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The knots-quivers correspondence states that various characteristics of a knot are encoded in the
corresponding quiver and the moduli space of its representations. However, this correspondence is not a
bijection: more than one quiver may be assigned to a given knot and encode the same information. In this
work we study this phenomenon systematically and show that it is generic rather than exceptional. First, we
find conditions that characterize equivalent quivers. Then we show that equivalent quivers arise in families
that have the structure of permutohedra, and the set of all equivalent quivers for a given knot is parametrized
by vertices of a graph made of several permutohedra glued together. These graphs can be also interpreted as
webs of dual three-dimensional A/ = 2 theories. All these results are intimately related to properties of
homological diagrams for knots, as well as to multicover skein relations that arise in the counting of
holomorphic curves with boundaries on Lagrangian branes in Calabi-Yau three-folds.

DOI: 10.1103/PhysRevD.104.086017

I. INTRODUCTION

Knots and quivers play an important role in high energy
theoretical physics. Knots often arise in the context of
topological invariance and can be related to physical
objects—such as Wilson loops, defects, and Lagrangian
branes—in gauge theories and topological string theory.
Quivers may encode interactions of Bogomol’ nyi-Prasad-
Sommerfield (BPS) states assigned to their nodes, or the
structure of gauge theories. These two seemingly different
entities have been recently related by the so-called knots-
quivers correspondence [1,2], which identifies various
characteristics of knots with those of quivers and moduli
spaces of their representations. The knots-quivers
correspondence follows from properties of appropriately
engineered brane systems in the resolved conifold that
represent knots, thus it is intimately related to topological
string theory and Gromov-Witten theory [3,4], and has
been further generalized to branes in other Calabi-Yau
manifolds [5,6] (see also [7]). Other aspects and proofs (for
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two-bridge and arborescent knots and links) of the knots-
quivers correspondence are discussed in [8—11].

If there is a correspondence between two types of
objects, such as knots and quivers, an important immediate
question is how unique both sides of this correspondence
are. Examples of two different quivers of the same size that
correspond to the same knot were already identified in [2],
which means that the knots-quivers correspondence is not a
bijection. In this paper we study this phenomenon system-
atically and find conditions that characterize equivalent
quivers (i.e., different quivers that correspond to the same
knot). It turns out that these conditions lead to an interesting
local and global structure of the set of equivalent quivers.
We stress that the equivalent quivers that we consider in this
paper are of the same size m, such that their nodes are in
one-to-one correspondence with generators of HOMFLY-
PT homology of a given knot. One can always use certain
g-identities to construct quivers of larger size that encode
the same generating functions of knot polynomials, how-
ever this phenomenon has already been studied (see [2,4])
and it is not of our primary interest.

Let us thus consider a matrix C of size m (equal to the
number of HOMFLY-PT homology generators of a given
knot), such that entries C;; are numbers of arrows between
nodes i and j of a symmetric quiver corresponding to this
knot. We characterize the local equivalence of quivers by
showing that some of the quivers equivalent to C are
encoded in matrices C’, such that C and C’ differ only by a
transposition of two elements C,;, and C.,;, whose values
differ by one and which satisfy a few additional conditions.

Published by the American Physical Society


https://orcid.org/0000-0003-0830-5346
https://orcid.org/0000-0002-9599-5658
https://orcid.org/0000-0002-2894-5052
https://orcid.org/0000-0002-9639-5603
https://orcid.org/0000-0002-6176-6240
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.086017&domain=pdf&date_stamp=2021-10-12
https://doi.org/10.1103/PhysRevD.104.086017
https://doi.org/10.1103/PhysRevD.104.086017
https://doi.org/10.1103/PhysRevD.104.086017
https://doi.org/10.1103/PhysRevD.104.086017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

JAKUB JANKOWSKI et al.

PHYS. REV. D 104, 086017 (2021)

From each such equivalent matrix C’ one can determine
another set of equivalent matrices C”, etc. This procedure
produces a closed and connected network of equivalent
quivers in a finite number of steps. It follows that any two
equivalent quivers from this network differ simply by a
sequence of transpositions of elements of their matrices.

Furthermore, we find that the network of such equivalent
quivers has an interesting global structure. We show that
equivalent quivers arise in families that form permutohedra.
Recall that a permutohedron I1,, is the (n — 1)-dimensional
polytope, whose vertices are labeled by permutations ¢ € S,
and whose edges correspond to transpositions of adjacent
elements. Permutohedron I1, consists of two vertices con-
nected by an edge, I1; is a hexagon, and Il is a truncated
octahedron (shown in Fig. 1). In our context, each vertex of a
permutohedron represents a quiver matrix and each edge
connects equivalent quivers (which are related by a trans-
position of two appropriate elements). Every permutohedron
arises from a particular pattern of transpositions of elements
of quiver matrices, or equivalently from some particular way
of writing a generating function of colored superpolynomials
for a given knot. For a given knot, there are typically several
ways of writing a generating function of colored super-
polynomials, which lead to different permutohedra con-
nected by the quivers they share. Examples of such graphs
for torus knots 9; and 11, are shown in Figs. 2 and 3, and we
call them permutohedra graphs.

We find that the above mentioned conditions that
characterize equivalent quivers have interesting interpreta-
tions in both knot theory and topological string theory. In
the knot theory, these conditions are related to the structure
of the (uncolored and S?-colored) HOMFLY-PT homology
of a knot in question, and they have a nice graphical
manifestation at the level of homological diagrams: they are
the center of mass conditions for homology generators. On

FIG. 1. Permutohedron Il,. Its vertices are labeled by permu-
tations of elements {1,2, 3,4}, and the different colors of edges
correspond to different types of transpositions (ij) (for
1 <i< j<4). Vertices connected by an edge differ by one
transposition of neighboring elements.

FIG. 2. Permutohedra graph for a 9; torus knot. It consists of
two series of permutohedra IT,, Il;, and II; connected in the
middle, and several other permutohedra II,.

the other hand, these conditions can be also expressed in
terms of multicover skein relations that arise in the counting
of holomorphic curves with boundaries on a Lagrangian
brane in Calabi-Yau three-folds. These connections provide
a new link between homological invariants of knots,
Gromov-Witten theory, and moduli spaces of quiver
representations. Moreover, equivalent quivers correspond-
ing to a given knot represent dual three-dimensional (3D)
theories with N = 2 supersymmetry, as discussed analo-
gously in [3,12-14]. One can therefore interpret permuto-
hedra graphs as webs of dual 3D N = 2 theories.

As mentioned above, the appearance of permutohedra
can be interpreted at the level of generating functions of
colored superpolynomials. More precisely, we show that
each of them can be decomposed into a piece that encodes a
given permutohedron, coupled to another piece that itself
has a structure of a motivic generating function for a
smaller quiver that we refer to as a prequiver. All equivalent
quivers corresponding to a given permutohedron are
obtained from the same prequiver in the procedure of
splitting that involves specifying some particular permu-
tation—this is the reason why permutohedra arise.

From the above introductory remarks, or simply from
Figs. 2 and 3, it follows that the appearance of equivalent
quivers is not an exception, but rather a common and
abundant phenomenon. This also means that one should
regard the whole set of equivalent quivers as a knot
invariant, rather than one particular quiver from this class;
moduli spaces of all such equivalent quivers encode the

FIG. 3. Permutohedra graph for an 11, torus knot. It consists of
two series of permutohedra I1,, 15, I1,, and Il5 connected in the
middle, and several other permutohedra IT, and II5.

086017-2
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TABLE I.
knots, twist knots, and 6,, 65, 75 knots.

The number of pairings, symmetries, and equivalent quivers that we have found for (2,2p + 1) torus

Knot Pairings Symmetries Equivalent quivers
Unknot 0, 0 0 1
Torus knots 75,1 3, 0 0 1

51 2 2 3

7, 9 8 13

9 24 20 68

11, 50 40 405

13, 90 70 2684

15, 147 112 19 557

2p + 1), P(p-1)/2 p(p*=1)/3 ~2p!

Twists knots TKj(,| 42 44 1 1 2

6, 24 16 141

8, 105 61 36 555
Twists knots TK;, 5, 8 6 12

7, 52 34 1983
Stand-alone examples 6, 46 36 3534

65 101 72 142 368

75 86 67 109 636

same information about the corresponding knot. The
number of equivalent quivers that satisfy the above men-
tioned conditions grows fast with the size of the homo-
logical diagram: it appears that the unknot and trefoil are
the only knots such that corresponding quivers are unique,
while some knots with six or seven crossings already have
over 1000 00 such equivalent quivers (see the last column
of Table I). For a given knot, the number of equivalent
quivers that we consider is of the order of the size of the
largest permutohedron in the permutohedra graph. For
example, we find that the largest permutohedra for (2,2p +
1) torus knots are two IT »» Which means that the number of
equivalent quivers for this family grows factorially as 2p!.

Apart from the number of equivalent quivers, in Table I
we also present the number of pairings and symmetries for
various knots that we analyze in the paper. By pairings we
mean quadruples of generators in the homological diagram
that satisfy the center of mass condition mentioned above;
this is a necessary, but not sufficient, condition of local
equivalence (i.e., the equivalence of quiver matrices that
differ by one transposition of their elements). On the other
hand, by symmetries we mean quadruples of homology
generators that satisfy sufficient conditions of local equiv-
alence—the presence of symmetry means that an appro-
priate transposition of matrix elements indeed produces an
equivalent quiver. In particular, we conjecture (and verify to
high p) that the numbers of pairings and symmetries for
(2,2p + 1) torus knots are, respectively, p*(p—1)/2
and p(p>-1)/3.

Finally, we also extend our analysis to quivers for knot
complements [11], which encode Z invariants for knot

complements (also referred to as Fg invariants) [15-17].
We show that for (2,2p + 1) torus knots, the equivalence
conditions that we find in this paper yield an interesting
relation between quivers discussed above (that arise in the
original knots-quivers correspondence) and quivers for
knot complements.

Note that in principle there might exist other equivalent
quivers, which are not related by a series of transpositions
that we mentioned above (e.g., they might be related by a
cyclic permutation of a length larger than 2, such that some
transpositions of elements of the quiver matrix, which arise
from a decomposition of such a permutation, do not
preserve the partition function). However, based on the
evidence discussed in what follows, we conjecture that such
equivalent quivers do not arise.

This paper is structured as follows. Section II provides a
necessary background on knot homologies, knots-quivers
correspondence, and multicover skein relations. In Sec. III,
we focus on local equivalences and formulate the local
equivalence theorem, which states that the appropriate
transpositions of elements of a given quiver matrix lead
to equivalent quivers. In Sec. IV we discuss how these local
equivalences lead to the global structure: we show that
equivalent quivers arise in families that form permutohedra
which are glued into larger graphs that parametrize all
equivalent quivers for a given knot. In Sec. V we present
examples of such a global structure and illustrate how
permutohedra of equivalent quivers arise and are glued
together for various knots. In turn, in Sec. VI we consider
examples of local equivalences and determine them for
some particular quivers for infinite families of (2,2p + 1)
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torus knots and twist knots, as well as 6,, 65, and 75 knots.
Section VII reveals relations of our results to knot comple-
ment quivers and Fg invariants. In the Appendix we
present the lists of all equivalent quiver matrices for knots
5, and 7,, as well as particular choices of quiver matrices
for infinite classes of twist knots. We also provide a
Mathematica file [18] with a search algorithm that finds
all equivalent quiver matrices for a given knot. The input is
the quiver matrix of a knot and its homological degrees a
and ¢. The output is a graph representing the equivalent
quivers as nodes and the symmetries between them as
colored edges. If the number of equivalent quivers is large
(say over 1 000) we provide a function which just counts
the number of quivers and gives a list of symmetries.

II. PREREQUISITES

In this section we summarize the background material on
knot homologies, knots-quivers correspondence, and multi-
cover skein relations, as well as introduce the notation that
will be used throughout the paper.

A. Knot homologies

The knots-quivers correspondence, which is of our main
interest in this work, is inherently related to knot homologies.
Let us therefore present first a few basic facts about them. We
are especially interested in colored HOMFLY-PT homol-
ogies, denoted Hgk(K ) for a knot K, where R is a repre-
sentation (labeled by a Young diagram) referred to as the color
[19,20]. In this paper we only consider symmetric represen-
tations R = §”, and in various formulae we simply use the
label r instead of S”. In particular, by G,.(K) we denote the set
of generators of the S"-colored homology. While the explicit
construction of colored HOMFLY-PT homologies has not
been provided to date, strong constraints on their structure
follow from conjectural properties of associated differentials
that relate various generators. In particular, these constraints
enable the computation of colored superpolynomials and
HOMEFLY-PT polynomials for various knots. Colored super-
polynomials are defined as follows:

P.(a,q.t)

Za g/t* dim HJ, (K) Z a‘i qq( o,
ij.k i€g, (K
(2.1)

where variables a and g are those that appear in HOMFLY-PT
polynomials, ¢ is the refinement (Poincaré) parameter, and we

refer to triples (a,(-r), q Er), t,(-r)) as homological degrees of the

generator i € G,(K). In the uncolored case r = 1 we simply

write (a;, q;, 1;) = (a,(»l), qgl), t?l)). For a large class of knots

the linear combination f; — a; — ¢;/2 is constant for each
i € G(K); such knots are called thin [19].

For a given color r, it is useful to plot colored HOMFLY-
PT generators on a planar diagram, such that the generator

i € G.(K) is represented by a dot in position (qE’)’ l(’))

(and possibly decorated by the value t ) The structure of
differentials mentioned above also imposes constraints on
the form of such diagrams. In particular, in the uncolored
case all generators are assembled into two types of
structures, referred to as a zig-zag and a diamond [20].
The zig-zag consists of an odd number of generators, while
each diamond consists of four generators. The homological
diagram for each knot consists of one zig-zag and some
number of diamonds. For example, homological diagrams
for (2,2p 4 1) torus knots consist of only one zig-zag
made of 2p 4 1 generators, while a diagram for a 4; knot
consists of one diamond and a zig-zag made of only one
dot. We will present examples of homological diagrams for
these and other knots in what follows.

For t = —1, colored superpolynomials reduce to colored
HOMFLY-PT polynomials that take the form of the Euler

characteristic
=D dq/(-
i.j.k

Pr(av q) = a q,— dlmHl/k( )

(2.2)

We stress that by using P,(a, g, t) and P,(a,q) we denote
reduced polynomials (equal to 1 for the unknot). We use this
normalization throughout the paper except in Sec. VII, where
using the unreduced normalization is more appropriate. We
also consider generating functions of colored superpolyno-
mials and colored HOMFLY-PT polynomials defined by

X
Py(x,a,q,t) = ————P,(a,q,1),
;(qz;qz)r
o) xr
Pg(x.a.q) = ) ——5—P(a.q). (2.3)
;(qz;qz)r
Including g-Pochhammer symbols, (g% ¢%), =[],

(1 —¢*"), in denominators provides a proper normalization
for the knots-quivers correspondence as defined in [1,2].

B. Knots-quivers correspondence

The knots-quivers correspondence is the statement that
to a given knot one can assign a quiver in such a way that
various characteristics of the knot are expressed in terms of
invariants of this quiver (or invariants of moduli spaces of
its representations). As already noticed in [2], this corre-
spondence is not a bijection, and several quivers may
correspond to the same knot. In this work we explain how
to identify all such equivalent quivers and reveal the
intricate structure they form. However, let us first present
a relevant background on quiver representation theory, and
explain how it relates to knots.

A quiver, Q = (Qy, Q;), consists of a set of nodes Q
and a set of arrows Q. Each arrow connects either two
different nodes, or a node to itself—in the latter case it is
called a loop. We denote by C;; the number of arrows from
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the node i to the node j, and treat it as an element of a
matrix C. Quivers that arise in knots-quivers correspon-
dence are symmetric, which means that for each arrow
i — j for i,j € Qg there exists an arrow in the opposite
direction, j — i; in this case the matrix C is symmetric.

In quiver representation theory one is interested in the
structure of moduli spaces of quiver representations. Let us
consider a symmetric quiver Q with m nodes and arrows
determined by a matrix C. We assign to each node i a complex
vector space of dimension d;; the m-tupled = (d,, ..., d,,) is
referred to as the dimension vector. Furthermore, for such a
quiver we construct the following generating series:

PQ(x’Q)I;(—Q)d'C'dm

x4

_ Z (_q)Z;"]:l C’.jd,.dj .X"lil .. -xg,l’h
(@%50%)a, (@59,

(2.4)

disiondyy>0

m=

where x = (xy, ..., x,,) are referred to as quiver generating
parameters. It turns out that this generating function encodes
motivic Donaldson-Thomas invariants €2, ., .; of quiver Q,
i.e., the appropriately defined intersection Betti numbers of
moduli spaces of representations of Q, for all dimension
vectors d. These invariants are encoded in the following
product decomposition of (2.4):

Pow.q)= I TIII

(dy.....d,)#0 JEZ k=0

(1= (- xI) gAY Y e ay (2.5)
It was postulated in [21] and proven in [22] that motivic
Donaldson-Thomas invariants €2;  , .; are non-negative
integers.

The knots-quivers correspondence was motivated by the
observation that a generating series of colored knot poly-
nomials (2.3) can be written in the form (2.4) for the
appropriate specialization of generating parameters Xx;.
This statement was proven in various examples in [2], for
two-bridge knots in [9], and for arborescent knots in [10].
The relation between (2.3) and (2.4) has various interesting
consequences. For example, it follows that Ooguri-Vafa
invariants of a knot [23] are expressed in terms of motivic
Donaldson-Thomas invariants; as the latter invariants are
proven to be integers, it follows that Ooguri-Vafa invariants
are also integers, as has been suspected for a long time. On
the other hand, if all colored superpolynomials can be
expressed in the form (2.4), it follows that all of them are
encoded in a finite number of parameters, i.e., the elements
of the matrix C and the additional parameters that arise in the
specialization of x;. Let us now formulate the knots-quivers
correspondence in all details, in a way appropriate for the
perspective of this work.

Definition 1: We say that the quiver Q corresponds to
the knot K if Q is symmetric and there exists a bijection

.....

003 i< ieG(K) (2.6)
such that
Py (x, Q)|(—q)ciix[=xa”iqqit’i = Pg(x,a,q,t) and
Cii — ti' (27)

The substitution (—g)%ix; = xa%q4it' following the bijec-
tion (2.6) is called the knots-quivers change of variables.
Denoting a% g% ~Ci(—t)%i as A;, we can write it shortly as
X = XA.

X; = Xﬂi or (28)

The above correspondence can be also reduced to the level of
HOMEFLY-PT polynomials, simply by putting # = —1 in the
knots-quivers change of variables. Note that the above
formulation differs from the original one [1,2] which does
not require bijectivity, only the existence of {a;,q;};cq,
allowing (2.7). In consequence, transformations enlarging the
quiver and preserving the generating function—forbidden by
Definition 1—are allowed in [1,2]. Therefore, Q correspond-
ing to K in the sense of Definition 1 is the minimal quiver in
the original sense of [1,2]. One can also define a generalized
knots-quivers correspondence [3], which allows for x; =
x"i2; (possibly with n; > 1), but we do not consider it here.

C. Multicover skein relations and quivers

Let us now change perspective to that of curve counting for
topological strings. It is natural to view holomorphic curves in
a Calabi- Yau three-fold with a boundary on a Lagrangian L as
deforming Chern-Simons theory on L (see [24]). In [25] this
perspective was used to give a new mathematical approach to
open curve counts. Then, [4] showed that the invariance of
generalized holomorphic curve counts under bifurcations of
basic disks—called multicover skein relation—generates
quiver degeneracies, i.e., implies the existence of different
quivers corresponding to the same knot.

One can visualize the multicover skein relation as resolving
the intersection between disk boundaries (see Fig. 4). Using
the language of [3], it can be adapted to quivers as the equality
of the motivic generating series of two quivers shown at the
bottom of Fig. 4, where each basic disc corresponds to

G—-CC

o
o U

FIG. 4. Multicover skein relation on linking disks (top) and
dual quiver description (bottom) [4].
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the quiver node, and the linking number corresponds to the
number of arrows. Physically, it corresponds to the duality
between two 3D A =2 theories and has an interesting
relation with the wall-crossing from [21,26]. More details can
be found in [4].

The phenomenon presented in Fig. 4 is the simplest
example of unlinking. From the perspective of BPS states,
it corresponds to reinterpreting the bound state made of
two basic states as an independent basic state. In terms of
quivers, it means removing one pair of arrows which
encode the interaction leading to a bound state and adding
a new node. Adapting [4] to our notation, we define the
general case of unlinking in the following way:

Definition 2: Consider a symmetric quiver Q and fix
a,b € Qy. The unlinking of nodes a, b is defined as a
transformation of Q leading to a new quiver Q such that:

(i) There is a new node n: Oy, = Qo U n.

(i) The number of arrows of the new quiver is given by

Cap = Cup — 1,

Cun = Caa +2Cp + Cpp — 1.
Cin = Cui + Cpi — 8,4 — Opi.
Cij=Cy

for all other cases, (2.9)

where §;; is a Kronecker delta.
One can check that quivers on the left- and right-
hand side of Fig. 4 correspond respectively to

[Cui Cup 0 17 -
C= = - C
LCha  Cip 1 0]
—Caa C‘ab Can O 0 0
- Cba C‘bb Cbn — O 0 O . (210)
Cna Cnb Cnn O 0 1
For us, the most important result of [4] is the following

statement:

Theorem 3: (Ekholm, Kucharski, Longhi). The unlink
ing accompanied by the substitution x, = ¢g~'x,x, pre-
serves the motivic generating function of the quiver:

Py(x,q)

In Sec. IIIC we use it to prove the local equivalence
theorem.

= Pole.q)l, i, (2.11)

III. LOCAL EQUIVALENCE OF QUIVERS

In this section we show that for a given quiver of size m
(equal to the number of HOMFLY-PT generators of the
corresponding knot), encoded in a symmetric matrix C,
there exists equivalent quivers such that their matrices differ
from C only by a transposition of two nondiagonal
elements C,, and C.; as long as the values of these
two elements differ by 1 and certain extra conditions are
met. This is the phenomenon that we refer to as the local

equivalence of quivers. In the next sections we show that
these local equivalences give rise to an intricate global
structure whose building blocks are permutohedra, and
provide various examples of this phenomenon.

We start by introducing an equivalence relation that
describes quiver degeneracies in a natural way.

Definition 4: Assume that quiver Q corresponds to the
knot K and quiver Q' corresponds to the knot K’ in the
sense of Definition 1. Then we define that

0~Q o KandK'
have the same colored HOMFLY-PT homology.
(3.1)

In the rest of the paper we refer to the simplest and most
common version of (3.1), namely K = K’. However, each
time we write that two (or more) quivers correspond to the
same knot, we keep in mind that another knot with the same
colored HOMFLY-PT homology would lead to the same
equivalence class of quivers.

A. Analysis of possible equivalences

Let us study when two quivers Q and Q' can correspond
to the same knot K. Using Definition 1, we start from

P(x,a,q.1) = Po(x.q)|,_y = Po(x.9)|,_p. (3.2)
with
A= 2= a%qCa(—1)Cr,
Ci=1 Y ieQ,=0,. (3.3)

We will analyze Eq. (3.2) order by order in x. The linear
one holds automatically, so let us focus on terms propor-
tional to x%:

(1—q2><1—q4>‘;go<1—q><1— D)
NP D e
Ly o
_,;(1—61)(1—61)

+ 3!

i,JE€Qq i#]

(_q)C,-[+2C[‘/+C./'./'x2/1i/1j
-q’)

C,,+2C +C”x2/1j.
2 9
1-¢°)

where we used (3.3) to write 4; = 4. and C;; = C},. In
consequence, the only difference between Q and Q' can
appear in the nondiagonal terms C;; and C; ;- Since Eq. (3.4)
needs to hold for all a and ¢ (which are independent from C;;
and Cj;), we require the equality between coefficients of
each monomial in these variables. The only possibility of

(3.4)
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having Q # Q' satisfying (3.2) comes from C;; # C;; which,
however, leads to the same coefficient of each monomial in a
and ¢ on both sides. The way g-monomials on both sides are
matched can be described by permutations of terms in the
coefficient of each monomial in a and t.

Let us focus on the simplest nontrivial case. We assume
that each coefficient of monomials in a and ¢ has only one
term except from the expression corresponding to 1,4, and
AcAg. This means that we require A,4, = ¢g>*1.1, for some
s € Z and that 1,,, 4, 4., 4, be pairwise different. (Note that
for thin knots we immediately know that s = 0.) Therefore,
we get C;; = C}; ¥V i,j € Qy\{a, b, c,d} and (3.4) can be
reduced to

gy — ) ContCon (q2Car 4 g=25+2Cca)
= AaAp(—q) CatCrn (g + ¢7512C),  (3.5)

Py(a,q,t)x?

(=q)*Cix*A7

where we used C,, + Cy;, = C,.. + C,; which comes from
the comparison of ¢ powers in 1,4, = ¢**A.A,. In conse-
quence, there is only one nontrivial way to satisfy (3.4),
namely

C,=Cy—s. C,=Cp+s.  (3.6)

Using the language of permutations of terms in the
generating function, this corresponds to the transposition
Aaﬂb<_q)caa+2ca,,+c,,h (_)/%Ad(_q)CCC—O—ZCCd-&-CM. For s =0
it translates to the transposition of matrix entries
Cab < Ccd-

Let us continue the analysis of the simplest nontrivial
case and check what conditions come from the cubic
order of (3.2). In order to save space, we start from
examining where differences between Py (x.q)|, _ , and
Py(x.q)|, _,,, can arise. The general formula reads

(_q)4cﬁ+4ci,+c,,x3/112/1j

(1= -g)1-¢° gg‘o (- -a)1-¢) ,-,,e%o:#,(l —¢*)(1-g")(1-¢)

(—C])C”+2C’/+C//+2C/k+c"k+zc”‘x3ﬂllj/1k

+ 2 2 2 ’ (3.7)
ij ke Qg itjtk (1-¢>)(1-¢°)(1-¢°)
so we have to look for terms containing 4,4, or 1.4, They are given by
.x3/1a/1b 4c ’ ’ 4
_ wat4C,+Co ) 4 (— )4 +4C,+Cu ), 4 (1 4 ¢2)(—g)Caat2C0sTCobt2Ch+Coct2Cuc )
(l_qz)(l_q4)(1_q6) [( q) a ( q) b ( q )( q) c
+(1+ qz)(_q)Ca,,+2Cj1b+Cbb+2cbd+Cdd+2Cad/1d +(1+ q2) Z (_q)C,m+2C£1b+Cbb+2Cb,»+Cii+2Cai/1i] (3.8)
i€eQy\{a.b.c.d}
and
x3/1 »ﬂ/d 4C 4 v v
c _ «tCACa) 4 (=g )4 Cat4CtCaa) 4 (1 4+ g2)(—q)CoeT2CritCaat2Cait Caat2Cuc )
(l—qz)(l—q4)(l—q6) [( Q) c ( Q) d ( q)( CI) a
+(1+ q2)(_q)CCC+2C’0d+Cd,1+2de+Cbb+2Cb(/1b +(1+ qZ) Z (_q)Cm+2C’(d+Cdd+2Cd,v+C,~,+2CC,-/1i] (3.9)

i€Qy\{a.b.c.d}

for Py (x,q)|,_,, and analogous terms without prime symbols for Py (x, g)|

Since 4,4, = q*A.A4, imposing the

x=xA"

equality between Py (x,q)|,_, and Py(x, q)|,_,, implies conditions for the sum of terms from both (3.8) and (3.9) for 4,,

Aps Aes Ag, and each 4;, i € Qp\{a, b, c,d}:

2 { q)4C,l,,+4C£,b+Cbb+2s + (1 +qZ)(_q>C(C+2C’Cd+Cd[,+2Cad+CW+2CM]

a (_
e ﬂa [(_q)4caa+4cab+cbh+25 _|_ (1 + qz)(_q)Cc(:+2Ccd+cd(1+zcnd+caa+2Cn(r}’

(3.10)

/1b K_q)4c,,b+4cgb+cm+2s + (1 + q2)(_q)Cm+2CQd+Cdd+2de+Cbb+2be]

— A’b [(_q)4Cbb+4Cab+Caa+2S _|_ ( 1 _|_ q2) (—q)C"‘f+2Cr'd+cd¢/+zcbd+cbb+2cbc} ,

(3.11)

A [(_ q)4cu.+4q, a+Ca (1 + qz) (_ q)Ca[,+2C; ,,+CM,+2C,,L.+C(,C+2Cm,+2s]

= /16’ [(_q)4ccc+4cul+cdd _|_ (1 + qz) (_q)cna +2Cab+Cbb+zcbc+cm+zcm‘+25] s

(3.12)
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j-d [(_q)4C,m+4CLd+C“; + (1 + q2) (_q) Cau+2C/ah+Chh+2chll+cdd+zcud+25']

— Ad[(_q)4cdd+4ccd+cw + (1 + qZ)(_q)C,m+2C,,b+Cbb+2de+Cdd+2Cad+25]’

(3.13)

/11.[<_q)Caa+2C£,;,+Cbb+2Cm+Cii+2Cai+2S + (_q)C(:c+2C/Cd+cdd+zcdi+cii+2cci]

— /11'[(_q)C,m+2Cab+Cbb+2Cbi+Cii+2Caj+2s + (_q)Cu.+2C(.4+Cdd+2cd,»+C,<,~+2Cu<]_

(3.14)

In each equation we have to match three g-monomials on both sides in a nontrivial way. For example, in (3.10) we

must take

4C,, +4C,, +Cpp+25s =Co. +2Coqy+ Cyy +2Coy + Cpy +2C,. + 2,

a

Coe+2C,+Cyy+2Cuy+Cyy+2C,. =4C,, +4Cyp, + Cpyp, + 25,

Ccc + 2C/Cd + Cdzl + 2Cad + Cua + ZCuc + 2= Ccc + 2Ccd + Cdd + and + Caa + 2Cacv

(3.15)

4C,, +4C,, +Cpp+25s =Coo +2Coq+ Cyy +2Coq + Cpy + 2C,e.,
Ccc + 2C,cd + Cdd + 2Cad + Caa + 2Cac = Ccc + 2Ccd + Cdd + 2Cad + Caa + ZCac + 2’

Ccc + 2C/cd + Cdd + 2Cad + Caa + ZCaC + 2= 4Caa + 4Cab + Cbb + 2s.

(3.16)

Analogous matching for Egs. (3.11)—(3.13), combined with C,, + C;,;, = C.. + C,, and (3.6), leads to two possibilities for

nontrivial pairwise cancellation:

Capt+s=Cq—1,
Ciat+Cd=Cuyu+Cu+s+1,
Cop+Cog=Cpy+Cpo+s+1,
Cap +Cec +5=Cpe + Cy,
Cap +Cag+5=Cpa+ Cua

Cp+s=C,y+1,
Coa+Ceg=Cuqg+Cpye +5,
Cop +Cea = Cpa+ Cpe +5,
Cip+Copo+s5s=Cp.+Cyu +1,
Cap+Caats=Cpg+Coq+ L

(3.17)

Combining (3.17) with C,,, + Cp,,, = C,.. + Cy4, we deduce that s = 0. Putting it in Egs. (3.10)—(3.14) and performing the

analogous matching of terms, we learn that:

Ccd = Cab -1,

or Cab = Ccd — 1,

These conditions are required for the transposition
C,, < C,., to lead to an equivalent quiver.

Now, let us slightly modify our assumptions
to A, =¢q*" A, A =q*?Ay, and the requirement

that g*Cw ), A, + q*Ccad Ay + q*Caad Ay + q*CredyA, corre-
sponds to the only monomial in a and ¢ with a coefficient
that has more than one g-monomial at the level of x>. Let us
consider all types of permutations of these terms by
focusing on which is equal to ¢*“@1,4, in Py. If it is
q*Car dyAp, then C,y, = C',, if itis g*Cead Ay, then we have a
situation that was described earlier in this section. The only
truly different case comes from equating ¢>“»A,4, with
q*Cuad Ay or q*Crcdpd.. In the first case, the analogs of
Egs. (3.10) and (3.14) imply s = 0 and C;,; = Cy; for every

Coi + Cyqi = Chi + Cpi — 64; — O

Coi + Cpi = Ci + Cyi — 6¢i — b4

Vi€ Q, (3.18)

Vi€ Q, (3.19)

i € Qo\{a.b,d}. This means that nodes b and d are
indistinguishable and the transposition C,, <> C,; can
be understood as a relabeling of b <> d. The second case
is completely analogous and can be understood as a
relabeling of a < c.

Now we would like to analyze the possibility of
composing transpositions satisfying conditions (3.18) or
(3.19) into a bigger cycle. Let us therefore assume that
Aady = Acdg = A4y, that all lambdas—as well as C,, Cq,
C,;—are pairwise different, and that Eqgs. (3.18) or (3.19)
(as well as their counterparts for ¢, d, e, f) are satisfied.
Among them there is an equation, C,,. + C;,, = C.. + Cy4
(lf Cub < Ccd) or Cac + Cbc = Ccc + Ccd -1 (lf
C,, > C.,), which becomes violated after the transposition
C.q <> Co. Similarly, performing the transposition
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C,, < C_, causes the violation of an analogous equation
required for C.4; <> C,y. In consequence, we see that after
composing transpositions which preserve the generating
function into a bigger cycle, we always get an inequivalent
quiver. Moreover, an analogous argument implies that the
composition of transpositions C,;, <> C.y and Cy, <> Cy,
(both of which involve the same node d) leads to an
inequivalent quiver.

We have not yet excluded all nontrivial ways of matching
terms in (3.4)—for example, one may think about a
permutation that leads to an equivalent quiver, but is
composed of transpositions that change the partition
function. However, based on the evidence discussed below,
it appears that such permutations are unlikely to arise, and
thus we make the following conjecture:

Conjecture 5: Consider a quiver Q corresponding to
the knot K. If there exists another symmetric quiver Q' such
that Q' ~ Q in the sense of Definition 4, then either Q' = Q
or they are related by a sequence of disjoint transpositions,
each exchanging nondiagonal elements
(3.20)

Cah <~ Ccdv Cba <~ Cdcv

for some pairwise different a, b, ¢, d, € Q, such that

/lallb - /16/1517 (321)
and
Cab = Ccd - 17
Cai +Cpi =Cei + Cgi =6 =64 YV i€ Qp,  (3.22)
or
Ccd = Cab -1,
Cci + Cdi - Cm' + Cbi - 5ai - 5bi’ V l (S QQ. (323)

For the simplest thin knots we verify this conjecture in the
following way. Since a; and ¢, fix ¢g; and C;;, permutations
of terms in coefficients of monomials in ¢ and ¢ are in one-
to-one correspondence with permutations of C;;. Therefore,
we just need to find all incident products 4,4, = 4.4, =
AAr = ... and for each of them check all permutations of
the set {C,,Coq.C,s....}. Using this procedure, we
verified Conjecture 5 for quivers corresponding to 3,
4,, and 5, knots.

For thin knots we can also give another general argument
supporting Conjecture 5S—we can exclude those 3-cycles
that are not necessarily composed of transpositions pre-
serving the generating function. To this end, let us assume
that 4,4, = .44 = 4,4y, these terms are the only instance
of multiple g-monomials in the coefficient of a and ¢
monomials in (3.4), and Q' arises from Q by performing the
3-CyClC (Cub Cchef) or (Cabcefccd) with Cub’ Ccd! Cef

being all distinct. Then, in the cubic term (3.7), we have
multiple ways to cancel the terms in front of 4,, 4;, ..., 4;.
In total, it results in 443 nontrivial systems of 30 linear
equations, which we treated with the help of a computer
and confirmed that, together with the center of mass
conditions, they cannot be satisfied in a nontrivial way.

In the next section we formulate and prove the theorem
which is an analog of Conjecture 5 with a reversed direction
of implication. Together, they provide a complete descrip-
tion of quiver equivalences.

B. Local equivalence theorem

Theorem 6: Consider a quiver Q corresponding to the
knot K and another symmetric quiver Q' such that O, = Q,
and A} =4, V i € Qg (4; comes from the knots-quivers
change of variables). If Q and Q' are related by a sequence
of disjoint transpositions, each exchanging the nondiagonal
elements

Cab <~ Ccd s

Cha <~ Cd(r (324)

for some pairwise different a, b, ¢, d, € Q, such that

Ay = Ady (3.25)
and
Cab = Ccd -1,
Coi +Cpi =Coi +Cgi =6, —04i, Y i€ Q (3.26)
or
Ccd = Cab -1,
Cei+Cyqi =Cui + Cpi =04 —6pis ¥V i EQy (3.27)

then Q and Q' are equivalent in the sense of Definition 4.
In order to apply this theorem to various knots and
quivers, we usually start by looking for 4,, 4;, 4., 4, that
satisfy the condition 4,4, = 4.4,. We call a quadruple of
pairwise different a, b, c,d € Q such that this equation
holds a pairing. Note that only some pairings generate
transpositions (3.24) leading to equivalent quiver—if this is
the case, we call them symmetries. If a symmetry is
consistent with constraints (3.26) or (3.27), we call it
nontrivial; if it follows from C;-j = C,~j we call it trivial.
Furthermore, symmetries of quivers are tightly related to
homological diagrams for knots, providing a neat illus-
tration of the aforementioned conditions. After the change
of variables (2.8), each pairing 4,4, = 4.4, gives the vector
identity v, + v, = ¥, + v, where v; = (g;, a;) is a vector
of homological degrees of the generator i. This identity can
be interpreted as a requirement that the centers of mass for
pairs of nodes {a,b} and {c,d} coincide (assuming that
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FIG. 5. The set of generators of the uncolored HOMFLY-PT
homology for the 4; knot and the parallelogram corresponding to
the pairing 4,45 = A344.

masses of all nodes are equal). We visualize it as a
parallelogram with the diagonals ab and cd (see Fig. 5).

The remaining constraints (3.26) or (3.27) also have a
nice pictorial representation in terms of generators of the
S"-colored HOMFLY-PT homology. The case r =1 cor-
responds to the uncolored homology, encoded in the linear
term of the quiver generating series and thus depending
only on the numbers of loops in Q. It suits well for
visualizing the pairing, but not the rest of constraints.
However, the case r = 2 involves the quadratic term of the
quiver series and therefore depends on all entries of the
quiver matrix. Moreover, there exists a well-defined sur-
jective map Qg X Qy — G, coming from the knots-quivers
change of variables.

For example, the S2-colored homology for the 4; knot is
shown in Fig. 6. There are three kinds of generators: five
black nodes are in one-to-one correspondence with
x?,i =1...5. Blue and purple nodes correspond to x;x;

j
with i # j, and for each pair (i, j) there are exactly two

: ST
| & FTIETRETHTTY | 4
‘Il 5“1415‘

—6 —4 -2 0 2 4 6 q

FIG. 6. The set of generators of the S?>-colored HOMFLY-PT
homology for the 4, knot (the labels x;x; are consistent with the
labels in Fig. 5).

generators, which we connect by an arc. The distinction
between blue and purple nodes is justified by taking the
common denominator in the quadratic term of the quiver
series. Each term x,x; is multiplied by (1 + ¢?), therefore
contributing twice to the colored superpolynomial. The blue
node has the g-degree ¢; + q; + C;; +2C;; + Cj;, while
the purple one is shifted by two: g¢;+¢q; + C;+
2C;j+ Cjj + 2. Keeping in mind the pairing condition
inducing cancellations of all terms except those corresp
onding to arrows between different nodes (2C;;), we can
visualize any constraint of the form C;; + Cj; = Cy, + Cg
as a parallelogram connecting nodes with the same color. For
example, the constraint C, + Ci5 = C3 + Cy4 is visual-
ized in Fig. 7.

C. Proof of the local equivalence theorem

Let us prove Theorem 6. Since disjoint transpositions
described there are independent, we can consider a
general form of one such transposition and show that it
preserves the generating function. This automatically
implies that if Q and Q' are connected by a sequence
of such transformations, then they correspond to the
same knot.

Therefore, without loss of generality, we assume that Q
corresponds to K, Q) = Qq, 4; = 4; Vi € Q, and we have
C, ; = C;j except for one transposition C,, <> C,, for some
pairwise different a, b, ¢, d € Qy. We also require

the node: g-degree: a-degree:
rixy  qiqe+Ci1+C2+2C 1,  aj+ag
riwy qi+q3+Ci1+Cs3+2C 153 aj+ag
riry qurqa+Cri+Cy+2C1,  ai+ay
riws  qitgs+Ci1+C55+2C 15 ai+tas

2
T2

4 ]

) /glz
7 \
/
]
P

T3 3 €Ty xi
0 ] o
P
/
-2
IZ
5
-4 o
—6 —4 -2 0 2 4 6 ¢

FIG. 7. The constraint Cy, + C;5 = Cj3 + Cy4 as a parallelo-
gram rule. There are cancellations when equating the sums of the
g- and a-degrees of xyx,, x1x5 and xyx3, X1 x4, since Ahds = A3y
implies ¢» + g5 = g3 + q4 and a, + as = a3 + a4. The con-
straint holds only if the corresponding sums of vectors agree
(simultaneously for the blue and purple quadruples of nodes).
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laﬂb = Acldv Ccd = Cab -1,

Cei + Cyi = Cyi + Cpi — 64i — Opis i€Q, (3.28)

and analogous constraints for C’ (the case C,, = C.y — 1
can be covered by changing labels ab <> cd in the whole
argument).

Cyj=Cy
~ab = Cab -1

Cin = Cui + Cpi — 84 — By
Cnn = Caa + 2Cab + Cbb -1

a

In consequence,

~;b - C;h - Ccd: Cab_ 1= Cabv
Cly=C,—1=Cuy—1=C.y=C.

Vi, j€ Qo\{a, b} 5?, =Cj;

We want to show that Q' also corresponds to K. We will
do it by connecting Q' with Q by transformations preserv-
ing the motivic generating functions, namely unlinking
nodes a, b in Q and nodes ¢, d in Q’ (the invariance of the
generating function under these transformations is assured
by Theorem 3).

From Definition 2 we have:

v l’.] € QO\{C’d}

Cra=Clq—1
Ci/n - C/ci + C/di =8¢ — Oy
C,=C. +2C’Cd + szd - 1.

(3.29)

Cﬁm = Cizc + C;d = Cac + Cad = Caa + Cab -1= Canv

Chon = Che + Chg = Cpe + Cpg = Copy + Cpp = 1 = Gy,

Con=Cle+Coy=1=Che + Cp. = Cye + Cpe = Cey,

Cin = Crq+Cyy=1=Cly+ Chy = Cag + Cpy = Cyy,
ClL,=C,+Cy=C,+Csi=Coy+Cp=0Cpn VY ic€Q\{ab,c,d}

Chy = Che +2C, + Clhy =1 = Cop +2Cu, + Cag =1 = Coo +2Ca + Cag— 1 = Cp,

C;J. =C;=C;= C,;; for all other cases,

which can be summarized simply as Q' = Q.

In our unlinking of Q' and Q we have the freedom to
choose the knots-quivers change of variables for the new
nodes (for the old ones we have 4; = 1;). We take

;1;; = q_l/lcﬂd = q_llaﬂb = j’n’ (331)
and use Theorem 3 to get
PQ/ (x’ q)|x,~=x/1; = PQ/ (x’ q)|x,-:x/1:.,x,,:x;11,
= PQ(x’ q>'x,~:x/1,v,xn:x/~1,, = PQ(x’ Q) |xi:xﬂ,»'
Therefore,
Poy(x. )|,y = Po(x.q)|,_y = Px(x.a.q.1),  (3.32)

so Q' also corresponds to K, as we wanted to show.

IV. GLOBAL STRUCTURE AND
PERMUTOHEDRA GRAPHS

In the previous section we found transformations that
produce equivalent quivers and the conditions they satisfy.
This fact enables us to systematically determine equivalent
quivers for a given knot: starting from some particular

(3.30)

|

quiver we can consider all possible transpositions of its
matrix elements, and identify those that satisfy the con-
ditions of Theorem 6 and thus yield equivalent quivers.
Repeating this procedure for each newly found equivalent
quiver, after a finite number of steps we obtain a closed and
connected network with an intricate structure. (Recall that,
in principle, there might exist other equivalent quivers,
which are not related by a series of transpositions from
Theorem 6—e.g., they might be related by a cyclic
permutation of length larger than 2, such that some trans-
positions of elements of the quiver matrix, which arise from
a decomposition of such a permutation, do not preserve the
partition function. However, we conjectured that such
equivalent quivers do not arise, and we do not focus on
them in the rest of this work.)

In order to reveal the structure of the network of
equivalent quivers mentioned above, it is of advantage to
assemble these quivers in one graph, such that each vertex of
this graph corresponds to one quiver, and two vertices are
connected by an edge if two corresponding quivers differ by
one transposition of nondiagonal elements. Examples of
such graphs are shown in Figs. 2 and 3 (for knots 9; and
11;), and in Sec. V for several other knots. One immediately
observes that these graphs are built from smaller building
blocks, which are combinatorial structures known as per-
mutohedra. Various permutohedra are glued to each other
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(2,3,1) (2,1,3)
(1 3)
(3,2,1) (1,2,3) o (2 3)
(12)

(3,1,2) (1,3,2)
FIG. 8. Permutohedron I15. Each vertex represents a particular

permutation of three elements. Two vertices are connected by an
edge if corresponding permutations differ by a flip of immediate
neighbors. There are three types of flips, (1 2), (2 3), and (1 3),
which are represented by different colors in the figure.

and form a connected graph representing all equivalent
quivers, which we refer to as a permutohedra graph in what
follows. In this section we explain why equivalent quivers
arise in families that form permutohedra, and how their
structure follows from local properties revealed in
Theorem 6. In the next section we illustrate these structures
in detail in several explicit examples.

A. Permutohedra—what they are and why they arise

To start with, recall that a permutohedron of order n,
denoted II,, is an (n — 1)-dimensional polytope whose
vertices represent permutations of n objects {1, ...,n} and
whose edges correspond to flips (transpositions) of adja-
cent neighbors [27,28]. The permutohedron I1,, has thus 7!
vertices and each vertex has n — 1 immediate neighbors. IT
has also (n — 1)n!/2 edges; each edge corresponds to one
of n(n—1)/2 types of flips (ij) (for 1 <i < j <n). We
call these operations flips in order to distinguish them from
transpositions of elements of quiver matrices; as we will

n dy=a;+p,

o
IT, I, 113

see, transpositions in quiver matrices are simply manifes-
tations of certain underlying flips. The permutohedron I15
is a hexagon (see Fig. 8). Il is a (three-dimensional)
truncated octahedron that consists of 4! = 24 vertices. It
has 36 edges of six different types, such that three edges
meet at each vertex, and its faces form six quadrangles and
eight hexagons (see Fig. 1). Planar realizations of II,, for
n=1, 2,3, 4 are shown in Fig. 9.

Let us explain now why certain families of equivalent
quivers form permutohedra. To get some intuition, it is of
advantage to understand it first as a consequence of a
particular structure of generating functions of colored
superpolynomials; in Sec. IV C we show how this structure
arises from the local properties revealed in Theorem 6. We
find that instead of writing a generating function of colored
superpolynomials in a form of the generating series (2.7)
for a quiver of size m, it can be written in an intermediate
form,

Pg(x,a.q,1)
v v v jfcfvjl.”)\zdmn
= Z (—q) "Cijdid/( 2. 2)1 ___(m.n 2).
dyodi 50 7%, - (@ %),

(4.1)

for 2n < m and with the following properties. The first
terms under the sum take the same form as the summand in
the usual quiver generating series (2.4), however they are
associated to a novel quiver of size m — n that we call a
prequiver and denote its matrix by C. Then, it is the factor
i which is responsible for the appearance of all

equ1valent quivers associated to a particular permutohe-
dron; note that it has only n labels d Lr-es Zin, and we require
that (combined with the first n g-Pochhammers from the
denominator) it has the structure

Z /3,aj+n2((1| ..... APy /3H)K/31+...+/}n

Syl DISED DY

dn =ay +ﬂ

(4.2)

(4% q)a,(q g, (@507, (@507,

1y

FIG. 9. Planar realizations of permutohedra I, of orders 1,2,3,4. One quadrangular face of I, is represented by an external region.
The three-dimensional representation of permutohedron Il is shown in Fig. 1.
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where 7,(ay, ..., ,; f1, ..., B,) is a purely quadratic poly-
nomial in a;, f3;, and other dy (for k > n) that are symmetric
in (ay,...,a,) and (independently) in (f,,...,[,); « is an
extra parameter. Furthermore, we impose the invariance of
the above expression under any permutation ¢ € S, of
indices {1, ..., n}, so that the whole H;il 0 is symmetric

inall d,, ..., d,. Note that most of the above expression on
the right-hand side, i.e., the terms symmetric in @; and f;, as
well as the defining relations cvil- =a; + f;, are already
invariant under permutation of the indices. The only non-
invariant termis ) ,_; #;a;, so in other words we impose that
the above expression is invariant if we replace this term by
> i<j Po(i)@s(j)> for any permutation o.

Below we provide specific forms of IT; i including
symmetric polynomials 7z,, that have the above properties.
At this stage let us stress that it is the form of the term
> <jPo(i)@(;) that uniquely determines a permutation o
and is responsible for the appearance of a permutohedron.
First, a permutation ¢ is determined by a set of its
inversions, i.e., a set of all pairs (¢(i),5(j)), such that i <
jand 6(i) > o(j). We can therefore treat symbols f and «
as determining, respectively, the first and the second
element of a given pair (6(i), o(j)). For example, the term
> i<jPia; encodes the trivial permutation. Any other
permutation can be uniquely encoded by inverting labels
in appropriate summands in >, jPia;. Therefore, if we
insist that (4.2) is invariant under all permutations of
indices {1, ..., n}, this means that we can, in fact, consider
n! expressions that are in one-to-one correspondence with
the permutations encoded in the terms » ,_ i Po(is(j)» and
can be associated to vertices of a permutohedron IT,,. Such a
permutohedron has n(n — 1)/2 types of edges (denoted by
the different colors in various figures in this paper), which
correspond to all transpositions (k/), for 1 <k <1< n.
However, at a given vertex, corresponding to the permu-
tation ¢ and the term ) ,_ i Po(iy(j)» only n—1 edges
meet. They correspond to transpositions of adjacent ele-
ments that change only one summand in the expression
> ie i Po(i)(j)- Let us see it on the example of a vertex
corresponding to the trivial permutation, represented by
> i<jPia;, and the n—1 edges corresponding to the
transpositions of neighboring elements 7 = (k(k + 1)),
k=1,...,n—1. In that case the only difference between
YiciBiaj and Y. Brya;) amounts to replacing
precisely one summand Sy, by B, This is why a
transformation of one term pfya;,; into Sy o (for
k=1,...,n—1) in (4.2) is represented by one edge of a
permutohedron. Similarly, n — 1 edges meeting at any other
vertex that represents a permutation ¢ correspond to those
transpositions (kl) that affect precisely one term in
> ie i Po(iy@(j)- All this is also a manifestation of the
well-known fact that a permutohedron is the Hasse diagram
of a set of appropriately ordered inversions.

Furthermore, let us explain how the prequiver C intro-
duced in (4.1), combined with Hli, 0 gives rise to the

original quiver C of size m and a number of its
equivalent companions. First, in the expression (4.1) there
are (m —n) g-Pochhammers (qz;qz);,[. In (4.2), n of
them are combined with IT; ~ , and get split into pairs

RN

(4%:4%),,(4%: %), This produces n new g-Pochhammers,
and altogether we get m-independent g-Pochhammers
that correspond to m nodes of a quiver C that we are after.

i Cudid,

The prequiver term (—gq) in (4.1), together

with (—q)zzkfﬂ"af”m‘ """ @iliB) gives rise to an over-
all quadratic expression that defines the full quiver
matrix C. The terms &%+ get absorbed into

the first n generating parameters: Xi'-- - Xy i/it-fn =
E () - X0 (5 )

In this way we obtain a quiver generating function for the
quiver of size m encoded in a matrix C that we are interested
in. To see it more clearly and to make contact with the
notation in (2.4), we can rename summation variables: for
example, identify all d; (k =n+1,...,m —n) with d, .,
and let d»;,_; = a; and d,; = f;. In addition, identify X; with
Xpyx for k=n+1,....m—n, and let x,,_; =X; and
Xp; = X;x. This gives rise to generating parameters as in
(2.8). We refer to the process of replacing the first n nodes by
2n nodes, which is a manifestation of (4.2), as splitting, while
we call the remaining (m —2n) nodes of the quiver C
spectators. Under this relabeling, for a vertex representing the
permutation o, a flip of the term f,a; (in the sum
> i<jPo(i)@s(j)) into By translates into a flip of dyidy_
into d,;d»,_1, which encodes a transposition of elements
Cokni—1 and Cy; 51 (Which we considered in Theorem 6) at
the level of the matrix C. For each vertex there are n — 1 of
such transpositions, which, on one hand, correspond to n — 1
equivalent matrices related by one transposition to a given
matrix C, and on the other hand correspond to n — 1 edges
meeting at each vertex of a permutohedron IT,,. Note that we
can make any other identification of indices that would
amount to a permutation of all variables d;, and thus would
yield a permutation of rows and columns of the matrix C; in
particular, in Sec. V we identify a prequiver part as
corresponding to the last n rather than first z indices as above.

Let us also note the following interesting feature. Not only
the generating function of colored HOMFLY-PT polyno-
mials, but also the generating function of colored super-
polynomials is expected to take the form of (4.1). This means
that the full dependence on the parameter a, as well as ¢, is
captured by the parameter x that appears in the factor

generating parameters X; = xii. Note that Z,- are just a subset
of all 4;, so that 4; = ;1,- for appropriate values of i, and the
remaining A; arise from a simple rescaling 4; = K;lk (for
appropriate k and j). As we will see in what follows, x is a

monomial of the form k = a*«g*«(—1)*. Also note that A; are
different for various realizations (4.1) (corresponding to
various permutohedra) for a given knot, because they
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correspond to various subsets of all 4; that are associated
with the nodes that arise in a given prequiver. In
consequence, the values of « are also different for various
representations (4.1) of the same knot. It would be
interesting to understand better why a dependence on a
and ¢ is simply captured by k = a* g% (—t)* and 4;, and
possibly how it arises from properties of HOMFLY-PT
homology.

To sum up, after the above identifications we obtain a
family of quiver generating functions for various quivers C
of size m in the standard form (2.4), and with parameters x;
appropriate for the knots-quivers correspondence. The
family of quivers that we obtain is parametrized by all
permutations ¢ € S,,: the combinations ) _,_ i Potiy %)) for
various o that appear in the exponent of (—¢) affect the form
of the matrix C that we read off from quadratic terms, and
thus give rise to n! different but equivalent quivers, labeled
by permutations of n elements. This is why we can assign
these quivers to vertices of permutohedron IT,,. An edge of
such a permutohedron that represents a flip (transposition)
of two elements from the set {1,...,n} at the same time
corresponds to a transposition of a certain two elements,
|

Cokni—1 and Cy; 54—y, of the matrix C that we analyzed in
Theorem 6.

The above analysis focuses on one permutohedron.
However, typically we can write a generating function of
colored superpolynomials for a given knot in the form (4.1)
in several different ways, with different prequivers and
terms IT; 5 for various choices of nodes. This gives rise
to several permutohedra that encode all equivalent quivers
for a given knot. Some of these quivers are common
between two (or more) permutohedra, therefore we obtain a
large connected graph made of several permutohedra glued
together.

B. Permutohedra from colored superpolynomials

Let us now provide an explicit form of (4.2). We stress
that expressions given below naturally occur in formulae
for colored superpolynomials, so it is useful to understand
their role from the perspective of equivalent quivers. First,
we consider a special case that arises from the identification
I; 5 =(&q ) d,4--ta,» Which is indeed familiar from
various expressions for colored superpolynomials. We
then have

(5; qz) l+ +d 2 2 n—1
; /}+ ABA2D L B (di )

(@50, - (@D, ; ;

[¢4] 1 a, n n

-1 ﬂl+“'+ﬁn
X35 2.(§2q ) 3. 2 ) (4.3)
(@30%) e, (@%3a7)p, - (@%07)0, (@75 07)p,
|

which is proven in £2]. The left-hand side is explicitly 5 5 . 5
symmetric in dy, ..., d,, so the above equality proves that & = g Prerdni o JEZK )T (44)

the right-hand side is also invariant under permutations
of {I,...,n}. In the exponent of (—g) we have
> 1ﬁz+1<d1 ctd) = i+ D Biby, S0
the first term Zl> jPia; is responsible for the permutohe-
dron structure, while Zi>j piB; is the second elementary
symmetric polynomial, which is symmetric in all f; in
agreement with (4.2). If £ is just a constant (independent of
d,), we identify x = &g~

An interesting version of (4.3), which also appears in
expressions for colored superpolynomials, arises for

2hyd+2k(d;+d;)+1

( 29 )a
“ 2. . (2. 2qux+dj: Z Z

(q »q )d,»(q 4 )dj a+pi=d; aj+pj=d

=2 2

a;+pi= d aj+f= ,-

(- )Zkﬁ,»a~+ﬁja,-+/5»aj)+2h.(ﬁ,»[i.+/3»zvi.)Kﬂ,-+ﬁj

ﬁ2+ﬁ~+2ﬁl(aj+ﬂ,) KPitBi x A

where h, are fixed coefficients. Substituting such ¢ to (4.3)
also produces an exponent of ¢ that is a quadratic
function, symmetric in a; and f3;. For brevity, let us type
the corresponding version of (4.3) that involves just two
summation variables Zli and d ; (which would correspond
to a single transposition) and one spectator node corre-
sponding to the variable Els and the coefficient h,:

2hyd+2k(d;i+d,)) (Bi+5;)

(0% 0%)0, (0% 0%)p, (0% 4%) 0, (a7 0%)p,

2k+1 B+ 2 1)B+2(k+1) i +2(2k+1)B B

(0% 0%) 0, (@%:07)p, (0% 6%) 0, (7 07y,

(4.5)
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From the powers of (—g) in the last two lines above one
can read off appropriate elements of the resulting matrix
C. Note that using indices i and j is helpful in under-
standing the invariance of the right-hand side of the above
expression under a flip: if we identify i = 1 and j = 2 or
i=2 and j=1, then the left-hand side is clearly
|

o na D DI D

d” ay +ﬂl Ay +/}

( q)22x</ﬂ’af ZT ,7+1 hyd+2k(a -+ a)+1(Br++ +ﬂr1))(ﬁl+‘“ﬁn>’

which is also invariant under permutations of indices
1,...,n, affecting the form of the term ijﬁiaj. It
[ = 2k + 1, the above expression reduces to (4.5) (gener-
alized to n summations), and then it can be written
concisely using the g-Pochhammer symbol. For [ # 2k +
1 we do not know if there is such a concise manifestly
symmetric representation, however we do not necessarily
need it—the crucial property is invariance of the above
expression under permutations of indices {I,...,n}. In
what follows, we prove that (4.6) is indeed invariant under
such permutations.

Caa Cad ; Cac Cab
Cad CidCed Cra

Cac Ccdlccc Cbc
Cab Cbd'Cre Cp

CCL a

Cac
Cu+k

Cou+tk Cuu+l

invariant, while the only change on the right amounts
respectively to replacing fa, by fra;.

Finally, the most general form of (4.2) arises from
introducing an arbitrary number of spectators and a
parameter / in addition to k in (4.5), as follows:

Kﬂl+"'+ﬁn
(@%0%) 0, (@0, - (@5 0%) (@%: 07,

(4.6)

C. Permutohedra from local equivalence

In turn, we now show how permutohedra arise from the
local equivalence of quivers revealed in Theorem 6, and in
particular explain how (4.6) arises from this theorem (and
thus has the required symmetry properties).

Suppose that the conditions (3.26) of Theorem 6 are
satisfied, so that two quivers related by a transposition of
elements C,, and C.,; are equivalent. We now write the
quiver matrix C in a form that automatically implements
these conditions. To this end, we focus first on the 4 x 4
submatrix of C with elements C; j fori,j=a, b, c, d, and
rewrite is as follows:

Coatk 1+ Cup  Cotk
|
Caa+1_ Cacth+1 Coctl (4.7)
Coc+k+1 Cle Cop+k
Cue +1 Coo+tk C..+1

In order to get the right-hand side we introduced two parameters k,! € Z, defined such that C,;, = C,, + k and
Cys = C,, + L. From the second equation in (3.26) with i = a, we then get C,, = C,. + Cpy — C,0 = C,e + k. Similarly,
the second equation in (3.26) with i = b takes the form C,; + C,; = C,44 + C.4 — 1, and combined with the first equation
in (3.26) and the above relations it yields C,; = C,. + [. Analogously, (3.26) with i = ¢ and i = d implies, respectively,
C., = C. + kand C,, = C.. + [. The right-hand side of (4.7) follows from these relations and we rewrite it further as

(er o) G)e (o) 16 o) o (o)« (o) lo o)
C,. C.. 11 11 k 1 0 0 10 1 0 0 0/]
The terms in this expression turn out to have a familiar interpretation. The first matrix is (an appropriate part of) the
prequiver C. In particular, if we rename summation variables as (d,, dy, d..dy) = (@, far @c. f.), and d, = a, + f, and

Zlc = a, + f., consistently with earlier conventions the composition of these vectors with the first term in (4.8) can be
written as

(4.8)

da g Caa Caa‘Cac Cac da

\T -
da | | Goa Cua)Coe Cuc. | | (d> (g Coe ) ( df’) = Cuady + 2C0cdode + Cocd.
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so that (—¢) raised to the above power indeed provides the contribution from the prequiver (i.e., the first factor in the
summand) in (4.1). An analogous contribution from the second term in (4.8) takes the form
T |
dg 0kOKk\/(d,
dy klkl dyg

| Vorow || a, | = (haa+ac) + 108+ 52)) (B + Be).

dp Elk 1)\ d

which we recognize as the k- and [-dependent contribution in (4.6). Finally, the analogous contribution
from the last term (in round brackets) in (4.8) takes the form 2f,a., which is nothing but the term in (4.6)
that is responsible for the permutohedron structure. In this case it is II, and the flip 7 = (ac), realized by
204y 0(c) = 2Py, corresponds to the transposition of nondiagonal terms C,; <> C.4, Which gives the quiver matrix
equivalent to (4.7):

Caa CadiCae Ceg Coa  Coa+ki Cue Chot+k+1
Cut Caa\Con Cha | | Con+h_Coa+1)Coc #h_ Cop 41 wo)
Cac Cab : Ccc Cbc - Cac Cac + k‘ Ccc Ccc + k . .

Cug delcbc Chp Copetk+1 C’ac+l]Ccc+k Co. +1

We already can see how the local constraints of Theorem 6 give rise to the expression (4.6). There is
just one more term in (4.6) that we should reconstruct: the one that involves spectator nodes. To this end we
enlarge (4.7) by two rows and columns, still assuming that C,;, and C,, can be exchanged, and write such a matrix in the
form:

Cua Cad1Cac Cap1Ce Cag Cao Caatk 1 Cae  Cuctki Cue Cuy
Oad Cdd : Ccd de : Cde Cdf Caa +k Caa +1 :Cac +k+1 Oac +1 :Cae + he Caf + hf
Cac Ced'Coc Cpe'Coe Cog | _| Cac Cactk+1l Coo  Cotk! Ce  Co
Cab de‘cbc C’bb‘c(be be Cac"'k Cac+l | Ccc+k Ccc+l ‘Cce+he C'cf"'hf
Cue Cie\Cee CheCoe Ceg | | Cae Cucthe | Coe  Cothe) Cee  Cop
Cap Cap'Cep Cpp!Cep Cyy Cap  Cap+hy ! Cop Cep+hpl Cg Cyy

The top-left 4 x 4 submatrix is expressed in terms of k and / in the same way as in (4.7). In addition, if we denote
Cy4 — C,. = h, and substitute it into the second constraint in (3.26) with i = e, we get C;,, = C,., + h,. Analogously, for
Cyr — Cyp = hy we get Cpp = Cop + hy, and altogether we obtain the matrix on the right. It follows that the contribution

of these extra rows and columns to the quiver generating function reads (—q)zs "sds " which yields the appropriate term
in (4.6) that we were after.

To sum up, we have shown how the formula (4.6) arises from local constraints of Theorem 6 in the presence of one
symmetry, which thus yields a permutohedron I1,. Let us now illustrate how permutohedron I1; arises if we assume that in
addition to the symmetry involving C,;, and C,,4, there is also another symmetry that involves Cj, and C.;. Two such
symmetries may exist in a matrix of size 6 x 6, which we write in the form

Oaa Oad;cac Cab ; Cae Oaf Caa Caa +k I Oac Cac +k ; Cae an +k

Coa Cdd:Ccd de:Cde Cdf Coa+k Cu+l :Cac+k+1 Coe +1 :Cae-l-k-i-]. Cope +1

Cac Cea'Cec Cpe'Coe Cop | _| Cac Coctktll Coo  Cetk | Coo Coth (4.10)
Cab C(bd I Cbc Obb I Cbe be Cac +k Oac +1 Occ +k Occ +1 ‘Oce +k+1 Cce +1

Cae Cae\Cec Coe\Cee Cep | | Cae Cac+k+1]  Coo  Cotk+l, Coo  Cocth

Caf Cdf} cf bel ef Cff Cae+k Cae+l 1 Cce'l‘k Cce'l‘l 1 Cee-f'k Cee+l
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where the right-hand side is expressed in terms of param-
eters k and [/ and arises from solving the constraints of
Theorem 6 analogously as above. Note that two symmetries
of the original quiver, C,, <> C.4 and Cj, <> C,y, corre-
spond to transpositions (1 2) and (2 3) acting on the element
(1, 2, 3); highlights in (4.10) match the colors in Fig. 8.
After performing one of these transformations we obtain a
new quiver [with +1 in the other highlighted entry, like in
(4.9)], which also has two symmetries. One is an inverse of
the transformation we just performed, the other is a trans-
|

Caa C[,l(,' C(,l(’ 1 1

C C C ® bl + 11 1 ® 0k
ac cc ce 1 1 k

Cae Cce Cee 1 1

where the 3 x 3 matrix in the first term is a prequiver.
Straightforward generalization of the above procedure to
more symmetries leads to prequivers of arbitrary size and
corresponding permutohedra, or, equivalently, the general
form of (4.6):

Definition 7: A (k, [)-splitting of n nodes with permu-
tation ¢ € S,, in the presence of m — 2n spectators (with

0 1
)+{oo0
00

position Cy4, <> C,y, denoted in red in (4.10). This behav-
ior is perfectly consistent with the structure of I[1;—the new
symmetry corresponds to transposition (1 3), denoted in red
in Fig. 8. Using Theorem 6, one can check that the whole
structure of Il; is preserved: there are six equivalent
versions of the matrix (4.10) connected by three sym-
metries, but only two of them can be applied to each
representant of the class.

Furthermore, the right-hand side of (4.10) can be written
in the form

000

®<o 0>+ Lo o ®<o 1>

1 0 0 0/
110

1
1
0

|
corresponding integer shifts 4,) and with a multiplicative
factor « is defined as the following transformation of a
quiver C and a change of variables A. For any two split
nodes i and j, i < j, and any spectator s, we transform the

matrix C in the following way (depending on the presence
of inversion in the permutation o):

Cys ;"’; Cz 1 Cyi + hy \“; Osy ;C’sj'i'hs
’77,777\Tﬁ -, . - r-—-—=-\"-"~-~"®©t~-"-—- - - - -\ - -, - "
[ . | . | | M |
o(i)<o(j) | _Cis_ v Cu_ i Cutk = Gy Cy+hk
/ ,q"ii—fl‘ilfJg,:'_,k:,,giité,L,:plj;tk,-ty,qiifé,
o ! e, | : [
O S N A SO AN S
o G g G Cutkt 1 Gy Gtk
ngliileizliilng Cjs+hg-1Cji+ k1 Ci+l 11 Cij+k 1 C5+1
e (-
Cisy =+ Cig -+ Cij.
L N R
[ S - C - Vs o V.
Cls!+e+ Cil+++1 G CGss et G Gt haie Oy 0 Csjths
. |t | | | M |
S e A e e e
Cisthgyy Cu+k | Cy+l - Cy+k, Cy+l
o()>o(i) |+ 0 i E kb E
G g Cuo Gtk G Gtk
st+h31"'lcji+k+1lCji+l1" Iij-i'kl ij+l
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whereas for any permutation the change of variables is
transformed as follows:

s
A :

: i
A | = | A
A A;

A

Clearly, the top right matrix above [corresponding to
o(i) < o(j) — no inversion] is encoded in the quadratic
terms in the powers of (—¢) in (4.6). The bottom right
matrix (corresponding to o(i) > o(j) — inversion) arises

language of Definition 7, the (k,2k + 1)-splitting is a
manifestation of the formula (4.5). For k = 0 it specializes
to (0, 1)-splitting that is a manifestation of the basic
formula (4.3) with £ = kgq.

Definition 8: If the inverse of splitting—for any param-
eters from Definition 7—can be applied to a given quiver C
and an associated change of variables A, we call the target of
this operation a prequiver C, and the associated change of
variables is denoted A. Conversely, splitting the nodes of a
prequiver produces the quiver:

(4.11)

For clarity, let us see how (k, /)-splitting looks for a full
matrix in which we split the first n nodes in the presence of
m —2n spectators with shifts hq,...,h,_,, and trivial

after exchanging labels i and j in (4.6). Moreover, in the  permutation:
|
S Cun_ Ciz _en Cin Gl Clmen
S Cn_ TG T Con T Conn -l Camen
: [ : | : [ :
T Cn T 83 0T O T Gn T DD Cama
cnd.-l,l | C'nfl,z (RN C‘n-ﬁ_—,ln | C‘n-ﬁ-l.,n-#l C'n+1_,m—n

. (T | |
Cm-n,1,Cm-n,2,--

It is straightforward to check that the constraints from
Theorem 6 are satisfied for the above matrix, and that it is
consistent with (4.1) and (4.6).

V. EXAMPLES—GLOBAL STRUCTURE

In this section we analyze in detail equivalent quivers
and the structure of their permutohedra graphs for knots
31, 41, 51, 5,, 6;, 7, and the whole series of (2,2p + 1)
torus knots.

A. Trefoil knot, 3,

The generating function of superpolynomials of the knot
3, is given by [29]

P;3 (x,a.q.t1)
o) xraqu—Zr r |: r:| "

_ raq (r1) 2k (2,24 2

= q P =a*qt:¢%), (5.1)
; (@%:4%), ,; k

B Cwnfn,n ' Cm,fn,,n&l e

r Cn C11+k s Ci2 Ciz2 +k ;; Cin Cin +k | C1,n1 . Cim-n 7
Gtk  Cutl | Ciprk+l  Ciotl .. Cintk+l  Cintl  Cineithi oo Clmen *hm-2n_
Caoy Cor+k+1 T 7 Cog Cao +k T Can Can +k  Co e C2,m-n
Co1 +k Coq +1 I Cog+k Cog +1 I 1Cop +k+1 Cop +1 1C2 et + b Co.m-n +hm-2n
: : | : : [ : I : :
vcnl cnvl +k+1 | ,0“2 cnv2+k+1 I VC'"" Cjnn +k | B C‘7L,rz+1 S c7z,nz—n
Cnitk _ Cnatl ) Cn2tk  Cnotl o) Cnntk _  Cantl 1 Cnmeithi oo Cnomen thm-2n
Cn+1,1 Cn+1,1th1 | Cpyi2 Cn+1,2+thr ... Cniin Cn+i,ntht | Cpsln+r .- Cn+1l,m-n
R B : oL B : | | B : | : N B :
L Cm-n,1 Cm-n,1 +hm-2n, Cm-n2 Cm-n2+hm-2n,.-., Cm-nn Cm-nn+t+hm-2n, Cm-n,n+1 Cm-n,m-n m

Crm-n,m-n

where we use the g-binomial

m - (qz;qgij(z;;;qz)k'

Linear order (r = 1) of (5.1) encodes the uncolored super-
polynomial  P(a,q,t) = a*q7> + a®¢** + a*. Tts
homological diagram consists of one zig-zag made of
three nodes (see Fig. 10).

Let us rederive the trefoil quiver following Sec. IV. We
start from noticing that if we keep the g-Pochhammer
(=a*q7?t;q%), on the side, the remaining part of
P53 (x,a,q.t) can be easily rewritten in the quiver form.
First, we express the g-binomial as in (5.2) and cancel

(4% 4%,
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r k=0

Z’z;.;ﬁ) Z{;] k(r+1) 2k — Zxr 2rg —2rz(q v

q2k(r+1)t2k' (53)

)i (@ 4%

Then, we define new summation variables, d , =r—kand cvlz = k, which allows us rewrite (5.3) as a motivic generating

function of a prequiver:

> (-q

(wa*a)" (za
2d1d2+2d”§ ra q

(t)) 24

dy,d220

(@* 4%, (6% 6% d,

e n)
12 |

_ d-C-d
Z( 2 (6% ¢)q

I _ a q
)\_[aQ(—t)2}

Now we put (—a’q~>t; ¢*), back with k = d, and apply a variant of formula (4.3) for splitting one node (because only one

El,- enters k):

(&%), . (&)
1 I — ﬂ
2-2V*z(‘1)’ 0 (22 (5.5)
(q 5 q )di a[_+ﬂi:(}’_ (q 5 q )a,-(q 5 q )/i,
with & = —a?q~2t and i = 2. This leads to
2 -2 2(_A2\O% (vt =3 (12 V2
Py (v.0.q.1) = Z (xa?q?)% (xa*( zt) )2 (xazq 2( 1)?) (_q)2d1a2+2d1ﬂ2+2a§+2a2ﬂ2+3ﬂ§’ (5.6)
0w (@07 (6707)a, (4% 0%)y,
|
which is equal to Py(x,q)|,_,, for second node, with the trivial permutation ¢(2) = 2, h; =0,
and k = —a’qt:
0i1 1 a’q? 1] 01 1 140
c=|122|, A=| d’(-t)° (5.7) O:[m — CO=| 1 | 2 2+0 /[,
123 a‘q P (-1)? . 1402+02+1
2 -2
. . . 2 -2 7] aq
This is the quiver found in [1,2]. In the language of 3 aq A= o2 (- t)2
Definition 7 it arises from (5.4) by (0, 1)-splitting of the a2(—t) 9 9 5 _3
a”(-t)" xa"q "(-t)
(5.8)

. 011
A3 N 122
® 'Y 123
0 P

FIG. 10. Homology diagram and a quiver matrix for the
3, knot. The labels 0, 2, and 3 are ¢-degrees of generators, while
A; arise in specialization of quiver generating parameters. For the
3, knot the quiver is unique, so the permutohedra graph consists
of one vertex (shown in red).

In the above process we did not have to make any
choices, therefore we expect that the above quiver is
unique. This is indeed the case: since the trefoil knot is
thin, all quiver equivalences come from permutations of
nondiagonal matrix entries, but there are no possible
pairings that could lead to nontrivial permutations of
nondiagonal entries. In consequence, Conjecture 5 holds
for the trefoil knot.
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0 -1-100 0 -1-10 0
-1-2-2-1(0) -1-2-2-1-1
-1-2-1CD 0|0 @|-1-2-10 0
10 11 A2As = Aghy 0 -10 1 1
00 o0 12 0 -10 1 2

FIG. 11.

Homological diagram for the 4, knot, with labels 4; assigned to various nodes (top). In the bottom the two equivalent quivers

are shown, which differ by a transposition of elements C, 5 and C; 4 of the quiver matrix (shown in yellow, together with their symmetric
companions). The positions of these elements are encoded in combinations 4,45 and 4344, which are equal to each other (and satisfy the
center of mass condition). The permutohedra graph is given by Il, which consists of two vertices connected by one edge.

B. Figure-eight knot, 4,

For the figure-eight knot, two corresponding quivers
have been already found in [2,4]. Let us rederive this result
and check that there are no other equivalent quivers. The
generating function of superpolynomials of the figure-eight
knot reads [29]

Pylnaa)=>

r xr(—l )ka—zkt—qu—k2+3k(q—2r; q2)k

r=0 k=0 ( z)r(qz;qz)k
(—a*q™2t: ¢*) (—a*q* 5 ),

For r =1 we obtain the superpolynomial P,(a,q,t) =
1 +a?t24 g2t +¢*t+a*?. The corresponding
homological diagram consists of a degenerate zig-zag
made of one node and a diamond (see Fig. 11).

In order to find equivalent quivers we follow Sec. IV
again. We wuse the relation (¢7";¢%), = (=1)

q‘zrk+k(k‘1)7(;§’2§’;>’k, as well as (5.5) for (—a*q*1*;4),/

(4%: %), to rewrite

k —2k,—2k —k*+3k, —2r 2 d-C-d.d
G R O Y )k(_a2q2rt3_q2)k _ Z (-9) z
oG, (@) (i ’ =~ (*da |
=xA
0-1/ 0 1 (5.9)
S T ToT T g 2 2 2
C: ,ili_,zi_,l, y A= a q ( t) s
0 -1 q(—t)

where we substitute r — k = d, and k = d, + ds. In addi-
tion, we rewrite the remaining term (—a’q~%t;q*),=
(—a*q7*1:4%)y, 4, using (4.3) for n = 2:

2N\, L
(é q )d +d Z Z ﬂ2+ﬂ2+2ﬂl( ‘+ﬂj>
(@%:4%); (a%:9°)
’ di g +pi=d; aj+pi=d
(£q7! ) " (Eq7")Pi
(6%0%)0,(a%:0%)5,(a%:0%) 0, (4%:0%)y,
(5.10)

Now the two equivalent quivers arise from two possible
specializations of (i, j) in the term f;a; in the above

expression. For (i, j) = (2, 3), from the quadratic terms in
the exponent of (—g) we read off the following quiver matrix:

0i-1-1,0 0 1
—1i-2 21D ACON
C=|-1-2-10 o |, A=| =" |,
0-1@1 1 q(=t)
o. 011 2 2072 (~1)?
(5.11)

which is consistent with the result in [2] (up to a permu-
tation of rows and columns) and corresponds to the red
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dot in Fig. 11. On the other hand, setting (i, j) = (3,2)  which is consistent with the second, equivalent quiver found

yields in [4]. The two above quivers are also presented in Fig. 11
‘ ‘ and they differ by a transposition of elements shown in
0=1-1:00 1 yellow. This transposition corresponds to a single possible

“1-2—2/-100) a g (=) inversion encoded in the term f;a; in (5.10).
C=|-1-2-1[D o0 |, N I ) M In the language of Definition 7, quivers (5.11) and (5.12)
0 T_’l 1 q(~t) arise from the prequiver (5.9) by a (0, 1)-splitting of nodes
‘ ‘ 2 —2, 2 numbers 2 and 3. Since we split two nodes, there are two

0 ‘@ 011 2 aq “(-t)

possible permutations. For the identity permutation
(5.12) [6(2) =2, 6(3) = 3] we obtain (5.11)

0 1 -1 -1+0 | 0 0+0
0,-1, 1, -2 =240 | -1 ~1+0
. ST =7~ | o(2)<0(3) | |
c={-1-2-1| — C=|-14+0-2+40 -2+1 —-1+0+1-1+1]. (5.13)
0'—1'1 0 ! -1 -1+0+1 1 1+0

0+0]—1+0 —1+1] 1+0 1+1

On the other hand, for a transposition ¢ = (23) [i.e., 6(2) = 3, ¢(3) = 2] we get

0+ -1 —=1+01 0 0+0
0,1-1,0 B -1, -2 =240, -1 —-1+0+1
~ T LT AT LT o >0
C=|-1-2-1| 57 C=|-140, -2+40 -2+1,-1+0 -1+1 |[. (5.14)
0'-1"1 0 : -1 -1+0" 1 140
0+0'-14+0+1-14+1"140 1+1
|
In both cases we have 4, = 0 and x = —a’q1. © x q*r g
The quiver matrices (5.11) and (5.12) are related by a Ps,(x.a,q.1) :Z (%4
transposition of nondiagonal entries. The condition 2,45 = r=0 '
A344 from Theorem 6 is satisfied, so it is a symmetry. The Z r [k (_azq_z - qz)
permutohedra graph is given by Il, that consists of two o<l <r k] Lk, Ak
vertices connected by an edge, as shown in Fig. 11. Since N 2_ 2: b ek k] 2k
the 4, knot is thin, all equivalent quivers come from x glCrethrk) kbl k), (5.15)

permutations of nondiagonal elements of C. However,  which for r=1 encodes the superpolynomial
we checked that there are no more pairings apart from  Pi(a,q,t) = a*q~* + a** + a%q7*F + a*q*t* + aS¢*P.
ArAs = A344, so we found the whole equivalence class, and ~ The homological diagram is a a zig-zag made of five nodes

Conjecture 5 holds for the figure-eight knot. (see Fig. 12).
In analogy to the case of 4, we rewrite the summand
C. Cinquefoil knot, 5, in (5.15) as a product of the motivic generating series for
In turn, we analyze the 5, knot. The generating function the prvequivver and (-a*q1; qz)kl with k; = (k; — ky)+
of its colored superpolynomials is given by [29] ky = dy + ds,
d-C-d wd 2 -2, 2
Py (z,a,q,t) = ) (=a)" "5 (=070 B0 )dyuds |
' g (% d*)d B E
01,3 a*q (5.16)
v L ToTg 3 4 -2 2
C=1123], A= aq4 (—Z)
3'3'4 a (—t)
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)\3 )\5 )\3 )‘5
. ® °
)\5 Y A3 N T 8 N
‘o ® . °
0 2 4 0 2 4
A1As = Aoz A3Ag = AoAs
O o o
01132 01133 01133
12(3)3 3 12233 12234
13344 12344 123034
33444 33444 330344
(2)3445 33445 34445

FIG. 12. Two copies of the homological diagram for the 5; knot are shown on top. On each copy we denoted a parallelogram that
encodes a symmetry, i.e., a transposition of two matrix elements that yields an equivalent quiver. In total there are three equivalent
quivers, shown on the bottom, which correspond to three vertices of the permutohedra graph. The permutohedra graph is made of two I,
that share a common vertex (in red).

Then, the application of (4.3) leads to (0, 1)-splitting of nodes numbers 2 and 3 (the node number 1 is a spectator with #; = 0;
x = —a’q>t), which can be done in two ways. The identity permutation (¢(2) = 2,0(3) = 3) yields

01133 [ alqt ]
1,2 21303) a‘q i (~t)?

C=|123@4 |, A=|dq?(-t)° (5.17)
313244 a'(—t)!
3(3)414 5 _aﬁq_S(—t)E’_

whereas the transposition ¢ = (23) gives

0111133 [ alqt ]
1223@ atq?(=1)?

C=|1123@3)4 ], A=l P(-t)* |. (5.18)
33344 a'(—t)*
3@4145 _a6q_3(—t)5_

Compared with Theorem 6, it is clear that this symmetry comes from the pairing 434, = 4,45 (shown in orange in Fig. 12).
However, for the cinquefoil knot we find another pairing 1,45 = 1,43 (shown in green in Fig. 12), which also leads to a
nontrivial symmetry. Using Definitions 7 and 8 we can see that the quiver from (5.17) admits not only the inverse of (0, 1)-
splitting analyzed above, but also the inverse of (1, 3)—splitting.1 More precisely, Ps, can be rewritten as

_d
dcd 2 29,3 2
P51(.I',CL, Q7t) = Z(_Q) 2. 92 (—CL q Tt 14 )d2+d3
3 (¢%¢7)a s
E=xA
(- (519
C=|3001 |, o I
31172 a'q (1)

'In fact, it admits also the inverse of (1, 2)-splitting with h; = 0 and h; = 2, but they capture the same symmetries. This phenomenon
is characteristic for all instances of splitting two nodes, when it is possible to interpret 4,4, = 4.4, as 4,, 4. coming from splitting node a
and 44, 4;, coming from splitting node d, or 4,, 4, coming from splitting node a and 4., 4;, coming from splitting node c.
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which leads to (5.17) by (1, 3)-splitting of nodes numbers 2
and 3 (the node number 1 is a spectator with #; = 1) with
permutation ¢ = (23) and x = —a’q~'#’. This automati-
cally implies that there exists another equivalent quiver,
arising from the (1, 3)-splitting of (5.19) with the trivial
permutation

413 413 4 [ at (=)t ]
310 1,12 a‘q”

C = 74i17347 , A=| a7 (-t)° |,
3'1(3)2 3 (-t
4(2)413 5 % (-t)”

(5.20)

which is the quiver on the left-hand side in Fig. 12 (up to a
permutation of nodes).

To sum up, we have found three equivalent quivers for
51, and from quiver (5.17) we can obtain either of the other
two, by appropriate transpositions of elements of the quiver
matrix. However, since these transpositions are not disjoint,
we cannot compose them. In consequence the permutohe-
dra graph, shown in Fig. 12, consists of two permutohedra
[T, that share a common vertex (in red) that represents
quiver (5.17). Using an argument analogous to the one for
the figure-eight knot, we can check that since there are no
pairings other than those depicted in Fig. 12, we have found
all equivalent quivers. In consequence, Conjecture 5 holds
for the cinquefoil knot.

D. 5, knot

The 5, knot is a more involved example. Having
identified one quiver for this knot (e.g., the one found in
|

d-C-d
P52(:U> a, Q7t) = Z(_Q)
d

010111
. lo12
C=|- L1117 ,
1'1'2'2

R R

1121214

A7

o
A" A3 A5
° o »
2. 3. 4
Ag AL AL
° o
0 1 2

FIG. 13. Homology diagram for the 5, knot; labels A; are
consistent with (5.28).

[2]) and considering all possible local equivalences follow-
ing Theorem 6, we found 12 equivalent quivers for this
knot (they are listed explicitly in Appendix A). It turns out
these quivers form an interesting structure of three permu-
tohedra I15 glued along their edges. Let us explain how this
structure arises.

We start from the following generating function of
superpolynomials [2]:

o
Ps,(x.a.,q.t) :Z

i
= (qz;qz)r()<k2<k1<r kl

o

a?agh 2k +2(k—ky—rky ) {2k —r

—aq 47, (a2 g7 P3Py,
(5.21)

At linear order we find the superpolynomial P;(a,q,t)=
@ +a*q? +at P+ d’t+at Pt +atq PP +a®P. The
homological diagram consists of a diamond and a zig-
zag of length 3 (see Fig. 13).

The generating function (5.21) can be rewritten in
the form

d
Y 2 =2 2
—_— t M - v B
(q2’q2)d'( a q 34 )d2+d3+d4 a::x}\’

a’q? (5.22)
4@2(—75)2 )
a'q(~t)

Then, (0, 1)-splitting of nodes numbers 2, 3, 4 with trivial permutation 4, = 0 and xk = —a’q 7>t leads to
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01001111117
L B
0111122
0122233
;122222
112123133
12 312 314 4
| 1123123145 |

2 =2
a“q
2 _1(—t)
4 _4(—t)2
aQ(—t)Q (5.23)
a'q” ( t)
4 - ( t)!
6 (=) ]

Because the splitting involves three nodes, it gives rise to a permutohedron Il;, which is a hexagon.

Furthermore, (5.21) can be rewritten in another form,

d-C-d
PSQ(':U?a? Q7t) = Z(_q)
d
101111
o= | Q0L
1'1'2'2 |’
[ R R T
1}1}2}3

In this case the factor I1, 4, 4, encodes (0, 2)-splitting of the
last three nodes with trivial permutation, #; = 1 and x =

a*q~21?, which leads to a rearrangement of quiver (5.23):
1‘0 1112127 [ alg N (=t) T
000111 a’q?
L02@323 a”(=t)°

c=|110@]2222 |, A= aj: _;‘(—t)z
2032434 g (1)
111212333 aq‘3(—t)3

| 2113124135 EXCO
(5.25)

This means that the corresponding permutohedron is also
I15, and one of its vertices corresponding to the above matrix
is shared with the previous permutohedron (there is also
|

P52($a a, Q>

72 | 1 i1 17
1,0,0,0

1'0'1'1

R R

1101112

T n
(¢*¢%)d

Z( q)d“ -

xr

(5.24)

I
another quiver common to these two permutohedra). Note
that (0, 2)-splitting of prequiver (5.24) with permutation ¢ =
(23) yields the quiver for the 5, knot found in [2]:

1‘0 1‘1 2112 a*q (1)
0.0 011 ‘1 1 azq_2
1,02[03,23 a*(=)’
c=|110Q2222 |, A= a'qg (1)’
4 -2 4
@32 434 g (1)’
11212333 a‘q” (—t)
| 2113124135 EXEEOH
(5.26)

Furthermore, the quiver (5.26) also admits the inverse of
another splitting, which corresponds to the following
rewriting of (5.21):

2 2r,3 2
) ( a q rt 3 q )d2+d3+d4
d

(5.27)

Pl
I
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In this case the (1, 3)-splitting of the last three nodes with

A7 = )‘3'\6

A7 = Aghs
.'.

permutation 6 = (2 3), h; = 1, and k = —a*q~'#* leads to r .
Mo ! ! . 2 2 o e N
,24 1, 2,:1 ? Ll ,2, a g_tg A5 = Mg A7 =As)g
1,0 1,0 2/0 1 a’q
2131323 (=
C=|1011212], A=| ¢ (-t) |,
21232434 a'q A (-t) e i
1021323 a‘gH(-t)? '
| 2113124135 g7 (=)
(5.28)

which is also a reordering of (5.26). This means that (5.27)
captures the third permutohedron I15, and the quiver (5.26)
[or its reordered version (5.28)] corresponds to the vertex
that is shared with the previous I1;.

Following the above analysis, we find that the permuto-
hedra graph for 5, has the structure shown in Fig. 14. The
permutohedron arising from six permutations associated to
(0, 1)-splitting of the prequiver (5.22) lies on the top of the
graph. The bottom-right I1; comes from all possible (0, 2)-
splittings of the prequiver (5.24). Finally, the (1, 3)-splittings
of (5.27) lead to the bottom-left hexagon. The quiver (5.23)
[or its reordered form (5.25)] is denoted by the green dot.
The red dot represents the quiver (5.26) [or its reordered form
(5.28)] found in [2]. The symmetry connecting these two
quivers is denoted by the blue edge. Moreover, we find that
each pair of permutohedra Il; identified above has two
common quivers, which are connected by a transposition
that is also common to such two permutohedra. Altogether,
the permutohedra graph takes the form of three permutohedra
I1; glued along their edges, as shown in Fig. 14. The triangle
in the middle of the graph represents two transpositions whose
composition is also a transposition (not a 3-cycle), so it does

FIG. 14. The permutohedra graph for the 5, knot consists of
three I1; (shown schematically at the bottom together with the
formulas they correspond to) glued along common edges. The
edges in this graph correspond to six types of transpositions arising
from various quadruples of homology generators, which are also
shown in various colors on the homological diagrams.

E. 7; knot

Another interesting example is the 7, knot. Applying
Theorem 6 systematically, we find 13 equivalent quivers,
which we list explicitly in Appendix A. A more detailed
analysis reveals that they form two permutohedra Il that
share one common vertex (corresponding to a common
quiver), and each of these I3, in addition, shares a common
vertex with one of the two permutohedra IT,.

The generating function of colored superpolynomials
takes the form [12,13]

 _r

—6r
x"a%q
xaq, :Z(z 2

r

k k
0<ks Shek, <r LK1 1 Lka | L3

s gAACr ) (thaths)=rki—kiky=hoks] (21 ey k)

not contradict the argument in Sec. III A. In the figure we also (5.29)
show how various symmetries (transpositions of matrix )
elements that relate various equivalent quivers, which corre-  For r=1 we get the uncolored superpolynomial

spond to edges of the permutohedra graph) arise from
quadruples of homology generators and denote them in
various colors. According to Conjecture 5, we expect that
Fig. 14 presents the whole equivalence class of quivers.

|

Pi(a.q.1) = a%q~0 + aSq~2P + aSq~*P + a®g*t* + ¥+

a®q®t® +adq*t’. The corresponding homological diagram

consists of one zig-zag made of seven nodes (see Fig. 15).
First, we rewrite (5.29) as follows:

d

dc.d &
P71(x7a’7q7 Z( q) m( a’ q t 3 q )d2+d3+d4 X

0;1;3;5 a’q " (5.30)
T ToToTs" 6 —4 2

& 1235 2|4 (—1)

~ | 334’5 | T g (-)!

JE R T q
551516 O(—t)°
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The (0, 1)-splitting of the last three nodes with trivial

permutation s; = 0 and k = —a’q 73t leads to
(0111133155 B
112213315 5 a®q " (~t)?
1123144166 a’q ' (=t)”
C=|3344455|,  Ax=|d¢?(-t)" |,
8 -5 5
33414566 a’q (=)
5!5 65 6'6 6 a’(=t)°
| 515615 616 7 BT (-t)" ]

(5.31)

A3 As A

° . °
A B D A T T
o ® o o
0 P 4 6

FIG. 15. Homology diagram for the 7, knot; labels A; are
consistent with (5.31).

which reproduces the quiver from [2]. More generally,
splitting these three nodes with all possible permutations
yields one permutohedron I15.

Furthermore, we can also rewrite (5.29) as

d-C-d 2 2r,3 2
P = — = (— . o
71(1:,(1,(],1:) %( Q) (q2’q2)d'( a q t ?q )d2+d3+d4 ii':=$5\
615155 GGE—tf (5.32)
T AT —
O = 9,0,1,3 3 = aq
NER RN | aBq(-1)?
PR R T
531314 a’q 2 (-t)*
In this case, the (1, 3)-splitting of the last three node§ with T011 1133557 r g8 q .
permutation ¢ = (2 4), h; = 1, and x = —a*q~'#* gives a S Sis == - 6 -4, \2
rearrangement of the quiver (5.31) as 1:2 2:3 4:5 6 as 7(_t)3
1233456 aq (=)
C=3334456|, A=|d¢%(-t)"],
[ [ [ 8 =57 4\d
(615 615 615 6 ] T af(-0)° ] 3444556 @q ()
T LT 6 —6 5'55'55'6 6 a (—t)
5011335 aq 5:6 6:6 6:67 8073 (=t)
61324146 aq (1) S R,
C=]51212335|, A=|d¢"(-t)*|, (5.34)
6'34'35'46 a®q~°(~t)°
5134134145 a6q_2(—t)4 which arises from the (0, 1)-splitting of (5.30) with
e Al 8 -3 7 permutation ¢ = (24). Indeed, the (0, 1)-splitting of the
615615657 ] a'q "(=t)" ] last two nodes of the prequiver,
(5.33)

and analogous splittings with all other permutations give
rise to another permutohedron Il;. Therefore we have
identified two permutohedra that share a common vertex,
which represents the quiver matrix (5.31) [or its reordered
form (5.33)]. Let us now focus on Il; arising from the
prequiver (5.30). One can check that almost all quivers
represented by its other vertices cannot be obtained from
other prequivers. The only exception is

01513 [ g T
126,24 St (=1)?
C=]56766 |, A=|d® P (-t)" |,
126314 aq T (-t)?
34645 | a®q (=)

(5.35)

with permutation ¢ = (45), hy =2, h, =1, h3 =0, and
kK = —a~*g¢’t, leads to
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)\1)\5 = /\2)\3 AQ)\7 = /\4)\5
[ ~e, () .. .
Y 'S 'y (Y ."44 .
A2As = Azy A7 = A5
(o]
o . o
. e . .

AoA7 = A3Xg

AA7 = A5

FIG. 16. The permutohedra graph for the 7; knot consists of
two Il; and two II, appropriately glued. Altogether it has 13
vertices representing equivalent quivers, and eight symmetries
corresponding to various quadruples of homology generators
(and represented by different colors of the edges in the graph).

[0151335] B
12623145 a®q " (~t)?
5676666 a’q (=)
C={126'3345|, A= a7 (-t)? |,
3363445 a’q”(~1)’
34644155 aq " (~t)°
1556155056 | dC
(5.36)

which is a rearrangement of (5.34). This means that the
quiver (5.34) [or its reordered form (5.36)] is a gluing point
of permutohedra I and I1I,.

An analogous phenomenon occurs for the second Il;,
which is also connected to another permutohedron II,.
Altogether, the permutohedra graph consists of two I13 and
two Il,, as shown in Fig. 16. The quiver (5.31) [or
equivalently (5.33)], also found in [2], is common to the
two I15 and is represented by the red dot. The I15 on the left
arises from the prequiver (5.30), whereas the one on the
right corresponds to the prequiver (5.32). The quiver (5.34)
[or its reordered form (5.36)] is represented by the green
node, and it glues the left I1; with I1, coming from the
prequiver (5.35). The analogous gluing point is present on
the right-hand side of the graph. In total we found eight

FIG. 17. The permutohedra graph for the 6; knot has 141
vertices that represent equivalent quivers (left). Excluding sym-
metries that involve A, reduces the whole graph to a cubelike
shape (right). Each face of this cube is one I1, (a bit squashed),
and neighboring Tl;s are glued along a square, which is a
common face to both Tlys. The red vertex represents the quiver
(5.39) [or its reordered form (5.41)].

nontrivial symmetries shown in Fig. 16 in various colors,
and 13 equivalent quivers that we list explicitly in
Appendix A. Using the procedure described in Sec. III A,
we checked that there are no other equivalent quivers.
According to Conjecture 5, we expect that Fig. 16 presents
the whole equivalence class of quivers.

F. 6; knot

Another example that we consider is the 6; knot. We
have found 141 equivalent quivers, which form quite a
complicated permutohedra graph shown in Fig. 17. These
quivers are related to each other by 16 symmetries (trans-
positions of various pairs of quiver matrices).

The generating function of colored superpolynomials for
the 6; knot reads [13]:

Pg, (x,a,q,1) Zi(q;:i;a 2 [krj {2]

=0 r0<k, <k, <r

(—a7qq72), (—a2 72175472y,

% a2(k1+k2)t2(k1+kz)q2(k%+k§—k1—kz)_ (537)

Ag
..~
A
Ag A5 A7
o K .
1,72 73
o () [)
—1.. 0,0 .1
g
o
-2

FIG. 18. Homology diagram for the 6; knot; labels A; are
consistent with (5.39).
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The linear order of this equation gives the uncolored superpolynomial P(a,q,t) =1+ a2t7> + ¢*t + ¢~ *t7' + a**+
1 + a*>q*t* + a*q~t + a*t*. The corresponding homological diagram, shown in Fig. 18, consists of two diamonds and a
degenerate zig-zag made of one node that coincides with one vertex of the upper diamond, so that 4; = Ag.

First, we rewrite (5.37) as

P, (z,a,q,t) = Z(_q)d.é.d

Then the (1, 3)-splitting of the last four nodes with permutation 6 = (2 4 5 3), h; = 1, and x = —a?q~'# leads to the

quiver found in [2]:

o

d

-d
T

[0 =1i=1i=1,=1

21-2/-2/-1
2}—1}—2}—1
-2'=2'0"'0

i 01—1 0i=1 01=10i=10T
Uzt Vsl U

2-1-2-1,-20/-10

1‘—11‘1 2

-1,-2 0,-1 0,-20,-11

C=|0,-11,0 2,-11,0 2

-1/-2-1-2-1,0 1,0 1
0,0 1,0 113,23
—1-1 1'-10:0 212
L 010 211

211 312 4 |

On the other hand, we can rewrite (5.37) in the form

Pﬁl(xv a, q, t)

Hd27d37d4,d5 =

o

Then, the (0, 2)-splitting of the last four nodes with permutation ¢ = (2 5)(3 4), h; = 0, and k = a*q~*#* leads to

[0 1—}1—}1 0 1 0]
—11-2/-2/-1,—1
-1,-2,-1,0,0 |,
0/-110"1"1
- - L L _ 1L _ 1 __

L 0=110 1112

d

_ dCd 53
Z( Oy i

ZZZZH”

as+Ba=dy az+P3=ds ay+Pa=dy as+PBs=dy 1=

_q)2(32+33+B4+55)2+2(04253+04254+Oé235+0¢354+06355+06455)
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AgA7 = A3dg

A9 = AsAg
..

AgAg = MA7
x.a

AgAg = A3Ag
..

)\2)\5 f A3A4 A3/\8 T )‘5)‘6

A2A9 = AsAg

FIG. 19. Planar projection of a part of the permutohedra graph for the 6; knot. In homological diagrams (on the left and right) it is
indicated how some of its symmetries, corresponding to edges of the graph, arise from quadruples of homology generators.

T 0i-1-11-1-110 010 0] 1

122221292121 0-1 0 a2 ()72

~1,-2 0,-2 0,-11,-11 1

9 il 0101 !

C=|-1-10,-1 1,020 2|, A=| ¢ (-t (5.41)

0-1-1'0 0'1 11 2 q(—t)

0,0 171 21313 a’q(~t)°
0'-1-110 0'1 112 2 a’q ()
010 111 212 312 4 RyncCom

which is a rearrangement of (5.39). This means that the
above quiver is common to two permutohedra Iy, and it is
represented by the red dot in Figs. 17 and 19. In Fig. 19,
which shows a planar projection of a part of the permutohe-
dra, the graph of I, coming from the prequiver (5.38) is
oriented along axis ', whereas Il, oriented along N
corresponds to the prequiver (5.40). All other quiver matrices
that we found are listed in the Mathematica file attached to
the arXiv submission. According to Conjecture 5, we expect
that there are no more equivalent quivers and that Fig. 19
presents the whole equivalence class.

G. (2,2p +1) torus knots

The last example we consider is a series of (2,2p + 1)
torus knots. For this class the number of equivalent quivers
grows rapidly; for p = 1, ..., 7 we have found, respectively,

1, 3, 13, 68, 405, 2684, and 19557 equivalent quivers,
which have a permutohedra graph with interesting struc-
ture. For p = 1 there is just one corresponding quiver (see
Sec. VA); for p > 1 the permutohedra graph consists of
two series of larger and larger permutohedra I,, ..., I,
(and several additional permutohedra of small size that do
not belong to these series). In each of these two series, each
permutohedron II; is connected to II,_; and II;,, (for
i=3,...,p—1), and the two largest permutohedra II,
from both series are also connected. Such a structure is
present for the 51, 7;, 9;, and 11, knots in Figs. 12, 16, 2,
and 3, respectively. In this section we explain how the two
largest permutohedra IT, for the (2,2p+ 1) torus
knot arise.

To start with, note that the generating function of
superpolynomials for the (2,2p + 1)-torus knot can be
written, among others, in the following two equivalent
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ways, which correspond to different grading conventions for the S"-colored HOMFLY-PT homologies [12,13]:

r kl k —1
PTz,sz(x, a g, t) = Zxra2prq_2pr Z |:k :| |:k :| R |: Z :|
r=0 0<k,<...<ky<k;<r L ™1 2 p

% q2 Zf):,((2r+1)k,-—k,>|k,->t2(k1+k2+~~+k,))(_azq—zt; 612)/<p (5.42)
:ZxraZPrq—Zpr Z |:}":| |:k1:| |:kp—1:|
>0 0k < osk<r LK1 ] LK k,
¢ Zf’:]((2r+1)ki—k,»_1k,~)t2(k1+kz+~~+k,,)(_azqzrt3; qz)r_kp. (5.43)
For p = 1, i.e., the 3; knot, the above expressions reduce to
r kl _ r kl
Z [k ] [k :|q2k|(r+1)t2kl(_a2q 24%), = Z [k } {k :|qzkl(r+l)t2k|(_azqzrlg;qz)r_k]’ (5.44)
0<k,<r L7 2 0<k,<rL™1 2

and the two permutohedra consist of one vertex. They are, in fact, identified, so that the full permutohedra graph consists
just of one IT;. In general, both (5.42) and (5.43) can be rewritten in the form of (4.1) using the formula

r kl] {k,,_l] (¢ 4%
. _ - : (5.45)
|:k1:| [kz k, (6% 0%),-, (@ @)ty (@301, (@530,

In the case of (5.42), we set

lezr—kl, azzkl—kz, 213:](2—](3, 214:k3—k4,
divy = ki — ks dyi1 =k,
which leads to
d-c-d i 2 -2, 2

Pr,, . (7,a,q,t) = %(—q) m(—a 4 50 ) dytordyn |,

0 1 1 13 1 5 L..2p-32p-17 4, L
SRR e e e A P o B
\ i | | i \ 5 _9(p— .

|3 03 0 4 5 -3l dy | a0 (!

C=| 5 1 5, 5 1 6 ...2-3%-1| di , A=| %2 (4)
SR T o
2p-32p=312p=32p—3...12p=22p~11 dp alq  (—t)""

[ 2p—12p=12p—=12p—11...12p=11 2p | dpn i a®P(—t)%P

The (0, 1)-splitting of the nodes corresponding to d,, ..., d,,, with trivial permutation &, = 0 and k = &g~ = —a?q>t
produces the quiver found in [2]:
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_ ‘ ‘ C _ - ) .
0+ 1 1. 3 3i..2p—-12p—1 a’q™"
e e i it S 2p —2(p-1 2
1 1 2 21 3 3. .02p-12-1 a*q 7D (1)
li2 314 4l % IR GO
O L aPq PR (5.47)
77%77:7;’774:7747751:;7:772?7772})77 ’ a2(p+1)q_2(p_2)_3(—t)5
I S R TS SR S i
2p—1‘2p—12p‘2p—12p‘...: 2p 2p a(-t)?
[ 2p—=12p—=12p2p—12p...0 2p 2p+1 a2(P+1)q—3(_t)2p+1
On the other hand, for the expression (5.43) we introduce
le =r—(r—k,) =k,
ng =r—ky, Zi3 = ki — ks, le+l =k, —kp,
and then find
.d
dcd T 2 2 3
PT2’2;D+1 (x7 a7q7t) = Z(_q) ( 2 ) ( a " 7q )d2+ +dp+1 Sz
2p \2p—1\2p—1\2p—1\...;2p—1;2p—1 dy [ aP(-t)*
-1 0 1 3 ..2p-52p-3| d N
-1, 1 2 3 .. 2-52-3| ds a*q ) (~1)? (549
C=|2p-1) 3 | 3 | 4 ... 2p-52p-3| dy , A=]|a%q 2" (=)
[ U S N S S N BN T TS B :
2p-12p=52p=52p=5... 2p=42p=3 | dy g (=)
[ 2p—12p—312p—312p—31...12p—312p— 2 | dps1 R G

One can check that the (1, 3)-splitting of the nodes
corresponding  to 212, d »+1  Wwith  permutation

= (2(p+1)),h; = 1,andk = —a’q~' 7 yields the same
quiver as in (5.47).

Note that both prequivers given above are the same up to
the reordering of nodes, however the two splittings are
different. This is why we obtain two different permutohedra
IT,,, respectively, left [or (5.42)] and right [(5.43)] in Figs. 2,
3, 12, and 16. These two permutohedra share the quiver
matrix (5.47), which can be obtained from appropriate
splittings of corresponding prequivers, as explained above.
An interested reader may conduct careful analysis of other
permutohedra in these graphs.

VI. EXAMPLES—LOCAL STRUCTURE

In the previous section we presented permutohedra
graphs for simple knots and discussed in detail the structure
of glued permutohedra embedded in these graphs. In this
section we take the opposite perspective and study the local

[

structure: we choose some particular quiver and identify all
equivalent quivers related to it by a single transposition of
matrix elements (a single symmetry, to which we refer to as
local). We also provide interpretation of such equivalences
in terms of homological diagrams. We conduct such an
analysis for infinite families of (2, 2p + 1) torus knots (also
denoted T3 5,41), TK;|p+2 and TK; 1 twist knots, and, in
addition, 6,, 65, and 75 knots. The quivers that we analyze
are those found in [2] (apart from the quiver for the 75 knot
that was found in [9]), and they are indicated by red vertices
in permutohedra graphs in Figs. 11, 12, 14, and 19. The
symmetries that we analyze in this section are represented
by edges adjacent to these red vertices.

Recall that:

(i) Quiver matrices for (2,2p + 1) torus knots that we
consider are given in (5.47). A homological diagram
for the (2,2p + 1) torus knot consists of one zig-zag
made of 2p + 1 generators.

(i) Quiver matrices for twist knots TKj, ., (ie.,
44,64,8;,... knots) are given in Appendix B.
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T 0p+1 TKs|p|+2 TKops1
0.~
. e T=Pp ®
) ) “er=p-1
.. .‘.. e .., .. ..'..
IR ' R . ‘®
[ ] r=0 r=1 'r:p—]_b .’0. ."..~ :. r=2 [ ]
. e o r=1 .;:’ e o =1
. o o @7=0
A2p43 Agr—2 Adr+3
. . .
Aoy ‘)‘2,1"+2 )\4r71x ”').‘47“ /\47"-1-2" ’A47"+1
° ° o ° o ‘®
Agra1 A
° 5

FIG. 20. Enumeration of wedges and diamonds in the homology diagrams, from left to right: 75,1, TKs 42, TKppy1-

A homological diagram for the TK;,,, knot con-
sists of p diamonds and a zig-zag made of one
generator, so altogether it has 4p + 1 generators.
Quiver matrices for twist knots TK,,.; (ie.,
31,5,,7,, ... knots) are also given in Appendix B.
A homological diagram for the 7K, , ; knot consists
of p—1 diamonds and a zig-zag of length 3, so
altogether it has 4p — 1 generators.

In this section we fix the ordering of homological
generators (and correspondingly the quiver nodes) as
shown in Fig. 20. In what follows, we call a wedge a part
of a zig-zag consisting of three consecutive nodes that form
a shape A. We enumerate diamonds and wedges by

|

(iii)

[ 2r 2r+3

Tou it 2r +3 2F +2

2 2r 43 2r+2

L 2 27 +3

[4r—1 4r—1

TKayp o 4y ’ 47 -2 7

4r 4r =2

L4r =1 4r' —1
r2 2

Ty 3| ar + 1
3 1

L4r 42 4r +2

rr, P, . such that r < 7/ < 7" < /... for a wedge
or a zig-zag labeled by r, we enumerate the generators it
consists of as in the bottom of Fig. 20. We write pairings
Addp = A A4 as column vectors with entries a, b, c, d.
Recall that we call such a paring a symmetry if the quiver
matrices with elements C,;, and C., exchanged are equiv-
alent. We also call the requirements C,; + Cp; = C,; + Cy;
(for i # a, b, c, d) spectator constraints.

Theorem 9: For infinite families of knots
Typi1, TKp42, TK>p iy, p = 1,2,3, ..., quiver matrices
given respectively in (5.47) and in Appendix B have the
following local symmetries:

4r+1 4r+1 4
4y 47" -2 4p —1
4r ’ a7 +1|° 5
4 + 1 47 -2 4p-2
2 4
4p +1 4p—1
3 U T | TKyjpp12\ 5 (6.1)
4p 4p -2
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>‘2r+3

)\27"+3

FIG. 21.  The local symmetries for T, torus knots, r =0, ..., p — 1 (the symmetry exists only for rr=r+1).

where ¥ =r+ 1, ¥ =r—+2, and

4 4r+42 4r
4p—1 47 +1 4r +1
TI TR\ s [ = ] 4 4r 41
4p=2 4r'+2 4r'
4r+2 4r
47 +3 47" +3
, (6.2)
4r+43 4v
47 +2 47 +3

Recall again that entries of the vectors given above are
labels of appropriate quadruples of quiver nodes or homol-
ogy generators. For (2,2p + 1) torus knots, the condition
¥ =r+1 means that these generators belong to two
consecutive wedges (see Fig. 21). For twist knots, gen-
erators that encode a symmetry belong to various diamonds
or the wedge (see Fig. 22 and Fig. 23). Below we give a
proof of Theorem 9 divided into three parts, each

o
°© o
°© o
"'o'/ °

"o

FIG. 22. The local symmetries for twist knots. The symmetries
which are shared between TK;|, 4, and TK;,, twist knots do
not have blue labels (any choice of 4 ordering from Fig. 20 is
valid for them). The top-right symmetry is a signature for the
TKy 42 twist knots, whereas the three bottom ones are for
TK;, 1 twist knots.

corresponding to one of the infinite families of knots. It
is followed by the analysis of 6,, 65, 75 knots.

A. (2,2p +1) torus knots

For this family of knots, the homology diagram is a chain
of p wedges joined together. The wedges are labeled by
r=20,1,2,...,p—1, as in Fig. 20, and the labeling of all
generators is shown explicitly in Fig. 24. Note that what we
label as the zero-th node corresponds to the quiver series
parameter x;, while the i-th node for i > 1 corresponds to
x;. This notation is convenient, since in the formulas we can
let r = 0, referring to the first wedge, so we do not have
to treat it separately. If r and 7 label two wedges
and  =r+ 1, they share the common node labeled
by 2r +2 = 2r.

Note that the quiver matrix (5.47) [its special cases are
given in (5.7), (5.17), (5.31)] has elements C;; such that

i,jbothoddoreven: C;j;=j—1, i=j: C;=}],
iodd, jeven: C;j=j, jeven: Cij=j—1,

(6.3)

ieven, jodd: C;j=j—2+468;

We now use Theorem 6 to determine symmetries of this
quiver. First, suppose that a pairing is made of generators
from only two wedges, which are located in a generic
position and not necessarily joined together (see Fig. 25). A
direct check of conditions from Theorem 6 shows that the
two pairings in Fig. 25 are the symmetries if ¥/ = r + 1. In
order to confirm that there are no other symmetries, we
label the four wedges by r, 7,7, ¥ such that r <7 <
" < " (see Fig. 26). In consequence, Eq. (6.3) leads to the
following pairings:

3AL1: Cpp=2r"+1,
3A2: Cppy=21" 42,
4AL1: Cpp=21" 41,
27+ 1, =r+1

= {2r”,r”>r’+1

Ccd:2r"+1.

Ccd:2r'+l
Ceg=2r"+1

4A2: Cpp=21" 42,
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MA7 = Aghg

Mg = AsAg
..

FIG. 23.

3 5 2p + 1

o o o
O..' “‘O‘.’ ..00“’ ..'e‘.. “~o
0 2 4 2p — 2 2p

FIG. 24. Homology diagram for the (2,2p + 1) torus knot and
the labeling of its generators (the labeling of wedges is shown in
Fig. 20).

AAg = M7
.

The four local symmetries of quiver (5.37) corresponding to the 6, knot, shown as the colorful thick edges.

extra dot. Consider a quadruple of diamonds with labels
(r,, 7", "), such that 1 <r<r/ <r" </ <p. We
classify all pairings by the number of diamonds and their
relative position. The tables in Fig. 28 provide such
classification, while all the possible pairings between
two diamonds are depicted in Fig. 29.

We now show that the green pairings in Fig. 28 are
indeed local symmetries. The detailed analysis of four of
them is given in Figs. 30 and 31. Notice that the rightmost
pairing in Fig. 31 is a particular case of

It follows that the condition |C,, —C.| =1 from 4r+1
Theorem 6 cannot be met in all these cases, so the only 47 =2
symmetries are indeed those in Fig. 21 and Fig. 27. A 41 (6.4)
p
B. Twist knots TKZM"'Z: 41,61,81,... 47 =2
We now conduct an analogous analysis for a family of
twist knots TK| ;. Recall that a homological diagram for
such a knot—for a given p—consists of p diamonds and an ~ Indeed, from the submatrix
|
a=4r+1 2r—4 2r—12 2r—4 2r—2—="0,41,
b=4r -2 2r—2 27 2r 2r =2
(6.5)
c=4r+5 2r—4 2r—2 2r=1=06,0,
d=4r—-6\2r-=2-6,.,, 2r-2 2r—6,.,, 2r =2

we see that ¥/ = r + 2 is the only candidate for a symmetry (otherwise the condition |C,;, — C,,| = 1 fails). To stress again,
in the examples above (Figs. 30 and 31) the crucial condition for the symmetry is ¥ = r + 1, i.e., the pairing of the two

neighboring diamonds.

Among the good candidates in Fig. 28 there is only one case left:
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FIG. 26. Pairings between 3 and 4 wedges, which are not symmetries for the quiver matrix (5.47). From top to bottom: 3A.1, 3A.2,

4A.1, 4A2.

2r
2r' +3
2r + 3

o'

d b d b
a c a c

FIG. 25.

 on 1
27"+ 3

[2r+37]
27"+ 2
2r' +2
| 2r' +3 |

2r+3
or' 42
2r + 2
or' +3

Pairings between the two wedges: type 2A.1 (left) and 2A.2 (right).

SN, A

L 27

2r +3

U
2r' +2
r
L2r +3 ]

[2r 2
27"'" 43 M\
2r'+3

Pairingb=c+3,d=a+3

a=a
b=c+3
c=c

d=a+3
s < a, odd
s < a, even

s>b, odd

s> b, even
d<s<c¢, odd

d< s<c even

a c—ld—2
b b-2b-1

c—1 b-2 c c
d-2 b-1 ¢ d

a +(b-1)=c+(d-1)
(a=1)+(b-2) =
(c=1)+(d-2)
(s=2)+(s—-1) =
(s=2)+(s—1)
(s=1)+s=(s—1)+s
(s=2)+(b-1)#c+(s—1)
(s=1)+((b-2)#(c—1)+d

Pairingb=c+1,d=a+1

a=a
b=c+1
c=c

d=a+1

s <d, odd

s < d, even

s> ¢, odd

s> c, even

a b—2c¢c—-1d-1

b—-2 b b-10b-1
c—-1b-1 ¢
d-1b-1 d

a+(b=-1)=c+(d-1)
(a=1)+(-2)=
(e=1)+(d-2)
(s=2)+(s—-1) =
(s=2)+(s—1)
(s=1)+s=(s—1)+s

s=a+2 (G+1)+(j-2)+ a<s<b odd (s=2)+(b-1)#c+(s—-1)
(E-1)+(-1) a<s<b even (s—1)+(b=2)#(c—1)+d
s=c+1 (s=2)+(j—-1)+#
(s=1)+(s—-1)
FIG. 27. The local symmetries of quivers (5.47) for T,,,,, torus knots.
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2 diamonds
4r —1 4r —1 4r + 1 4r +1 4r +1 4r 4r +1 4r —1 4r 4r + 1
Ar ar' =2 Ar ' =2 =2 | 4 -2 | 4 -1 Ar ' =1 | 4’ =2
4r 4r — 2 4r 4r —1 4r 4r — 2 4r —1 4r — 2 4r — 2 4r — 2
dr' =1 | 4r' =1 | 4" +1 47 4r' =1 4! '+ 1 | '+ 1| a1 | '+

QU O o Q

3 diamonds, equally distant

4r — 2 4r — 2 4r — 1 4r — 1 4r 4r — 2 4r + 1 4r 4r — 2
N B I B B B B I L B BT B I T O I P
o' =2 | a'—2 | 4'-1| 4 -1 47! ' =1 | ' =1 | ' +1 | 4+

i U

4r ' =1 | ' +1 4r ar' +1 4r 4r ar' =2 | 4’ =2
4r —1 4r 4r 4r —1 4r + 1
=2 4" =1 | " =2 4" | -2
' -1 4y 4 '+ 1| 4+ 1

ar'—2 | ' =1 | o' =2 | ' =2 | o' =2

3 diamonds, shifted up / down

4r +1 4r + 1 4r —1 4r 4r + 1 4r — 2 4r 4r — 2 4r — 2 4r —1
"+ 1| " a1 a1 =2 " =2 =1 4" | -2
' -1 47 ar' =1 4r' dr' =1 | ' =1 | ' +1 | '+ 4+l -1
47! ar' =2 | ' =2 | ' -2 | 4’ -2 4y 47! 4r' -1 4! ' +1
4 diamonds, equally distant
4r —1 4r —1 4r 4r + 1 4r + 1 4r —1 4r +1 4r
471!” 47’,” + 1 47”" + 1 471!!! _ 2 4,,.HI _ 2 471!!! 47’”, _ 2 4,,.HI
4r' 4r'+1 | 4 +1 47 ' =1 | o' +1 4r' 4r'
" -1 | 4" -1 4r" 4" -1 4r" " -2 | 4" -1 | 4"
ar—1 4r 4r dr+1 | dr+1 4r 4r —1
47"’" _ 2 4rm _ 1 4’/"’" _ 2 4Tm _ 1 47",” 4rm _ 1 47"”’
ar' =2 ar' =1 4r' =2 ar' =1 47! ar' +1 ar' =2
4" -1 47" 4" 4" +1 | 4"+ | " -2 | 4"+
4r —2 4r — 2 4r —2 4r — 2 4r + 1 4r + 1 4r — 1
4" -1 4" "+ 1 | 4"+ " -2 | " -2 | 4" -1
' -1 47! ' -1 47! a1 | -2 | ' -1
" -2 | 4" =2 4r" "1 " -2 | "+1 | " -1

4 diamonds, shifted up / down

4r — 1 4r —2 4r — 2 4r — 2 4r — 1 4r 4r + 1 4r — 2 4r — 2 4r — 2
4’["”’ 471!!! 47”" _ 2 4rm _ 2 47’”’ _ 1 471111 47“,” _ 2 4rm _ 1 47’”’ _ 1
' +1 Ar ' +1 | ' =1 | -1 | a1 | 4 -2 47! ' +1 | 4 -1
" +1 | 4" 41 4r 4r" " +1 | 4" +1 47" " =1 | 4" =1 | 4"+
4r 4r 4r 4r +1 4r +1 4r 4r —1 4r —1 4r — 1

m m m m m m m

U

dr =1 | 4r +1 | 4r +1 | 4r +1 | 4r =1 | 4r =2 | 4r +1 | 4r +1 4r
ar' =2 ' =2 47! 47! 4r' =2 47! ' -1 ar' =2 ar' =2
47" —2 47" 4" =2 4" =1 | 4" =1 | "1 | 4" -2 | 4" -1 | 4" -2

FIG. 28. The complete classification of pairings between diamonds in a homological diagram.
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dr' =1

4r 4r + 1
ar' =2 4r' =1
4r — 2 4r -1

47" ar' +1

o)
4r -1

U

4r
4r — 2
4r' +1

.O .O

4r 4r + 1
4 =1 ar' =2
4r — 2 4r — 2
4 +1 ar' +1

FIG. 29. All pairings between two homology diamonds (r, ).
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" 1
r<r <r:

1

47"

a=dr=1 %32 -2 2r-2 2-3
b=d4r' 2r-22r'-1 21 27'-2 _
= 4r 2w -2 2 -1 2r—1 arodar-2 2r -4 2r-2

- ' _ T b=dr' -2 2r—2 2r 2r 27 =2
Qe 1 2r-32' -2 [2r—1] 2' -3

4" =2 2r—1+2r" —1=2r+2r" =2
4" =1 2r=3+27" =2+ 2r—1+27" -3

n n n
drt 2r—242r —1=2r—1+2r -2 Ar—1 2r—4+2r—1=2r —4+2r -1
4r'+1 2r -4+ 2" —2=2r-3+27" -3 Ar+3 2r—3+2r+1=2r—2+2r
r<r <r: dr + 7, 4r +11,... 2r—=3+2r +2=2r -1+ 2r

4" =2 2r—1+27 =2r+2¢ - 1

47" =1 2r—342r —1=2r—1+2r' -3 o Ar=8,4r —4 2r =5+ 2r—2=2r =54 2r —2
4" r =242 —1=2r—142r" =2 dr 2r —3+42r =2r —3+2r
4" +1 2 =442 —=3=9r—-3+2" —4 dr+4 2r—=2+2r+2=2r-1+2r+1
<y dr +8,4r+12,... 2r—=2+4+2r+3=2r+2r+1
PP S S RI WU S R U R WY The middle vertical axis:

4" =1 2" =3+27" —2=2"-2+2"-3
2 1+ —1=27"—1+27" -1
4" +1 2" =4+ 2" —2=2"-24+2"-4

c=dr+5 2r—4 2  2r-2 [2r—1]

U U
de a6 2r—22r' =2 [2r 1] 27 -2

The left vertical axis:

o dr=94r =5 2r—64+2r—-3=2r—-6+2r -3

The right vertical axis:

' =27 <p 2" =3+ 2" =2" =3+ 2"

dr +9,4r+13,... 2r—4+2r+1=2r-2+2r-1

FIG. 30. The two pairings which are symmetries only when r' = r + 1.

a=4r+1
b=4r' -2
c=4r

!

d=4r -1

@
Il
[SATEN

v
Il

r<r<r:
s=4r—1
s=4r -2
s =4r

s=dr' +1

n
s =dr

! n
r<r<r:

s=4r" -1

s=dr" =2

2r—4 2r—2 2r—-3 2r-—3
2r—2 2 2 2r' =2

2r-3 2r  2r-1 [2r—1]
2r—32r' -2 [2r—1] 27" -3
(-1)+(2) # (1) + (1)
(=2) +(0) # (0) + (-1)

(2r—4)+ (2r—=1) = (2r-=2) + (2r - 3) (6.6)
2r=3)+@2r)=(2r-1)+(2r-2)

(2r-2)+(2r'=1)= (2r=1) + (2r' = 2)

(2r —4)+ (2r' =3) = (2r —3) + (2r' — 4)
2r-2)+@2r") = (2r-1)+ (20" - 1)

(2r=3)+(2r'=2)# (2r-1)+(2r' = 3)
2r-2)+ @2+ 2r)+(2r'-1)
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“:4T,_1 2r-3 [2r—1]2r-2 2r -3
b=dr -2 o' 2 27 -2
c=4r -2 2r —2 2r 2r  2r—2
! !
d=dr -1 2r=3 2r =2 2r—=22r =3
n U
r <r<r.:

4" =2 2" —a+ 2" —2=27" -2+ 27" — 4

4" =1 2" =3+27" —1=2"-1+2"-3
' o' =1+ 2" = 2"+ 2" -1

" +1 2" =4+ 2" —2=2"-2+2"-4

r<r'<r:

4" =2 2r =1+ 27"#2r + 207" = 2

" =1 2r =3+ 2" —1#2r -2+ 27" =3
47"

4" +1 2r—4+27" —2#2r =1+ 27" =3

2 —2+2r" =2r—1+27" - 1

r<r <
" -2 2 —1+2r' =2r+27 -1
4" =1 2r=3+42r —2=2r -2+ 2" -3
4" 2 =242 —2=2r -2+ 2 =2
4" +1 2r—4+2r' —=3=2r-3+2' -4

o =dr+d or—4 [2r—2]2r-3 2r—4
!
b=dr 2'—1 2r—1 27" =3
c=4r 2r—=3 2r—1 2r-12r-3
! !
d=dr +1 2r—4 2r =3 2r—3 2r -4

<<y
4" =2 2" =3+ 2" —1=2"-1+27" -3
" =1 2" =4+ 2" —2=2" -2+ 2" -4
" 2" =3+ 2" —1=2"-1+27" -3
4" +1 2" =4+ 2" —2=2" -2+ 2" -4
7”<7‘"<7",:
4" =2 2r—2+427" -3 2r+ 20" -3
49" =1 2r 3420 —2=2r—1+2r" -4
4" r =2+ 2" —1#2r—1+27" -3
ar" +1 2 -4+ 2" 2% 2r =34+ 27" -4
r<r <
4" =2 2 =24 2" =2r +2¢" —2
4" =1 2r=3+2" —1=2r—1+427" -3
" 2r—2+ 27" —1=2r -1+ 27" =2
4" +1 2r -4+ 27" -3=2r-3+27" -4

FIG. 31.

Due to the failure of the four spectators (#), the case (6.6)
gives a symmetry if and only if » =1 and ' = p, which
means that the bottom diamond interacts with the top
diamond. For example, if » = p = 1, the pairing (6.6) turns
into the only symmetry for the 4, knot (Fig. 11).

We have thus shown that all five cases in the first row of
Fig. 22 are indeed nontrivial symmetries. It turns out that all
other pairings listed in Fig. 28 fail to be a (nontrivial)
symmetry. This happens due to two reasons: when
C,p # C.y, either the condition |C,, — C.4| =1 fails in
general, or it is satisfied only when some diamonds collide,
which brings us back to the case of two diamonds. On the
other hand, any pairing between two diamonds which is not
in our “top five” fails due to spectator constraints (which we
verified in Mathematica). To sum up, only five cases give a
symmetry: four of them involve a pair of diamonds, and
one involves a triple (the “vertical” pairing).

C. Twist knots TK2p+1: 31,52,72,92,...

For this family of twist knots, a large portion of sym-
metries determined by the pairings originating from dia-
monds is the same as for the previous family of twist knots
T K| p|12- The reason is a structural similarity between their
HOMFLY-PT homologies. To be more specific, the main
building blocks (diamonds) are the same for both families.

Another two pairings which are symmetries only when ' = r + 1.

The difference is in the form of a zig-zag, which for 7K, 1»
knots is degenerated to a dot, while for the 7K, knot it
takes the form of a single wedge (of length 3). Therefore, at
this stage we only need to study how this wedge interacts
with diamonds. In total, there are five potential pairings:

2 1 2 1 1
4r+1 4r+2 4r+3 4r+3 4r+2
300 3 |7 3 | 3 ] o2 |
4r 4r 4r+2 4r+1 4r+1
(6.7)

where r = 1, ...p — 1 enumerates diamonds. One of these
cases turns out to be trivial:

a=1 2 1 2 1
b=4r+2 1 2r=2 2 2r-3
(6.8)
c=3 2 2 3 1
d=4r 1 2r=3 1 2r-3

The other four cases are investigated below in detail; see the
tables in Fig. 32. For the top-left case the only possibility for
a symmetry is r = p — 1. This proves the bottom-right
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Pairing (2,4r + 1, 3,4r):

=2 0 1 0
b=dr+1 2r 3 2r—2
c=3 1 3 3 1
d= 4r 0 2r-212r-3
s=1 1+2=2+1
s=dr+2 0+2r+1=2+2r—1

s=4r+3 1+2r+2=3+2r
1<r' <r:

s = 4r' 0+2r —2=1+2"-3

s=4r' +1 2+2r =3+2r' -1

s=4r'+2 0+2r =2+2r' =2

s=4r' +3 1+2r +1=3+2r -1
r<r:

s = 4r 0+2r—1#1+2r—3

Pairing (2,4r + 3,3, 4r + 2):

a=2
b=4r+3
=3
d=4r +2
s=1
s =4r
s=4r+1
l<r <r:
s = 4r'
s=4r' +1
s=4r' +2
s=4r' +3
r<r:
s=dr
s=4r'+1
s=4r' +2
s=4r' +3

0 1 1 0
12r+3 3 2r+1

1 3 3
02r+1[2] 2r
1+2=2+1

0+2r=1+2r-1
2+2r+2=3+2r+1

0+2r =1+2r -1
242X +2=3+2r'+1
0+2r + 142+ 27
1+2r +3#3+2r +2

0+2r—-1=1+2r-2

2+2r+1=3+2r
0+2r=2+2r-2

1+2r+1=3+2r-1

Pairing (2,4r + 1,1, 4r + 2):

a=2 0 10

b=dr+1 [2]2r+222r+1
c=1 1 2 2 1

d=4r+9 0 2r+11 2r

s=3 1+3=2+2

s = 4r 0+2r=1+2r—-1
s=4r+3 14+2r+2=2+2r+1
1<7“'<7“:

s =47 0+2"' —2=1+2r"-3
s=4dr +1 24272+ 2r' =2
s=dr' +2 0+2r'#1+2r' =2
s=4r +3 1+3r +1=2+2"

r<r:

s =47 0+2r—1=1+2r—2
s=dr' +1 24 2r =2+ 2r

s=4dr +2 0+2r—1=142r-2
s=4r' +3 1+2r=2+2r—1

Pairing (1,47 + 3,3,4r + 1):

a=1
b=4r+3
c=3
d=4r+1

s=2

2 2 2 2
22r+3 3 2r+2

2 3 3
22r+2[3]2r+2

1+1+#1+2

FIG. 32. The nontrivial pairings between the wedge and a diamond.
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symmetry in Fig. 22. Another nontrivial symmetry arises
from the top-right case in Fig. 32. The spectator constraints
are satisfied for 1 < r < 7/, so we get the symmetry between
the wedge and the first diamond, which is depicted in Fig. 22
(bottom-left). Likewise, the rightmost pairing in (6.7) is a
symmetry as well [see Fig. 22 (bottom-middle)]. However,
AA4rs3 = A3d4,41 does not lead to a symmetry because of
the spectator constraint for s = 2. That is why we end up
with only three local symmetries between the wedge and a
diamond.

D. 62,63,73 knots

Finally, with the support of the attached Mathematica
code, we determine local symmetries for three other knots,
6,, 63, and 75, for some particular quivers found in [2,9].

1. 6, knot

Let us start from the 6, knot. The quiver from [2] reads
There are eight local symmetries associated to (6.9) for the
following pairings:

[0 2 -1 -1 -1 =10 =1 1 1 1] [ g2(=0)2 ]
-2 -1 -1 0 0 0 1 0 1 2 2 alq=(—1)7!
-1 -1 0 1 0 0 1 0 1 2 2 a*q™
-1 0 1 0 O 0 1 0 211 q*
-1 0 o0 o 1 1 1 1 2 22 a*(—t)
c=|-1. 0 0 O 1 1 1 1 2 2 2|, A= a*(—t) (6.9)
o 1 1 1 1 1 2 1 222 a’q?(—t)?
-1 0 o0 o 1 1 1 2 2 33 a*q(-1)?
1 1 1 2 2 2 2 2 333 a*(-1)?
1 2 2 1 2 2 2 3 3 33 a*q*(~1)?
1 2 2 1 2 2 2 3 3 3 4 atq*(—1)*
My = D344, M = Agds, Asdiy = Aghio, AsA11 = Agdio,
Mg = A34s, MAg = A3, AoAr = 345, Moy = 3.
Their graphical representation, together with the homology diagram, is given in Fig. 33.
2. 65 knot
For 65 the quiver matrix from [2] is given by
0 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1] i 1 T
o 1 o0 -1 -2 1 0 -1 -2 1 1 0 -1 a*q=?(-1)
o o o0 -1 -2 1 0 0 -2 1 1 0 O 1
-1 -1 -1 -2 -3 0 -1 -2 -3 -1 0 -2 =2 g (-1
-1 -2 -2 -3 -3 -1 -1 -2 -3 -1 -1 =2 =2 a2q7%(-1)7
o 1 1 0 -1 2 1 0 -1 2 1 1 -1 a*(-t)?
c=10 0 0 -1 -1 1 1 0 -1 2 1 I 0|, A= q*(-1) (6.10)
-1 -1 0 -2 -2 0 0 -1 =2 0 0 -1 =2 g2 (=1)!
-1 -2 -2 -3 -3 -1 -1 =2 =2 0 -1 -1 =2 a2(-1)7?
o 1 1 -1 -1 2 2 0 0 3 2 1 0 a*q*(-t)?
o 1 1 o0 -1 1 1 O -1 2 2 1 0 q*(-1)?
-1 0 0 -2 -2 1 1 -1 -1 1 1 0 -1 1
-1 -1 0 -2 -2 -1 0 -2 -2 0 0 -1 -1] | a2 (1) |
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For (6.10) there are six local symmetries for the following  for which graphical representations, together with the
pairings: homology diagram, are given in Fig. 34.
3. 75 knot

As the last isolated example we consider the 75 knot. The
quiver from [9] reads

Aoy = A4, Ao = Ao, A3dg = Agh,
A3hg = Ash, A3di3 = Asqt, Ahiz = Agdy1,

(6.11)

a
I
W A L D W W R = D W O N
P W W = = N W W o = = O O
BN "4 N (S R SN N S Y B S R S R e %)
W W W N W W W W = N N = N
DO N W = NN W= =N O =
~ A N A B BB O W LW LWL W
W A~ L B~ O W B B D W B W B~
W B~ L W B W W B N W B D W
A~ L Y LW LB N W R = W
W B~ B W W W B B = D D = N
LD i 9 B O L L O W W W W
AU A A B BRO WA WA
A OB U LW A W W B D W B D W
>
I
IS
~
_Q
~
|
~
S— Nt N
~

For (6.11) there are seven local symmetries for the following pairings:

Mhio = Ao, Ay =Lk, Ao =Ado, A = di,
Mz = Ashin, Aedin = Adin, Aghiz = Asdi.

Their graphical representation, together with the homology diagram, is given in Fig. 35.

Ag Ag A1l
@ @ O Az Ao Ao
Ay N ::Z-Z::;\S,AG:::*:: Ar Ao L. L. 8
© o ® © © AT i A
o o T g I
o
o

FIG. 33. Homology diagram and local symmetries for the 6,
knot. Each picture marked with * corresponds to two symmetries, FIG. 34. Homology diagram and local symmetries for the 65
due to double-valued nodes A5 and Ag. knot.
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Ag A1
. o
AL Ao ”'~,{\3,)\1.3.”.. Arz e
© o © e Do
A . . As L\ . As A7
o o ° o o
.,0..
o
..’o'b‘ ..00

FIG. 35.

VIL Fg(x.a.q) INVARIANTS AND KNOT
COMPLEMENT QUIVERS

In the last section we broaden our perspective and show
that the equivalence criteria from Theorem 6 can be used to
relate quivers that we considered so far to be another type of
quivers, which in [11] have been associated with
Fx(x,a,q) invariants of knot complements, constructed
in [15-17]. In this section we focus on 75, torus knots
and show that for each p, a quiver associated to the
Fy(x,a,q) invariant is equivalent to a subquiver of a
quiver for unreduced colored HOMFLY-PT polynomials
constructed in [2].

Before presenting this relation, let us recall how the knots-
quivers correspondence works in the unreduced normaliza-
tion (which we denote by adding a bar to all quantities)
defined for HOMFLY-PT generating functions by

_ @),
Pg(x,a.q) = E xX'a7q ——5P(a.q). (7.1)
o (@ 9°),

The presence of (a%; ¢*), in the numerator in the summand
(relative to the reduced normalization) implies that the
unreduced quiver matrix C,;; can be obtained from the
reduced one (given by C;;) by the following relation (2%

2m m
Z Cpydid;= Z [Cijaia;+ (Cij+1)Bip)]
1.J=1 i,j=1
i<j i<j

“In our convention a; <> f; with respect to [2].

Homology diagram and local symmetries for the 75 knot.

where @; and f3; are the new summation indices for the quiver
motivic generating series. They are related to the summation
indices of the reduced normalization by d; = a; + f3; and d,
can be thought of as the entries of a vector

d= (alva% ""am’ﬂl’ﬂ21 ’ﬂm)

(7.3)
Then the unreduced quiver matrix takes the form of a
2m x 2m block matrix

e~ (1) ]

where 1 and O are the matrices with only ones or zeros,
respectively, and the matrix 6 is defined as

(9,]:{

Note that going from d; to a; and f8; can be understood as an
example of splitting. It follows from the fact that switching
between the reduced and unreduced normalization corre-
sponds to multiplication by a~"q"(a*q?*), Since
r=>Y,d;, we split all nodes, and a~"¢" enters the change
of variables. The only difference with splitting presented in
Sec. IV lies in the ordering. There we put a; next to f3;, here
we start from all alphas and then write all betas to match the
convention in [2].

ta
1P

(7.4)

Oa
la

jzi

with i, j=12,....m. (7.5)

j<i

A. Trefoil knot complement

Let us focus on the simplest example of the trefoil. The
“standard” and knot complement quivers are given by
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0 1 1 | 0 2 27
1 221123
B} 1 2312 3
=01 11 2 2
2 22|23 3
2 3 3| 2 3 4]
3 2 3 2
2 2 3 2
Cr,= |3 3 4 2 (7.6)
2 2 3 3

Let us exchange x, <> x4 in 5'31 and then remove the first
pair of nodes (interestingly, they look like the redundant
pair of nodes [4], but they have a different change of
variables). After relabeling its vertices to (x}, x5, x5, x}), we
permute it into (x5, x5, x, x}). This gives:

»[O0O 1 1 10227 xl0o01 122

»n|l 22123 x [0 1 1 122

;12311230 4113223
>

x |01 1] 122 |1 12223

xs |2 22233 xs |2 222 3 3

X2 3 3|23 4] x|223334
X3 2 2 37
X2 223
>
X 2 33
Xy L3 3 3 4
XT3 2 3 27
X, 2 3 2
- (7.7)
X 3 43
X L2 2 3 3]

After framing by —3, the rightmost quiver in (7.7) agrees
with the quiver associated to the trefoil complementin [11].
We can also illustrate this relation at the level of formulas.
The Fy invariant reads [17]

) 2
(x,a,q) Zxk (X3 )k(aq) Q)k’
(],(]

_ ooxzk 3k(x ,q)(aq
_kz 1 (4% d%)x

On the other hand, the unreduced HOMFLY-PT generating
function is given by [29]

%4°),

S

" [r
Z{ :|q2k(r+1)(a2q—2;q2)k’

k=0 k

(x.a.,q)

k(az q ) (azq

7°)
(4% q%)i A

:Zxkakq
=0
Eoo: xlalg™ (“ 7 q )1 2k1 (7.9)
— (4% 4%),

Comparing (7.9) with (7.8), we can see that the structure of
g-Pochhammers indexed by k is exactly the same. The net
difference —3k? in g powers corresponds to the framing
change, whereas all powers linear in k enter the change of
variables and do not interfere with the general structure.
Finally, the whole sum over / = r — k contributes to the
removed pair of nodes.

B. Cinquefoil knot complement

For the 5; knot, the two quivers are given by

(0 1 1 3 3] 02 2 4 4]
1 223 3|1 23 4 4
123 4412355
33 4 4 4|33 4 45
) 334 45|33 445
S=lo1 13311 22 44l
2 2233|233 44
233 4 41|23 455
4 45 4 4| 44555
4 455 5| 44556
5 4 5 4 4 4 5 47
4 45 4 3 3 5 4
55654455
4 4553 3 4 4
Cr, = (7.10)
S l4 3 4332 32
43 432232
555 433 43
4 4 5 4 2 2 3 3]
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We repeat similar steps as in the trefoil case, exchanging x, <> x4 in Cs , and permuting

(o, xh, o, Xy, xb, xg, X, xg) > (X, xg, xh, x5, X, xg, X)) (7.11)
to obtain:
zy [01133/02244]7]
9 | 12233]12344 2134422355 27 [54544456)]
3 112344/12355 25| 44433445 x5 | 44543 3@4
xy | 3344433445 25044533445 25| 55654455
z5 | 33445/33445 ] 23322344 25144553344 (7.12)
6 [01133[12244 25023323344 25143433232 '
x7 12223323344 25| 34433455 2y | 43432232
rs | 23344/23455 z,| 54444555 26| 5@)543343
g | 44544144555 25 55544556 2764542233 ]
T [ 4455544556
|
If we now subtract the result from CFsl’ we get (4) The resulting diagonal is of the form:
(3,...2p+1.2.3,...2p+1.2p +2).  Relabel
_ ; these entries as (), ..., x},).
0 0 00 00 0 1 (5) Permute the x%: (x|, ....,x} ) (¥}, _{,....x}), in
i 1 4p 4p—1 1
0 0 0O 00 -1 0 order to get the diagonal (2p+1,2p,
0 0 0 0 00 0 0 2p+2,2p+1,...,3,2,4,3). Such permutation is
fixed uniquely for each p. For example, p = 1,2, 3
0 06 00 00 0 0 (7.13) leads respectively to:
0 0 0 0 00 0 O '
0 0 0 0 00 0 0 (X, .es xly) > (X, X5, X5, X)),
0 =1 0 0 00 0 0 (X5 -ees Xg) > (X7, XY, Xg, X5, X5, XY, Xg, X)),
1 0 00|00 0 0 (X1, -0 X1p) > (X115 X5, X, X5, X0, X5, X,

The two quivers would agree if we swap C, 7 <> C; g in the
rightmost matrix of (7.12). Fortunately, it turns out to be an
example of the quiver equivalence from Theorem 6, so the
relation between two kinds of quivers holds.

C. General T, knot complement

We now compare the two recursive formulas for T 5,
torus knots. Starting with the “standard” quiver defined
using unreduced colored HOMFLY-PT polynomials
CT2.2p+l’ we propose an algorithm of transforming it into

a quiver C associated to the respective knot
F T22p+1

Xy, x5, xg, xg, X)), (7.14)

After these steps, we compare the resulting quiver matrix
to C Frypns” It turns out that the results almost agree, up to
transpositions of certain nondiagonal entries, indicated in
Fig. 36. Each block in this figure has the size 4 x 4: the
diagonal blocks represent framed knot complement quivers
for the trefoil, while the off-diagonal part differs from them
by a transposition of elements, each time appearing in the
top-right corner of each upper-diagonal block, and extend-
ing to lower-diagonal blocks by symmetry. This suggests
that the two formulas agree, up to the quiver equivalence
relation. Another argument comes from the fact that

complement: . transforming the quiver from reduced to unreduced nor-
(1) Label the vertices of CTz.zp+1 upside down  malization corresponds to splitting all nodes, which (as
as Xy, ..vs X4p40- discussed in Sec. IV) can be done in many ways, all of

(2) Exchange x, <> x5,15.
(3) Remove the first two nodes (x;,x,,4,) with the
smallest number of self-loops.

which lead to equivalent quivers.
We checked that transpositions depicted in Fig. 36 are
indeed symmetries for T’ 5, torus knots up to p = 3. We
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transposition
4 X 4
Oo Oo o
Oo Oo
diagonal blocks

FIG. 36. The block structure and transpositions that relate the
“standard” subquiver based on unreduced HOMFLY-PT poly-
nomials for 7, ,,,; torus knots to the knot complement quiver
(only the upper part is shown, since it is symmetric).

conjecture that it is always the case, which means that in the
equivalence class of quivers corresponding to the 75,
torus knot in the unreduced normalization there exists a
representative such that the knot complement quiver is its
subquiver.
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APPENDIX A: EQUIVALENT QUIVERS FOR
KNOTS 52 and 71

In this Appendix we present equivalent quivers that we
found for knots 5, and 7,. Quiver matrices given below
correspond to appropriate vertices in the permutohedra
graphs, as indicated by their labels; the same labeling is
used in the attached Mathematica file.

1. 5, knot
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2. 7, knot
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01 1 3 3 5 5- 01 13 25 5 01 1 3 3 5 57 01 13 3 5 57
12233535 12333535 1223455 1223354
1234466 1334466 1233466 1234466

Co=13 3 4 4455 Ci=133 44455 C,=13 33 4455 C;=13 3445575
3344566 2344566 3444566 3345566
556566 6 556566 6 556566 6 556566 6
5 56 56 6 7. l5 56 5 6 6 7. 5 56 56 6 7. 5 4 6 56 6 7.
01 13 3 5 57 01 1 3 2 5 44 01 13 3 5 59 01 1 3 3 5 4-
1223355 1233355 1223456 1223354
1234466 1335466 1233456 1235466

Ci=13 344456 Cs=13 354455 Cs=13 33 4455 C;=13 354555
3344556 2344566 3444566 3345566
5565566 556566 6 5555666 5565666
5 56 6 6 6 7. l4 5 6 56 6 7. 5 6 6 56 6 7. l4 4 6 56 6 7.
001 13 3 5 57 01 13 3 5 45 0113 3 5 5- 01 13 3 5 34
1223356 1223356 1223456 1223456
1234456 1235446 1233456 1235446

Cs=13 344456 Co=13 354555 Cow=13 33 4 456 Ch=13 354555
3344556 3345566 3444556 3445566
555556 6 554566 6 555556 6 554566 6
L5 6 6 6 6 6 7. l4 6 6 5 6 6 7. L5 6 6 6 6 6 7. 36 6 56 6 7.
01 13 3 5 57
1223456
1233456

C=|3 33 4455
3444566
555566 6
5 6 6 56 6 7.

APPENDIX B: QUIVER MATRICES FOR TWIST KNOTS

In this Appendix we provide quiver matrices for twist knots, which were found in [2]. Interestingly, for each of the two
families of twist knots, TK5|,4» and TK;, ., such a matrix can be presented in a universal way.
The quiver matrix for the TK;,;, twist knot found in [2] takes the form

Fhb F F F - F F
F' D, R, R, -+ R R,
F' Rl D, R, -+ R, R,
CTKaplr2 — Fr RlT RzT Dy - R;3 R ’ (Bl)
F' Rl Ry R -+ Dpr R
_FT Rl R} Ry - R\T;;|—1 Dy,

where
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and

2k

2k —
2k—-1
2k —

2k -2
2k -3
2k =2
2k —4

2k —1
2k -2
2k -1
2k -3

2k -3
2k —4
2k -3
2k —4

2
5 k —

3

0 1], (B2)
2k 2k—2 2k—-1 2k-3
2k—1 2k—-3 2k—-2 2k—-4

(B3)
2k 2k—1 2k—1 2k-3
2-2 2k-3 2k-2 2k—4

The element F; represents a zig-zag of length 1, i.e., a single homology generator, while the diagonal blocks D represent
diamonds (up to a permutation of homology generators and an overall shift). The identification with 4; in Fig. 20 is as

follows:

)‘47"—2 >‘4'r—1 )\47" >\4r+1 )\4r—2 )\47"—1 >‘47' >‘47'+1
Mp_o| 2r 2r—22r—12r-3 Mgpi_g| 2r 2r—1 2r 2r-—2
Mp_1|2r =22r =3 2r—-22r—4 A1 |2r =2 2r—=32r—12r -3 (B4)
My 12r=12r—=22r—-12r-3 Mgt |2r —12r=22r—-12r -2
Mpg1|2r =3 2r—42r—3 2r —4 Apig1|2r —32r—42r -3 2r—4

This means that D, encodes interactions of nodes within one diamond, while R, encodes interactions of nodes from two
diamonds labeled by r, 7.
Quiver matrices for TK,,; twist knots found in [2] read

Dy Ry Ry R R, R,
Rl Dy R, R, Ry R,
RT Rl D; Rs R, R,
CTKypi1 — RlT Rg R3T D, Ry Ry , (BS)
Rl Ry R Rl - D,y R,
(Rl R Rl R{ - R, D,
where the block elements in the first row and column are
2 1 2 1 2 1 2
D=1 0 1]/, Ri=10 2 0 1], (B6)
2 1 3 1 3 2 3
and all other elements, for k > 1, take the form
2k—3 2k—2 2k—-3 2k-2 2k—3 2k—-2 2k—-3 2k-2
2k—2 2k 2k—1 2k 2k—1 2k 2k —1 2k
Dy = : Ry = (B7)
2k—3 2k—1 2k-2 2k-1 2k -2 2k 2k—2 2k-1
2k—2 2k 2k—1 2k+1 2k—1 2k+1 2k 2k +1

In this case, D represents a zig-zag of the same form as for the trefoil knot, and D, (for k > 1) represent diamonds (up to a
permutation of homology generators and an overall constant shift).
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