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Abstract
1.	 Aircraft collisions with birds span the entire history of human aviation, includ-

ing fatal collisions during some of the first powered human flights. Much effort 
has been expended to reduce such collisions, but increased knowledge about bird 
movements and species occurrence could dramatically improve decision support 
and proactive measures to reduce them. Migratory movements of birds pose a 
unique, often overlooked, threat to aviation that is particularly difficult for indi-
vidual airports to monitor and predict the occurrence of birds vary extensively in 
space and time at the local scales of airport responses.

2.	 We use two publicly available datasets, radar data from the US NEXRAD network 
characterizing migration movements and eBird data collected by citizen scientists to 
map bird movements and species composition with low human effort expenditures but 
high temporal and spatial resolution relative to other large-scale bird survey methods. 
As a test case, we compare results from weather radar distributions and eBird species 
composition with detailed bird strike records from three major New York airports.

3.	 We show that weather radar-based estimates of migration intensity can accu-
rately predict the probability of bird strikes, with 80% of the variation in bird 
strikes across the year explained by the average amount of migratory movements 
captured on weather radar. We also show that eBird-based estimates of species 
occurrence can, using species’ body mass and flocking propensity, accurately pre-
dict when most damaging strikes occur.

4.	 Synthesis and applications. By better understanding when and where different bird 
species occur, airports across the world can predict seasonal periods of collision 
risks with greater temporal and spatial resolution; such predictions include poten-
tial to predict when the most severe and damaging strikes may occur. Our results 
highlight the power of federating datasets with bird movement and distribution 
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1  | INTRODUC TION

The lengthy historical record of collisions between birds and air-
craft (‘bird strikes’) begins with a bird strike during one of the first 
powered human flights by the Wright brothers in 1905 (Mckee 
et  al.,  2016). Primary concerns for aviation and aviators focus on 
human safety, but collisions also incur significant financial cost di-
rectly through physical damage of equipment and indirectly through 
delays in operations. World-wide, the annual costs of bird strikes 
have been estimated at $1.2 billion (Allan, 2000). Due to the high 
speeds involved, collisions are also almost always fatal to the birds 
involved (DeVault et al., 2015).

A wide diversity of bird species are known to collide with air-
craft (DeVault et  al.,  2016, 2018). Many strikes occur at low al-
titudes (Dolbeer,  2006), indicating that mainly local movements 
are involved (e.g. to and from roosts, breeding sites and foraging 
locations). However, large-scale movements, such as seasonal 
migrations, pose a threat to aviation (Dolbeer,  2006; Shamoun-
Baranes et al., 2018) that can be particularly difficult for individual 
airports to monitor and predict. During spring and fall migration, 
billions of birds move across broad geographic regions, greatly 
increasing the numbers of birds in aviation airspace (Dokter 
et al., 2018; Hahn et al., 2009; Horton, Van Doren, et al., 2019). In 
the continental United States, large movements take place around 
September–October, when migratory birds leave their breeding 
grounds to spend winter further south. In spring, they return to 
the breeding grounds, leading to another, slightly more condensed, 
pulse of large-scale movements taking place around May (Horton 
et al., 2020).

Most migrants fly at night, but many larger bodied species, such 
as raptors, migrate by day and some, such as waterfowl, migrate 
both day and night (Newton, 2008). However, pulses of migrating 
birds can pose risks both during migratory flight and during (day-
time) stopover movements in unfamiliar territory, so strikes associ-
ated with migratory movements can occur at any time of the day. An 
example of the risks posed by migratory species is the 2009 emer-
gency landing of US Airways Flight 1549 in the Hudson River, New 
York, caused by an in-flight collision with a flock of Canada geese 
Branta canadensis. The strike occurred outside the airport environ-
ment (approx. 8 km) and it was determined that the geese came from 
a migrant population, and occurred outside the population's breed-
ing range (Marra et al., 2009).

Military aviation is particularly vulnerable to bird strikes, as 
flights are often conducted at high speeds, low altitudes and with 

single engine planes (e.g. Dolbeer, 2006; van Gasteren et al., 2019). 
The threat to commercial aviation is primarily during take-off and 
landing, as cruising altitudes are usually higher than bird flight al-
titudes (Shamoun-Baranes et  al.,  2018). Damage caused by bird 
strikes is highly variable, dependent on the body mass of the bird 
struck and the speed of the aircraft, as well as other factors such 
as the location on the aircraft (e.g. ingestion into an engine, impact 
with a critical sensor and aircraft composition; Pfeiffer et al., 2018; 
Shamoun-Baranes et al., 2018). Since the impact energy of a collision 
scales with mass, heavier birds are more likely to cause damage than 
lighter birds (DeVault et al., 2018; Dolbeer & Begier, 2019). Species' 
flight behaviours can also affect the hazard they present. Flocking 
increases the likelihood of an aircraft striking several birds at once, 
which increases the probability of damage (DeVault et al., 2018) and 
even multi-engine malfunction (e.g. the case for US Airways 1549, 
Marra et al., 2009).

Airport operators employ a variety of methods to reduce the 
probability and severity of bird strikes caused by wildlife in the local 
airport environment, such as bird surveys, habitat management, ha-
rassment and lethal control (Cleary & Dolbeer, 2005). In the United 
States, wildlife monitoring and mitigation is required in an area 
that extends 3,048 m (10,000 feet) around most airports (Federal 
Aviation Administration, 2018). Some airports use dedicated avian 
radars for identifying individual birds locally at the airport (Mckee 
et  al.,  2016). However, these measures are less efficient for iden-
tifying risks posed by changes in species composition as popula-
tions move through the area, as well as for avoiding strikes that take 
place en-route and outside the immediate airport environment (see 
Dolbeer, 2011). The hazard level at any given place and time is not 
constant, but varies over the year, and requires information on the 
presence of both transient and resident species in the region, as well 
as each species' hazard level.

Information on bird distributions (e.g. from breeding bird sur-
veys) and bird movements (from observations, expert knowledge 
and radar observations) has been used to create warning systems, 
including forecast models for aviation in several countries, with the 
most successful implementations developed for military aviation 
(Shamoun-Baranes et al., 2008; Van Belle et al., 2007; van Gasteren 
et  al.,  2019). For example, the US military Bird Avoidance Model 
(BAM) uses yearly point counts to estimate species composition 
(Shamoun-Baranes et al., 2008), and hazard level has been estimated 
using historical strike data (DeVault et al., 2018).

Information on bird movements extracted from weather radar 
and other radar types has also been critical for supplying real-time 

data for developing better and more taxonomically and ecologically tuned models 
of likelihood of strikes occurring and severity of strikes.

K E Y W O R D S

bird migration, bird strikes, citizen science, eBird, flight safety, weather surveillance radar, 
wildlife management
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information for military flight planning, developing forecast models 
(Van Belle et al., 2007; van Gasteren et al., 2019) and modelling bird 
strike risks (Metz et al., 2018). Weather surveillance radar is used in 
a similar capacity for US military aviation safety via the Avian Hazard 
Advisory System (AHAS; Kelly et al., 2000).

Here, we investigate two complementary approaches to esti-
mate dynamic bird strike risk (probability and hazard) levels through-
out the year. We use two free and publicly available datasets. Data 
from US network of weather surveillance radars are used to identify 
large pulses of migratory birds, and eBird data (Sullivan et al., 2009) 
collected by citizen scientists are used to estimate species com-
position. Weather radar data provide information on the timing of 
movements, and eBird provide bird occurrence information across 
the full annual cycle, allowing us to estimate the occurrence of res-
ident, migratory and transient species in a region. We combine this 
with two estimates of species' individual hazard levels. The first is 
based on species mean body mass and flocking propensity, and the 
second on the record of previous strikes caused by the species. We 
then compare these metrics to bird strike records at three airports, 
testing if they can provide useful information and potentially com-
plement local wildlife surveys and inform other mitigation actions 
conducted at airports.

2  | MATERIAL S AND METHODS

2.1 | Bird strikes

We analysed bird strike incidents at three airports in the New York 
City (NYC)/New Jersey (NJ) area: John F. Kennedy International 
Airport (JFK), Newark Liberty International Airport (EWR) and 
LaGuardia Airport (LGA) (Figure  1). We selected these three 

airports as a test case because the airport operator, Port Authority 
of NY & NJ (PANYNJ), keeps very detailed records of wildlife in-
teractions occurring on or around the airports. The PANYNJ data-
base is maintained separately from the national FAA Wildlife Strike 
Database, however all strikes are also reported to the national 
database. We included data from 2013 through 2018, as prelimi-
nary analysis indicated that this period had the highest reporting 
frequency. The entire dataset includes reports dating from 1979, 
but early data are heavily skewed towards large-bodied bird spe-
cies, as strikes with smaller birds were less likely to be reported, 
see Figure  2. A clear demonstration of this can be seen in how 
the number of reported strikes within ‘passerines, perching birds, 
etc’, increased after the 2009 Hudson River incident (Figure  2), 
especially compared to the more stable reporting frequency of 
‘Waterfowl and Waterbirds’ (Figure  2). The number of reported 
strikes of smaller bodied species increased while the reporting of 
larger bodied species did not to the same extent, probably due to 
both increased diligence in reporting and ability to identify remains 
via DNA analysis (see e.g. Dove et al., 2008). The same pattern can 
be seen in the number of reported strikes for two common spe-
cies, Canada goose Branta canadensis and American robin Turdus 
migratorius (Figure  2), even though American robin populations 
were largely stable within the United States between 1970 and 
2017 (5.5% increase, Rosenberg et  al.,  2019) and Canada goose 
populations increased substantially during the same period (101% 
increase, Rosenberg et al., 2019).

The bird strike dataset includes all types of interactions between 
aircraft and wildlife, even if no carcass was recovered or no spe-
cies identification was made, including carcass encounters and near 
misses. Strikes were reported by airport staff, flight crews or main-
tenance workers. Wildlife remains were identified by trained staff or 
sent to the Smithsonian Institute's Feather Identification Laboratory, 

F I G U R E  1   Map of the Northeastern 
United States showing the three airports 
considered in the analysis in beige; 
LGA (LaGuardia), JFK (John F Kennedy 
International) and EWR (Newark Liberty 
International). Shown in orange is the 
locations of the two NEXRAD WSR-
88D weather surveillance radar stations 
considered in the analysis—KOKX (New 
York City) and KDIX (Philadelphia). Bird 
occurrence information from eBird 
was compiled within the light-grey 
region

KOKX

KDIX

LGA
JFKEWR
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Washington DC, for identification through DNA analyses or feather 
microstructure examination (see e.g. Dove et al., 2008). We only in-
cluded strikes labelled as ‘bird’ in the database, thereby excluding 
strikes labelled as ‘Unknown’, bats or other wildlife, but did include 
bird encounters of unidentified bird species in the overall sums of 
bird strikes. We defined all strikes where damage was indicated (ei-
ther ‘minor’, ‘substantial’ or ‘destroyed’, according to the International 
Civil Aviation Organization standards) as a ‘damaging strike’. We in-
cluded bird strikes from all locations and phases of flight (e.g. take-
off, landing). We classified each bird species identified in the strike 
data as migratory or non-migratory (based on author assessment, 
see also supplement in Horton, Nilsson, et al. (2019) and Table S2). 
We divided the number of reported bird strikes by the number of air-
craft movements (take-offs and landings) at the airports on the same 
day. Preliminary analysis showed no significant differences in regard 
to our analysis between the three nearby airports, so we summed 
the number of bird strikes per aircraft movement among the three 
airports and then averaged this total across each 5-day period of 
the year. We selected a time resolution of 5-day periods to match 
the time interval used to estimate species' probability of occurrence, 
described below.

2.2 | eBird

We estimated the probability of occurrence of 184 species identi-
fied in the bird strike data using spatiotemporal exploratory models 
(STEMs; Fink et al., 2010, 2014; Johnston et al., 2015) and crowd-
sourced bird observations from eBird (Sullivan et al., 2014), www.
ebird.org. Observations in eBird are compiled in checklist format in 
which the observer determines sampling protocol and survey ef-
fort. We only considered eBird checklists marked as ‘complete’ that 
employed ‘travelling count’ and ‘stationary count’ protocols from 1 
January 2004 to 31 December 2016 within a rectangular region cen-
tred on the three airports (76° to 72°W, 39° to 43°N; Figure 1). Data 
after 2016 were not yet available at the time of this analysis, and we 
included data from the start of 2004 (before the 2013 cut-off for the 
other datasets) to get an accurate representation of species compo-
sition throughout the year. We included checklists with a maximum 
duration of 3 hr and a maximum distance of 5 km for the travelling 
count protocol. We only considered confirmed observations that 
were identified as such by eBird's quality control procedure (Sullivan 
et al., 2014), which represents a combination of human and machine 
intelligence (Kelling et al., 2013). A total of 23,211 checklists were 

F I G U R E  2   Number of bird strikes at three NYC commercial airports attributed to (a) waterfowl and waterbirds, (b) Canada goose Branta 
canadensis, (c) passerines and other perching birds and (d) American robin Turdus migratorius. The red vertical lines indicate the date of the 
Hudson River incident (January 2009). After this date, the reporting frequency of bird strikes at the three airports increased
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available for analysis within the study area (see Figure 1). We ren-
dered STEM estimates of probability of occurrence for each species 
at a 0.05° spatial resolution and a 5-day temporal resolution. We 
define the probability of occurrence as the probability that a species 
is reported on a checklist standardized to 1 km and 1 hr of observa-
tion starting at 7 a.m. To get an accurate estimate of birds present in 
the region, we averaged the estimates of probability of occurrence 
across the 0.05° pixels within the study area for each species and 
5-day period. We excluded ten 5-day periods from our analysis that 
were poorly sampled by eBird (see Figure S1).

2.3 | Hazard level

To estimate the hazard present at a given time, it is important to 
know the local species composition at that time, as well as the rel-
ative danger posed by each species. We used eBird estimates of 
probability of occurrence to determine which species were present 
at a given time, and we explored two different ways of estimating 
strike severity for each species. The first approach was based on 
body mass and flight behaviour of each species, and the second was 
based on previous strike data. We defined the occurrence of birds 
present in the region of the three airports at 5-day intervals across 
the year to ensure sufficient eBird coverage. We compiled body 
mass information for each species from Dunning (2008), which we 
averaged between sexes. We categorized species into three groups 
based on their propensity to flock: ‘rarely’, ‘sometimes’ and ‘usu-
ally’ (Table S2). The mean percentage of strikes that caused dam-
age was 3.6% for the species that rarely flock, 5.5% for the species 
that sometimes flock and 7.3% for the species that usually flock. 
We calculated a body mass-based hazard index (BMHI) by taking for 
each species the eBird estimates of probability of occurrence mul-
tiplied by average body mass, doubled for ‘usually flocking’ species 
and multiplied by 1.5 for ‘sometimes flocking’ species (based on the 
mean percentage damaging strikes in each group). Other aspects 

of flight behaviour, such as manoeuvrability, were not taken into 
account. To generate the combined hazard index in the region, we 
summed these values for all species during each 5-day period of the 
year. For 5-day periods with missing eBird estimates (see Section 
2.2), we used the average BMHI from the period before and after, 
however, for identifying the species with the top individual body 
mass hazard indices this was not done and these periods are left 
empty (see Figure 3 and Figure S1). 

where Os is the eBird-based estimate of probability of occurrence for 
a species, ms is the average body mass for a species, Fs is a multiplier 
based on flocking behaviour—1.5 for ‘sometimes flocking’ and 2 for 
‘usually flocking’—and n the number of species present in that 5 days.

The relative hazard score (RHS) is a commonly used measure of 
species-specific damage rates based on previous bird strikes involv-
ing that species (DeVault et al., 2018). RHS was calculated for each 
species that had more than 10 strikes recorded in the strike dataset, 
using the entire bird strike data set from 1979 to 2018. For each 
species (s), we summed the percentage of strikes that resulted in 
damage (%D), percentage of strikes that resulted in substantial dam-
age (%SD), and the percentage of strikes that caused an effect on 
the flight (%EF; see DeVault et al. (2018) and Dolbeer et al. (2000)). 
Substantial damage is defined as damage or structural failure that 
adversely affects an aircraft's structural integrity, performance or 
flight characteristics. Substantial damage normally requires major 
repairs or replacement of the entire affected component. The RHS is 
then standardized between 1 and 100 by dividing by the maximum 
value for a species in the dataset and multiplying by 100. We then 
multiplied the RHS by the eBird estimates of probability of occur-
rence (O) for that species in each 5-day period to create an index 
with both relative hazard and occurrence taken into account. The 
sum of this for all species present in the area on each 5-day period 

BMHIfiveday =

n
∑

s=1

Os × ms × Fs ,

F I G U R E  3   The top five species with the highest individual BMHI during 5-day periods for the yeas 2013–2018 combined at three NYC 
commercial airports. The index is calculated using species' mean body mass, flocking propensity and probability of occurrence. The index for 
each species varies over the year as occurrence in the area changes, leading to a total of 12 species being top 5 at some point of the year. 
Empty columns show 5-day periods when not enough occurrence data were available to calculate indices (see also Figure S1)
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(n) gives us a dynamic index, RHSI, showing how the RHS and occur-
rence changes over the year.

2.4 | Weather surveillance radar

The US weather radar network (NEXRAD) consists of 143 radar 
stations across the contiguous United States, each station scan-
ning the atmosphere every 5–10  min, registering information on 
hydrometeors and other ‘small’ objects in the airspace, and ar-
chiving these data in near real time in a curated and public data-
base (Ansari et  al.,  2018). The potential value of this dataset for 
biological study and recent advances in the field of radar ornithol-
ogy (Shamoun-Baranes et  al.,  2019), including machine learning 
methods (Lin et al., 2019) and increased computational power, fa-
cilitated mining this large and unique resource to extract informa-
tion on bird movements at large spatial (Dokter et al., 2018) and 
long temporal scales (Horton, Van Doren, et  al.,  2019). We sam-
ple nocturnal migration periods because most migratory species 
fly during the night (Horton, Nilsson, et al., 2019; Newton, 2008) 
and the algorithms for automated extraction of bird movement 
from weather radar have been optimized for nocturnal migration 
(Dokter et al., 2011, 2019).

We extracted the amount of nocturnal bird movements reg-
istered at two NEXRAD WSR-88D stations (KDIX and KOKX, 
Figure 1) in the NYC/NJ area from 2013 to 2018, 1 January to 31 
December each year. We extracted vertically integrated reflectiv-
ity (VIR) profiles attributed to biological targets for a 35-km radius 
centred at each radar station, using the vol2bird algorithm in the 
r package bioRad (Dokter et  al., 2019). The lowest 200-m bin was 
excluded to avoid influence of ground clutter. Flight altitude is of 
course important for bird strike risk; however, since we in this case 
are using the radar data to indicate when large pulses of movements 
occur rather than exactly where birds are, we integrate movements 
across all altitudes (200–5,000 m). We calculated profiles of VIR for 
every half hour between sunset and sunrise and then averaged these 
values for each night (see Dokter et al., 2019 for additional details). 
We then averaged the VIR first per night between the two radar sta-
tions, and then over each 5-day period (to match eBird, see above). 
Lastly, for use in Figure 4, we standardized the average nocturnal 
bird movement overall years to the interval [0, 1].

2.5 | Analysis

We performed all comparisons as averages over non-overlapping, 
5-day periods of the year to match the temporal resolution of eBird 
estimates of probability of occurrence.

RHSI5days =

n
∑

s=1

%Ds + %SDs + %EFs

maxs

(

%Ds + %SDs + %EFs
) × 100 × Os .

F I G U R E  4   (a) Number of bird strikes per aircraft movement (bars) and amount of bird movements (line), averaged for each 5-day period 
for the years 2013–2018 combined at three NYC commercial airports standardized to the interval 0 to 1. (b) The number of damaging strikes 
per aircraft movement (bars) averaged for each 5-day period standardized to the interval 0 and 1. Also shown is BMHI (dashed line) and RHSI 
(dotted line) here standardized to the interval 0 and 1, and proportion of strikes that caused damage (full line) for each 5-day period
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We investigated whether increases in nocturnal bird flight activ-
ity within the region, as measured by weather radars, corresponded 
to increased bird strikes at the three airports. To test this, we cor-
related the mean number of bird strikes with the mean migration in-
tensity (VIR) for each 5-day period of the year in a linear regression. 
We also tested how well RHSI, BMHI and VIR predict the number 
of damaging bird strikes at the airports with GLMs using a Poisson 
distribution. We included data for every 5-day period between 2013 
and 2018 and specified an offset with the number of aircraft move-
ments taking place, to account for varying numbers of flights. We 
included year as a random effect to allow for inter-annual variation 
in the average number of strikes. We scaled fixed effects to unit 
variance and centred them to a mean of zero in order to directly 
compare effect sizes. We did not test RHSI and BMHI in the same 
models, as these variables were closely correlated (r2 = 0.77). We 
compared modules using Akaike information criterion (AIC) and per-
formed tests in R 3.6.0 (R Core Team, 2019), using packages lme4 
(Bates et al., 2015), MuMIn (Bartoń, 2019) and plots made with gg-
plot (Wickham, 2016) and ggeffects (Lüdecke, 2018).

3  | RESULTS

3.1 | Bird strikes

Of the 3,610 bird strikes reported to PANYNJ from the three air-
ports (2013–2018), 3,239 (90%) were identified as a species that we 
classified as migratory, indicating that it is unlikely to be present in 
the area year-round. This is consistent with the high proportion of 
migratory species in this region. Only 3%, 120 strikes, belonged to 
typically resident species. In 291 cases (8%), the remains were not 
identified to species level. Forty-seven per cent of the total number 
of strikes occurred during the three peak migration months (May, 
September and October). Five per cent of all strikes resulted in dam-
age (3% in substantial damage and 3% in an effect on flight) and 87% 
of all damaging strikes were caused by species classified as migra-
tory. In total, 173 aircraft were damaged in some way by birds from 
the migratory group between 2013 and 2018. In 99 instances (3%), 
an effect on the flight, such as a delay or cancellation, was reported. 
Of the 2,111 strikes classified as belonging to the guild ‘passerines, 
perching birds, etc’, 58 caused damage to the aircraft (3%), while in 
the guild ‘Waterfowl and Waterbirds’, 26% caused damage (48 dam-
aging strikes).

3.2 | Bird movements aloft

The VIR, attributed to birds aloft, measured by the two weather 
radar stations showed the expected pattern of two main migration 
periods per year, with a shorter period of high aerial densities in the 
spring, mainly in May, and a longer period with more birds aloft dur-
ing fall migration (peaking in September and October), see gold line, 
Figure  4a. Bird strikes showed 2  yearly peaks, co-occurring with 

these migration periods in spring and fall (grey bars Figure 4a). We 
found a high correlation in a regression between aerial bird move-
ment (VIR) and bird strike occurrence, averaged across all years 
(2013–2018). Approximately 80% of the variation in average bird 
strikes in each 5-day period was captured by the average amount 
of biological VIR registered by the weather radars (linear regression 
R2 = 0.8, p < 0.001, df = 72, Figure 5). When examining 5-day pe-
riods directly (pooling all data but not averaging across years), the 
correlation was still high, R2  =  0.61 (linear regression, p  <  0.001, 
df = 437, data not shown).

3.3 | Hazard level

We observed a correspondence between the number of damag-
ing strikes and BMHI, as shown in Figure 4b. Most of the damag-
ing strikes occur during late fall (October and November, red bars 
Figure 4b), although the proportion damaging strikes is not particu-
larly high, especially during October and early November (red line 
Figure  4b). In spring, most strikes occur during May, when move-
ments also peak (Figure  4a). However, the highest proportions of 
damaging strikes occur outside of this period, in late March, April 
and during June (Figure 4b).

The hazard-level indices varied over the year as different spe-
cies were present in the region. The BMHI matched reasonably well 
when there were high proportions of damage (compare dashed line 
and red bars Figure 4). The match was best in periods with high levels 
of damage during autumn, while the match was not as close during 
spring migration. March and April (just before the main migration 
movements), and October and November are identified by the BMHI 

F I G U R E  5   The mean number of bird strikes per 10,000 
movements (landings and take-offs) by migration intensity (VIR), 
means over 5-day periods of the year for the years 2013–2018 
combined. Both variables are on a natural logarithm scale. The solid 
line shows a linear regression (R2 = 0.8, p < 0.001, df = 72) with the 
dashed lines showing the 95% confidence bands
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as periods when many large species with high flocking likelihood are 
present in the area (Figure 3). March and April do not have a corre-
spondingly high number of damaging strikes; however, as this is a pe-
riod with very little strikes overall, the proportion of strikes causing 
damage (red line in Figure 4b) is comparable to the high-risk period 
in autumn. As the hazard index then decreases in late April–May, the 
proportion of damage also decreases as strikes increase. The largest 
contributors to the BMHI in March and April were Canada geese, 
great blue herons Ardea herodias, mallards Anas platyrhynchos and 
turkey vultures Cathartes aura, with Canada geese having by far the 
largest contribution (Figure 3). In September and October, the pat-
terns are similar: Canada geese, great blue herons, turkey vultures 
and double-crested cormorants Phalacrocorax auritus contribute the 
most (Figure 3). Late May through to end of August had low hazard 
levels.

The RHSI also identified a period in March/early April, just be-
fore the start of the main spring migration period, as the highest risk 
period (Figure 4b). In autumn, the RHSI and BMHI were more similar 
to each other than during the rest of the year (Figure 4b).

Model selection indicated strong support for the model using 
bird migration (VIR) and body mass (BMHI) to predict damaging 
strikes across all years (Table 1 and Table S1, Figure 6). Models in-
cluding only one of these predictors, or the RHSI index, had virtually 
no support (Table 1). The best model showed that a 1-standard de-
viation increase in BMHI is associated with an 27% increase in the 
likelihood of a damaging collision (Table S1). A 1-standard deviation 

increase in VIR is associated with an increased likelihood of a damag-
ing collision by 39% (Table S1).

4  | DISCUSSION

In 2017, over 14,000 bird strikes were reported only in the United 
States, with a minimum price tag of 142 million for that year alone 
(Dolbeer & Begier, 2019). Actions to mitigate both direct (e.g. col-
lision damage) and indirect (e.g. delays in operations) costs from 
bird strikes, especially in civil and commercial aviation, often rely on 
monitoring local risk factors, but such monitoring may not capture 
the presence of transient birds, creating a potentially dangerous loss 
of information that is impractical and costly to remedy. At the three 
airports, we looked at (situated along the Atlantic Coast flyway) ap-
proximately 50% of all bird strikes took place during three primary 
migration months, and 90% of all bird strikes, and 87% of damaging 
bird strikes, are attributable to bird species that are considered mi-
gratory and thereby not present in the region throughout the year. 
Across the United States, Devault et al., 2016 found 66% of all bird 
strikes occurred during migration periods, emphasizing the need for 
knowledge about migration as well as migratory movements in bird 
strike prevention.

Many sites lack the detailed historical record of strikes needed to 
understand how the likelihood of strikes changes over the year and 
during migration periods. Since strikes with small birds do not cause 

TA B L E  1   Model selection results for the number of damaging bird strikes in all 5-day periods between 2013 and 2018. We tested 
combinations of predictors RHSI, BMHI and migration intensity (VIR). RHSI and BMHI were not tested in the same models as they were 
highly correlated. All models include the total number of aircraft movements (take-offs and landings) as an offset and year as a random 
effect. Significance levels and estimates for the top model are given in Table S1

Intercept BMHI RHSI VIR df logLik AICc Delta Weight
Best model 
evidence ratio

−1.570 0.241 — 0.330 4 −375.620 759.3 0.0 0.991 1.0

−1.544 — — 0.313 3 −381.767 769.6 10.3 0.006 168.8

−1.548 — 0.066 0.320 4 −381.253 770.6 11.3 0.004 279.5

−1.486 0.218 — — 3 −394.328 794.7 35.4 0.000 4.8e+07

−1.465 — — — 2 −398.789 801.6 42.3 0.000 1.5e+09

−1.466 — 0.035 — 3 −398.667 803.4 44.1 0.000 3.7e+09

F I G U R E  6   Mean model predictions 
of the number of damaging strikes by (a) 
scaled migration intensity (VIR) and (b) 
scaled body mass hazard index (BMHI). 
VIR and BMHI are standardized to make 
effect sizes comparable
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as much damage and often are less conspicuous, they have been par-
ticularly overlooked and records can be incomplete. This is evident by 
the historically much lower reporting frequency of small bodied birds 
compared to that of larger species (Figure 2). However, a strike with a 
small bird can still cause delays, incur maintenance costs and, in rare 
cases, produce damage. In our example, strikes reported as belonging 
to ‘passerines, perching birds, etc’ caused damage to aircraft in 3% 
of the cases. This corresponds to 58 damaged aircraft at the three 
airports over 6 years. Most of this damage was light, but potentially 
incurred costs and caused delays. There is also the small but ever-
present possibility of strikes from small birds causing severe damage.

Numbers of bird strikes reported and amounts of bird move-
ments registered by the weather surveillance radar system were 
highly correlated, with 80% of the total number of strikes explained. 
This when compared as annual means across years, showing the po-
tential for using archived weather radar data to inform present strike 
risk, which would be especially valuable at sites with limited histori-
cal strike data. However, we also saw a high match when comparing 
migration activity and strikes in each 5-day period directly. Together, 
this shows that weather radar is a promising tool to accurately, and 
with high temporal resolution and low cost compared to other sur-
vey methods, identify periods with large movements of birds and 
thereby high likelihood of bird strikes, as is done for military aviation 
in several countries (van Gasteren et al., 2019). In the United States, 
the NEXRAD weather radar database spans nearly 2.5 decades and 
offers both near real-time data and access to historical data, and is 
already used to predict and show migratory pulses (birdc​ast.info, 
Van Doren & Horton, 2018).

The weather radar data used here characterized nocturnal move-
ments; however, bird strikes are not limited to collisions with noctur-
nal migrants. Diurnal migrants may pose even greater risks, as many 
large-bodied species migrate during the day (e.g. raptors and some 
geese). Days with beneficial migration conditions may overlap for di-
urnal and nocturnal movements, which may also contribute to the 
strong relationships we found between bird strikes and nocturnal 
migration. Further methodological development to adapt algorithms 
for diurnal migration, and separate bird movements from other diur-
nal targets such as insects, would engender the inclusion of diurnal 
radar data and improve information on diurnal migratory movements 
and bird strike risk.

Our results indicate that changing species composition during 
the migration season has important implications for understanding 
strike risk, especially in regions with high migratory turnover of 
species. The species probability of occurrence in the region, de-
rived from eBird, combined with body mass and flight behaviour, 
was a crucial predictor of damaging strikes. This highlights the po-
tential to use eBird observations to identify the time periods when 
particularly hazardous species are present in a region. This could 
supply important information for bird strike advisory messages, 
bird strike avoidance models and inform timing of local mitigating 
actions as well as supplying an additional source of information to 
use in wildlife hazard assessments and management plans (Federal 
Aviation Administration, 2018). In contrast, the hazard index based 

on previous strike damage (RHSI) was not a useful predictor for 
damaging strikes in our dataset. This might be due to the RHS 
inherently assigning more weight to the severity of the damage, 
while we here tested against any reported damage, or it could be 
due to incomplete records of previous strikes. Bird migration often 
occurs in pulses of large movements, and our model predicts that 
the risk for damaging strikes during periods with very high migra-
tion intensity increases by as much as 400% to 700% (Figure 6). 
Unsurprisingly, predicting when damaging strikes occur requires 
both information on which species are present in the specific re-
gion and the amount of movement that is taking place. This further 
highlights the need for site-specific and dynamic ways to describe 
bird strike risk.

eBird is a global database (La Sorte & Somveille, 2020), with 
observations in eBird being skewed towards human population 
centres (Fink et al., 2020). The eBird species distribution models 
have been developed from local to global scales (Fink et al., 2020; 
https://ebird.org/scien​ce/statu​s-and-trend​s/), and we therefore 
feel it is appropriate to suggest that the hazard-level index pre-
sented in this study can be replicated at other urban airports. 
The STEM modelling framework used to estimate the probability 
of occurrence does account for sampling biases in the data, but 
the effect of these biases may increase as sample sizes decrease. 
These estimates describe the likelihood of encountering a given 
species in a given area, not the number of individual birds in that 
area. The recent development of methods to estimate relative 
abundance using eBird data (Fink et al., 2019) may provide means 
to further enhance the quality of the metrics developed in this 
study.

By using data sources that take seasonal variation into account, 
pilots and flight support staff can access accurate information on 
variation in potential risks for collisions. General and less informa-
tive alerts can be avoided, as such alerts lose value and attention 
rapidly if they lack spatial and temporal specificity. Since eBird and 
weather radar data provide standardized measures of bird move-
ments in any given area, using these datasets could also help in-
crease the standardization of bird strike warnings between airports 
and different countries, enabling comparisons and evaluation of 
site-specific risk factors. The use of weather radar as a warning 
system for military aviation and standardization of bird warnings 
(BirdTAMs) has been successfully implemented in parts of Europe 
(see e.g. van Gasteren et al., 2019; Ginati et al., 2010). This method 
is in no way limited to the United States, as use of weather radar 
data to monitor bird movements is increasing world-wide (Nilsson 
et  al.,  2019; Shamoun-Baranes et  al.,  2019) and so is the use of 
eBird and other similar monitoring programs (such as www.eurob​
irdpo​rtal.org), further expanding the sites where similar data could 
easily, and with low cost, be obtained and used to inform bird strike 
mitigation.
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