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Out-of-time-order correlators (OTOCs) have proven to be a useful tool for studying thermalization in quantum
systems. In particular, the exponential growth of OTOCS, or scrambling, is sometimes taken as an indicator of
chaos in quantum systems, despite the fact that saddle points in integrable systems can also drive rapid growth in
OTOCs. By analyzing the Dicke model and a driven Bose-Hubbard dimer, we demonstrate that the OTOC growth
driven by chaos can, nonetheless, be distinguished from that driven by saddle points through the long-term
behavior. Besides quantitative differences in the long-term average, the saddle point gives rise to large oscillations
not observed in the chaotic case. The differences are also highlighted by entanglement entropy, which in the
chaotic-driven dimer matches a Page curve prediction. These results illustrate additional markers that can be
used to distinguish chaotic behavior in quantum systems, beyond the initial exponential growth in OTOCs.

DOI: 10.1103/PhysRevA.103.033304

I. INTRODUCTION

The dynamics of quantum information provides a link be-
tween different areas of physics as is evident in the study
of fast scrambling, quantified by the exponential growth of
the out-of-time-order correlators (OTOCs) [1–7]. First intro-
duced to describe the dynamics of quantum information in
black holes, scrambling has since been used to probe the
connections among the dynamics of entanglement, chaos, and
thermalization [8–13]. In particular, studies of chaotic mod-
els in periodically driven and undriven systems have used
a variety of OTOCs, including the fidelity out-of-time-order
correlator (FOTOC), to show that in the chaotic phase the
OTOC grows, often exponentially, up to an Ehrenfest time
after which it saturates to a steady-state value [8–12,14–
19]. If the state of an isolated quantum system is suffi-
ciently delocalized in the basis of energy eigenstates, the
system is expected to relax towards the “diagonal ensem-
ble” (DE) due to dephasing between energy eigenstates [20].
Consequently, in the absence of an external drive an initial
product state will evolve to a finite-temperature thermal state
with volume-law entanglement entropy, whereas a periodi-
cally driven system will evolve to an infinite-temperature state
[11,14,15,17,20].

Although the exponential growth of OTOCs is often associ-
ated with chaos, it has been demonstrated recently that, in the
absence of chaos, the exponential growth of an OTOC may
be driven by an unstable trajectory associated with a hyper-
bolic fixed point—or saddle point—in the semiclassical phase
space [13,16,21–26]. So far, scrambling without chaos has
been observed in Ising spin chains with long-range interac-
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tions [21], the truncated Lieb-Liniger model [22], the inverted
harmonic oscillator [23–26], the Dicke model [16], and the
Lipkin-Meshkov-Glick (LMG) model [13]. Saddle-dominated
scrambling in the presence of chaos has been observed in the
kicked rotor model, the Feingold-Peres model of coupled tops
and elastic manifolds pinned in a random potential [13].

In this paper we study the entanglement dynamics in the
two-site Bose-Hubbard model, showing explicit differences
between the chaotic and the saddle-point regimes. This model,
which could be experimentally implemented in ultracold
atoms, allows access to stable, unstable (chaotic), and saddle-
point regions in phase space through tuning and modulation
of the interwell tunneling rate. We solve exactly the short-time
and long-time (times much longer than the Ehrenfest time) dy-
namics for up to 103 particles. In the chaotic regime, OTOCs
grow exponentially until saturating at the infinite temperature
prediction, consistent with Floquet thermalization. In contrast,
we find that the saddle-point FOTOC exhibits large long-lived
oscillations around the diagonal ensemble prediction. These
differences can be traced back to distinct differences in the
respective diagonal ensembles, reflected quantitatively in the
Shannon entropy. We also study the long-time behavior of
the von Neumann entanglement entropy and its scaling with
subsystem size to highlight the differences between the two
regimes and confirm the lack of thermalization at the saddle
point.

To demonstrate that these ideas generalize to higher-
dimensional phase spaces, we also calculate FOTOC behavior
for the well-known Dicke model, which comprises noninter-
acting spins coupled to a photon mode [27]. By varying the
relative strength of the spin-photon coupling, one can tune to
chaotic regimes without the need for external driving. Here we
find short-term scrambling in the presence of the saddle point,
regardless of the extent of the semiclassical chaos. However, it
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FIG. 1. (a) FOTOCs) for driven-dimer chaotic phase space (blue dotted line), a saddle point (thick red line), and a point slightly perturbed
from the saddle point (green dashed line) for N = 1000 particles. The infinite-temperature uniform diagonal ensemble (UDE) prediction is
indicated by the horizontal thin orange dashed line. The saddle-point state diagonal ensemble prediction is indicated by the horizontal thin
red line. (b) Driven-dimer von Neumann entanglement entropy for a subsystem of s = N/2 out of a total of N = 100 particles. The Page
curve prediction is indicated by the thin purple dashed-dot line. (c) Post-Ehrenfest time-averaged von Neumann entanglement entropy for the
driven-dimer chaotic (blue error bars) and saddle-perturbed (green error bars) states with two standard deviations indicated by bar height.
The Page curve prediction (purple dashed-dot line) coincides with the chaotic state result (blue error bars). Entanglement entropy is averaged
over 20 � J0t � 200. (d) Driven-dimer semiclassical phase space for the regimes with a saddle point (top: NU = −2, J = 1) and chaos
[bottom: NU = −1, J (t ) = 1 + 1.5 cos (0.5t )]. The perturbed state (z, φ/π ) = (0, 0.06) is indicated by the green star and the saddle point,
and chaotic states (z, φ/π ) = (0, 0) are indicated by the red square and blue circle, respectively. The phase-space representation is periodic in
φ ∈ [−π, π ).

is again only in the chaos-dominated regime where long-time
thermal behavior is evident.

Although much previous work has focused on the short-
term dynamics of OTOCs, other authors have also recently
turned to the long-term dynamics to provide a less ambiguous
probe of chaos in quantum systems. Apart from the issues
associated with saddle points that we focus on here, the short-
term dynamics can be ambiguous in a mixed phase space
with regular and chaotic regions, especially when delocalized
initial states are used with the OTOCs. In such cases, the
long-term behavior provides a clearer indication of the tran-
sition between integrability and chaos as seen, for example,
in the quantum kicked rotor [8], Bose-Hubbard systems [9],
quantum maps [10,18], and spin chains [18,19].

II. MODELS

In this paper we primarily consider the Bose-Hubbard
dimer [28], which is described by the Hamiltonian,

ĤB = 2h̄U Ŝ2
z − 2h̄JŜx, (1)

where J is the tunneling rate and U is the on-site interaction
strength. We use the pseudoangular momentum operators Ŝα

with α = x, y, z,

Ŝx = â†
2â1 + â†

1â2

2
,

Ŝy = â†
2â1 − â†

1â2

2i
,

Ŝz = â†
2â2 − â†

1â1

2
,

(2)

where â j, â†
j with j = 1, 2 are the creation and annihilation

operators for the two bosonic modes and [Ŝα, Ŝβ ] = iεαβγ Ŝγ .
The Bose-Hubbard dimer can be mapped to a particular

instance of the LMG model, whose saddle-point OTOC dy-
namics was studied in Refs. [13,16].

The semiclassical phase space of the two-site Bose-
Hubbard model is shown in Fig. 1(d) in two different regimes
using coordinates z = 〈Ŝz〉 and φ = − arg (〈Ŝx〉 + i〈Ŝy〉). For
|NU/J| � 1, the system undergoes Rabi oscillations, and
the fixed points are two stable centers [28]. At the critical
interaction strength |NU/J| = 1, one of the stable centers
undergoes a pitchfork bifurcation. For stronger interactions,
“self-trapping trajectories” emerge on either side of a hyper-
bolic fixed point [28] as shown in the upper plot in Fig. 1(d).

The addition of periodic modulation to the tunnel-
ing frequency J (t ) = J0[1 + μ cos (ωt )] makes the two-site
Bose-Hubbard model chaotic [29] as shown in the lower plot
in Fig. 1(d). The extent of the chaos can be finely controlled
through modulation of the constants μ,ω [17,29,30].

To consider systems with higher-dimensional phase space,
we employ the Dicke model, comprising noninteracting spins
coupled to a photon mode [27]. Describing the spins col-
lectively through the use of the pseudoangular momentum
operators Ŝα and introducing photon annihilation (creation)
operators b̂ (b̂†), one can write the Dicke model Hamiltonian
as

ĤD = h̄ωb̂†b̂ + h̄ 	Ŝz + 2h̄γ√
N

(b̂† + b̂)Ŝx, (3)

where ω is the optical frequency, 	 is the atomic transition
frequency, γ is the atom-field coupling, and N is the number
of spins. The semiclassical version of the Dicke model is inte-
grable only when one of the three parameters ω, 	, and γ is
zero, and it exhibits widespread chaos in its four-dimensional
phase space at high energies [31–33].

For atom-field coupling at or below the critical value of
γc = √

ω	/2, the Dicke-model ground state comprises the
spin-down Bloch coherent state of the atomic subsystem and
the vacuum coherent state of the photonic subsystem. Above
the critical value, the spin-down-vacuum state is no longer the
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Dicke ground state, and chaos is widespread in its phase-space
energy shell [31–34]. The spin-down-vacuum state corre-
sponds to a saddle point in the semiclassical phase space and
will hereafter be referred to as the saddle-point state of the
Dicke model.

As the Dicke model is nonintegrable in the regimes we
study and has an infinite-dimensional Hilbert space due to
the photon subspace, we diagonalize the Hamiltonian in a
truncated basis. We solve the Dicke model in the so-called
“efficient coherent basis” [35–37], which allows calculation
of converged energy eigenvalues for a relatively small number
of basis modes. We ensure convergence of energy eigenstates
by comparison with the next smallest truncated basis and only
retain eigenstates that differ in energy by less than 10−3. The
basis truncation is chosen such that the normalization of the
initial state expressed in the energy eigenbasis differs from
unity by no more than 10−5.

III. RESULTS

A. FOTOCs

To study the entanglement dynamics, we use the FOTOC
given by C(t ) ≡ 1 − Re〈Ŵ †

δ (t )V̂ †(0)Ŵδ (t )V̂ (0)〉, where Ŵδ is
an arbitrary rotation with generator Ŝα , and V̂ = |ψ0〉〈ψ0| is
the projector on initial-state |ψ0〉. In this paper, we use Bloch
coherent states as the initial states and choose the generator
whose expectation value 〈Ŝα〉 is maximized under the initial
state.

We choose to work with Bloch coherent states since as
symmetric minimum-uncertainty states, they provide a some-
what localized probe of phase space. They are also relatively
easy to generate experimentally, corresponding to a rotation of
the lowest-eigenvalue eigenstate of Ĵz to arbitrary coordinates
(z, φ) on the Bloch sphere [38].

We work with sufficiently small δ � 1 such that the FO-
TOC simplifies to the variance of the generator Ŝα as C(t ) ≈
δ2var[Ŝα (t )] + O(δ3) [11,39]. The predicted value of the FO-
TOC for the infinite-temperature uniform diagonal ensemble
(UDE), ρ̂ = I/(N + 1) in the Bose-Hubbard dimer is [17]

CUDE = δ2
[
Tr

(
ρ̂Ŝ2

α

) − Tr(ρ̂Ŝα )
2]

= δ2
[
Tr

(
Ŝ2

α

)
/(N + 1) − Tr(Ŝα )

2
/(N + 1)2

]

= δ2N (N + 2)/12. (4)

B. Driven-dimer FOTOC dynamics

Figure 1(a) shows the dynamics of the FOTOC in the
saddle-point and chaotic regimes. In contrast to the behavior
near a stable fixed point where the FOTOC remains small
and bounded, here the FOTOCs grow exponentially until they
approach the respective values predicted by the diagonal en-
semble. Semiclassical arguments indicate that the growth rate
λQ of this FOTOC should be related to the classical Lyapunov
exponent as λQ = 4λ [40]. Here, we numerically determine
the saddle-point FOTOC growth rate to be λQ = 4 × 1.90(5),
consistent with the saddle-point exponent λ = 2, determined
via linear stability analysis. The exponential growth is arrested
at an Ehrenfest time tE . For the saddle-driven scrambling

tE ≈ 2.0, which is consistent with the prediction given by
tE ∼ (2λ)−1 ln (N ) ≈ 1.73.

For the driven chaotic case, the pre-Ehrenfest dynamics
is a little more complicated with the exponential growth
preceded by a short time of slow growth (seen clearly in,
e.g., Fig. 2(d) of Ref. [17]). Furthermore, the numerically
determined growth rate during the exponential phase λQ =
4 × 0.92(2) is approximately four times higher than what
would be expected from the corresponding classical Lya-
punov exponent λ ≈ 0.2094(4), determined numerically via
the tangent-space method [11,31,41,42].

Despite both the saddle-point and the chaotic regimes
showing scrambling behavior in the short-time dynamics,
there is a marked difference in the long-time behaviors. The
saddle-point FOTOCs exhibit considerable variability around
the diagonal-ensemble predictions. This variability is espe-
cially marked for an initial state centered directly on the
saddle point where it is manifest in large oscillations. These
oscillations occurred for all system sizes we simulated (N =
101, N = 102, N = 103) and are comparable to the maxi-
mum values of the FOTOC. As we discuss further below, these
oscillations are associated with (near) revivals of the initial
state. In contrast, in the chaotic regime the FOTOC does not
exhibit large oscillations but saturates to the uniform diagonal
ensemble [43] prediction with only small-amplitude fluctua-
tions for sufficiently large N as predicted by the eigenstate
thermalization hypothesis [44].

C. Entanglement entropy

The differences between the chaotic and the saddle-point
regimes are even more marked in the dynamics of the en-
tanglement entropy. Here we calculate the von Neumann
entropy of the reduced density-matrix ρ̂s obtained after
tracing out N − s particles [45]: SE(ρ̂s) = −Tr[ρ̂s ln (ρ̂s)].
Figure 1(b) shows the half-system (s = N/2) entanglement
entropy as a function of time. In the chaotic regime, the
entanglement entropy grows almost monotonically and shows
very little variation once it saturates at the Page curve pre-
diction. In contrast, the saddle-point entanglement entropy
exhibits markedly periodic oscillations with distinct revivals.
The size of the oscillations means that the system period-
ically almost completely disentangles. These disentangling
points coincide with time at which C(t ) ≈ 0, illustrating
the close connection between the dynamics of entangle-
ment entropy and the FOTOCs previously observed in
Ref. [11].

The lack of fluctuations in the entanglement entropy after
the Ehrenfest time means that its long-time value is very
well defined, which allows us to test its scaling with system
size. To obtain the results in Fig. 1(c), we time average the
entropy after saturation over the period 20 � J0t � 200. The
vertical lines indicate the uncertainty. For small subsystems,
the chaotic post-Ehrenfest entanglement entropy matches that
of the infinite-temperature uniform diagonal ensemble but
diverges for larger subsystems. The volume law scaling of the
chaotic state entanglement entropy matches the Page curve,
the average entanglement entropy of a subsystem given the
whole system is in a random pure state [46]. For a bipartite
system with subsystems A, B of Hilbert space dimensions dA,B
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satisfying dA � dB, this quantity is

〈SE(ρ̂A)〉 = �(dAdB + 1) − �(dB + 1) − dA − 1

2dB
, (5)

where �(x) = �′(x)/�(x) is the digamma function. In the
dimer case, dA = s + 1 and dB = N − s + 1, where s ∈
[0, N/2] is the number of particles in subsystem A.

D. Diagonal distribution and thermalization

The qualitative differences in the long-time dynamics of
the two regimes can be traced back to the eigenstructure,
which we probe through the diagonal entropy [20], defined
as the von Neumann entropy of the diagonal ensemble,

SD(ψ ) =
∑

n

|〈ψ |�n〉|2 ln (|〈ψ |�n〉|2), (6)

with initial coherent state |ψ〉 and eigenstates |�n〉. The
diagonal entropy quantifies the delocalization of state |ψ〉
in the basis of energy eigenstates or Floquet modes in the
case of a Floquet system. The Gaussian orthogonal en-
semble (GOE) of random matrices gives a prediction of
SGOE ≈ ln [0.48(N + 1)] [47] for fully thermalizing states
under the Bose-Hubbard Hamiltonian (1), which is real and
symmetric.

The diagonal distributions of the states used in the chaotic
and saddle-point regimes are shown in Fig. 2(a) with the
corresponding diagonal entropies in Fig. 2(c). The chaotic
state matches the GOE prediction, indicating that a large
number of eigenstates participate in the FOTOC dynamics
and that the state will thermalize. In contrast, the diagonal
entropy of the saddle-point state is much smaller than the
GOE prediction, indicating that relatively few eigenstates par-
ticipate in the FOTOC dynamics and that the state will not
thermalize. The three dominant eigenstates are illustrated in
Fig. 2(d) and are all highly localized around the saddle point.
The saddle-perturbed state has intermediate diagonal entropy
and, thus, exhibits small amplitude FOTOC oscillations with-
out distinct revivals or saturation. The diagonal distribution
of a state centered on a stable fixed point is almost a δ

distribution (SD ≈ 0) and, therefore, the state’s FOTOC and
entanglement entropy are predicted to be nearly time inde-
pendent, which matches our observations.

The connection among the diagonal ensemble, the FO-
TOC, and entanglement dynamics is clearly revealed in the
Fourier spectra of these quantities, which effectively functions
as a probe of chaotic behavior [18]. As evident in Fig. 3(a),
the saddle-point FOTOC spectrum displays distinct peaks at
frequencies corresponding to the transition energies between
eigenstates that dominate the diagonal ensemble. These eigen-
states can be identified by their distinctly high overlaps with
the evolving state, shown in Fig. 2(b).

The Fourier spectrum of the entanglement entropy dis-
plays many of the same features as that of the FOTOC for
N = 100. The Fourier spectrum of the saddle-point entropy
has few sharp peaks, whereas those of the chaotic phase
space and saddle-perturbed state exhibit no distinct peaks.
The appearance of beating in the saddle-point entanglement
entropy dynamics is evident in the double-peaked Fourier
spectrum, giving oscillation period To ≈ 4.00/J0 and beat pe-

(a)

(b) (c)

(d)

FIG. 2. (a) Diagonal distributions of coherent states in the
driven-dimer chaotic phase space (blue bars), on the saddle point
(red bars), and slightly perturbed from the saddle point (green
staircase) as in Fig. 1. The distributions are ordered by energy or
quasienergy magnitude and indexed by n. (b) Closeup of driven-
dimer saddle-point diagonal distribution with selected high-overlap
energy eigenstate transitions labeled by black markers, correspond-
ing to frequencies identified in Figs. 3(a) and 3(b). (c) Diagonal
entropies of the initial coherent states used in the driven-dimer simu-
lations, relative to the GOE prediction. (d) Driven-dimer saddle-point
eigenstate Q distributions for N = 100, labeled by n. The three Q
distributions shown are those with the largest overlap with the saddle-
point coherent state. Parameters are as in Fig. 1.

riod Tb ≈ 106/J0. The beat period can be interpreted as the
partial revival timescale. Periodic partial revivals are similarly
evident in the long-time dynamics of the N = 1000 saddle-
point FOTOC in Fig. 1(a).

That so few eigenstates participate in the saddle-dominated
dynamics is the reason why these regular revivals are so
substantial. The revival dynamics is illustrated qualitatively
in the phase-space Q distribution, shown in Fig. 3(c). The
coherent state, initially located on the saddle point, is pe-
riodically sheared along the separatrix and extends around
the Bloch sphere before the separate Q distribution arms
recombine at the saddle point, leading to a fairly complete
reconstruction of the initial coherent state. This periodic divid-
ing and recombining is the source of the oscillatory FOTOC
behavior.

E. Semiclassical simulations for large N

We have, thus far, solved the driven-dimer dynamics ex-
actly, using exact diagonalization. For larger system sizes, we
make use of the truncated Wigner method, an approximate
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(a) (c)

(b)

FIG. 3. (a) Fourier spectra of FOTOCs for driven-dimer chaotic phase space (blue dotted line), a saddle point (red line), and a point slightly
perturbed from the saddle point (green dashed line) for N = 100 particles. (b) Fourier spectra of driven-dimer von Neumann entanglement
entropy for a subsystem of s = N/2 particles from a total of N = 100 particles. In both plots, high-occupancy energy eigenstate transition
frequencies for the saddle-point state are indicated by black markers, corresponding to Fig. 2(b). Parameters are as in Fig. 1. (c) Driven-dimer
saddle-point state Q distribution dynamics for N = 100.

approach that uses an ensemble of stochastically sampled
semiclassical trajectories [48–51]. Most accurate when the
number of particles is large, the method has been successfully
applied in a range of quantum optics and ultracold atoms sys-
tems, including FOTOC dynamics in LMG and Dicke models
[16].

The Wigner simulations can be benchmarked against the
exact simulations for small N . As shown in Fig. 4, the Wigner
method correctly predicts the rapid exponential growth of the
FOTOC and some transient oscillations immediately after the
Ehrenfest time. However, it fails to reproduce the persistent
fluctuations seen in the long-time dynamics. Thus, reliance
on the Wigner method alone could give a false prediction
of thermalization after the Ehrenfest time. The failure of the
Wigner method is consistent with the idea that these persistent
oscillations are due to beating between a few eigenstates:
superpositions of macroscopically distinct states cannot be
accurately sampled with the truncated Wigner method due to
the nonpositive fringes in a Wigner function that arise from
interference.

For short times, when the truncated Wigner method
is demonstrably reliable, we see from Fig. 4 that the
OTOC continues to grow exponentially until it reaches the
diagonal-ensemble prediction, which increases with N . The

FIG. 4. FOTOCs for the saddle point in Fig. 1 for N = 10p parti-
cles, where p = 1–5 from the bottom. Exact dynamics are indicated
by black solid lines, and truncated Wigner approximations are indi-
cated by red dashed lines. Exponential short-time FOTOC growth is
evident, and the Ehrenfest (scrambling) time increases with N .

corresponding Ehrenfest time, thus, also increases with N ,
consistent with the logarithmic dependence given in Sec. III B.

F. Dicke FOTOC dynamics

Finally, we use the Dicke model to explore whether the
characteristic differences between saddle-driven and chaos-
driven scrambling described above survive in a system with
higher-dimensional phase space and without the need for driv-
ing to induce chaos. We consider the Dicke model in two
parameter regimes: a weakly coupled regime with γ /γc ≈ 1.1
and a strongly coupled regime with γ /γc ≈ 2.3.

The weakly coupled regime is just above the critical value
of atom-field coupling, and the phase-space energy shell of
the saddle-point features no discernible chaos. The strongly
coupled regime is well above the critical value of atom-field
coupling and features widespread chaos in the saddle-point
energy shell. As in the Dicke model, chaos in the semiclassical
system is reflected in delocalized eigenstates in the quantum
system: The diagonal entropy of a coherent state localized
at the saddle point in the Dicke model is SD ≈ 4.0 for the
strongly coupled regime and SD ≈ 1.7 for the weakly coupled
regime [52].

The dynamics of FOTOCs for the Dicke model saddle
point in the strongly and weakly coupled regimes are shown
in Fig. 5. The FOTOCs for both regimes grow exponentially
before fluctuating about their respective diagonal ensem-
ble prediction. Just as in the driven-dimer case, there is a
substantial quantitative difference in the diagonal ensemble
predictions between the chaos-dominated and the saddle-
dominated regime: CDE/CUDE ≈ 0.54 in the case of strong
coupling and CDE/CUDE ≈ 0.027 for weak coupling where for
convenience we have normalized by the value for the uni-
form diagonal ensemble. We note in passing that the diagonal
ensemble results are similar to the respective microcanoni-
cal predictions for the FOTOCs, particularly, in the strongly
coupled case. The microcanonical ensemble FOTOCs, calcu-
lated by averaging FOTOC predictions over eigenstates within
one standard deviation of the saddle-point state energy, are
CME/CUDE ≈ 0.55 (252 eigenstates) and CME/CUDE ≈ 0.021
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FIG. 5. (a) FOTOCs for the Dicke-model saddle point for
strong (blue dotted line) and weak (red solid line) atom-field
couplings, scaled by their respective diagonal ensemble predic-
tions; CDE/CUDE ≈ 0.54 and CDE/CUDE ≈ 0.027 for the strongly
and weakly coupled regimes, respectively. The strongly coupled
regime corresponds to 	 = 0.5 (γ /γc ≈ 2.3), and the weakly cou-
pled regime corresponds to 	 = 3 (γ /γc ≈ 1.1). In both regimes
N = 200, γ = 0.66, and ω = 0.5.

(38 eigenstates) for the strongly and weakly coupled regimes,
respectively.

In contrast to the driven-dimer FOTOC, the qualitative
features of the long-time dynamics are not so clear-cut in
the Dicke model: The persistent oscillations in the saddle-
dominated FOTOC are not as regular as in the dimer case,
and the chaos-dominated FOTOC has persistent fluctuations
past the Ehrenfest time. The latter suggests that the chaotic
system does not thermalize completely over the relatively long
timescales we simulated.

Nevertheless, it is the case that, in the chaos-dominated
strongly coupled regime, the FOTOC exhibits relatively
smaller oscillations than in the weakly coupled regime as
predicted by its larger diagonal entropy.

IV. CONCLUSIONS

We studied the long-time dynamics of the fidelity out-of-
time-order correlator and entanglement entropy for simple
systems of ultracold atoms in the presence of chaos and in the
vicinity of a saddle point. The main conclusion to be drawn is
that, although saddle points and semiclassical chaos both drive
exponential growth of OTOCs, these two causes of scrambling
can lead to very different long-time behavior. In particular,
we find that, without chaos, a state located on or very near
to the saddle point fails to thermalize. The Bose-Hubbard
dimer saddle-point FOTOC and entanglement entropy dy-
namics were distinctly periodic with dominant frequencies
given by transition energies between eigenstates with high
overlap on the evolving state. In the Dicke model and in
the driven-dimer displaced slightly from the saddle point, the
FOTOC and entanglement entropy dynamics were aperiodic
but, nevertheless, failed to thermalize completely, exhibiting
persistent oscillations. In any case, the diagonal entropy of the
initial state correctly predicted the degree of thermalization
regardless of short-time FOTOC behavior, suggesting that it
is the degree of localization in the energy eigenbasis that
determines the long-time behavior.

In order to distinguish clearly the different character-
istics of the chaos-induced thermalization versus saddle-
point-driven scrambling, we have chosen regimes for the
Bose-Hubbard dimer where there is either a saddle point
or chaos in the semiclassical phase space but not both. For
regimes where both are present, such as in the Dicke model,
the OTOC growth may reflect an interplay of the two such
that the long-term thermal behavior arises from the chaotic
nature of the system, but where the initial rapid growth in
correlations is determined by the saddle point.
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