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Optical resonances in nanostructures can be harnessed to produce a wide range of structural colors. Conversely, the
analysis of structural colors has been used to clarify the nature of optical resonances. Here, we show that silicon nanowire
(NW) pairs can display a wide range of structural colors by controlling their radiative coupling. This is accomplished
by exciting a series of Fabry–Pérot-like modes where light is repeatedly scattered between two NWs. These modes are
beyond the expectation from the conventional chemical bonding model under a quasi-electrostatic approximation,
in which only bonding and antibonding modes can be formed in a pair system through modal hybridization. The
additional eigenmodes found in a two-resonator system originate from the nonlinear, frequency-dependent coupling
strength derived from the radiative nature of low-Q resonators. The Fabry–Pérot modes can be tuned across the entire
visible frequency range by varying the distance between two NWs, leading to what we believe is a new type of univer-
sal building blocks that can provide structural color within a subwavelength footprint. The presented results pave
the way toward the design and usage of highly tunable resonances that exploit the radiative coupling of high-index
nanostructures. ©2021Optical Society of America under the terms of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.418888

1. INTRODUCTION

The discovery of new mechanisms to create color have always been
at the heart of human society––from colorful cave paintings in pre-
historic times to advanced metasurface displays with a wide color
gamut in modern life [1]. Nowadays, it is well understood that the
intrinsic color of most materials originates from optical absorption
in parts of the visible light spectrum due to electronic transitions
in the associated media (pigments) [2]. Inspired by such resonant
optical transitions in materials, additional geometry-induced
optical resonances have been explored to carefully manipulate the
angular, spectral, and polarization-dependent property of the scat-
tered light, and create structural color [3]. Compared to pigments,
these structural colors are chemically more stable, and have highly
designable spectra as well as the potential for dynamic tuning [4].
Photonic crystals [5–7] are well known to produce structural colors
[8–11], as the periodic distribution of the dielectric constant in
photonic crystals gives rise to a photonic band structure that only
reflects/transmits light in well-defined angular and frequency
ranges [5–7]. However, a relatively large footprint is required to
realize efficient color filtering due to the coherent interaction of
many unit cells. More recently, individual nanoparticles have also
been shown to produce structural color, and offer improved con-
trol over color spatially due to their nm-scale footprint [12–24].
This is attributed to the fact that metallic [12–19] or dielectric
[20–24] nanoparticles and nanowires (NWs) support plasmon

or Mie resonances that can strongly scatter light at their resonant
frequencies. The resonant frequency of such nanostructures is con-
trolled through the choice of their size, shape, and material. Precise
control over the scattering spectrum thus requires state-of-the-art
nanofabrication techniques like electron-beam lithography or
nanoimprint lithography [25,26].

Unlike the well-studied light scattering properties of periodic
photonic crystals and individual nanoparticles mentioned above,
we focus on the emergent optical properties of pairs or small clus-
ters. In these systems, color generation results from the nontrivial
electromagnetic interactions of nanoresonators. These systems
combine the benefits of a subwavelength footprint with the broad
tunability of periodic structures. Conventionally, an equivalent
chemical bonding model [27–30] is used to describe the optical
coupling between nanoresonators and the associated structural col-
ors [13,31–33]. Under a quasi-electrostatic approximation, only
bonding and antibonding modes can be formed in a pair system
through modal hybridization. Significant shifts of the resonance
frequency (or splitting thereof ) is only expected when the optical
near fields strongly overlap (i.e., two nanoresonators are extremely
close to each other) [34–37]. However, a series of studies in scat-
tering properties of metallic nanoparticle pairs/arrays [38–41]
suggest that, besides the radiative decay of plasmon resonances, the
spectral shape of the scattered light can also be modulated, even
in the absence of near-field coupling. Although the spectral shifts
are found to be small for zero-dimensional (0D) nanoparticle pairs
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due to the inefficient radiative coupling, these results indicate the
possibility of realizing structural color if a strong radiative coupling
can be achieved between two nanoresonators. Radiative coupling
has also proven to be important in coupled silicon (Si) NW systems
and facilitated the creation of angle-sensitive detection systems
[42].

Here, we demonstrate both theoretically and experimentally
that Si NW pairs can display structural colors across the entire
visible spectral range by controlling their radiative coupling. A
series of additional Fabry–Pérot-type modes [43] can be formed as
a consequence of iterative light scattering between two neighbor-
ing NWs [44]. These quasinormal modes (QNMs) [45] cannot
be predicted by the conventional chemical hybridization model,
which exhibits/predicts only bonding and antibonding modes.
Instead, a nonlinear frequency-dependent Green’s function must
be used to describe the coupling between two neighboring NWs.
The resonant frequency of the fundamental Fabry–Pérot mode
is strongly shifted with respect to the original resonant frequency
of a single NW, even in the absence of evanescent-field coupling.
The resonant frequency can be tuned controllably across the entire
visible frequency range by changing the distance between the two
NWs while preserving significant color purity. Therefore, a NW
pair with fixed NW dimensions can function as a universal build-
ing block for structural color, while maintaining a subwavelength
footprint. We further envision that a tunable structural color can
be realized through the use of stretchable substrates or microelec-
tromechanical devices (MEMS) [46,47], therefore leading to a
potential nanoscale dynamic color control platform.

2. RESULTS

We start our analysis by considering an individual square cross-
sectional Si NW, which supports a range of leaky Mie-type optical
resonances [48,49]. By performing a QNM analysis of the scat-
tering spectrum of the NW, we find that its optical response is
dominated by the fundamental TM11 QNM. As shown in the inset
of Fig. 1(b), the TM11 mode bears an electric field distribution
with one antinode in the Ẽ z-field (parallel to the NW) distribution
inside the NW, indicating that it behaves as a resonant electric
dipole. The linear electric dipole moment is given by pz = αE z,inc,
where α denotes the polarizability and E z,inc refers to the inci-
dent field at the center of the NW. We further assume that the
polarizabilityα takes the simple form

α =
−iκ
ω̃0 −ω

, (1)

where ω̃0 =ω0 − iγ0 is the complex frequency of the TM11 QNM
and κ is a complex frequency-independent coefficient. We note
that this single-pole formula is only approximative. It neglects
the embodiment of higher-order multipoles, which are not fully
negligible according to the QNM analysis. Its main strength is its
simplicity and accuracy to quantitatively model the NW polar-
izability in the spectral range of interest. We retrieve ω̃0 from the
QNM computation using the mode solver of COMSOL valid
for nondispersive materials, and κ is obtained by fitting Eq. (1)
with full-field simulation results αsim of the polarizability obtained
by integrating the local polarizability over the NW cross-section,
αsim =

∫
ε0(εSi − 1)E z(r)dS/E z,inc(r= 0). Here, E z(r) is the

electric-field distribution of the NW under plane-wave illumina-
tion (r= 0 is the center of the Si NW) and εSi = 16 is the relative

(a)

(b)

h
w

d

100 nm

(c) Bonding Anti-Bonding Fabry-Perot

Q = 0.64
fr = 2.23×1014 Hz

Q = 3.42
fr = 3.65×1014 Hz

Q = 3.27
fr = 8.12×1014 Hz

kd

kd

sca sca

Single NW

10
fr (Hz) 1014

0

-0.5

-1

-1.5

-2

f i 
(H

z)

1014

0

0.5

1

1.5

2
10     [Hz   ]-29       -2

Fabry-Pérot

Anti-Bonding

Single NW

Bonding

0 5

1

-1

 = 1346 nm  = 821 nm

Re (Ez)
~

[kg
m

2

-2

10
12

1/2
1/2/(s·C

)] = 369 nm

Fig. 1. Fabry–Pérot mode in a Si NW pair. (a) Left: QNM is formed
as the result of light scattering back and forth between two neighbor-
ing NWs. Right inset: Cross-section scanning electron microscope
(SEM) image of the fabricated Si NW pair. (b) Calculated reciprocal
1/ det(A(ω̃)) of the determinant of the 2× 2 matrix used to model the
coupled NW (dipole) system as a function of the real and imaginary
parts of complex frequency ω̃. The NW separation distance is 200 nm.
The QNM frequencies computed with QNMEig for the bonding, anti-
bonding, and Fabry–Pérot modes are overlaid as a function of the NW
spacing from 200 nm (blue circles) to 400 nm (yellow circles) in steps of
20 nm. The Ẽ z field distribution of the dipolar TM11 QNM for a single
NW (located at the white star position) is also plotted for reference. (c)
Out-of-plane electric-field distributions Ẽ z(x , y ) of the three simulated
QNMs for a 200 nm spacing. In all plots, the modes are normalized with
the PML-normalization method [52]. The normalization allows for a
direct visual comparison of the interaction strength of the mode with
driving field. All data are obtained for a 50 nm square size NW and for a Si
permittivity εSi = 16.

permittivity of Si. The good agreement between αsim and the fitted
polarizabilityα (see Fig. S1 in Supplement 1), clearly indicates that
Eq. (1) is a reasonable approximation.

Next, we focus on a Si NW pair system as shown in Fig. 1(a).
We apply the coupled dipole theory [50,51] to simply take the
interaction between NWs (effective linear dipoles p1 and p2) into
account, so(

i (ω̃0 − ω̃) −κG (d , ω̃)
−κG (d , ω̃) i (ω̃0 − ω̃)

)(
p1

p2

)
= 0. (2)

The diagonal terms correspond to the intrinsic harmonic
oscillation of the individual linear dipoles, where ω̃ is the
complex eigenfrequency of the system, and the off-diagonal
terms represent the coupling between the two linear dipoles.
G(d , ω̃)= ik2

4ε0
H0(kd) is the Green’s function that defines the

scattered field in terms of the dipole moment. H0 is the zeroth-
order Hankel function, d is the distance between the two effective

https://doi.org/10.6084/m9.figshare.14099141
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dipoles, and k = ω̃
c is the complex eigen wave vector for the cou-

pled NWs. We emphasize that the off-diagonal term (i.e., the
coupling strength) g (ω̃)=−κG(d , ω̃) does not linearly depend
on frequency. As a result, the determinant of the 2× 2 matrix
det(A(ω))= 0 that is used to find the eigenvalues (or poles) of the
coupled NW system is no longer simply the common quadratic
polynomial in one variable ω̃. The number of solutions is therefore
no longer restricted to two [44].

The analysis above is in sharp contrast with most of the reported
chemical bonding models [27–30] used to describe the coupling
between two optical resonators, in which the off-diagonal term is
usually assumed to be independent of frequency for a given system,
and governed by the near-field overlap of the two resonators. We
emphasize that such a fixed coupling-strength approximation
is only valid if the coupling strength g is much smaller than the
original complex frequency ω̃0. This is generally well-applicable
for high-Q resonators for which the evanescent fields vanish very
quickly away from the resonator surface. As a result, the mode
splitting is relatively weak (ω̃∼ ω̃0) and thus g (ω̃) can be reason-
ably approximated by g (ω̃0). However, this approximation fails
for highly leaky optical resonators such as the fundamental TM11

Mie modes for Si NWs, where Q ∼ 1. The radiative fields of these
low-Q leaky modes have a natural phase evolution and grow expo-
nentially in amplitude with the distance away from the resonator in
the QNM profile [45,52,53]. This originates from the exponential
decay of the amplitude of the mode in time domain. Therefore,
the coupling strength g oscillates with increasing NW distance
and can be comparable to the original frequency ω0, resulting in a
nonnegligible difference between g (ω̃) and g (ω̃0).

To show this, we apply the coupled dipole theory above to a
50 nm sized square Si (refractive index n = 4) NW pair with 200
nm center-to-center distance. The retrieved effective linear dipole

polarizability for a single NW is −iκ
ω̃0−ω
=

(6.1−5.2i)×10−11

(3.4−1.5i)×1014− f
[F ·m].

The reciprocal of the determinant of the 2× 2 matrix
abs( 1

−(ω̃0−ω̃)
2
−κ2G2(d ,ω̃)

) is plotted in the complex frequency

plane, as shown in Fig. 1(b), such that the QNM frequencies occur
as pole maxima. Three poles can be found within the frequency
range of interest, indicating that there are at least three QNMs
for the studied NW pair system. To verify the existence of the
QNMs predicted with the dipole approximation, we perform full
wave simulations with the COMSOL mode solver. We overlay
the complex frequencies found from QNM simulations for a NW
distance, ranging from 200 nm (blue circles) to 400 nm (yellow
circles) in steps of 20 nm, to track the modal dispersion. The
complex frequency of the TM11 QNM for a single NW (white
star) is also shown for reference. We attribute the small difference
between the frequencies obtained from the analytical poles and
blue circles to the imprecise nature of Eq. (1). Figure 1(c) shows the
out-of-plane electric field distribution of the three eigenmodes as
retrieved with the numerical solver. We find that the first two of the
three modes can be recognized as the conventional bonding (lower
frequency) and antibonding (higher frequency) modes, mimicking
the chemical bonding model. It should be noted that both show a
red shift with increasing NW spacings and do not converge to the
complex frequency of the original TM11 QNM for large d . This
highlights the oscillating and frequency-dependent nature of the
dipole–dipole coupling strength.

The third QNM, on the other hand, which exhibits an antin-
ode in the air gap between the two NWs, is rather unique and is
not predicted from the conventional chemical bonding model.
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Fig. 2. Fabry–Pérot resonant nature of the new mode found for the Si
NW pair. (a) Total phase (yellow), scattering phase (orange), and propa-
gation phase (blue) of the Fabry–Pérot mode as a function of distance
between two NWs. The phases are calculated at resonance using complex
frequencies from numerical QNM simulation. (b) Simulated scattering
efficiency of the Si NW pair as a function of incident wavelength and
NW separation distance under normally incident, TM-polarized illu-
mination. The black dashed line represents the center wavelengths of
the Fabry–Pérot modes to increase NW separations as obtained from
QNM simulations. The scattering efficiency is defined as the scattering
cross-section normalized to the geometrical cross-section of two NWs.

The complex frequency of this mode shifts significantly from
that of the original TM11 mode (single NW), revealing a con-
siderable coupling strength between the neighboring NWs. We
attribute the formation of this mode to a Fabry–Pérot resonance
between two NWs, where light is iteratively scattered back and
forth between the NWs. At resonance, two NWs are in phase
as 2π is accumulated when light scattered from one NW to the
other. To visualize this physical picture, we decompose the phase
evolution into two parts: the scattering phase from of the NWs
ϕsca = arg( −iκ

ω̃0−ω̃FP
ω̃

3/2
FP e i π4 ) and the propagation phase in the

air gap ϕprop = Re( ω̃FP
c d). Figure 2(a) shows the phase decom-

position results as a function of the NW separation distance d .
We find that a constant 4π phase evolution is observed when the
light travels back and forth in one round trip, regardless of d . This
evidences the Fabry–Pérot nature of the QNM [43]. Note that
higher-order Fabry–Pérot modes can also be found in the studied
coupled NW system, as long as the 2nπ (n = 2, 3, . . .) phase is
accumulated when light bounces back and forth in one round trip
(see Supplement 1, Fig. S2).

The Fabry–Pérot QNM shows a stronger dispersion with
the separation distance (200 nm< d < 400 nm) compared to
the bonding and antibonding modes, as shown in Fig. 1(b). The
resonant frequency spans almost the entire visible frequency
range from ∼4.6× 1014 Hz to 8.1× 1014 Hz (corresponding
to 370–650 nm) when the distance between the two NWs varies
from 200 nm to 400 nm. As a result, we envision that the demon-
strated Fabry–Pérot mode may function as a new type of universal
building block to achieve structural color. Each unit cell would
be composed of similar-sized nanostructures like photonic crys-
tals, but with a varying NW spacing. Such a design also offers
subwavelength resolution similar to resonant particles. Figure
2(b) shows the simulated scattering efficiency of the Si NW pair
as a function of the incident wavelength and NW spacing under
normally incident, TM-polarized illumination. A single scattering
peak is observed for every NW spacing. The positions of the peaks
perfectly overlap with the real parts of the complex frequencies
predicted with the QNM simulations (black dashed curve). This
additionally corroborates that the main scattering characteristic of
NW pairs originates from the excitation of a Fabry–Pérot mode.
In Supplement 1, Fig S3, we use the QNM expansion theory [53]

https://doi.org/10.6084/m9.figshare.14099141
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to quantitatively verify that the dominant contribution to the
scattering cross-section spectrum of the pair is the Fabry–Pérot
QNM.

The dispersion of Si has been neglected in the previous analysis,
although both the real and imaginary parts of the refractive index
of Si appreciably vary in the spectral region of the Fabry–Pérot
QNM, for λ< 450 nm. To confirm the existence of that mode,
we have repeated the QNM computations with a Si permittiv-
ity function consisting of pairs of Lorentz poles [54] and using
either the QNM solvers QNMEig [53] or the freeware Modal
Analysis of Nanoresonators (MAN) [55]. We find that the reso-
nant frequency Re(ω̃FP) of the Fabry–Pérot mode is only slightly
changed by adding dispersion. This can be attributed to the fact
that Fabry–Pérot and nanowire resonances, Re(ω̃FP) and Re(ω̃0),
are significantly different so that the propagation phaseϕprop domi-
nantly sets the Fabry–Pérot condition. On the other hand, the
quality factor is significantly decreased owing to the large value of
Im(εSi) at short wavelengths.

Additionally, with the solver QNMEig, we found that there
exists a great number of higher-order modes with frequencies close
to Re(ω̃FP) for small NW spacings (d < 250 nm), for which the
fields inside the Si NWs exhibit more than one anti-node. These
higher-order modes also exist when the dispersion is turned off, but
at frequencies much larger than Re(ω̃FP). Dispersion pushes them
closer to Re(ω̃FP) because of the increased refractive index of Si at
shorter wavelengths. We also note that some of these higher-order
modes are characterized by strong fields in the air region between
the two wires. In analogy to the Fabry–Pérot mode mentioned
above which is caused by the nonlinear coupling between the
dipolar modes of the wire, these modes are formed by the radiating
coupling between wire multipole modes, and may thus be named
multipolar Fabry–Pérot modes. When the resonator is excited
by a monochromatic plane wave, both the higher-order modes
(whether they are multipolar Fabry–Pérot modes or not) and
the Fabry–Pérot mode can be excited, leading to a complicated
response spectrum. In the experimental study discussed below,
we mostly focus on NW pairs with Fabry–Pérot mode resonance

wavelengths larger than 450 nm, thus ignoring the dispersion Si
makes for a reasonable assumption. Furthermore, the higher-order
modes do not play an important role in the scattering response.

To experimentally demonstrate the color generation of the Si
NW pair, we fabricate a series of Si NW pairs with varying NW
spacing on a sapphire substrate using electron-beam lithography.
The fabricated NWs all have a similar square cross-section, as
shown in Fig. 1(a), with dimensions around 50 nm. The length of
the NWs is chosen to be 50 µm to avoid finite-length effects [56].
Figure 3(a) shows the bright-field cross-polarized reflection optical
image, in which Si NW pairs scatter different colors of light. The
observed colors span almost all the way from the blue to red as a
function of the NW spacing, confirming the potential of Si NW
pairs as building blocks for structural color. The corresponding
top-view scanning electron microscope images are shown in Fig.
3(b). We perform full-field simulations for the fabricated struc-
tures by taking the material dispersion and asymmetric dielectric
environment into account. The simulated scattering efficiency
spectra under normally incident, TM-polarized illumination are
shown in Fig. 3(c). All the NW pairs show a strong, single scatter-
ing peak at a resonance wavelength between 490 nm and 650 nm as
the distance between the NWs increases from 200 nm to 400 nm.
Figure 3(d) shows the measured cross-polarized reflection spectra
for different Si NW pairs that were taken using a confocal optical
microscope. To filter out the direct reflection from the sapphire
substrate, the incident beam is first polarized 45 deg with respect to
the NW direction. Next, the scattered light is collected through a
second polarizer that is oriented orthogonal to the first one. In this
cross-polarized measurement scheme, only light scattered by the
NWs is collected. In general, the measured reflection spectra are in
good agreement with the simulated scattering efficiency spectra.
The additional reflection peak around 500 nm may result from the
nonuniform transmittance of the second polarizer, and small kinks
in the spectra (560 nm, 610 nm, etc.) are caused by the interference
in polarizer thin films. A higher scattering peak contrast is observed
in the measurements as compared to the simulations in which the
scatterings to all the angles are included. This is attributed to the
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Fig. 3. Experimental demonstration of structural color from Si NW pairs. (a) Cross-polarized reflection optical image of the fabricated Si NW pairs. All
the NWs are 50µm long and have the same 50 nm square size. (b) Top-view scanning electron microscope images of fabricated Si NW pairs. The separation
distance between the NWs increases from 200 nm to 400 nm in steps of 50 nm. (c) Simulated scattering efficiency of the designed Si NW pairs on the sap-
phire substrate as a function of the incident wavelength under normally incident, TM-polarized illumination. The dispersion and absorption of Si are con-
sidered in the simulation. (d) Measured cross-polarized reflection spectra for the different fabricated Si NW pairs.
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The NW separation distance is 200 nm. The complex frequencies of the QNMs computed with COMSOL for a constant Si permittivity are overlaid as blue
circles. The out-of-plane electric field distributions of the corresponding Fabry–Pérot modes are shown in the lower panel.

fact that the scatterings from the excited Fabry–Pérot modes are
highly directional normal to the substrate, which lies within the
NA= 0.4 of the collection objective used in the measurement. We
should note that the demonstrated structural color from the Si NW
pairs has a strong polarization and angular dependence, which can
be useful in novel applications such as transflective displays and
optical information encryption.

Finally, we note that the Fabry–Pérot modes demonstrated
above are not only supported by a NW pair, but can also be seen
in assemblies comprised of a plurality of NWs. The Fabry–Pérot
modes exist universally through the coupling between NWs (linear
electric dipoles). The coupled dipole theory for n NWs can be
generalized as∑

m

Al ,m pm = 0 (l ,m = 1, 2, · · · , n) , (3)

where Al ,l = i(ω̃l − ω̃) and Al ,m (l 6=m) =−κl G(dl ,m, ω̃). ω̃l

and κl are the complex eigenfrequency and coupling coefficient
for the l th NW, and dl ,m is the distance between the l th and mth
NW. Figure 4 shows the reciprocal of the determinant of the 3× 3
matrix and 4× 4 matrix used to describe the coupling between
three or four identical NWs arranged in parallel in free space, as
a function of real and imaginary part of the complex frequency.
Besides the conventional modes expected from the chemical bond-
ing model (labeled as 1, 2, 3. . . ), multiple Fabry–Pérot modes can
also be found in both cases. The number of Fabry–Pérot modes
of the same order supported is equal to the number of air gaps in
the NW chain. The complex frequencies from numerical QNM
simulations are overlaid with blue circles and are in good agreement
with the analytical results (poles on the complex plane) under the
dipole approximation. The electric field distributions of the sim-
ulated QNMs shown in Fig. 4 confirm the Fabry–Pérot resonant
nature of these modes: The electric field is concentrated in the
space between the neighboring wires. These Fabry–Pérot modes
resonate at different wavelengths and can be labeled by their quasi
in-plane momentum. Therefore, with a change of the incident
angle, different Fabry–Pérot modes dominate the excitation, lead-
ing to the change of the scattering color. As the number of NWs

increases, we move from a regime in which a few discrete QNMs
dominate the structural color response to a regime in which the
well-known iridescence of periodic structures should take place
with a continuum of QNMs indexed by the in-plane momentum
wavenumber. The QNM at0 point for a periodic structure [57] is
a 1D cavity mode with symmetric radiation profiles with respect
to the plane of NW array, and therefore renders the Si NW array at
resonance as a perfect semiconductor metamirror [58], as shown in
Supplement 1, Fig. S4.

In summary, we demonstrate both theoretically and experi-
mentally that two identical neighboring Si NWs with different
spacings form a new universal building block for structural color,
while maintaining a subwavelength footprint. The structural color
results from a series of Fabry–Pérot modes formed by light that
is bouncing back and forth between two NW nanoresonators,
and can be tuned across the entire visible spectrum by varying the
interwire distance. These Fabry–Pérot modes are not expected
from the conventional chemical bonding model. Instead, they can
be well described by considering a nonlinear, frequency-dependent
coupling between two NWs. The studied system presents what
we believe, to the best of our knowledge, is a novel way to generate
optical resonances in coupled nanostructures and expands the
understanding of resonant coupling and the manipulation of light
at the nanoscale.
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