðq2;q2Þdm

;

ð2:4Þ
where x ¼ ðx1;…; xmÞ are referred to as quiver generating
parameters. It turns out that this generating function encodes
motivic Donaldson-Thomas invariantsΩd1;…;dm;j of quiverQ,
i.e., the appropriately defined intersection Betti numbers of
moduli spaces of representations of Q, for all dimension
vectors d. These invariants are encoded in the following
product decomposition of (2.4):

PQðx; qÞ ¼
Y

ðd1;…;dmÞ≠0

Y
j∈Z

Y
k≥0

ð1 − ðxd11 � � � xdmm Þq2kþjþ1Þð−1Þjþ1Ωd1 ;…;dm ;j : ð2:5Þ
It was postulated in [21] and proven in [22] that motivic
Donaldson-Thomas invariants Ωd1;…;dm;j are non-negative
integers.
The knots-quivers correspondence was motivated by the

observation that a generating series of colored knot poly-
nomials (2.3) can be written in the form (2.4) for the
appropriate specialization of generating parameters xi.
This statement was proven in various examples in [2], for
two-bridge knots in [9], and for arborescent knots in [10].
The relation between (2.3) and (2.4) has various interesting
consequences. For example, it follows that Ooguri-Vafa
invariants of a knot [23] are expressed in terms of motivic
Donaldson-Thomas invariants; as the latter invariants are
proven to be integers, it follows that Ooguri-Vafa invariants
are also integers, as has been suspected for a long time. On
the other hand, if all colored superpolynomials can be
expressed in the form (2.4), it follows that all of them are
encoded in a finite number of parameters, i.e., the elements
of thematrixC and the additional parameters that arise in the
specialization of xi. Let us now formulate the knots-quivers
correspondence in all details, in a way appropriate for the
perspective of this work.
Definition 1: We say that the quiver Q corresponds to

the knot K if Q is symmetric and there exists a bijection

Q0 ∋ i ↔ i ∈ G1ðKÞ ð2:6Þ
such that

PQðx; qÞjð−qÞCii xi¼xaai qqi tti ¼ PKðx; a; q; tÞ and

Cii ¼ ti: ð2:7Þ
The substitution ð−qÞCiixi ¼ xaaiqqi tti following the bijec-
tion (2.6) is called the knots-quivers change of variables.
Denoting aaiqqi−Ciið−tÞCii as λi, we can write it shortly as

xi ¼ xλi or x ¼ xλ: ð2:8Þ
The above correspondence can be also reduced to the level of
HOMFLY-PT polynomials, simply by putting t ¼ −1 in the
knots-quivers change of variables. Note that the above
formulation differs from the original one [1,2] which does
not require bijectivity, only the existence of fai; qigi∈Q0

allowing (2.7). In consequence, transformations enlarging the
quiver and preserving the generating function—forbidden by
Definition 1—are allowed in [1,2]. Therefore,Q correspond-
ing to K in the sense of Definition 1 is the minimal quiver in
the original sense of [1,2]. One can also define a generalized
knots-quivers correspondence [3], which allows for xi ¼
xniλi (possibly with ni > 1), but we do not consider it here.

C. Multicover skein relations and quivers

Let us now change perspective to that of curve counting for
topological strings. It is natural to viewholomorphic curves in
aCalabi-Yau three-foldwith a boundary on a LagrangianL as
deforming Chern-Simons theory on L (see [24]). In [25] this
perspective was used to give a newmathematical approach to
open curve counts. Then, [4] showed that the invariance of
generalized holomorphic curve counts under bifurcations of
basic disks—called multicover skein relation—generates
quiver degeneracies, i.e., implies the existence of different
quivers corresponding to the same knot.
One canvisualize themulticover skein relation as resolving

the intersection between disk boundaries (see Fig. 4). Using
the language of [3], it can be adapted to quivers as the equality
of the motivic generating series of two quivers shown at the
bottom of Fig. 4, where each basic disc corresponds to

FIG. 4. Multicover skein relation on linking disks (top) and
dual quiver description (bottom) [4].
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the quiver node, and the linking number corresponds to the
number of arrows. Physically, it corresponds to the duality
between two 3D N ¼ 2 theories and has an interesting
relationwith thewall-crossing from [21,26].More details can
be found in [4].
The phenomenon presented in Fig. 4 is the simplest

example of unlinking. From the perspective of BPS states,
it corresponds to reinterpreting the bound state made of
two basic states as an independent basic state. In terms of
quivers, it means removing one pair of arrows which
encode the interaction leading to a bound state and adding
a new node. Adapting [4] to our notation, we define the
general case of unlinking in the following way:
Definition 2: Consider a symmetric quiver Q and fix

a; b ∈ Q0. The unlinking of nodes a, b is defined as a
transformation of Q leading to a new quiver Q̃ such that:

(i) There is a new node n: Q̃0 ¼ Q0 ∪ n.
(ii) The number of arrows of the new quiver is given by

C̃ab ¼ Cab − 1;

C̃nn ¼ Caa þ 2Cab þ Cbb − 1;

C̃in ¼ Cai þ Cbi − δai − δbi;

C̃ij ¼ Cij for all other cases; ð2:9Þ
where δij is a Kronecker delta.
One can check that quivers on the left- and right-

hand side of Fig. 4 correspond respectively to

C ¼
�
Caa Cab

Cba Cbb

�
¼

�
0 1

1 0

�
→ C̃

¼

2
64
C̃aa C̃ab C̃an

C̃ba C̃bb C̃bn

C̃na C̃nb C̃nn

3
75 ¼

2
64
0 0 0

0 0 0

0 0 1

3
75: ð2:10Þ

For us, the most important result of [4] is the following
statement:
Theorem 3: (Ekholm, Kucharski, Longhi). The unlink

ing accompanied by the substitution xn ¼ q−1xaxb pre-
serves the motivic generating function of the quiver:

PQðx; qÞ ¼ PQ̃ðx; qÞjxn¼q−1xaxb
: ð2:11Þ

In Sec. III C we use it to prove the local equivalence
theorem.

III. LOCAL EQUIVALENCE OF QUIVERS

In this section we show that for a given quiver of size m
(equal to the number of HOMFLY-PT generators of the
corresponding knot), encoded in a symmetric matrix C,
there exists equivalent quivers such that their matrices differ
from C only by a transposition of two nondiagonal
elements Cab and Ccd, as long as the values of these
two elements differ by 1 and certain extra conditions are
met. This is the phenomenon that we refer to as the local

equivalence of quivers. In the next sections we show that
these local equivalences give rise to an intricate global
structure whose building blocks are permutohedra, and
provide various examples of this phenomenon.
We start by introducing an equivalence relation that

describes quiver degeneracies in a natural way.
Definition 4: Assume that quiver Q corresponds to the

knot K and quiver Q0 corresponds to the knot K0 in the
sense of Definition 1. Then we define that

Q ∼Q0 ⇔ K andK0

have the same colored HOMFLY-PT homology:

ð3:1Þ

In the rest of the paper we refer to the simplest and most
common version of (3.1), namely K ¼ K0. However, each
time we write that two (or more) quivers correspond to the
same knot, we keep in mind that another knot with the same
colored HOMFLY-PT homology would lead to the same
equivalence class of quivers.

A. Analysis of possible equivalences

Let us study when two quivers Q and Q0 can correspond
to the same knot K. Using Definition 1, we start from

PKðx; a; q; tÞ ¼ PQðx; qÞjx¼xλ ¼ PQ0 ðx; qÞjx¼xλ0 ; ð3:2Þ
with

λi ¼ λ0i ¼ aaiqqi−Ciið−tÞCii ;

Cii ¼ ti ∀ i ∈ Q0 ¼ Q0
0: ð3:3Þ

We will analyze Eq. (3.2) order by order in x. The linear
one holds automatically, so let us focus on terms propor-
tional to x2:

P2ða;q;tÞx2
ð1−q2Þð1−q4Þ¼

X
i∈Q0

ð−qÞ4Ciix2λ2i
ð1−q2Þð1−q4Þ

þ
X

i;j∈Q0;i≠j

ð−qÞCiiþ2CijþCjjx2λiλj
ð1−q2Þð1−q2Þ ;

¼
X
i∈Q0

0

ð−qÞ4Ciix2λ2i
ð1−q2Þð1−q4Þ

þ
X

i;j∈Q0
0
;i≠j

ð−qÞCiiþ2C0
ijþCjjx2λiλj

ð1−q2Þð1−q2Þ ; ð3:4Þ

where we used (3.3) to write λi ¼ λ0i and Cii ¼ C0
ii. In

consequence, the only difference between Q and Q0 can
appear in the nondiagonal terms Cij and C0

ij. Since Eq. (3.4)
needs to hold for all a and t (which are independent from Cij

and C0
ij), we require the equality between coefficients of

each monomial in these variables. The only possibility of

JAKUB JANKOWSKI et al. PHYS. REV. D 104, 086017 (2021)

086017-6



havingQ ≠ Q0 satisfying (3.2) comes fromCij ≠ C0
ij which,

however, leads to the same coefficient of each monomial in a
and t on both sides. The way q-monomials on both sides are
matched can be described by permutations of terms in the
coefficient of each monomial in a and t.
Let us focus on the simplest nontrivial case. We assume

that each coefficient of monomials in a and t has only one
term except from the expression corresponding to λaλb and
λcλd. This means that we require λaλb ¼ q2sλcλd for some
s ∈ Z and that λa, λb, λc, λd be pairwise different. (Note that
for thin knots we immediately know that s ¼ 0.) Therefore,
we get Cij ¼ C0

ij ∀ i; j ∈ Q0nfa; b; c; dg and (3.4) can be
reduced to

λaλbð − qÞCaaþCbbðq2Cab þ q−2sþ2CcdÞ
¼ λaλbð−qÞCaaþCbbðq2C0

ab þ q−2sþ2C0
cdÞ; ð3:5Þ

where we used Caa þ Cbb ¼ Ccc þ Cdd which comes from
the comparison of t powers in λaλb ¼ q2sλcλd. In conse-
quence, there is only one nontrivial way to satisfy (3.4),
namely

C0
ab ¼ Ccd − s; C0

cd ¼ Cab þ s: ð3:6Þ

Using the language of permutations of terms in the
generating function, this corresponds to the transposition
λaλbð−qÞCaaþ2CabþCbb ↔ λcλdð−qÞCccþ2CcdþCdd . For s ¼ 0
it translates to the transposition of matrix entries
Cab ↔ Ccd.
Let us continue the analysis of the simplest nontrivial

case and check what conditions come from the cubic
order of (3.2). In order to save space, we start from
examining where differences between PQðx; qÞjxi¼xλi

and
PQ0 ðx; qÞjxi¼xλi

can arise. The general formula reads

P3ða; q; tÞx3
ð1 − q2Þð1 − q4Þð1 − q6Þ ¼

X
i∈Q0

ð−qÞ9Ciix3λ3i
ð1 − q2Þð1 − q4Þð1 − q6Þ þ

X
i;j∈Q0;i≠j

ð−qÞ4Ciiþ4CijþCjjx3λ2i λj
ð1 − q2Þð1 − q4Þð1 − q2Þ

þ
X

i;j;k∈Q0;i≠j≠k

ð−qÞCiiþ2CijþCjjþ2CjkþCkkþ2Cikx3λiλjλk
ð1 − q2Þð1 − q2Þð1 − q2Þ ; ð3:7Þ

so we have to look for terms containing λaλb or λcλd. They are given by

x3λaλb
ð1 − q2Þð1 − q4Þð1 − q6Þ ½ð−qÞ

4Caaþ4C0
abþCbbλa þ ð−qÞ4Cbbþ4C0

abþCaaλb þ ð1þ q2Þð−qÞCaaþ2C0
abþCbbþ2CbcþCccþ2Cacλc

þ ð1þ q2Þð−qÞCaaþ2C0
abþCbbþ2CbdþCddþ2Cadλd þ ð1þ q2Þ

X
i∈Q0nfa;b;c;dg

ð−qÞCaaþ2C0
abþCbbþ2CbiþCiiþ2Caiλi� ð3:8Þ

and

x3λcλd
ð1 − q2Þð1 − q4Þð1 − q6Þ ½ð−qÞ

4Cccþ4C0
cdþCddλc þ ð−qÞ4Cddþ4C0

cdþCddλd þ ð1þ q2Þð−qÞCccþ2C0
cdþCddþ2CadþCaaþ2Cacλa

þ ð1þ q2Þð−qÞCccþ2C0
cdþCddþ2CbdþCbbþ2Cbcλb þ ð1þ q2Þ

X
i∈Q0nfa;b;c;dg

ð−qÞCccþ2C0
cdþCddþ2CdiþCiiþ2Cciλi� ð3:9Þ

for PQ0 ðx; qÞjx¼xλ and analogous terms without prime symbols for PQðx; qÞjx¼xλ. Since λaλb ¼ q2sλcλd, imposing the
equality between PQ0 ðx; qÞjx¼xλ and PQðx; qÞjx¼xλ implies conditions for the sum of terms from both (3.8) and (3.9) for λa,
λb, λc, λd, and each λi, i ∈ Q0nfa; b; c; dg:

λa½ð−qÞ4Caaþ4C0
abþCbbþ2s þ ð1þ q2Þð−qÞCccþ2C0

cdþCddþ2CadþCaaþ2Cac �
¼ λa½ð−qÞ4Caaþ4CabþCbbþ2s þ ð1þ q2Þð−qÞCccþ2CcdþCddþ2CadþCaaþ2Cac �; ð3:10Þ

λb½ð−qÞ4Cbbþ4C0
abþCaaþ2s þ ð1þ q2Þð−qÞCccþ2C0

cdþCddþ2CbdþCbbþ2Cbc �
¼ λb½ð−qÞ4Cbbþ4CabþCaaþ2s þ ð1þ q2Þð−qÞCccþ2CcdþCddþ2CbdþCbbþ2Cbc �; ð3:11Þ

λc½ð−qÞ4Cccþ4C0
cdþCdd þ ð1þ q2Þð−qÞCaaþ2C0

abþCbbþ2CbcþCccþ2Cacþ2s�
¼ λc½ð−qÞ4Cccþ4CcdþCdd þ ð1þ q2Þð−qÞCaaþ2CabþCbbþ2CbcþCccþ2Cacþ2s�; ð3:12Þ
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λd½ð−qÞ4Cddþ4C0
cdþCcc þ ð1þ q2Þð−qÞCaaþ2C0

abþCbbþ2CbdþCddþ2Cadþ2s�
¼ λd½ð−qÞ4Cddþ4CcdþCcc þ ð1þ q2Þð−qÞCaaþ2CabþCbbþ2CbdþCddþ2Cadþ2s�; ð3:13Þ

λi½ð−qÞCaaþ2C0
abþCbbþ2CbiþCiiþ2Caiþ2s þ ð−qÞCccþ2C0

cdþCddþ2CdiþCiiþ2Cci �
¼ λi½ð−qÞCaaþ2CabþCbbþ2CbiþCiiþ2Caiþ2s þ ð−qÞCccþ2CcdþCddþ2CdiþCiiþ2Cci �: ð3:14Þ

In each equation we have to match three q-monomials on both sides in a nontrivial way. For example, in (3.10) we
must take

4Caa þ 4C0
ab þ Cbb þ 2s ¼ Ccc þ 2Ccd þ Cdd þ 2Cad þ Caa þ 2Cac þ 2;

Ccc þ 2C0
cd þ Cdd þ 2Cad þ Caa þ 2Cac ¼ 4Caa þ 4Cab þ Cbb þ 2s;

Ccc þ 2C0
cd þ Cdd þ 2Cad þ Caa þ 2Cac þ 2 ¼ Ccc þ 2Ccd þ Cdd þ 2Cad þ Caa þ 2Cac; ð3:15Þ

or

4Caa þ 4C0
ab þ Cbb þ 2s ¼ Ccc þ 2Ccd þ Cdd þ 2Cad þ Caa þ 2Cac;

Ccc þ 2C0
cd þ Cdd þ 2Cad þ Caa þ 2Cac ¼ Ccc þ 2Ccd þ Cdd þ 2Cad þ Caa þ 2Cac þ 2;

Ccc þ 2C0
cd þ Cdd þ 2Cad þ Caa þ 2Cac þ 2 ¼ 4Caa þ 4Cab þ Cbb þ 2s: ð3:16Þ

Analogous matching for Eqs. (3.11)–(3.13), combined with Caa þ Cbb ¼ Ccc þ Cdd and (3.6), leads to two possibilities for
nontrivial pairwise cancellation:

Cab þ s ¼ Ccd − 1;

Caa þ Ccd ¼ Cad þ Cac þ sþ 1;

Cbb þ Ccd ¼ Cbd þ Cbc þ sþ 1;

Cab þ Ccc þ s ¼ Cbc þ Cac;

Cab þ Cdd þ s ¼ Cbd þ Cad

or

Cab þ s ¼ Ccd þ 1;

Caa þ Ccd ¼ Cad þ Cac þ s;

Cbb þ Ccd ¼ Cbd þ Cbc þ s;

Cab þ Ccc þ s ¼ Cbc þ Cac þ 1;

Cab þ Cdd þ s ¼ Cbd þ Cad þ 1:

ð3:17Þ

Combining (3.17) with Caa þ Cbb ¼ Ccc þ Cdd, we deduce that s ¼ 0. Putting it in Eqs. (3.10)–(3.14) and performing the
analogous matching of terms, we learn that:

Ccd ¼ Cab − 1; Cci þ Cdi ¼ Cai þ Cbi − δai − δbi ∀ i ∈ Q0 ð3:18Þ

or Cab ¼ Ccd − 1; Cai þ Cbi ¼ Cci þ Cdi − δci − δdi ∀ i ∈ Q0: ð3:19Þ

These conditions are required for the transposition
Cab ↔ Ccd to lead to an equivalent quiver.
Now, let us slightly modify our assumptions

to λa ¼ q2s1λc, λb ¼ q2s2λd, and the requirement
that q2Cabλaλb þ q2Ccdλcλd þ q2Cadλaλd þ q2Cbcλbλc corre-
sponds to the only monomial in a and t with a coefficient
that has more than one q-monomial at the level of x2. Let us
consider all types of permutations of these terms by
focusing on which is equal to q2Cabλaλb in PQ0 . If it is

q2C
0
abλaλb, then Cab ¼ C0

ab, if it is q
2C0

cdλcλd, then we have a
situation that was described earlier in this section. The only
truly different case comes from equating q2Cabλaλb with
q2C

0
adλaλd or q2C

0
bcλbλc. In the first case, the analogs of

Eqs. (3.10) and (3.14) imply s ¼ 0 and Cbi ¼ Cdi for every

i ∈ Q0nfa; b; dg. This means that nodes b and d are
indistinguishable and the transposition Cab ↔ Cad can
be understood as a relabeling of b ↔ d. The second case
is completely analogous and can be understood as a
relabeling of a ↔ c.
Now we would like to analyze the possibility of

composing transpositions satisfying conditions (3.18) or
(3.19) into a bigger cycle. Let us therefore assume that
λaλb ¼ λcλd ¼ λeλf, that all lambdas—as well as Cab, Ccd,
Cef—are pairwise different, and that Eqs. (3.18) or (3.19)
(as well as their counterparts for c, d, e, f) are satisfied.
Among them there is an equation, Cac þ Cbc ¼ Ccc þ Ccd
(if Cab < Ccd) or Cac þ Cbc ¼ Ccc þ Ccd − 1 (if
Cab > Ccd), which becomes violated after the transposition
Ccd ↔ Cef. Similarly, performing the transposition
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Cab ↔ Ccd causes the violation of an analogous equation
required for Ccd ↔ Cef. In consequence, we see that after
composing transpositions which preserve the generating
function into a bigger cycle, we always get an inequivalent
quiver. Moreover, an analogous argument implies that the
composition of transpositions Cab ↔ Ccd and Cde ↔ Cfg

(both of which involve the same node d) leads to an
inequivalent quiver.
We have not yet excluded all nontrivial ways of matching

terms in (3.4)—for example, one may think about a
permutation that leads to an equivalent quiver, but is
composed of transpositions that change the partition
function. However, based on the evidence discussed below,
it appears that such permutations are unlikely to arise, and
thus we make the following conjecture:
Conjecture 5: Consider a quiver Q corresponding to

the knotK. If there exists another symmetric quiverQ0 such
thatQ0 ∼Q in the sense of Definition 4, then eitherQ0 ¼ Q
or they are related by a sequence of disjoint transpositions,
each exchanging nondiagonal elements

Cab ↔ Ccd; Cba ↔ Cdc; ð3:20Þ

for some pairwise different a; b; c; d;∈ Q0, such that

λaλb ¼ λcλd ð3:21Þ

and

Cab ¼ Ccd − 1;

Cai þ Cbi ¼ Cci þ Cdi − δci − δdi; ∀ i ∈ Q0; ð3:22Þ

or

Ccd ¼ Cab − 1;

Cci þ Cdi ¼ Cai þ Cbi − δai − δbi; ∀ i ∈ Q0: ð3:23Þ

For the simplest thin knots we verify this conjecture in the
following way. Since ai and ti fix qi and Cii, permutations
of terms in coefficients of monomials in a and t are in one-
to-one correspondence with permutations of Cij. Therefore,
we just need to find all incident products λaλb ¼ λcλd ¼
λeλf ¼ … and for each of them check all permutations of
the set fCab; Ccd; Cef;…g. Using this procedure, we
verified Conjecture 5 for quivers corresponding to 31,
41, and 51 knots.
For thin knots we can also give another general argument

supporting Conjecture 5—we can exclude those 3-cycles
that are not necessarily composed of transpositions pre-
serving the generating function. To this end, let us assume
that λaλb ¼ λcλd ¼ λeλf, these terms are the only instance
of multiple q-monomials in the coefficient of a and t
monomials in (3.4), andQ0 arises fromQ by performing the
3-cycle ðCabCcdCefÞ or ðCabCefCcdÞ with Cab; Ccd; Cef

being all distinct. Then, in the cubic term (3.7), we have
multiple ways to cancel the terms in front of λa; λb;…; λf.
In total, it results in 443 nontrivial systems of 30 linear
equations, which we treated with the help of a computer
and confirmed that, together with the center of mass
conditions, they cannot be satisfied in a nontrivial way.
In the next section we formulate and prove the theorem

which is an analog of Conjecture 5 with a reversed direction
of implication. Together, they provide a complete descrip-
tion of quiver equivalences.

B. Local equivalence theorem

Theorem 6: Consider a quiver Q corresponding to the
knotK and another symmetric quiverQ0 such thatQ0

0 ¼ Q0

and λ0i ¼ λi ∀ i ∈ Q0 (λi comes from the knots-quivers
change of variables). If Q and Q0 are related by a sequence
of disjoint transpositions, each exchanging the nondiagonal
elements

Cab ↔ Ccd; Cba ↔ Cdc ð3:24Þ

for some pairwise different a; b; c; d;∈ Q0, such that

λaλb ¼ λcλd ð3:25Þ

and

Cab ¼ Ccd − 1;

Cai þ Cbi ¼ Cci þ Cdi − δci − δdi; ∀ i ∈ Q0 ð3:26Þ

or

Ccd ¼ Cab − 1;

Cci þ Cdi ¼ Cai þ Cbi − δai − δbi; ∀ i ∈ Q0 ð3:27Þ

then Q and Q0 are equivalent in the sense of Definition 4.
In order to apply this theorem to various knots and

quivers, we usually start by looking for λa, λb, λc, λd that
satisfy the condition λaλb ¼ λcλd. We call a quadruple of
pairwise different a; b; c; d ∈ Q0 such that this equation
holds a pairing. Note that only some pairings generate
transpositions (3.24) leading to equivalent quiver—if this is
the case, we call them symmetries. If a symmetry is
consistent with constraints (3.26) or (3.27), we call it
nontrivial; if it follows from C0

ij ¼ Cij we call it trivial.
Furthermore, symmetries of quivers are tightly related to

homological diagrams for knots, providing a neat illus-
tration of the aforementioned conditions. After the change
of variables (2.8), each pairing λaλb ¼ λcλd gives the vector
identity v⃗a þ v⃗b ¼ v⃗c þ v⃗d, where v⃗i ¼ ðqi; aiÞ is a vector
of homological degrees of the generator i. This identity can
be interpreted as a requirement that the centers of mass for
pairs of nodes fa; bg and fc; dg coincide (assuming that
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masses of all nodes are equal). We visualize it as a
parallelogram with the diagonals ab and cd (see Fig. 5).
The remaining constraints (3.26) or (3.27) also have a

nice pictorial representation in terms of generators of the
Sr-colored HOMFLY-PT homology. The case r ¼ 1 cor-
responds to the uncolored homology, encoded in the linear
term of the quiver generating series and thus depending
only on the numbers of loops in Q. It suits well for
visualizing the pairing, but not the rest of constraints.
However, the case r ¼ 2 involves the quadratic term of the
quiver series and therefore depends on all entries of the
quiver matrix. Moreover, there exists a well-defined sur-
jective map Q0 ×Q0 → G2 coming from the knots-quivers
change of variables.
For example, the S2-colored homology for the 41 knot is

shown in Fig. 6. There are three kinds of generators: five
black nodes are in one-to-one correspondence with
x2i ; i ¼ 1…5. Blue and purple nodes correspond to xixj
with i ≠ j, and for each pair ði; jÞ there are exactly two

generators, which we connect by an arc. The distinction
between blue and purple nodes is justified by taking the
common denominator in the quadratic term of the quiver
series. Each term xixj is multiplied by ð1þ q2Þ, therefore
contributing twice to the colored superpolynomial. The blue
node has the q-degree qi þ qj þ Cii þ 2Cij þ Cjj, while
the purple one is shifted by two: qi þ qj þ Ciiþ
2Cij þ Cjj þ 2. Keeping in mind the pairing condition
inducing cancellations of all terms except those corresp
onding to arrows between different nodes (2Cij), we can
visualize any constraint of the form Cis þ Cjs ¼ Cks þ Cls

as a parallelogram connecting nodes with the same color. For
example, the constraint C12 þ C15 ¼ C13 þ C14 is visual-
ized in Fig. 7.

C. Proof of the local equivalence theorem

Let us prove Theorem 6. Since disjoint transpositions
described there are independent, we can consider a
general form of one such transposition and show that it
preserves the generating function. This automatically
implies that if Q and Q0 are connected by a sequence
of such transformations, then they correspond to the
same knot.
Therefore, without loss of generality, we assume that Q

corresponds to K, Q0
0 ¼ Q0, λ0i ¼ λi ∀ i ∈ Q0, and we have

C0
ij ¼ Cij except for one transposition Cab ↔ Ccd for some

pairwise different a; b; c; d ∈ Q0. We also require

FIG. 5. The set of generators of the uncolored HOMFLY-PT
homology for the 41 knot and the parallelogram corresponding to
the pairing λ2λ5 ¼ λ3λ4.

FIG. 6. The set of generators of the S2-colored HOMFLY-PT
homology for the 41 knot (the labels xixj are consistent with the
labels in Fig. 5).

FIG. 7. The constraint C12 þ C15 ¼ C13 þ C14 as a parallelo-
gram rule. There are cancellations when equating the sums of the
q- and a-degrees of x1x2; x1x5 and x1x3; x1x4, since λ2λ5 ¼ λ3λ4
implies q2 þ q5 ¼ q3 þ q4 and a2 þ a5 ¼ a3 þ a4. The con-
straint holds only if the corresponding sums of vectors agree
(simultaneously for the blue and purple quadruples of nodes).
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λaλb ¼ λcλd; Ccd ¼ Cab − 1;

Cci þ Cdi ¼ Cai þ Cbi − δai − δbi; i ∈ Q0 ð3:28Þ

and analogous constraints for C0 (the case Cab ¼ Ccd − 1
can be covered by changing labels ab ↔ cd in the whole
argument).

We want to show that Q0 also corresponds to K. We will
do it by connecting Q0 with Q by transformations preserv-
ing the motivic generating functions, namely unlinking
nodes a, b in Q and nodes c, d in Q0 (the invariance of the
generating function under these transformations is assured
by Theorem 3).
From Definition 2 we have:

C̃ij ¼ Cij ∀ i; j ∈ Q0nfa; bg C̃0
ij ¼ C0

ij ∀ i; j ∈ Q0nfc; dg
C̃ab ¼ Cab − 1 C̃0

cd ¼ C0
cd − 1

C̃in ¼ Cai þ Cbi − δai − δbi C̃0
in ¼ C0

ci þ C0
di − δci − δdi

C̃nn ¼ Caa þ 2Cab þ Cbb − 1 C̃0
nn ¼ C0

cc þ 2C0
cd þ C0

dd − 1: ð3:29Þ
In consequence,

C̃0
ab ¼ C0

ab ¼ Ccd ¼ Cab − 1 ¼ C̃ab;

C̃0
cd ¼ C0

cd − 1 ¼ Cab − 1 ¼ Ccd ¼ C̃cd; C̃0
an ¼ C0

ac þ C0
ad ¼ Cac þ Cad ¼ Caa þ Cab − 1 ¼ C̃an;

C̃0
bn ¼ C0

bc þ C0
bd ¼ Cbc þ Cbd ¼ Cab þ Cbb − 1 ¼ C̃bn;

C̃0
cn ¼ C0

cc þ C0
cd − 1 ¼ C0

ac þ C0
bc ¼ Cac þ Cbc ¼ C̃cn;

C̃0
dn ¼ C0

cd þ C0
dd − 1 ¼ C0

ad þ C0
bd ¼ Cad þ Cbd ¼ C̃dn;

C̃0
in ¼ C0

ci þ C0
di ¼ Cci þ Cdi ¼ Cai þ Cbi ¼ C̃in; ∀ i ∈ Q0nfa; b; c; dg;

C̃0
nn ¼ C0

cc þ 2C0
cd þ C0

dd − 1 ¼ Ccc þ 2Cab þ Cdd − 1 ¼ Ccc þ 2Cab þ Cdd − 1 ¼ C̃nn;

C̃0
ij ¼ C0

ij ¼ Cij ¼ C̃ij for all other cases; ð3:30Þ

which can be summarized simply as Q̃0 ¼ Q̃.
In our unlinking of Q0 and Q we have the freedom to

choose the knots-quivers change of variables for the new
nodes (for the old ones we have λ0i ¼ λi). We take

λ̃0n ¼ q−1λcλd ¼ q−1λaλb ¼ λ̃n; ð3:31Þ

and use Theorem 3 to get

PQ0 ðx; qÞjxi¼xλ0i
¼ PQ̃0 ðx; qÞjxi¼xλ0i;xn¼xλ̃0n

¼ PQ̃ðx; qÞjxi¼xλi;xn¼xλ̃n
¼ PQðx; qÞjxi¼xλi

:

Therefore,

PQ0 ðx; qÞjx¼xλ0 ¼ PQðx; qÞjx¼xλ ¼ PKðx; a; q; tÞ; ð3:32Þ

so Q0 also corresponds to K, as we wanted to show.

IV. GLOBAL STRUCTURE AND
PERMUTOHEDRA GRAPHS

In the previous section we found transformations that
produce equivalent quivers and the conditions they satisfy.
This fact enables us to systematically determine equivalent
quivers for a given knot: starting from some particular

quiver we can consider all possible transpositions of its
matrix elements, and identify those that satisfy the con-
ditions of Theorem 6 and thus yield equivalent quivers.
Repeating this procedure for each newly found equivalent
quiver, after a finite number of steps we obtain a closed and
connected network with an intricate structure. (Recall that,
in principle, there might exist other equivalent quivers,
which are not related by a series of transpositions from
Theorem 6—e.g., they might be related by a cyclic
permutation of length larger than 2, such that some trans-
positions of elements of the quiver matrix, which arise from
a decomposition of such a permutation, do not preserve the
partition function. However, we conjectured that such
equivalent quivers do not arise, and we do not focus on
them in the rest of this work.)
In order to reveal the structure of the network of

equivalent quivers mentioned above, it is of advantage to
assemble these quivers in one graph, such that each vertex of
this graph corresponds to one quiver, and two vertices are
connected by an edge if two corresponding quivers differ by
one transposition of nondiagonal elements. Examples of
such graphs are shown in Figs. 2 and 3 (for knots 91 and
111), and in Sec. V for several other knots. One immediately
observes that these graphs are built from smaller building
blocks, which are combinatorial structures known as per-
mutohedra. Various permutohedra are glued to each other
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and form a connected graph representing all equivalent
quivers, which we refer to as a permutohedra graph in what
follows. In this section we explain why equivalent quivers
arise in families that form permutohedra, and how their
structure follows from local properties revealed in
Theorem 6. In the next section we illustrate these structures
in detail in several explicit examples.

A. Permutohedra—what they are and why they arise

To start with, recall that a permutohedron of order n,
denoted Πn, is an (n − 1)-dimensional polytope whose
vertices represent permutations of n objects f1;…; ng and
whose edges correspond to flips (transpositions) of adja-
cent neighbors [27,28]. The permutohedron Πn has thus n!
vertices and each vertex has n − 1 immediate neighbors.Πn
has also ðn − 1Þn!=2 edges; each edge corresponds to one
of nðn − 1Þ=2 types of flips ðijÞ (for 1 ≤ i < j ≤ n). We
call these operations flips in order to distinguish them from
transpositions of elements of quiver matrices; as we will

see, transpositions in quiver matrices are simply manifes-
tations of certain underlying flips. The permutohedron Π3

is a hexagon (see Fig. 8). Π4 is a (three-dimensional)
truncated octahedron that consists of 4! ¼ 24 vertices. It
has 36 edges of six different types, such that three edges
meet at each vertex, and its faces form six quadrangles and
eight hexagons (see Fig. 1). Planar realizations of Πn for
n ¼ 1, 2, 3, 4 are shown in Fig. 9.
Let us explain now why certain families of equivalent

quivers form permutohedra. To get some intuition, it is of
advantage to understand it first as a consequence of a
particular structure of generating functions of colored
superpolynomials; in Sec. IV C we show how this structure
arises from the local properties revealed in Theorem 6. We
find that instead of writing a generating function of colored
superpolynomials in a form of the generating series (2.7)
for a quiver of size m, it can be written in an intermediate
form,

PKðx; a; q; tÞ

¼
X

ď1;…;ďm−n≥0

ð−qÞ
P

i;j
Čijďiďj x̌ď11 � � � x̌ďm−n

m−n

ðq2; q2Þď1 � � � ðq2; q2Þďm−n

× Πď1;…;ďn
jx̌i¼xλ̌i

; ð4:1Þ

for 2n ≤ m and with the following properties. The first
terms under the sum take the same form as the summand in
the usual quiver generating series (2.4), however they are
associated to a novel quiver of size m − n that we call a
prequiver and denote its matrix by Č. Then, it is the factor
Πď1;…;ďn

which is responsible for the appearance of all
equivalent quivers associated to a particular permutohe-
dron; note that it has only n labels ď1;…; ďn, and we require
that (combined with the first n q-Pochhammers from the
denominator) it has the structure

Πď1;…;ďn

ðq2; q2Þď1 � � � ðq2; q2Þďn
¼

X
ď1¼α1þβ1

� � �
X

ďn¼αnþβn

ð−qÞ2
P

i<j
βiαjþπ2ðα1;…;αn;β1;…;βnÞκβ1þ���þβn

ðq2; q2Þα1ðq2; q2Þβ1 � � � ðq2; q2Þαnðq2; q2Þβn
; ð4:2Þ

FIG. 8. Permutohedron Π3. Each vertex represents a particular
permutation of three elements. Two vertices are connected by an
edge if corresponding permutations differ by a flip of immediate
neighbors. There are three types of flips, (1 2), (2 3), and (1 3),
which are represented by different colors in the figure.

FIG. 9. Planar realizations of permutohedra Πn of orders 1,2,3,4. One quadrangular face of Π4 is represented by an external region.
The three-dimensional representation of permutohedron Π4 is shown in Fig. 1.
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where π2ðα1;…; αn; β1;…; βnÞ is a purely quadratic poly-
nomial in αi, βj, and other ďk (for k > nÞ that are symmetric
in ðα1;…; αnÞ and (independently) in ðβ1;…; βnÞ; κ is an
extra parameter. Furthermore, we impose the invariance of
the above expression under any permutation σ ∈ Sn of
indices f1;…; ng, so that the whole Πď1;…;ďn

is symmetric

in all ď1;…; ďn. Note that most of the above expression on
the right-hand side, i.e., the terms symmetric in αi and βj, as
well as the defining relations ďi ¼ αi þ βi, are already
invariant under permutation of the indices. The only non-
invariant term is

P
i<j βiαj, so in other words we impose that

the above expression is invariant if we replace this term byP
i<j βσðiÞασðjÞ, for any permutation σ.
Below we provide specific forms of Πď1;…;ďn

, including
symmetric polynomials π2, that have the above properties.
At this stage let us stress that it is the form of the termP

i<j βσðiÞασðjÞ that uniquely determines a permutation σ
and is responsible for the appearance of a permutohedron.
First, a permutation σ is determined by a set of its
inversions, i.e., a set of all pairs ðσðiÞ; σðjÞÞ, such that i <
j and σðiÞ > σðjÞ. We can therefore treat symbols β and α
as determining, respectively, the first and the second
element of a given pair ðσðiÞ; σðjÞÞ. For example, the termP

i<j βiαj encodes the trivial permutation. Any other
permutation can be uniquely encoded by inverting labels
in appropriate summands in

P
i<j βiαj. Therefore, if we

insist that (4.2) is invariant under all permutations of
indices f1;…; ng, this means that we can, in fact, consider
n! expressions that are in one-to-one correspondence with
the permutations encoded in the terms

P
i<j βσðiÞασðjÞ, and

can be associated to vertices of a permutohedronΠn. Such a
permutohedron has nðn − 1Þ=2 types of edges (denoted by
the different colors in various figures in this paper), which
correspond to all transpositions ðklÞ, for 1 ≤ k < l ≤ n.
However, at a given vertex, corresponding to the permu-
tation σ and the term

P
i<j βσðiÞασðjÞ, only n − 1 edges

meet. They correspond to transpositions of adjacent ele-
ments that change only one summand in the expressionP

i<j βσðiÞασðjÞ. Let us see it on the example of a vertex
corresponding to the trivial permutation, represented byP

i<j βiαj, and the n − 1 edges corresponding to the
transpositions of neighboring elements τ ¼ ðkðkþ 1ÞÞ;
k ¼ 1;…; n − 1. In that case the only difference betweenP

i<j βiαj and
P

i<j βτðiÞατðjÞ amounts to replacing
precisely one summand βkαkþ1 by βkþ1αk. This is why a
transformation of one term βkαkþ1 into βkþ1αk (for
k ¼ 1;…; n − 1) in (4.2) is represented by one edge of a
permutohedron. Similarly, n − 1 edges meeting at any other
vertex that represents a permutation σ correspond to those
transpositions ðklÞ that affect precisely one term inP

i<j βσðiÞασðjÞ. All this is also a manifestation of the
well-known fact that a permutohedron is the Hasse diagram
of a set of appropriately ordered inversions.
Furthermore, let us explain how the prequiver Č intro-

duced in (4.1), combined with Πď1;…;ďn
, gives rise to the

original quiver C of size m and a number of its
equivalent companions. First, in the expression (4.1) there
are (m − n) q-Pochhammers ðq2; q2Þďi . In (4.2), n of
them are combined with Πď1;…;ďn

and get split into pairs
ðq2;q2Þαiðq2;q2Þβi . This produces n new q-Pochhammers,
and altogether we get m-independent q-Pochhammers
that correspond to m nodes of a quiver C that we are after.

The prequiver term ð−qÞ
P

i;j
Čijďiďj in (4.1), together

with ð−qÞ2
P

i<j
βiαjþπ2ðα1;…;αn;β1;…;βnÞ, gives rise to an over-

all quadratic expression that defines the full quiver
matrix C. The terms κβ1þ���þβn get absorbed into

the first n generating parameters: x̌ď11 � � � x̌ďnn κβ1þ…βn ¼
x̌α11 ðx̌1κÞβ1 � � � x̌αnn ðx̌nκÞβn .
In this way we obtain a quiver generating function for the

quiver of size m encoded in a matrix C that we are interested
in. To see it more clearly and to make contact with the
notation in (2.4), we can rename summation variables: for
example, identify all ďk (k ¼ nþ 1;…; m − n) with dnþk,
and let d2i−1 ≡ αi and d2i ≡ βi. In addition, identify x̌k with
xnþk for k ¼ nþ 1;…; m − n, and let x2i−1 ≡ x̌i and
x2i ≡ x̌iκ. This gives rise to generating parameters as in
(2.8). We refer to the process of replacing the first n nodes by
2n nodes, which is a manifestation of (4.2), as splitting, while
we call the remaining ðm − 2nÞ nodes of the quiver C
spectators. Under this relabeling, for a vertex representing the
permutation σ, a flip of the term βkαl (in the sumP

i<j βσðiÞασðjÞÞ into βlαk translates into a flip of d2kd2l−1
into d2ld2k−1, which encodes a transposition of elements
C2k;2l−1 and C2l;2k−1 (which we considered in Theorem 6) at
the level of the matrix C. For each vertex there are n − 1 of
such transpositions, which, on one hand, correspond to n − 1
equivalent matrices related by one transposition to a given
matrix C, and on the other hand correspond to n − 1 edges
meeting at each vertex of a permutohedron Πn. Note that we
can make any other identification of indices that would
amount to a permutation of all variables di, and thus would
yield a permutation of rows and columns of the matrix C; in
particular, in Sec. V we identify a prequiver part as
corresponding to the last n rather than first n indices as above.
Let us also note the following interesting feature. Not only

the generating function of colored HOMFLY-PT polyno-
mials, but also the generating function of colored super-
polynomials is expected to take the form of (4.1). This means
that the full dependence on the parameter a, as well as t, is
captured by the parameter κ that appears in the factor
Πď1;…;ďn

in (4.2) and in λ̌i that enters the identification of

generating parameters x̌i ¼ xλ̌i. Note that λ̌i are just a subset
of all λj, so that λj ¼ λ̌i for appropriate values of i, and the
remaining λj arise from a simple rescaling λj ¼ κλ̌k (for
appropriate k and j). As we will see in what follows, κ is a
monomial of the form κ ¼ aκaqκqð−tÞκt . Also note that λ̌i are
different for various realizations (4.1) (corresponding to
various permutohedra) for a given knot, because they
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correspond to various subsets of all λi that are associated
with the nodes that arise in a given prequiver. In
consequence, the values of κ are also different for various
representations (4.1) of the same knot. It would be
interesting to understand better why a dependence on a
and t is simply captured by κ ¼ aκaqκqð−tÞκt and λ̌i, and
possibly how it arises from properties of HOMFLY-PT
homology.
To sum up, after the above identifications we obtain a

family of quiver generating functions for various quivers C
of size m in the standard form (2.4), and with parameters xi
appropriate for the knots-quivers correspondence. The
family of quivers that we obtain is parametrized by all
permutations σ ∈ Sn: the combinations

P
i<j βσðiÞασðjÞ for

various σ that appear in the exponent of (−q) affect the form
of the matrix C that we read off from quadratic terms, and
thus give rise to n! different but equivalent quivers, labeled
by permutations of n elements. This is why we can assign
these quivers to vertices of permutohedron Πn. An edge of
such a permutohedron that represents a flip (transposition)
of two elements from the set f1;…; ng at the same time
corresponds to a transposition of a certain two elements,

C2k;2l−1 and C2l;2k−1, of the matrix C that we analyzed in
Theorem 6.
The above analysis focuses on one permutohedron.

However, typically we can write a generating function of
colored superpolynomials for a given knot in the form (4.1)
in several different ways, with different prequivers and
terms Πď1;…;ďn

for various choices of nodes. This gives rise
to several permutohedra that encode all equivalent quivers
for a given knot. Some of these quivers are common
between two (or more) permutohedra, therefore we obtain a
large connected graph made of several permutohedra glued
together.

B. Permutohedra from colored superpolynomials

Let us now provide an explicit form of (4.2). We stress
that expressions given below naturally occur in formulae
for colored superpolynomials, so it is useful to understand
their role from the perspective of equivalent quivers. First,
we consider a special case that arises from the identification
Πď1;…;ďn

¼ ðξ; q2Þď1þ���þďn
, which is indeed familiar from

various expressions for colored superpolynomials. We
then have

ðξ; q2Þď1þ���þďn

ðq2; q2Þď1 � � � ðq2; q2Þďn
¼

X
α1þβ1¼ď1

� � �
X

αnþβn¼ďn

ð−qÞβ21þ���þβ2nþ2
P

n−1
i¼1

βiþ1ðď1þ���þďiÞ

×
ðξq−1Þβ1þ���þβn

ðq2; q2Þα1ðq2; q2Þβ1 � � � ðq2; q2Þαnðq2; q2Þβn
; ð4:3Þ

which is proven in [2]. The left-hand side is explicitly
symmetric in ď1;…; ďn, so the above equality proves that
the right-hand side is also invariant under permutations
of f1;…; ng. In the exponent of (−q) we haveP

n−1
i¼1 βiþ1ðď1 þ � � � þ ďiÞ ¼

P
i>j βiαj þ

P
i>j βiβj, so

the first term
P

i>j βiαj is responsible for the permutohe-
dron structure, while

P
i>j βiβj is the second elementary

symmetric polynomial, which is symmetric in all βi in
agreement with (4.2). If ξ is just a constant (independent of
ďk), we identify κ ¼ ξq−1.
An interesting version of (4.3), which also appears in

expressions for colored superpolynomials, arises for

ξ ¼ κq2ðhnþ1ďnþ1þ���þhm−nďm−nÞþ2kðď1þ���þďnÞþ1; ð4:4Þ

where hs are fixed coefficients. Substituting such ξ to (4.3)
also produces an exponent of q that is a quadratic
function, symmetric in αi and βj. For brevity, let us type
the corresponding version of (4.3) that involves just two
summation variables ďi and ďj (which would correspond
to a single transposition) and one spectator node corre-
sponding to the variable ďs and the coefficient hs:

ðκq2hsďsþ2kðďiþďjÞþ1; q2Þďiþďj

ðq2; q2Þďiðq2; q2Þďj
¼

X
αiþβi¼ďi

X
αjþβj¼ďj

ð−qÞβ2iþβ2jþ2βiðαjþβjÞκβiþβj ×
qð2hsďsþ2kðďiþďjÞÞðβiþβjÞ

ðq2; q2Þαiðq2; q2Þβiðq2; q2Þαjðq2; q2Þβj
;

¼
X

αiþβi¼ďi

X
αjþβj¼ďj

ð−qÞð2kþ1Þβ2iþð2kþ1Þβ2jþ2ðkþ1Þβiαjþ2ð2kþ1Þβiβj

×
ð−qÞ2kðβiαiþβjαiþβjαjÞþ2hsðβiďsþβjďsÞκβiþβj

ðq2; q2Þαiðq2; q2Þβiðq2; q2Þαjðq2; q2Þβj
: ð4:5Þ
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From the powers of (−q) in the last two lines above one
can read off appropriate elements of the resulting matrix
C. Note that using indices i and j is helpful in under-
standing the invariance of the right-hand side of the above
expression under a flip: if we identify i ¼ 1 and j ¼ 2 or
i ¼ 2 and j ¼ 1, then the left-hand side is clearly

invariant, while the only change on the right amounts
respectively to replacing β1α2 by β2α1.
Finally, the most general form of (4.2) arises from

introducing an arbitrary number of spectators and a
parameter l in addition to k in (4.5), as follows:

Πď1;…;ďn

ðq2; q2Þď1 � � � ðq2; q2Þďn
¼

X
α1þβ1¼ď1

� � �
X

αnþβn¼ďn

κβ1þ���þβn

ðq2; q2Þα1ðq2;q2Þβ1 � � � ðq2; q2Þαnðq2; q2Þβn
× ð−qÞ2

P
i<j

βiαjþð2
P

m−n
s¼nþ1

hsďsþ2kðα1þ���þαnÞþlðβ1þ���þβnÞÞðβ1þ…βnÞ; ð4:6Þ

which is also invariant under permutations of indices
1;…; n, affecting the form of the term

P
i<j βiαj. If

l ¼ 2kþ 1, the above expression reduces to (4.5) (gener-
alized to n summations), and then it can be written
concisely using the q-Pochhammer symbol. For l ≠ 2kþ
1 we do not know if there is such a concise manifestly
symmetric representation, however we do not necessarily
need it—the crucial property is invariance of the above
expression under permutations of indices f1;…; ng. In
what follows, we prove that (4.6) is indeed invariant under
such permutations.

C. Permutohedra from local equivalence

In turn, we now show how permutohedra arise from the
local equivalence of quivers revealed in Theorem 6, and in
particular explain how (4.6) arises from this theorem (and
thus has the required symmetry properties).
Suppose that the conditions (3.26) of Theorem 6 are

satisfied, so that two quivers related by a transposition of
elements Cab and Ccd are equivalent. We now write the
quiver matrix C in a form that automatically implements
these conditions. To this end, we focus first on the 4 × 4
submatrix of C with elements Cij for i; j ¼ a, b, c, d, and
rewrite is as follows:

ð4:7Þ

In order to get the right-hand side we introduced two parameters k; l ∈ Z, defined such that Cad ¼ Caa þ k and
Cdd ¼ Caa þ l. From the second equation in (3.26) with i ¼ a, we then get Cab ¼ Cac þ Cad − Caa ¼ Cac þ k. Similarly,
the second equation in (3.26) with i ¼ b takes the form Cad þ Cbd ¼ Cdd þ Ccd − 1, and combined with the first equation
in (3.26) and the above relations it yields Cbd ¼ Cac þ l. Analogously, (3.26) with i ¼ c and i ¼ d implies, respectively,
Ccb ¼ Ccc þ k and Cbb ¼ Ccc þ l. The right-hand side of (4.7) follows from these relations and we rewrite it further as

�
Caa Cac

Cac Ccc

�
⊗

�
1 1

1 1

�
þ
�
1 1

1 1

�
⊗

�
0 k

k l

�
þ
��

0 1

0 0

�
⊗

�
0 0

1 0

�
þ
�
0 0

1 0

�
⊗

�
0 1

0 0

��
: ð4:8Þ

The terms in this expression turn out to have a familiar interpretation. The first matrix is (an appropriate part of) the
prequiver Č. In particular, if we rename summation variables as ðda; dd; dc; dbÞ ¼ ðαa; βa; αc; βcÞ, and ďa ¼ αa þ βa and
ďc ¼ αc þ βc, consistently with earlier conventions the composition of these vectors with the first term in (4.8) can be
written as
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so that (−q) raised to the above power indeed provides the contribution from the prequiver (i.e., the first factor in the
summand) in (4.1). An analogous contribution from the second term in (4.8) takes the form

which we recognize as the k- and l-dependent contribution in (4.6). Finally, the analogous contribution
from the last term (in round brackets) in (4.8) takes the form 2βaαc, which is nothing but the term in (4.6)
that is responsible for the permutohedron structure. In this case it is Π2 and the flip τ ¼ ðacÞ, realized by
2βτðaÞατðcÞ ¼ 2βcαa, corresponds to the transposition of nondiagonal terms Cab ↔ Ccd, which gives the quiver matrix
equivalent to (4.7):

ð4:9Þ

We already can see how the local constraints of Theorem 6 give rise to the expression (4.6). There is
just one more term in (4.6) that we should reconstruct: the one that involves spectator nodes. To this end we
enlarge (4.7) by two rows and columns, still assuming that Cab and Ccd can be exchanged, and write such a matrix in the
form:

The top-left 4 × 4 submatrix is expressed in terms of k and l in the same way as in (4.7). In addition, if we denote
Cde − Cae ¼ he and substitute it into the second constraint in (3.26) with i ¼ e, we get Cbe ¼ Cce þ he. Analogously, for
Cdf − Caf ¼ hf we get Cbf ¼ Ccf þ hf, and altogether we obtain the matrix on the right. It follows that the contribution

of these extra rows and columns to the quiver generating function reads ð−qÞ
P

s
hsďs , which yields the appropriate term

in (4.6) that we were after.
To sum up, we have shown how the formula (4.6) arises from local constraints of Theorem 6 in the presence of one

symmetry, which thus yields a permutohedron Π2. Let us now illustrate how permutohedron Π3 arises if we assume that in
addition to the symmetry involving Cab and Ccd, there is also another symmetry that involves Cbe and Ccf. Two such
symmetries may exist in a matrix of size 6 × 6, which we write in the form

ð4:10Þ
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where the right-hand side is expressed in terms of param-
eters k and l and arises from solving the constraints of
Theorem 6 analogously as above. Note that two symmetries
of the original quiver, Cab ↔ Ccd and Cbe ↔ Ccf, corre-
spond to transpositions (1 2) and (2 3) acting on the element
(1, 2, 3); highlights in (4.10) match the colors in Fig. 8.
After performing one of these transformations we obtain a
new quiver [with þ1 in the other highlighted entry, like in
(4.9)], which also has two symmetries. One is an inverse of
the transformation we just performed, the other is a trans-

position Cde ↔ Caf, denoted in red in (4.10). This behav-
ior is perfectly consistent with the structure of Π3—the new
symmetry corresponds to transposition (1 3), denoted in red
in Fig. 8. Using Theorem 6, one can check that the whole
structure of Π3 is preserved: there are six equivalent
versions of the matrix (4.10) connected by three sym-
metries, but only two of them can be applied to each
representant of the class.
Furthermore, the right-hand side of (4.10) can be written

in the form

0
B@

Caa Cac Cae

Cac Ccc Cce

Cae Cce Cee

1
CA⊗

�
1 1

1 1

�
þ

0
B@

1 1 1

1 1 1

1 1 1

1
CA⊗

�
0 k

k l

�
þ

0
B@

0 1 1

0 0 1

0 0 0

1
CA⊗

�
0 0

1 0

�
þ

0
B@

0 0 0

1 0 0

1 1 0

1
CA⊗

�
0 1

0 0

�
;

where the 3 × 3 matrix in the first term is a prequiver.
Straightforward generalization of the above procedure to
more symmetries leads to prequivers of arbitrary size and
corresponding permutohedra, or, equivalently, the general
form of (4.6):
Definition 7: A ðk; lÞ-splitting of n nodes with permu-

tation σ ∈ Sn in the presence of m − 2n spectators (with

corresponding integer shifts hs) and with a multiplicative
factor κ is defined as the following transformation of a
quiver Č and a change of variables λ̌. For any two split
nodes i and j, i < j, and any spectator s, we transform the
matrix Č in the following way (depending on the presence
of inversion in the permutation σ):
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whereas for any permutation the change of variables is
transformed as follows:

0
BBBBBBBBBB@

λ̌s

..

.

λ̌i

..

.

λ̌j

1
CCCCCCCCCCA

→

0
BBBBBBBBBBBBBBBB@

λ̌s

..

.

λ̌i

λ̌iκ

..

.

λ̌j

λ̌jκ

1
CCCCCCCCCCCCCCCCA

:

Clearly, the top right matrix above [corresponding to
σðiÞ < σðjÞ → no inversion] is encoded in the quadratic
terms in the powers of (−q) in (4.6). The bottom right
matrix (corresponding to σðiÞ > σðjÞ → inversion) arises
after exchanging labels i and j in (4.6). Moreover, in the

language of Definition 7, the ðk; 2kþ 1Þ-splitting is a
manifestation of the formula (4.5). For k ¼ 0 it specializes
to (0, 1)-splitting that is a manifestation of the basic
formula (4.3) with ξ ¼ κq.
Definition 8: If the inverse of splitting—for any param-

eters from Definition 7—can be applied to a given quiver C
and an associated change of variables λ, we call the target of
this operation a prequiver Č, and the associated change of
variables is denoted λ̌. Conversely, splitting the nodes of a
prequiver produces the quiver:

Č → C; λ̌ → λ: ð4:11Þ

For clarity, let us see how ðk; lÞ-splitting looks for a full
matrix in which we split the first n nodes in the presence of
m − 2n spectators with shifts h1;…; hm−2n and trivial
permutation:

It is straightforward to check that the constraints from
Theorem 6 are satisfied for the above matrix, and that it is
consistent with (4.1) and (4.6).

V. EXAMPLES—GLOBAL STRUCTURE

In this section we analyze in detail equivalent quivers
and the structure of their permutohedra graphs for knots
31, 41, 51, 52, 61, 71 and the whole series of ð2; 2pþ 1Þ
torus knots.

A. Trefoil knot, 31
The generating function of superpolynomials of the knot

31 is given by [29]

P31
ðx; a; q; tÞ

¼
X∞
r¼0

xra2rq−2r

ðq2; q2Þr
Xr

k¼0

�
r

k

�
q2kðrþ1Þt2kð−a2q−2t;q2Þk; ð5:1Þ

where we use the q-binomial

�
r

k

�
¼ ðq2; q2Þr

ðq2; q2Þr−kðq2; q2Þk
: ð5:2Þ

Linear order (r ¼ 1) of (5.1) encodes the uncolored super-
polynomial P1ða; q; tÞ ¼ a2q−2 þ a2q2t2 þ a4t3. Its
homological diagram consists of one zig-zag made of
three nodes (see Fig. 10).
Let us rederive the trefoil quiver following Sec. IV. We

start from noticing that if we keep the q-Pochhammer
ð−a2q−2t;q2Þk on the side, the remaining part of
P31

ðx; a; q; tÞ can be easily rewritten in the quiver form.
First, we express the q-binomial as in (5.2) and cancel
ðq2;q2Þr:
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X∞
r¼0

xra2rq−2r

ðq2; q2Þr
Xr

k¼0

�
r

k

�
q2kðrþ1Þt2k ¼

X∞
r¼0

xra2rq−2r
Xr

k¼0

1

ðq2; q2Þr−kðq2; q2Þk
q2kðrþ1Þt2k: ð5:3Þ

Then, we define new summation variables, ď1 ¼ r − k and ď2 ¼ k, which allows us rewrite (5.3) as a motivic generating
function of a prequiver:

ð5:4Þ

Now we put ð−a2q−2t; q2Þk back with k ¼ ď2 and apply a variant of formula (4.3) for splitting one node (because only one
ďi enters k):

ðξ; q2Þďi
ðq2; q2Þďi

¼
X

αiþβi¼ďi

ð−qÞβ2i ðξq−1Þβi
ðq2; q2Þαiðq2; q2Þβi

; ð5:5Þ

with ξ ¼ −a2q−2t and i ¼ 2. This leads to

P31
ðx; a; q; tÞ ¼

X
d1;α2;β2≥0

ðxa2q−2Þd1ðxa2ð−tÞ2Þα2ðxa4q−3ð−tÞ2Þβ2
ðq2; q2Þd1ðq2; q2Þα2ðq2; q2Þβ2

ð−qÞ2d1α2þ2d1β2þ2α2
2
þ2α2β2þ3β2

2 ; ð5:6Þ

which is equal to PQðx; qÞjx¼xλ for

ð5:7Þ

This is the quiver found in [1,2]. In the language of
Definition 7 it arises from (5.4) by (0, 1)-splitting of the

second node, with the trivial permutation σð2Þ ¼ 2, h1 ¼ 0,
and κ ¼ −a2q−3t:

ð5:8Þ

In the above process we did not have to make any
choices, therefore we expect that the above quiver is
unique. This is indeed the case: since the trefoil knot is
thin, all quiver equivalences come from permutations of
nondiagonal matrix entries, but there are no possible
pairings that could lead to nontrivial permutations of
nondiagonal entries. In consequence, Conjecture 5 holds
for the trefoil knot.

FIG. 10. Homology diagram and a quiver matrix for the
31 knot. The labels 0, 2, and 3 are t-degrees of generators, while
λi arise in specialization of quiver generating parameters. For the
31 knot the quiver is unique, so the permutohedra graph consists
of one vertex (shown in red).

PERMUTOHEDRA FOR KNOTS AND QUIVERS PHYS. REV. D 104, 086017 (2021)

086017-19



B. Figure-eight knot, 41
For the figure-eight knot, two corresponding quivers

have been already found in [2,4]. Let us rederive this result
and check that there are no other equivalent quivers. The
generating function of superpolynomials of the figure-eight
knot reads [29]

P41
ðx; a; q; tÞ ¼

X∞
r¼0

Xr
k¼0

xrð−1Þka−2kt−2kq−k2þ3kðq−2r; q2Þk
ðq2; q2Þrðq2; q2Þk

ð−a2q−2t; q2Þkð−a2q2rt3; q2Þk:

For r ¼ 1 we obtain the superpolynomial P1ða; q; tÞ ¼
1þ a−2t−2 þ q−2t−1 þ q2tþ a2t2. The corresponding
homological diagram consists of a degenerate zig-zag
made of one node and a diamond (see Fig. 11).
In order to find equivalent quivers we follow Sec. IV

again. We use the relation ðq−2r; q2Þk ¼ ð−1Þk
q−2rkþkðk−1Þ ðq2;q2Þr

ðq2;q2Þr−k, as well as (5.5) for ð−a2q2rt3; q2Þk=
ðq2;q2Þk, to rewrite

ð5:9Þ

where we substitute r − k ¼ ď1 and k ¼ ď2 þ ď3. In addi-
tion, we rewrite the remaining term ð−a2q−2t; q2Þk≡
ð−a2q−2t;q2Þď2þď3

, using (4.3) for n ¼ 2:

ðξ;q2Þďiþďj

ðq2;q2Þďiðq2;q2Þďj
¼

X
αiþβi¼ďi

X
αjþβj¼ďj

ð−qÞβ2iþβ2jþ2βiðαjþβjÞ

×
ðξq−1Þβi

ðq2;q2Þαiðq2;q2Þβi
ðξq−1Þβj

ðq2;q2Þαjðq2;q2Þβj
:

ð5:10Þ
Now the two equivalent quivers arise from two possible
specializations of ði; jÞ in the term βiαj in the above

expression. For ði; jÞ ¼ ð2; 3Þ, from the quadratic terms in
the exponent of (−q) we read off the following quiver matrix:

ð5:11Þ

which is consistent with the result in [2] (up to a permu-
tation of rows and columns) and corresponds to the red

FIG. 11. Homological diagram for the 41 knot, with labels λi assigned to various nodes (top). In the bottom the two equivalent quivers
are shown, which differ by a transposition of elements C2;5 and C3;4 of the quiver matrix (shown in yellow, together with their symmetric
companions). The positions of these elements are encoded in combinations λ2λ5 and λ3λ4, which are equal to each other (and satisfy the
center of mass condition). The permutohedra graph is given by Π2 which consists of two vertices connected by one edge.
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dot in Fig. 11. On the other hand, setting ði; jÞ ¼ ð3; 2Þ
yields

ð5:12Þ

which is consistent with the second, equivalent quiver found
in [4]. The two above quivers are also presented in Fig. 11
and they differ by a transposition of elements shown in
yellow. This transposition corresponds to a single possible
inversion encoded in the term βiαj in (5.10).
In the language of Definition 7, quivers (5.11) and (5.12)

arise from the prequiver (5.9) by a (0, 1)-splitting of nodes
numbers 2 and 3. Since we split two nodes, there are two
possible permutations. For the identity permutation
[σð2Þ ¼ 2, σð3Þ ¼ 3] we obtain (5.11)

ð5:13Þ

On the other hand, for a transposition σ ¼ ð23Þ [i.e., σð2Þ ¼ 3, σð3Þ ¼ 2] we get

ð5:14Þ

In both cases we have h1 ¼ 0 and κ ¼ −a2q−3t.
The quiver matrices (5.11) and (5.12) are related by a

transposition of nondiagonal entries. The condition λ2λ5 ¼
λ3λ4 from Theorem 6 is satisfied, so it is a symmetry. The
permutohedra graph is given by Π2 that consists of two
vertices connected by an edge, as shown in Fig. 11. Since
the 41 knot is thin, all equivalent quivers come from
permutations of nondiagonal elements of C. However,
we checked that there are no more pairings apart from
λ2λ5 ¼ λ3λ4, so we found the whole equivalence class, and
Conjecture 5 holds for the figure-eight knot.

C. Cinquefoil knot, 51
In turn, we analyze the 51 knot. The generating function

of its colored superpolynomials is given by [29]

P51
ðx;a;q;tÞ¼

X∞
r¼0

xra4rq−4r

ðq2;q2Þr
X

0≤k2≤k1≤r

�
r

k1

��
k1
k2

�
ð−a2q−2t;q2Þk1

×q2½ð2rþ1Þðk1þk2Þ−rk1−k1k2�t2ðk1þk2Þ; ð5:15Þ
which for r ¼ 1 encodes the superpolynomial
P1ða; q; tÞ ¼ a4q−4 þ a4t2 þ a6q−2t3 þ a4q4t4 þ a6q2t5.
The homological diagram is a a zig-zag made of five nodes
(see Fig. 12).
In analogy to the case of 41, we rewrite the summand

in (5.15) as a product of the motivic generating series for
the prequiver and ð−a2q−2t; q2Þk1 with k1 ¼ ðk1 − k2Þþ
k2 ¼ ď2 þ ď3,

ð5:16Þ
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Then, the application of (4.3) leads to (0, 1)-splitting of nodes numbers 2 and 3 (the node number 1 is a spectator with h1 ¼ 0;
κ ¼ −a2q−3t), which can be done in two ways. The identity permutation ðσð2Þ ¼ 2; σð3Þ ¼ 3Þ yields

ð5:17Þ

whereas the transposition σ ¼ ð23Þ gives

ð5:18Þ

Compared with Theorem 6, it is clear that this symmetry comes from the pairing λ3λ4 ¼ λ2λ5 (shown in orange in Fig. 12).
However, for the cinquefoil knot we find another pairing λ1λ5 ¼ λ2λ3 (shown in green in Fig. 12), which also leads to a
nontrivial symmetry. Using Definitions 7 and 8 we can see that the quiver from (5.17) admits not only the inverse of (0, 1)-
splitting analyzed above, but also the inverse of (1, 3)-splitting.1 More precisely, P51

can be rewritten as

ð5:19Þ

FIG. 12. Two copies of the homological diagram for the 51 knot are shown on top. On each copy we denoted a parallelogram that
encodes a symmetry, i.e., a transposition of two matrix elements that yields an equivalent quiver. In total there are three equivalent
quivers, shown on the bottom, which correspond to three vertices of the permutohedra graph. The permutohedra graph is made of twoΠ2

that share a common vertex (in red).

1In fact, it admits also the inverse of (1, 2)-splitting with h1 ¼ 0 and h1 ¼ 2, but they capture the same symmetries. This phenomenon
is characteristic for all instances of splitting two nodes, when it is possible to interpret λaλb ¼ λcλd as λa, λc coming from splitting node a
and λd, λb coming from splitting node d, or λa, λd coming from splitting node a and λc, λb coming from splitting node c.
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which leads to (5.17) by (1, 3)-splitting of nodes numbers 2
and 3 (the node number 1 is a spectator with h1 ¼ 1) with
permutation σ ¼ ð23Þ and κ ¼ −a2q−1t3. This automati-
cally implies that there exists another equivalent quiver,
arising from the (1, 3)-splitting of (5.19) with the trivial
permutation

ð5:20Þ

which is the quiver on the left-hand side in Fig. 12 (up to a
permutation of nodes).
To sum up, we have found three equivalent quivers for

51, and from quiver (5.17) we can obtain either of the other
two, by appropriate transpositions of elements of the quiver
matrix. However, since these transpositions are not disjoint,
we cannot compose them. In consequence the permutohe-
dra graph, shown in Fig. 12, consists of two permutohedra
Π2 that share a common vertex (in red) that represents
quiver (5.17). Using an argument analogous to the one for
the figure-eight knot, we can check that since there are no
pairings other than those depicted in Fig. 12, we have found
all equivalent quivers. In consequence, Conjecture 5 holds
for the cinquefoil knot.

D. 52 knot

The 52 knot is a more involved example. Having
identified one quiver for this knot (e.g., the one found in

[2]) and considering all possible local equivalences follow-
ing Theorem 6, we found 12 equivalent quivers for this
knot (they are listed explicitly in Appendix A). It turns out
these quivers form an interesting structure of three permu-
tohedra Π3 glued along their edges. Let us explain how this
structure arises.
We start from the following generating function of

superpolynomials [2]:

P52
ðx;a;q;tÞ¼

X∞
r¼0

xr

ðq2;q2Þr
X

0≤k2≤k1≤r

�
r

k1

�

�
k1
k2

�
ð−1Þrþk1ð−a2q−2t;q2Þk1ð−a2q2rt3;q2Þk1

×a2k2qk
2
1
þk1þ2ðk2

2
−k2−rk1Þt2k2−r: ð5:21Þ

At linear order we find the superpolynomial P1ða;q;tÞ¼
a2q2t2þa2q−2þa4t3þa2tþa4q2t4þa4q−2t2þa6t5. The
homological diagram consists of a diamond and a zig-
zag of length 3 (see Fig. 13).
The generating function (5.21) can be rewritten in

the form

ð5:22Þ

Then, (0, 1)-splitting of nodes numbers 2, 3, 4 with trivial permutation h1 ¼ 0 and κ ¼ −a2q−3t leads to

FIG. 13. Homology diagram for the 52 knot; labels λi are
consistent with (5.28).
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ð5:23Þ

Because the splitting involves three nodes, it gives rise to a permutohedron Π3, which is a hexagon.
Furthermore, (5.21) can be rewritten in another form,

ð5:24Þ

In this case the factorΠd2;d3;d4 encodes (0, 2)-splitting of the
last three nodes with trivial permutation, h1 ¼ 1 and κ ¼
a2q−2t2, which leads to a rearrangement of quiver (5.23):

ð5:25Þ

This means that the corresponding permutohedron is also
Π3, and one of its vertices corresponding to the above matrix
is shared with the previous permutohedron (there is also

another quiver common to these two permutohedra). Note
that (0, 2)-splitting of prequiver (5.24) with permutation σ ¼
ð23Þ yields the quiver for the 52 knot found in [2]:

ð5:26Þ

Furthermore, the quiver (5.26) also admits the inverse of
another splitting, which corresponds to the following
rewriting of (5.21):

ð5:27Þ
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In this case the (1, 3)-splitting of the last three nodes with
permutation σ ¼ ð2 3Þ, h1 ¼ 1, and κ ¼ −a2q−1t3 leads to

ð5:28Þ

which is also a reordering of (5.26). This means that (5.27)
captures the third permutohedron Π3, and the quiver (5.26)
[or its reordered version (5.28)] corresponds to the vertex
that is shared with the previous Π3.
Following the above analysis, we find that the permuto-

hedra graph for 52 has the structure shown in Fig. 14. The
permutohedron arising from six permutations associated to
(0, 1)-splitting of the prequiver (5.22) lies on the top of the
graph. The bottom-right Π3 comes from all possible (0, 2)-
splittings of the prequiver (5.24). Finally, the (1, 3)-splittings
of (5.27) lead to the bottom-left hexagon. The quiver (5.23)
[or its reordered form (5.25)] is denoted by the green dot.
The red dot represents the quiver (5.26) [or its reordered form
(5.28)] found in [2]. The symmetry connecting these two
quivers is denoted by the blue edge. Moreover, we find that
each pair of permutohedra Π3 identified above has two
common quivers, which are connected by a transposition
that is also common to such two permutohedra. Altogether,
the permutohedra graph takes the formof three permutohedra
Π3 glued along their edges, as shown in Fig. 14. The triangle
in themiddle of thegraph represents two transpositionswhose
composition is also a transposition (not a 3-cycle), so it does
not contradict the argument in Sec. III A. In the figurewe also
show how various symmetries (transpositions of matrix
elements that relate various equivalent quivers, which corre-
spond to edges of the permutohedra graph) arise from
quadruples of homology generators and denote them in
various colors. According to Conjecture 5, we expect that
Fig. 14 presents the whole equivalence class of quivers.

E. 71 knot
Another interesting example is the 71 knot. Applying

Theorem 6 systematically, we find 13 equivalent quivers,
which we list explicitly in Appendix A. A more detailed
analysis reveals that they form two permutohedra Π3 that
share one common vertex (corresponding to a common
quiver), and each of these Π3, in addition, shares a common
vertex with one of the two permutohedra Π2.
The generating function of colored superpolynomials

takes the form [12,13]

P71
ðx;a;q;tÞ¼

X∞
r¼0

xra6rq−6r

ðq2;q2Þr
X

0≤k3≤k2≤k1≤r

�
r

k1

��
k1
k2

��
k2
k3

�
ð−a2q−2t;q2Þk1

×q2½ð2rþ1Þðk1þk2þk3Þ−rk1−k1k2−k2k3�t2ðk1þk2þk3Þ:

ð5:29Þ
For r ¼ 1 we get the uncolored superpolynomial
P1ða;q; tÞ ¼ a6q−6 þ a6q−2t2 þ a8q−4t3 þ a6q2t4 þ a8t5þ
a6q6t6 þ a8q4t7. The corresponding homological diagram
consists of one zig-zag made of seven nodes (see Fig. 15).
First, we rewrite (5.29) as follows:

ð5:30Þ

FIG. 14. The permutohedra graph for the 52 knot consists of
three Π3 (shown schematically at the bottom together with the
formulas they correspond to) glued along common edges. The
edges in this graph correspond to six types of transpositions arising
from various quadruples of homology generators, which are also
shown in various colors on the homological diagrams.
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The (0, 1)-splitting of the last three nodes with trivial
permutation h1 ¼ 0 and κ ¼ −a2q−3t leads to

ð5:31Þ

which reproduces the quiver from [2]. More generally,
splitting these three nodes with all possible permutations
yields one permutohedron Π3.
Furthermore, we can also rewrite (5.29) as

ð5:32Þ

In this case, the (1, 3)-splitting of the last three nodes with
permutation σ ¼ ð2 4Þ, h1 ¼ 1, and κ ¼ −a2q−1t3 gives a
rearrangement of the quiver (5.31) as

ð5:33Þ

and analogous splittings with all other permutations give
rise to another permutohedron Π3. Therefore we have
identified two permutohedra that share a common vertex,
which represents the quiver matrix (5.31) [or its reordered
form (5.33)]. Let us now focus on Π3 arising from the
prequiver (5.30). One can check that almost all quivers
represented by its other vertices cannot be obtained from
other prequivers. The only exception is

ð5:34Þ

which arises from the (0, 1)-splitting of (5.30) with
permutation σ ¼ ð24Þ. Indeed, the (0, 1)-splitting of the
last two nodes of the prequiver,

ð5:35Þ

with permutation σ ¼ ð45Þ, h1 ¼ 2, h2 ¼ 1, h3 ¼ 0, and
κ ¼ −a−2q5t, leads to

FIG. 15. Homology diagram for the 71 knot; labels λi are
consistent with (5.31).
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ð5:36Þ

which is a rearrangement of (5.34). This means that the
quiver (5.34) [or its reordered form (5.36)] is a gluing point
of permutohedra Π3 and Π2.
An analogous phenomenon occurs for the second Π3,

which is also connected to another permutohedron Π2.
Altogether, the permutohedra graph consists of two Π3 and
two Π2, as shown in Fig. 16. The quiver (5.31) [or
equivalently (5.33)], also found in [2], is common to the
two Π3 and is represented by the red dot. The Π3 on the left
arises from the prequiver (5.30), whereas the one on the
right corresponds to the prequiver (5.32). The quiver (5.34)
[or its reordered form (5.36)] is represented by the green
node, and it glues the left Π3 with Π2 coming from the
prequiver (5.35). The analogous gluing point is present on
the right-hand side of the graph. In total we found eight

nontrivial symmetries shown in Fig. 16 in various colors,
and 13 equivalent quivers that we list explicitly in
Appendix A. Using the procedure described in Sec. III A,
we checked that there are no other equivalent quivers.
According to Conjecture 5, we expect that Fig. 16 presents
the whole equivalence class of quivers.

F. 61 knot

Another example that we consider is the 61 knot. We
have found 141 equivalent quivers, which form quite a
complicated permutohedra graph shown in Fig. 17. These
quivers are related to each other by 16 symmetries (trans-
positions of various pairs of quiver matrices).
The generating function of colored superpolynomials for

the 61 knot reads [13]:

P61
ðx;a;q;tÞ¼

X∞
r¼0

xr

ðq2;q2Þr
X

0≤k2≤k1≤r

�
r

k1

��
k1
k2

�

ð−a−2q2t−1;q−2Þk1ð−a−2q−2rt−3;q−2Þk1
×a2ðk1þk2Þt2ðk1þk2Þq2ðk21þk2

2
−k1−k2Þ: ð5:37Þ

FIG. 16. The permutohedra graph for the 71 knot consists of
two Π3 and two Π2 appropriately glued. Altogether it has 13
vertices representing equivalent quivers, and eight symmetries
corresponding to various quadruples of homology generators
(and represented by different colors of the edges in the graph).

FIG. 17. The permutohedra graph for the 61 knot has 141
vertices that represent equivalent quivers (left). Excluding sym-
metries that involve λ1 reduces the whole graph to a cubelike
shape (right). Each face of this cube is one Π4 (a bit squashed),
and neighboring Π4s are glued along a square, which is a
common face to both Π4s. The red vertex represents the quiver
(5.39) [or its reordered form (5.41)].

FIG. 18. Homology diagram for the 61 knot; labels λi are
consistent with (5.39).
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The linear order of this equation gives the uncolored superpolynomial P1ða; q; tÞ ¼ 1þ a−2t−2 þ q2tþ q−2t−1 þ a2t2þ
1þ a2q2t3 þ a2q−2tþ a4t4. The corresponding homological diagram, shown in Fig. 18, consists of two diamonds and a
degenerate zig-zag made of one node that coincides with one vertex of the upper diamond, so that λ1 ¼ λ6.
First, we rewrite (5.37) as

ð5:38Þ

Then the (1, 3)-splitting of the last four nodes with permutation σ ¼ ð2 4 5 3Þ, h1 ¼ 1, and κ ¼ −a2q−1t3 leads to the
quiver found in [2]:

ð5:39Þ

On the other hand, we can rewrite (5.37) in the form

ð5:40Þ

Then, the (0, 2)-splitting of the last four nodes with permutation σ ¼ ð2 5Þð3 4Þ, h1 ¼ 0, and κ ¼ a2q−2t2 leads to
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ð5:41Þ

which is a rearrangement of (5.39). This means that the
above quiver is common to two permutohedra Π4, and it is
represented by the red dot in Figs. 17 and 19. In Fig. 19,
which shows a planar projection of a part of the permutohe-
dra, the graph of Π4 coming from the prequiver (5.38) is
oriented along axis ↗, whereas Π4 oriented along ↖
corresponds to the prequiver (5.40). All other quiver matrices
that we found are listed in the Mathematica file attached to
the arXiv submission. According to Conjecture 5, we expect
that there are no more equivalent quivers and that Fig. 19
presents the whole equivalence class.

G. ð2;2p+ 1Þ torus knots
The last example we consider is a series of ð2; 2pþ 1Þ

torus knots. For this class the number of equivalent quivers
grows rapidly; for p ¼ 1;…; 7we have found, respectively,

1, 3, 13, 68, 405, 2684, and 19557 equivalent quivers,
which have a permutohedra graph with interesting struc-
ture. For p ¼ 1 there is just one corresponding quiver (see
Sec. VA); for p > 1 the permutohedra graph consists of
two series of larger and larger permutohedra Π2;…;Πp

(and several additional permutohedra of small size that do
not belong to these series). In each of these two series, each
permutohedron Πi is connected to Πi−1 and Πiþ1 (for
i ¼ 3;…; p − 1), and the two largest permutohedra Πp

from both series are also connected. Such a structure is
present for the 51, 71, 91, and 111 knots in Figs. 12, 16, 2,
and 3, respectively. In this section we explain how the two
largest permutohedra Πp for the ð2; 2pþ 1Þ torus
knot arise.
To start with, note that the generating function of

superpolynomials for the ð2; 2pþ 1Þ-torus knot can be
written, among others, in the following two equivalent

FIG. 19. Planar projection of a part of the permutohedra graph for the 61 knot. In homological diagrams (on the left and right) it is
indicated how some of its symmetries, corresponding to edges of the graph, arise from quadruples of homology generators.
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ways, which correspond to different grading conventions for the Sr-colored HOMFLY-PT homologies [12,13]:

PT2;2pþ1
ðx; a; q; tÞ ¼

X
r≥0

xra2prq−2pr
X

0≤kp≤…≤k2≤k1≤r

�
r

k1

��
k1
k2

�
� � �

�
kp−1
kp

�

× q2
P

p
i¼1

ðð2rþ1Þki−ki−1kiÞt2ðk1þk2þ���þkpÞð−a2q−2t; q2Þk1 ; ð5:42Þ

¼
X
r≥0

xra2prq−2pr
X

0≤kp≤…≤k2≤k1≤r

�
r

k1

��
k1
k2

�
� � �

�
kp−1
kp

�

× q2
P

p
i¼1

ðð2rþ1Þki−ki−1kiÞt2ðk1þk2þ���þkpÞð−a2q2rt3; q2Þr−kp : ð5:43Þ

For p ¼ 1, i.e., the 31 knot, the above expressions reduce to

X
0≤k1≤r

�
r

k1

��
k1
k2

�
q2k1ðrþ1Þt2k1ð−a2q−2t; q2Þk1 ¼

X
0≤k1≤r

�
r

k1

��
k1
k2

�
q2k1ðrþ1Þt2k1ð−a2q2rt3; q2Þr−k1 ; ð5:44Þ

and the two permutohedra consist of one vertex. They are, in fact, identified, so that the full permutohedra graph consists
just of one Π1. In general, both (5.42) and (5.43) can be rewritten in the form of (4.1) using the formula

�
r

k1

��
k1
k2

�
� � �

�
kp−1
kp

�
¼ ðq2; q2Þr

ðq2; q2Þr−k1ðq2; q2Þk1−k2 � � � ðq2;q2Þkp−1−kpðq2; q2Þkp
: ð5:45Þ

In the case of (5.42), we set

ď1 ¼ r − k1; ď2 ¼ k1 − k2; ď3 ¼ k2 − k3; ď4 ¼ k3 − k4;

… ďiþ1 ¼ ki − kiþ1; … ďpþ1 ¼ kp;

which leads to

ð5:46Þ

The (0, 1)-splitting of the nodes corresponding to ď2;…; ďpþ1 with trivial permutation h1 ¼ 0 and κ ¼ ξq−1 ¼ −a2q−3t
produces the quiver found in [2]:
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ð5:47Þ

On the other hand, for the expression (5.43) we introduce

ď1 ¼ r − ðr − kpÞ ¼ kp;

ď2 ¼ r − k1; ď3 ¼ k1 − k2; … ďpþ1 ¼ kp−1 − kp;

and then find

ð5:48Þ

One can check that the (1, 3)-splitting of the nodes
corresponding to ď2;…; ďpþ1 with permutation
σ ¼ ð2ðpþ 1ÞÞ, h1 ¼ 1, and κ ¼ −a2q−1t3 yields the same
quiver as in (5.47).
Note that both prequivers given above are the same up to

the reordering of nodes, however the two splittings are
different. This is why we obtain two different permutohedra
Πp, respectively, left [or (5.42)] and right [(5.43)] in Figs. 2,
3, 12, and 16. These two permutohedra share the quiver
matrix (5.47), which can be obtained from appropriate
splittings of corresponding prequivers, as explained above.
An interested reader may conduct careful analysis of other
permutohedra in these graphs.

VI. EXAMPLES—LOCAL STRUCTURE

In the previous section we presented permutohedra
graphs for simple knots and discussed in detail the structure
of glued permutohedra embedded in these graphs. In this
section we take the opposite perspective and study the local

structure: we choose some particular quiver and identify all
equivalent quivers related to it by a single transposition of
matrix elements (a single symmetry, to which we refer to as
local). We also provide interpretation of such equivalences
in terms of homological diagrams. We conduct such an
analysis for infinite families of ð2; 2pþ 1Þ torus knots (also
denoted T2;2pþ1), TK2jpjþ2 and TK2pþ1 twist knots, and, in
addition, 62; 63, and 73 knots. The quivers that we analyze
are those found in [2] (apart from the quiver for the 73 knot
that was found in [9]), and they are indicated by red vertices
in permutohedra graphs in Figs. 11, 12, 14, and 19. The
symmetries that we analyze in this section are represented
by edges adjacent to these red vertices.
Recall that:
(i) Quiver matrices for ð2; 2pþ 1Þ torus knots that we

consider are given in (5.47). A homological diagram
for the ð2; 2pþ 1Þ torus knot consists of one zig-zag
made of 2pþ 1 generators.

(ii) Quiver matrices for twist knots TK2jpjþ2 (i.e.,
41; 61; 81;… knots) are given in Appendix B.
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A homological diagram for the TK2jpjþ2 knot con-
sists of p diamonds and a zig-zag made of one
generator, so altogether it has 4pþ 1 generators.

(iii) Quiver matrices for twist knots TK2pþ1 (i.e.,
31; 52; 72;… knots) are also given in Appendix B.
A homological diagram for the TK2pþ1 knot consists
of p − 1 diamonds and a zig-zag of length 3, so
altogether it has 4p − 1 generators.

In this section we fix the ordering of homological
generators (and correspondingly the quiver nodes) as
shown in Fig. 20. In what follows, we call a wedge a part
of a zig-zag consisting of three consecutive nodes that form
a shape ∧. We enumerate diamonds and wedges by

r; r0; r00; r000;…, such that r ≤ r0 ≤ r00 ≤ r000…; for a wedge
or a zig-zag labeled by r, we enumerate the generators it
consists of as in the bottom of Fig. 20. We write pairings
λaλb ¼ λcλd as column vectors with entries a, b, c, d.
Recall that we call such a paring a symmetry if the quiver
matrices with elements Cab and Ccd exchanged are equiv-
alent. We also call the requirements Cai þ Cbi ¼ Cci þ Cdi
(for i ≠ a, b, c, d) spectator constraints.
Theorem 9: For infinite families of knots

T2;2pþ1; TK2jpjþ2; TK2pþ1; p ¼ 1; 2; 3;…, quiver matrices
given respectively in (5.47) and in Appendix B have the
following local symmetries:

T2;2pþ1∶

2
6664

2r

2r0 þ 3

2rþ 3

2r0

3
7775;

2
6664
2rþ 3

2r0 þ 2

2rþ 2

2r0 þ 3

3
7775

TK2jpjþ2∶

2
6664
4r − 1

4r0

4r

4r0 − 1

3
7775;

2
6664
4r − 1

4r0 − 2

4r − 2

4r0 − 1

3
7775;

2
6664
4rþ 1

4r0

4r

4r0 þ 1

3
7775;

2
6664
4rþ 1

4r00 − 2

4r0 þ 1

4r0 − 2

3
7775;

2
6664

4

4p − 1

5

4p − 2

3
7775

TK2pþ1∶

2
6664

2

4r0 þ 3

3

4r0 þ 2

3
7775;

2
6664

2

4r0 þ 1

1

4r0 þ 2

3
7775;

2
6664

2

4pþ 1

3

4p

3
7775⋃ T

0
BBB@TK2jpjþ2n

2
6664

4

4p − 1

5

4p − 2

3
7775

1
CCCA ð6:1Þ

FIG. 20. Enumeration of wedges and diamonds in the homology diagrams, from left to right: T2;2pþ1, TK2jpjþ2, TK2pþ1.
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where r0 ¼ rþ 1, r00 ¼ rþ 2, and

T

0
BBB@TK2jpjþ2n

2
6664

4

4p−1

5

4p−2

3
7775

1
CCCA≔

2
6664
4rþ2

4r0þ1

4rþ1

4r0þ2

3
7775;

2
6664

4r

4r0þ1

4rþ1

4r0

3
7775;

2
6664
4rþ2

4r0þ3

4rþ3

4r0þ2

3
7775;

2
6664

4r

4r00þ3

4r0

4r0þ3

3
7775: ð6:2Þ

Recall again that entries of the vectors given above are
labels of appropriate quadruples of quiver nodes or homol-
ogy generators. For ð2; 2pþ 1Þ torus knots, the condition
r0 ¼ rþ 1 means that these generators belong to two
consecutive wedges (see Fig. 21). For twist knots, gen-
erators that encode a symmetry belong to various diamonds
or the wedge (see Fig. 22 and Fig. 23). Below we give a
proof of Theorem 9 divided into three parts, each

corresponding to one of the infinite families of knots. It
is followed by the analysis of 62; 63; 73 knots.

A. ð2;2p+ 1Þ torus knots
For this family of knots, the homology diagram is a chain

of p wedges joined together. The wedges are labeled by
r ¼ 0; 1; 2;…; p − 1, as in Fig. 20, and the labeling of all
generators is shown explicitly in Fig. 24. Note that what we
label as the zero-th node corresponds to the quiver series
parameter x1, while the i-th node for i > 1 corresponds to
xi. This notation is convenient, since in the formulas we can
let r ¼ 0, referring to the first wedge, so we do not have
to treat it separately. If r and r0 label two wedges
and r0 ¼ rþ 1, they share the common node labeled
by 2rþ 2 ¼ 2r0.
Note that the quiver matrix (5.47) [its special cases are

given in (5.7), (5.17), (5.31)] has elements Cij such that

i; j both odd or even : Cij ¼ j−1; i¼ j∶ Cjj ¼ j;

i odd; j even : Cij ¼ j; jeven : C1j ¼ j−1;

i even; j odd : Cij ¼ j−2þ δiþ1;j; j odd : C1j ¼ j−2:

ð6:3Þ

We now use Theorem 6 to determine symmetries of this
quiver. First, suppose that a pairing is made of generators
from only two wedges, which are located in a generic
position and not necessarily joined together (see Fig. 25). A
direct check of conditions from Theorem 6 shows that the
two pairings in Fig. 25 are the symmetries if r0 ¼ rþ 1. In
order to confirm that there are no other symmetries, we
label the four wedges by r; r0; r00; r000 such that r < r0 <
r00 < r000 (see Fig. 26). In consequence, Eq. (6.3) leads to the
following pairings:

3A.1∶Cab ¼ 2r00 þ1; Ccd ¼ 2r0 þ1

3A.2∶Cab ¼ 2r00 þ2; Ccd ¼ 2r0 þ1

4A.1∶Cab ¼ 2r000 þ1;

Ccd ¼
�
2r0 þ1;r00 ¼ r0 þ1

2r00;r00 >r0 þ1
4A.2∶Cab ¼ 2r000 þ2;

Ccd ¼ 2r00 þ1:

FIG. 21. The local symmetries for T2;2pþ1 torus knots, r ¼ 0;…; p − 1 (the symmetry exists only for r0 ¼ rþ 1).

FIG. 22. The local symmetries for twist knots. The symmetries
which are shared between TK2jpjþ2 and TK2pþ1 twist knots do
not have blue labels (any choice of λ ordering from Fig. 20 is
valid for them). The top-right symmetry is a signature for the
TK2jpjþ2 twist knots, whereas the three bottom ones are for
TK2pþ1 twist knots.
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It follows that the condition jCab − Ccdj ¼ 1 from
Theorem 6 cannot be met in all these cases, so the only
symmetries are indeed those in Fig. 21 and Fig. 27.

B. Twist knots TK2jpj + 2: 41;61;81;…

We now conduct an analogous analysis for a family of
twist knots TK2jpjþ2. Recall that a homological diagram for
such a knot—for a given p—consists of p diamonds and an

extra dot. Consider a quadruple of diamonds with labels
ðr; r0; r00; r000Þ, such that 1 ≤ r ≤ r0 ≤ r00 ≤ r000 ≤ p. We
classify all pairings by the number of diamonds and their
relative position. The tables in Fig. 28 provide such
classification, while all the possible pairings between
two diamonds are depicted in Fig. 29.
We now show that the green pairings in Fig. 28 are

indeed local symmetries. The detailed analysis of four of
them is given in Figs. 30 and 31. Notice that the rightmost
pairing in Fig. 31 is a particular case of

2
6664
4rþ 1

4r00 − 2

4r0 þ 1

4r0 − 2

3
7775: ð6:4Þ

Indeed, from the submatrix

a ¼ 4rþ 1

b ¼ 4r0 − 2

c ¼ 4rþ 5

d ¼ 4r0 − 6

0
BBBBB@

2r − 4 2r − 2 2r − 4 2r − 2 − δrþ1;r0

2r − 2 2r0 2r 2r0 − 2

2r − 4 2r 2r − 2 2r − δrþ2;r0

2r − 2 − δrþ1;r0 2r0 − 2 2r − δrþ2;r0 2r0 − 2

1
CCCCCA

ð6:5Þ

we see that r0 ¼ rþ 2 is the only candidate for a symmetry (otherwise the condition jCab − Ccdj ¼ 1 fails). To stress again,
in the examples above (Figs. 30 and 31) the crucial condition for the symmetry is r0 ¼ rþ 1, i.e., the pairing of the two
neighboring diamonds.
Among the good candidates in Fig. 28 there is only one case left:

FIG. 23. The four local symmetries of quiver (5.37) corresponding to the 61 knot, shown as the colorful thick edges.

FIG. 24. Homology diagram for the ð2; 2pþ 1Þ torus knot and
the labeling of its generators (the labeling of wedges is shown in
Fig. 20).
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FIG. 25. Pairings between the two wedges: type 2A.1 (left) and 2A.2 (right).

FIG. 26. Pairings between 3 and 4 wedges, which are not symmetries for the quiver matrix (5.47). From top to bottom: 3A.1, 3A.2,
4A.1, 4A.2.

FIG. 27. The local symmetries of quivers (5.47) for T2;2pþ1 torus knots.
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FIG. 28. The complete classification of pairings between diamonds in a homological diagram.
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FIG. 29. All pairings between two homology diamonds ðr; r0Þ.
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ð6:6Þ

FIG. 30. The two pairings which are symmetries only when r0 ¼ rþ 1.
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Due to the failure of the four spectators ( ), the case (6.6)
gives a symmetry if and only if r ¼ 1 and r0 ¼ p, which
means that the bottom diamond interacts with the top
diamond. For example, if r ¼ p ¼ 1, the pairing (6.6) turns
into the only symmetry for the 41 knot (Fig. 11).
We have thus shown that all five cases in the first row of

Fig. 22 are indeed nontrivial symmetries. It turns out that all
other pairings listed in Fig. 28 fail to be a (nontrivial)
symmetry. This happens due to two reasons: when
Cab ≠ Ccd, either the condition jCab − Ccdj ¼ 1 fails in
general, or it is satisfied only when some diamonds collide,
which brings us back to the case of two diamonds. On the
other hand, any pairing between two diamonds which is not
in our “top five” fails due to spectator constraints (which we
verified in Mathematica). To sum up, only five cases give a
symmetry: four of them involve a pair of diamonds, and
one involves a triple (the “vertical” pairing).

C. Twist knots TK2p + 1: 31;52;72;92;…

For this family of twist knots, a large portion of sym-
metries determined by the pairings originating from dia-
monds is the same as for the previous family of twist knots
TK2jpjþ2. The reason is a structural similarity between their
HOMFLY-PT homologies. To be more specific, the main
building blocks (diamonds) are the same for both families.

The difference is in the form of a zig-zag, which forTK2jpjþ2

knots is degenerated to a dot, while for the TK2pþ1 knot it
takes the form of a single wedge (of length 3). Therefore, at
this stage we only need to study how this wedge interacts
with diamonds. In total, there are five potential pairings:

2
6664

2

4rþ 1

3

4r

3
7775;

2
6664

1

4rþ 2

3

4r

3
7775;

2
6664

2

4rþ 3

3

4rþ 2

3
7775;

2
6664

1

4rþ 3

3

4rþ 1

3
7775;

2
6664

1

4rþ 2

2

4rþ 1

3
7775;

ð6:7Þ

where r ¼ 1;…p − 1 enumerates diamonds. One of these
cases turns out to be trivial:

a ¼ 1

b ¼ 4rþ 2

c ¼ 3

d ¼ 4r

0
BBB@

2 1 2 1

1 2r − 2 2 2r − 3

2 2 3 1

1 2r − 3 1 2r − 3

1
CCCA : ð6:8Þ

The other four cases are investigated below in detail; see the
tables in Fig. 32. For the top-left case the only possibility for
a symmetry is r ¼ p − 1. This proves the bottom-right

FIG. 31. Another two pairings which are symmetries only when r0 ¼ rþ 1.
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FIG. 32. The nontrivial pairings between the wedge and a diamond.
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symmetry in Fig. 22. Another nontrivial symmetry arises
from the top-right case in Fig. 32. The spectator constraints
are satisfied for 1 < r < r0, sowe get the symmetry between
thewedge and the first diamond,which is depicted in Fig. 22
(bottom-left). Likewise, the rightmost pairing in (6.7) is a
symmetry as well [see Fig. 22 (bottom-middle)]. However,
λ1λ4rþ3 ¼ λ3λ4rþ1 does not lead to a symmetry because of
the spectator constraint for s ¼ 2. That is why we end up
with only three local symmetries between the wedge and a
diamond.

D. 62;63;73 knots

Finally, with the support of the attached Mathematica
code, we determine local symmetries for three other knots,
62; 63, and 73, for some particular quivers found in [2,9].

1. 62 knot

Let us start from the 62 knot. The quiver from [2] reads
There are eight local symmetries associated to (6.9) for the
following pairings:

C ¼

2
666666666666666666666664

−2 −2 −1 −1 −1 −1 0 −1 1 1 1

−2 −1 −1 0 0 0 1 0 1 2 2

−1 −1 0 1 0 0 1 0 1 2 2

−1 0 1 0 0 0 1 0 2 1 1

−1 0 0 0 1 1 1 1 2 2 2

−1 0 0 0 1 1 1 1 2 2 2

0 1 1 1 1 1 2 1 2 2 2

−1 0 0 0 1 1 1 2 2 3 3

1 1 1 2 2 2 2 2 3 3 3

1 2 2 1 2 2 2 3 3 3 3

1 2 2 1 2 2 2 3 3 3 4

3
777777777777777777777775

; λ ¼

2
666666666666666666666664

q−2ð−tÞ−2
a2q−4ð−tÞ−1

a2q−2

q2

a2ð−tÞ
a2ð−tÞ

a2q2ð−tÞ2
a4q−2ð−tÞ2
a4ð−tÞ3
a2q4ð−tÞ3
a4q2ð−tÞ4

3
777777777777777777777775

: ð6:9Þ

λ1λ7 ¼ λ3λ4; λ1λ11 ¼ λ4λ8; λ5λ11 ¼ λ8λ10; λ6λ11 ¼ λ8λ10;

λ1λ9 ¼ λ3λ5; λ1λ9 ¼ λ3λ6; λ2λ7 ¼ λ3λ5; λ2λ7 ¼ λ3λ6:

Their graphical representation, together with the homology diagram, is given in Fig. 33.

2. 63 knot

For 63 the quiver matrix from [2] is given by

C ¼

2
6666666666666666666666666664

0 0 0 −1 −1 0 0 −1 −1 0 0 −1 −1
0 1 0 −1 −2 1 0 −1 −2 1 1 0 −1
0 0 0 −1 −2 1 0 0 −2 1 1 0 0

−1 −1 −1 −2 −3 0 −1 −2 −3 −1 0 −2 −2
−1 −2 −2 −3 −3 −1 −1 −2 −3 −1 −1 −2 −2
0 1 1 0 −1 2 1 0 −1 2 1 1 −1
0 0 0 −1 −1 1 1 0 −1 2 1 1 0

−1 −1 0 −2 −2 0 0 −1 −2 0 0 −1 −2
−1 −2 −2 −3 −3 −1 −1 −2 −2 0 −1 −1 −2
0 1 1 −1 −1 2 2 0 0 3 2 1 0

0 1 1 0 −1 1 1 0 −1 2 2 1 0

−1 0 0 −2 −2 1 1 −1 −1 1 1 0 −1
−1 −1 0 −2 −2 −1 0 −2 −2 0 0 −1 −1

3
7777777777777777777777777775

; λ ¼

2
6666666666666666666666666664

1

a2q−2ð−tÞ
1

q−4ð−tÞ−2
a−2q−2ð−tÞ−3

a2ð−tÞ2
q2ð−tÞ

q−2ð−tÞ−1
a−2ð−tÞ−2
a2q2ð−tÞ3
q4ð−tÞ2

1

a−2q2ð−tÞ−1

3
7777777777777777777777777775

: ð6:10Þ
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For (6.10) there are six local symmetries for the following
pairings:

λ2λ8 ¼ λ4λ6; λ2λ12 ¼ λ4λ10; λ3λ8 ¼ λ4λ7;

λ3λ9 ¼ λ5λ7; λ3λ13 ¼ λ5λ11; λ6λ13 ¼ λ8λ11;

for which graphical representations, together with the
homology diagram, are given in Fig. 34.

3. 73 knot

As the last isolated example we consider the 73 knot. The
quiver from [9] reads

C ¼

2
6666666666666666666666666664

2 0 3 2 1 5 4 3 3 2 5 4 3

0 0 1 1 0 3 3 2 1 1 3 3 2

3 1 4 2 2 5 4 4 4 2 5 4 4

2 1 2 2 1 3 3 3 3 2 3 3 3

1 0 2 1 1 3 2 2 2 1 3 2 2

5 3 5 3 3 6 4 4 6 4 6 4 4

4 3 4 3 2 4 4 3 5 4 5 4 3

3 2 4 3 2 4 3 3 4 3 5 4 3

3 1 4 3 2 6 5 4 5 3 6 5 4

2 1 2 2 1 4 4 3 3 3 4 4 3

5 3 5 3 3 6 5 5 6 4 7 5 5

4 3 4 3 2 4 4 4 5 4 5 5 4

3 2 4 3 2 4 3 3 4 3 5 4 4

3
7777777777777777777777777775

; λ ¼

2
6666666666666666666666666664

a6q−4ð−tÞ2
a4q−4

a6ð−tÞ4
a4ð−tÞ2

a4q−2ð−tÞ
a6q4ð−tÞ6
a4q4ð−tÞ4
a4q2ð−tÞ3
a8q−2ð−tÞ5
a6q−2ð−tÞ3
a8q2ð−tÞ7
a6q2ð−tÞ5
a6ð−tÞ4

3
7777777777777777777777777775

: ð6:11Þ

For (6.11) there are seven local symmetries for the following pairings:

λ1λ10 ¼ λ2λ9; λ2λ11 ¼ λ3λ10; λ3λ10 ¼ λ4λ9; λ3λ12 ¼ λ4λ11;

λ4λ13 ¼ λ5λ12; λ6λ12 ¼ λ7λ11; λ7λ13 ¼ λ8λ12:

Their graphical representation, together with the homology diagram, is given in Fig. 35.

FIG. 33. Homology diagram and local symmetries for the 62
knot. Each picture marked with * corresponds to two symmetries,
due to double-valued nodes λ5 and λ6.

FIG. 34. Homology diagram and local symmetries for the 63
knot.
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VII. FKðx;a;qÞ INVARIANTS AND KNOT
COMPLEMENT QUIVERS

In the last section we broaden our perspective and show
that the equivalence criteria from Theorem 6 can be used to
relate quivers that we considered so far to be another type of
quivers, which in [11] have been associated with
FKðx; a; qÞ invariants of knot complements, constructed
in [15–17]. In this section we focus on T2;2pþ1 torus knots
and show that for each p, a quiver associated to the
FKðx; a; qÞ invariant is equivalent to a subquiver of a
quiver for unreduced colored HOMFLY-PT polynomials
constructed in [2].
Before presenting this relation, let us recall how the knots-

quivers correspondence works in the unreduced normaliza-
tion (which we denote by adding a bar to all quantities)
defined for HOMFLY-PT generating functions by

P̄Kðx; a; qÞ ¼
X∞
r¼0

xra−rqr
ða2; q2Þr
ðq2; q2Þr

Prða; qÞ: ð7:1Þ

The presence of ða2; q2Þr in the numerator in the summand
(relative to the reduced normalization) implies that the
unreduced quiver matrix C̄IJ can be obtained from the
reduced one (given by Cij) by the following relation [2]2:

X2m
I;J¼1

C̄IJd̄Id̄J¼
Xm
i;j¼1

½CijαiαjþðCijþ1Þβiβj�

þ2
X
i≤j

Cijαiβjþ2
X
i<j

ðCijþ1Þαiβj; ð7:2Þ

where αi and βi are the new summation indices for the quiver
motivic generating series. They are related to the summation
indices of the reduced normalization by di ¼ αi þ βi and d̄I
can be thought of as the entries of a vector

d̄ ¼ ðα1; α2;…; αm; β1; β2;…; βmÞ: ð7:3Þ

Then the unreduced quiver matrix takes the form of a
2m × 2m block matrix

C̄ ¼
�C C

C C

�
þ
�
0 0

0 1

�
þ
�
0 θ

θT 0

� gα
gβ ð7:4Þ

where 1 and 0 are the matrices with only ones or zeros,
respectively, and the matrix θ is defined as

θij ¼
�
0; j ≥ i

1; j < i
with i; j ¼ 1; 2;…; m: ð7:5Þ

Note that going from di to αi and βi can be understood as an
example of splitting. It follows from the fact that switching
between the reduced and unreduced normalization corre-
sponds to multiplication by a−rqrða2; q2Þr. Since
r ¼ P

i di, we split all nodes, and a−rqr enters the change
of variables. The only difference with splitting presented in
Sec. IV lies in the ordering. There we put αi next to βi, here
we start from all alphas and then write all betas to match the
convention in [2].

A. Trefoil knot complement

Let us focus on the simplest example of the trefoil. The
“standard” and knot complement quivers are given by

FIG. 35. Homology diagram and local symmetries for the 73 knot.

2In our convention αi ↔ βi with respect to [2].
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C̄31
¼

2
6666666664

0 1 1 0 2 2

1 2 2 1 2 3

1 2 3 1 2 3

0 1 1 1 2 2

2 2 2 2 3 3

2 3 3 2 3 4

3
7777777775
;

CF31
¼

2
6664
3 2 3 2

2 2 3 2

3 3 4 3

2 2 3 3

3
7775: ð7:6Þ

Let us exchange x2 ↔ x4 in C̄31
and then remove the first

pair of nodes (interestingly, they look like the redundant
pair of nodes [4], but they have a different change of
variables). After relabeling its vertices to ðx01; x02; x03; x04Þ, we
permute it into ðx03; x02; x04; x01Þ. This gives:

x1
x2
x3
x4
x5
x6

2
6666666664

0 1 1 0 2 2

1 2 2 1 2 3

1 2 3 1 2 3

0 1 1 1 2 2

2 2 2 2 3 3

2 3 3 2 3 4

3
7777777775
⇝

x1
x4
x3
x2
x5
x6

2
66666666664

0 0 1 1 2 2

0 1 1 1 2 2

1 1 3 2 2 3

1 1 2 2 2 3

2 2 2 2 3 3

2 2 3 3 3 4

3
77777777775

⇝

x01
x02
x03
x04

2
6664
3 2 2 3

2 2 2 3

2 2 3 3

3 3 3 4

3
7775

⇝

x03
x02
x04
x01

2
6664
3 2 3 2

2 2 3 2

3 3 4 3

2 2 3 3

3
7775: ð7:7Þ

After framing by −3, the rightmost quiver in (7.7) agrees
with the quiver associated to the trefoil complement in [11].
We can also illustrate this relation at the level of formulas.
The FK invariant reads [17]

F31
ðx; a; qÞ ¼

X∞
k¼0

xkq2k
ðx; q−2Þkða2q−2; q2Þk

ðq2; q2Þk
;

¼
X∞
k¼0

x2kq3k
ðx−1; q2Þkða2q−2; q2Þk

ðq2; q2Þk
ð−qÞ−k2 :

ð7:8Þ

On the other hand, the unreduced HOMFLY-PT generating
function is given by [29]

P̄31
ðx; a; qÞ ¼

X∞
r¼0

xrarq−r
ða2; q2Þr
ðq2; q2Þr

Xr
k¼0

�
r

k

�
q2kðrþ1Þða2q−2; q2Þk;

¼
X∞
k¼0

xkakqk
ða2; q2Þkða2q−2; q2Þk

ðq2; q2Þk
q2k

2

X∞
l¼0

xlalq−l
ða2q2k;q2Þl
ðq2; q2Þl

q2kl: ð7:9Þ

Comparing (7.9) with (7.8), we can see that the structure of
q-Pochhammers indexed by k is exactly the same. The net
difference −3k2 in q powers corresponds to the framing
change, whereas all powers linear in k enter the change of
variables and do not interfere with the general structure.
Finally, the whole sum over l ¼ r − k contributes to the
removed pair of nodes.

B. Cinquefoil knot complement

For the 51 knot, the two quivers are given by

C̄51
¼

2
6666666666666666666664

0 1 1 3 3 0 2 2 4 4

1 2 2 3 3 1 2 3 4 4

1 2 3 4 4 1 2 3 5 5

3 3 4 4 4 3 3 4 4 5

3 3 4 4 5 3 3 4 4 5

0 1 1 3 3 1 2 2 4 4

2 2 2 3 3 2 3 3 4 4

2 3 3 4 4 2 3 4 5 5

4 4 5 4 4 4 4 5 5 5

4 4 5 5 5 4 4 5 5 6

3
7777777777777777777775

;

CF51
¼

2
666666666666664

5 4 5 4 4 4 5 4

4 4 5 4 3 3 5 4

5 5 6 5 4 4 5 5

4 4 5 5 3 3 4 4

4 3 4 3 3 2 3 2

4 3 4 3 2 2 3 2

5 5 5 4 3 3 4 3

4 4 5 4 2 2 3 3

3
777777777777775

: ð7:10Þ
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We repeat similar steps as in the trefoil case, exchanging x2 ↔ x6 in C̄51
and permuting

ðx01; x02; x03; x04; x05; x06; x07; x08Þ ↦ ðx07; x02; x08; x03; x05; x04; x06; x01Þ ð7:11Þ

to obtain:

ð7:12Þ

If we now subtract the result from CF51
, we get

2
6666666666666664

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3
7777777777777775

: ð7:13Þ

The two quivers would agree if we swap C2;7 ↔ C1;8 in the
rightmost matrix of (7.12). Fortunately, it turns out to be an
example of the quiver equivalence from Theorem 6, so the
relation between two kinds of quivers holds.

C. General T2;2p+ 1 knot complement

We now compare the two recursive formulas for T2;2pþ1

torus knots. Starting with the “standard” quiver defined
using unreduced colored HOMFLY-PT polynomials
C̄T2;2pþ1

, we propose an algorithm of transforming it into
a quiver CFT2;2pþ1

associated to the respective knot

complement:
(1) Label the vertices of C̄T2;2pþ1

upside down
as x1;…; x4pþ2.

(2) Exchange x2 ↔ x2pþ2.
(3) Remove the first two nodes ðx1; x2pþ2Þ with the

smallest number of self-loops.

(4) The resulting diagonal is of the form:
ð3;…; 2pþ 1; 2; 3;…; 2pþ 1; 2pþ 2Þ. Relabel
these entries as ðx01;…; x04pÞ.

(5) Permute the x0i: ðx01;…; x04pÞ ↦ ðx04p−1;…; x01Þ, in
order to get the diagonal ð2pþ 1; 2p;
2pþ 2; 2pþ 1;…; 3; 2; 4; 3Þ. Such permutation is
fixed uniquely for each p. For example, p ¼ 1, 2, 3
leads respectively to:

ðx01;…; x04Þ ↦ ðx04; x02; x03; x01Þ;
ðx01;…; x08Þ ↦ ðx07; x02; x08; x03; x05; x04; x06; x01Þ;
ðx01;…; x012Þ ↦ ðx011; x04; x012; x05; x09; x02; x010;

x03; x
0
7; x

0
6; x

0
8; x

0
1Þ: ð7:14Þ

After these steps, we compare the resulting quiver matrix
to CFT2;2pþ1

. It turns out that the results almost agree, up to
transpositions of certain nondiagonal entries, indicated in
Fig. 36. Each block in this figure has the size 4 × 4: the
diagonal blocks represent framed knot complement quivers
for the trefoil, while the off-diagonal part differs from them
by a transposition of elements, each time appearing in the
top-right corner of each upper-diagonal block, and extend-
ing to lower-diagonal blocks by symmetry. This suggests
that the two formulas agree, up to the quiver equivalence
relation. Another argument comes from the fact that
transforming the quiver from reduced to unreduced nor-
malization corresponds to splitting all nodes, which (as
discussed in Sec. IV) can be done in many ways, all of
which lead to equivalent quivers.
We checked that transpositions depicted in Fig. 36 are

indeed symmetries for T2;2pþ1 torus knots up to p ¼ 3. We
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conjecture that it is always the case, which means that in the
equivalence class of quivers corresponding to the T2;2pþ1

torus knot in the unreduced normalization there exists a
representative such that the knot complement quiver is its
subquiver.
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APPENDIX A: EQUIVALENT QUIVERS FOR
KNOTS 52 and 71

In this Appendix we present equivalent quivers that we
found for knots 52 and 71. Quiver matrices given below
correspond to appropriate vertices in the permutohedra
graphs, as indicated by their labels; the same labeling is
used in the attached Mathematica file.

1. 52 knot

FIG. 36. The block structure and transpositions that relate the
“standard” subquiver based on unreduced HOMFLY-PT poly-
nomials for T2;2pþ1 torus knots to the knot complement quiver
(only the upper part is shown, since it is symmetric).
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C0 ¼

2
66666666666666664

2 1 2 1 2 1 2

1 0 1 0 2 0 1

2 1 3 1 3 2 3

1 0 1 1 2 1 2

2 2 3 2 4 3 4

1 0 2 1 3 2 3

2 1 3 2 4 3 5

3
77777777777777775

C1 ¼

2
66666666666666664

2 1 2 1 2 2 2

1 0 1 0 1 0 1

2 1 3 1 3 2 3

1 0 1 1 2 1 2

2 1 3 2 4 3 4

2 0 2 1 3 2 3

2 1 3 2 4 3 5

3
77777777777777775

C2 ¼

2
66666666666666664

2 1 2 1 2 1 2

1 0 1 0 1 0 1

2 1 3 2 3 2 3

1 0 2 1 2 1 2

2 1 3 2 4 3 4

1 0 2 1 3 2 3

2 1 3 2 4 3 5

3
77777777777777775

C3 ¼

2
66666666666666664

2 1 2 1 2 1 2

1 0 1 0 2 0 2

2 1 3 1 3 1 3

1 0 1 1 2 1 2

2 2 3 2 4 3 4

1 0 1 1 3 2 3

2 2 3 2 4 3 5

3
77777777777777775

C4 ¼

2
66666666666666664

2 1 2 1 2 2 3

1 0 1 0 1 0 1

2 1 3 1 2 2 3

1 0 1 1 2 1 2

2 1 2 2 4 3 4

2 0 2 1 3 2 3

3 1 3 2 4 3 5

3
77777777777777775

C5 ¼

2
66666666666666664

2 1 2 1 2 1 2

1 0 1 0 1 0 1

2 1 3 2 3 2 3

1 0 2 1 2 1 3

2 1 3 2 4 2 4

1 0 2 1 2 2 3

2 1 3 3 4 3 5

3
77777777777777775

C6 ¼

2
66666666666666664

2 1 2 1 2 1 2

1 0 1 0 2 0 2

2 1 3 1 3 1 3

1 0 1 1 2 1 3

2 2 3 2 4 2 4

1 0 1 1 2 2 3

2 2 3 3 4 3 5

3
77777777777777775

C7 ¼

2
66666666666666664

2 1 2 1 2 1 3

1 0 1 0 2 0 2

2 1 3 1 2 1 3

1 0 1 1 2 1 2

2 2 2 2 4 3 4

1 0 1 1 3 2 3

3 2 3 2 4 3 5

3
77777777777777775

C8 ¼

2
66666666666666664

2 1 2 1 2 2 3

1 0 1 0 1 0 2

2 1 3 1 2 1 3

1 0 1 1 2 1 2

2 1 2 2 4 3 4

2 0 1 1 3 2 3

3 2 3 2 4 3 5

3
77777777777777775

C9 ¼

2
66666666666666664

2 1 2 1 2 2 3

1 0 1 0 1 0 1

2 1 3 1 2 2 3

1 0 1 1 2 1 3

2 1 2 2 4 2 4

2 0 2 1 2 2 3

3 1 3 3 4 3 5

3
77777777777777775

C10 ¼

2
66666666666666664

2 1 2 1 2 1 3

1 0 1 0 1 0 1

2 1 3 2 2 2 3

1 0 2 1 2 1 3

2 1 2 2 4 2 4

1 0 2 1 2 2 3

3 1 3 3 4 3 5

3
77777777777777775

C11 ¼

2
66666666666666664

2 1 2 1 2 1 3

1 0 1 0 1 0 1

2 1 3 2 2 2 3

1 0 2 1 2 1 3

2 1 2 2 4 2 4

1 0 2 1 2 2 3

3 1 3 3 4 3 5

3
77777777777777775

2. 71 knot
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C0 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 3 5 5

1 2 3 4 4 6 6

3 3 4 4 4 5 5

3 3 4 4 5 6 6

5 5 6 5 6 6 6

5 5 6 5 6 6 7

3
777777777777775

C1 ¼

2
666666666666664

0 1 1 3 2 5 5

1 2 3 3 3 5 5

1 3 3 4 4 6 6

3 3 4 4 4 5 5

2 3 4 4 5 6 6

5 5 6 5 6 6 6

5 5 6 5 6 6 7

3
777777777777775

C2 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 4 5 5

1 2 3 3 4 6 6

3 3 3 4 4 5 5

3 4 4 4 5 6 6

5 5 6 5 6 6 6

5 5 6 5 6 6 7

3
777777777777775

C3 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 3 5 4

1 2 3 4 4 6 6

3 3 4 4 5 5 5

3 3 4 5 5 6 6

5 5 6 5 6 6 6

5 4 6 5 6 6 7

3
777777777777775

C4 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 3 5 5

1 2 3 4 4 6 6

3 3 4 4 4 5 6

3 3 4 4 5 5 6

5 5 6 5 5 6 6

5 5 6 6 6 6 7

3
777777777777775

C5 ¼

2
666666666666664

0 1 1 3 2 5 4

1 2 3 3 3 5 5

1 3 3 5 4 6 6

3 3 5 4 4 5 5

2 3 4 4 5 6 6

5 5 6 5 6 6 6

4 5 6 5 6 6 7

3
777777777777775

C6 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 4 5 6

1 2 3 3 4 5 6

3 3 3 4 4 5 5

3 4 4 4 5 6 6

5 5 5 5 6 6 6

5 6 6 5 6 6 7

3
777777777777775

C7 ¼

2
666666666666664

0 1 1 3 3 5 4

1 2 2 3 3 5 4

1 2 3 5 4 6 6

3 3 5 4 5 5 5

3 3 4 5 5 6 6

5 5 6 5 6 6 6

4 4 6 5 6 6 7

3
777777777777775

C8 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 3 5 6

1 2 3 4 4 5 6

3 3 4 4 4 5 6

3 3 4 4 5 5 6

5 5 5 5 5 6 6

5 6 6 6 6 6 7

3
777777777777775

C9 ¼

2
666666666666664

0 1 1 3 3 5 4

1 2 2 3 3 5 6

1 2 3 5 4 4 6

3 3 5 4 5 5 5

3 3 4 5 5 6 6

5 5 4 5 6 6 6

4 6 6 5 6 6 7

3
777777777777775

C10 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 4 5 6

1 2 3 3 4 5 6

3 3 3 4 4 5 6

3 4 4 4 5 5 6

5 5 5 5 5 6 6

5 6 6 6 6 6 7

3
777777777777775

C11 ¼

2
666666666666664

0 1 1 3 3 5 3

1 2 2 3 4 5 6

1 2 3 5 4 4 6

3 3 5 4 5 5 5

3 4 4 5 5 6 6

5 5 4 5 6 6 6

3 6 6 5 6 6 7

3
777777777777775

C12 ¼

2
666666666666664

0 1 1 3 3 5 5

1 2 2 3 4 5 6

1 2 3 3 4 5 6

3 3 3 4 4 5 5

3 4 4 4 5 6 6

5 5 5 5 6 6 6

5 6 6 5 6 6 7

3
777777777777775

APPENDIX B: QUIVER MATRICES FOR TWIST KNOTS

In this Appendix we provide quiver matrices for twist knots, which were found in [2]. Interestingly, for each of the two
families of twist knots, TK2jpjþ2 and TK2pþ1, such a matrix can be presented in a universal way.
The quiver matrix for the TK2jpjþ2 twist knot found in [2] takes the form

CTK2jpjþ2 ¼

2
66666666666664

F0 F F F � � � F F

FT D1 R1 R1 � � � R1 R1

FT RT
1 D2 R2 � � � R2 R2

FT RT
1 RT

2 D3 � � � R3 R3

..

. ..
. ..

. ..
. . .

. ..
. ..

.

FT RT
1 RT

2 RT
3 � � � Djpj−1 Rjpj−1

FT RT
1 RT

2 RT
3 � � � RT

jpj−1 Djpj

3
77777777777775

; ðB1Þ

where
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F0 ¼ ½0�; F ¼ ½ 0 −1 0 −1 �; ðB2Þ
and

Dk ¼

2
6664

2k 2k − 2 2k − 1 2k − 3

2k − 2 2k − 3 2k − 2 2k − 4

2k − 1 2k − 2 2k − 1 2k − 3

2k − 3 2k − 4 2k − 3 2k − 4

3
7775; Rk ¼

2
6664

2k 2k − 2 2k − 1 2k − 3

2k − 1 2k − 3 2k − 2 2k − 4

2k 2k − 1 2k − 1 2k − 3

2k − 2 2k − 3 2k − 2 2k − 4

3
7775: ðB3Þ

The element F0 represents a zig-zag of length 1, i.e., a single homology generator, while the diagonal blocks Dk represent
diamonds (up to a permutation of homology generators and an overall shift). The identification with λi in Fig. 20 is as
follows:

ðB4Þ

This means that Dk encodes interactions of nodes within one diamond, while Rk encodes interactions of nodes from two
diamonds labeled by r, r0.
Quiver matrices for TK2pþ1 twist knots found in [2] read

CTK2pþ1 ¼

2
66666666666664

D1 R1 R1 R1 � � � R1 R1

RT
1 D2 R2 R2 � � � R2 R2

RT
1 RT

2 D3 R3 � � � R3 R3

RT
1 RT

2 RT
3 D4 � � � R4 R4

..

. ..
. ..

. ..
. . .

. ..
. ..

.

RT
1 RT

2 RT
3 RT

4 � � � Dp−1 Rp−1

RT
1 RT

2 RT
3 RT

4 � � � RT
p−1 Dp

3
77777777777775

; ðB5Þ

where the block elements in the first row and column are

D1 ¼

2
64
2 1 2

1 0 1

2 1 3

3
75; R1 ¼

2
64
1 2 1 2

0 2 0 1

1 3 2 3

3
75; ðB6Þ

and all other elements, for k > 1, take the form

Dk ¼

2
6664
2k − 3 2k − 2 2k − 3 2k − 2

2k − 2 2k 2k − 1 2k

2k − 3 2k − 1 2k − 2 2k − 1

2k − 2 2k 2k − 1 2kþ 1

3
7775; Rk ¼

2
6664
2k − 3 2k − 2 2k − 3 2k − 2

2k − 1 2k 2k − 1 2k

2k − 2 2k 2k − 2 2k − 1

2k − 1 2kþ 1 2k 2kþ 1

3
7775: ðB7Þ

In this case,D1 represents a zig-zag of the same form as for the trefoil knot, andDk (for k > 1) represent diamonds (up to a
permutation of homology generators and an overall constant shift).
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