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Abstract

Using the algebro-geometric approach, we study the structure of semi-classical eigen-
states in a weakly-anisotropic quantum Heisenberg spin chain. We outline how classical
nonlinear spin waves governed by the anisotropic Landau–Lifshitz equation arise as co-
herent macroscopic low-energy fluctuations of the ferromagnetic ground state. Special
emphasis is devoted to the simplest types of solutions, describing precessional motion
and elliptic magnetisation waves. The internal magnon structure of classical spin waves
is resolved by performing the semi-classical quantisation using the Riemann–Hilbert
problem approach. We present an expression for the overlap of two semi-classical eigen-
states and discuss how correlation functions at the semi-classical level arise from classi-
cal phase-space averaging.
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1 Introduction

Thermodynamic systems of interacting quantum particles present an outstanding challenge
theoretical physics. In spite of their inherent complexity, tremendous progress has been made
recently in understanding various facets of quantum many-body systems, including thermali-
sation [1,2], far-from-equilibrium dynamics [3,4], quantum transport [5,6] and entanglement
dynamics [7], especially after the inception of generalised hydrodynamics [8, 9]. In this re-
gard, dimensionally constrained models played a prominent role as they not only permit for
moderately efficient numerical simulations but also provide a playground for developing and
testing analytical approaches. Integrable models are of special interest as they enable us to
obtain non-perturbative closed-form solutions that are otherwise rarely available.

This paper is devoted to study the structure and properties of semi-classical eigenstates
and the emergence of classical dynamics in the quantum Heisenberg chain, an archetypal ex-
ample of a quantum many-body system. Emergent integrability in the N = 4 superconformal
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Yang–Mills theory [10,11] generated some amount of interest in the semi-classical limits in in-
tegrable quantum spin chains. Particularly, the complete semi-classical spectrum of isotropic
Heisenberg model has been first described in [12] and subsequently studied in great detail
in [13]. The Heisenberg model however appears in a variety of physics applications in the
domain of statistical mechanics and is of particular relevance for studying basic principles of
out-of-equilibrium many-body dynamics. Following the spirit of Ref. [13], we devote this work
to study the semi-classical eigenstates in the easy-axis regime of the anisotropic Heisenberg
spin-1/2 chain.

A separate motivation for studying the semi-classical part of the spectrum originates from
recent interest in magnetisation transport in integrable quantum chains, where the anisotropic
Heisenberg chain plays a prominent role. Several conspicuous similarities with a purely clas-
sical magnetisation dynamics governed by the Landau–Lifshitz ferromagnet [14] have been
found, both at qualitative and quantitative levels, which firmly point towards a particular type
of a classical–quantum correspondence [15–17]. On the classical side, a key piece of evidence
rests on an exact solution to the initial value problem with a domain-wall initial profile [16]
which discerns three different dynamical regimes depending on the value of anisotropy: (i)
ballistic spin transport in the easy-plane regime, (ii) absence of transport in the easy-axis
regime and (iii) diffusion with a multiplicative logarithmic correction at the isotropic point.
This matches the phenomenology of the quantum isotropic Heisenberg spin-1/2 chain inferred
previously in [15]. In this paper we specialise to the easy-axis regime where absence of trans-
port has been linked with the presence of stable kink in the spectrum [16]. Despite that, in
what precise manner do such kinks arise as coherent superposition of magnon excitations of
the underlying quantum chain remains unknown. The task at hand is to perform semi-classical
quantisation of classical nonlinear spin waves that arise in the weakly-anisotropic ferromag-
netic Heisenberg chain. The future hope is to study non-equilibrium dynamics directly at the
level of semi-classical eigenstates and thus put the classical–quantum correspondence on a
firm footing.

It deserves to be emphasised that the aforementioned classical–quantum correspondence
of spin transport is not a particularity of the domain wall physics but likewise manifests itself
in thermal equilibrium states (i.e. at finite density of magnon excitations). There however
it comprises different types of dynamics regimes. Most prominently, in the isotropic Heisen-
berg quantum chain, finite-temperature spin transport (in the zero magnetisation section) is
superdiffusive [18–20], belonging to the KPZ universality class (characterised by dynamical
exponent z = 3/2 [21,22]). Such an anomalous behaviour has been attributed to interacting
(and thermally dressed) ‘giant magnons’, referring to semi-classical eigenstates which at the
classical level show up as soliton modes. In contrast, genuine quantum excitations associated
to bound magnons states (Bethe strings) become suppressed in this regime [23]. Curiously,
this anomalous feature nevertheless entirely disappears upon introducing any amount of inter-
action anisotropy: on the easy-plane side, one finds ballistic transport characterised by a finite
spin Drude weight [24,25], whereas easy-axis anisotropy restores normal diffusion [21,26,27].
In our perspective, these findings offer an extra motivation to carefully examine the structure
of semi-classical eigenstates in integrable quantum lattice models.

In this work we use the asymptotic Bethe ansatz approach [28] to identify and describe the
semi-classical part of the spectrum in the Heisenberg spin-1/2 chain with uniaxial anisotropy.
We shall in large part follow the footsteps of Refs. [12,13] by employing an algebro-geometric
integration technique [29,30], the Riemann–Hilbert formalism. The main object of interest is
the so-called classical spectral curve which provides complete information about the classical
finite-gap spectrum of the anisotropic Landau–Lifshitz ferromagnet. Our aim is to make the
exposition self-contained and pedagogical. Our attention will be largely devoted to the emer-
gence of special types of semi-classical solutions that represent bions and kinks, for which
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anisotropy proves crucial for their stability. In addition, we shall provide closed expression for
the semi-classical norms and overlaps, building on earlier works [31–34]. Finally, we briefly
discuss the structure of the semi-classical limits of static correlation functions.

The article is structured as follows. In Sec. 2 we begin by briefly introducing the notion of
the spectral curve, giving the most basic example of the harmonic oscillator. Next, in Sec. 3
we outline the asymptotic Bethe ansatz technique by applying it to the anisotropic Heisenberg
chain. We proceed by solving the classical finite-gap solutions and explicitly working out two
specific examples in Sec. 4 and 5. The semi-classical quantisation is then carried out in Sec. 6
and calculations of semi-classical overlaps are given in Sec. 7. Lastly, in Sec. 8 we formulate a
conjecture for a classical–quantum correspondence of correlation functions. We finish in Sec. 9
with a conclusion and an outlook.

2 Harmonic oscillator: introducing the spectral curve

Prior to delving deep into the realm of many-body systems, we would like to first familiarise
the reader with several technical tools that constitute the foundations of the algebro-geometric
method to solve differential equations. To this end, we shall describe the semi-classical spec-
trum of a single quantum-mechanical degree of freedom, the good old quantum harmonic
oscillator,

Ĥ =
p̂2

2m
+

1
2

mω2 x̂2. (2.1)

As usual, we use a canonical pair of position and momentum operators, satisfying

[ x̂ , p̂] = iħh. (2.2)

In the language of second quantisation, the Hamiltonian of the quantum harmonic oscillator
takes the diagonal form

Ĥ = ħhω
�

â†â+
1
2

�

, (2.3)

in terms of the bosonic annihilation operator

â =
1
p

2ħh

�p
mω x̂ +

i
p

mω
p̂
�

. (2.4)

The ground state |0〉 is the Fock vacuum and satisfies â|0〉= 0. Excited eigenstates |n〉, which
obey â†â |n〉 = n |n〉, are produced by iterative application of the creation operator â† on the
ground state |0〉,

|n〉=

�

â†
�n

p
n!
|0〉, (2.5)

such that

Ĥ|n〉= En|n〉= ħhω
�

n+
1
2

�

|n〉. (2.6)

Using a dimensionless coordinate u =
Æ

mω
ħh x , eigenfunctions ψ(u) = 〈u|n〉 can be ex-

pressed in terms of their normalised logarithmic derivative called quasi-momentum (see e.g.
[35]),

p(u) =
p
ħhmω
2

∂uψ(u)
ψ(u)

, (2.7)

suppressing the subscript n mostly for the sake of clarity. The Schrödinger equation for ψ(u)
accordingly transforms into a Ricatti equation

p2(u)− i
p

ħh∂up= 2m(E − V (u)), V (u) =
ħhω
2

u2, (2.8)
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whereas nodes (i.e. zeros) of the excited wavefunctions |n〉 have now turned into simple poles.
After a short exercise, one can deduce the following representation [35]

p(u) = i
p

mħhω

 

u−
n
∑

j=1

1
u− u j

!

, (2.9)

with poles u j of the quasi-momentum satisfying a simple system of equations

u j =
∑

k 6= j

1
u j − uk

. (2.10)

In this description, every eigenstate |n〉 gets assigned a unique set of poles u j , with j = 1, . . . , n
and accordingly Eqs. (2.10) bear a direct analogy to the celebrated Bethe ansatz equations aris-
ing in integrable interacting quantum systems. By maintaining this analogy, it is furthermore
convenient to introduce the Q-polynomial

Qn(u) =
n
∏

j=1

(u− u j), (2.11)

which in integrable quantum spin chains corresponds to the Baxter’s Q-function. By integrating
the quasi-momentum we can readily retrieve the wavefunction for the nth excited state,

ψn(u) =
1
p
N

e−u2/2Qn(u), (2.12)

with energy En =
�

n+ 1
2

�

ħhω and normalisation N . The solutions to the Bethe-like equa-
tions (2.10) are none other than Hermite polynomials Hn(u) of order n, that is

Qn(u) = Hn(u). (2.13)

Poles u j are thus identified with zeros (roots) of Hermite polynomials.

2.1 Semi-classical limit

We next analyse the semi-classical eigenstates of the quantum harmonic oscillator. Prior to
that, we shall briefly remind on some of the well-known results of the classical harmonic
oscillator

H =
p2

2m
+

1
2

mω2 x2. (2.14)

Here position x and momentum p are phase-space coordinates with the canonical Poisson
bracket

{p, x}= 1. (2.15)

Solutions to the classical harmonic oscillator are conventionally expressed in terms of trigono-
metric functions

p =
p

2mE cos(ωt +φ), x =
1
ω

√

√2E
m

sin(ωt +φ), (2.16)

where E is the value of energy and offset angle φ is determined by the initial condition.
The classical harmonic oscillator is possibly the simplest example of a dynamical system

that is integrable in the Liouville–Arnol’d sense. The associated action-angle pair of variables
is simply

S=
E
ω

, ϕ =ω t, (2.17)

satisfying the canonical Poisson relation {S,ϕ}= 1.
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Lax representation. We proceed by outlining an algebraic reformulation of the above con-
struction. The notion of algebraic integrability rests on the concept of the Lax representa-
tion [36]. Here we shortly describe how this construction works by working it out for the toy
model – the classical harmonic oscillator. To begin with, we emphasise that the Lax represen-
tation for an integrable dynamical system is not unique. In the present case, a suitable choice
for the Lax pair of 2× 2 matrices L and M is as follows,

L(v; t) =

�

p+ imωx v mωx − ipv
mωx − ipv −p− imωx v

�

, M =
ω

2

�

0 −1
1 0

�

. (2.18)

Lax matrix L(v; t) depends on time t through x(t) and p(t). In addition, there is analytic
dependence on the so-called spectral parameter v ∈ C which, as we clarify in a moment, is of
pivotal importance for algebraic integrability.

The equation of motion for the classical harmonic oscillator is equivalent to the following
equation of motion of the Lax matrix L(v; t),

d
dt

L(v; t) = [M , L(v; t)] . (2.19)

Although at first glance it may appear that we have not gained much at all, in the Lax for-
mulation one can immediately recognise the fact that the characteristic polynomial of the Lax
matrix,

det(w− L(v)) = 0, (2.20)

is a time independent quantity. Formally speaking, it defines a complex curve Σ(w, v) ⊂ C
called the spectral curve. In the current case it is simply an algebraic curve of the form [36]

Σ : w2(v) = 2mE (1− v2). (2.21)

Eigenvalues w±(v) can be conveniently parametrised in terms of a single double-valued com-
plex function

pcl(v) =
Æ

2mE (1− v2), (2.22)

called the classical quasi-momentum, satisfying 2 cospcl(v) = tr (exp L(v)). The quasi-moment
um pcl(v) features a pair of square-root branch points at±1. One can thus interpret the spectral
curve as a two-sheet Riemann surface with a branch cut along the interval I ≡ [−1,1] and a
pole at infinity, vp =∞. By analyticity, one furthermore has

∮

I dpcl(v) = 0.

Semi-classical limit. We now consider the quantum harmonic oscillator and examine the
highly-excited eigenstates whose nodes densely distribute along the real axis. Our purpose
here is to demonstrate how the classical spectral curve emerges out of a condensate of zeros
of the Q-polynomial (2.12). This indeed corresponds to the semi-classical limit of large mode
numbers n → ∞, with ħh ∼ 1/n. From the viewpoint of the classical system, the resulting
condensate shows up as a square-root branch cut of the classical spectral curve (2.21). One
can likewise think of the reverse process in which the branch cut disintegrates into a collection
of simple poles, which is none other than the familiar Bohr–Sommerfeld quantisation rule

n� 1 :
1

2π

∮

C
dv p(v) = ħh n. (2.23)

The (quantum) quasi-momentum, upon substituting u =
p

2nv and subsequently taking
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(a) (b) (c)

Figure 1: (a) Normalised wavefunction ψ20(v) with mode number 20 and rescaled
coordinate v = u/

p
40. Its zeros are marked by red crosses. At large mode numbers,

zeros of wavefunctions approach each other and eventually condense. The result-
ing condensate can be viewed as a square-root branch cut of a spectral curve, cf.
Eq. (2.21). Classical spectral curve of the harmonic oscillator in the v-plane (b) and
z-plane (c). The branch cut in (b) gets mapped into two punctures of the Riemann
surface. The dashed line indicates the motion of dynamical variable z?.

the limit n→∞, becomes

lim
n→∞

p(v) = lim
n→∞

i
p

mħhω





p
2nv −

n
∑

j=1

1
p

2nv − u j





= i
p

2mnħhω

�

v −
∫ 1

−1

d y
ρ(y)
v − y

�

,

(2.24)

where we have introduced the distribution of zeros of Hermite polynomial

ρ(y) = lim
n→∞

1
n

n
∑

j=1

δ

�

y −
u j
p

2n

�

. (2.25)

We have thus retrieved the classical quasi-momentum

pcl(v) = i lim
n→∞

p

2mnħhω
p

v2 − 1=
Æ

2mE(1− v2), (2.26)

characterised by the classical energy

E = lim
n→∞

lim
ħh→E/(ωn)

nħhω. (2.27)

Canonical angle. The spectral curve can be associated a dynamical angle-type variable ϕ.
To find ϕ, one requires the solution to the auxiliary linear problem. The latter takes the form
of the Lax equations

Lψ±(v; t) = λ±(v)ψ±(v; t),
d
dt
ψ±(v; t) = Mψ±(v; t). (2.28)

The standard recipe is to identify the canonical angle variables with dynamical poles of the
appropriately normalised eigenvectors ψ±, normally known in the literature as the Baker–
Akhiezer vectors [36]. Below we employ a slightly different (but equivalent) approach using
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the squared eigenfunction, mainly to circumvent the normalisation ambiguity inherent to the
Baker–Akhiezer vectors.

Introducing a 2× 2 matrix of eigenvectors ψ±(v, t),

ψ(v; t) =
�

ψ+(v; t),ψ−(v; t)
�

, (2.29)

we defined the ‘squared eigenfunction’ as

Ψ =ψσzψ−1, (2.30)

satisfying detΨ = −1. Notice that Ψ differs from L by the time-independent normalisation.
Matrix Ψ itself thus also evolves according to the Lax equation of motion,

d
dt
Ψ(v; t) = [M ,Ψ(v; t)] . (2.31)

In the present example of the classical harmonic oscillator, the solution to the above dif-
ferential equation admits the following explicit form

Ψ(v; t) =
1

p

2mE(1− v2)

 

imωx
�

v − ip
mωx

�

−ip
�

v + imωx
p

�

−ip
�

v + imωx
p

�

−imωx
�

v − ip
mωx

�

!

, (2.32)

where x = x(t) and p = p(t).
Based on the general rule, the dynamical variables γ j correspond to zeros of the off-

diagonal element of the squared eigenfunction Ψ. In the language of algebraic geometry,
the full set of dynamical variables {γ j} constitutes the so-called dynamical divisor of a Rie-
mann surface. Their equations of motion on a surface are governed by a system of differential
equations that go under the name of Dubrovin equations. In the case of hyperelliptic algebraic
curves of genus g, the total number of dynamical variables equals g + 1. Our toy example
involves a single degree of freedom and therefore we deal with a surface of genus g = 0 (i.e.
a Riemann sphere). Accordingly, there is a single dynamical variable γ1 = γ1(t), satisfying a
simple evolution law

γ1(t) = −i tanωt = −
ip

mωx
. (2.33)

To explicitly see this, we perform the following variable transformation,

v 7→ z(v) : v = −
z − 1/z
z + 1/z

, (2.34)

which resolves the square-root type singularities at v±? and renders λ2 a rational function of z,

Σ : λ2(z) = 2mE
4

(z + 1/z)2
. (2.35)

The original square-root branch cut with branch points v±? = ±1, see Eq. (2.21), have turned
into two regular points on the Riemann surface located at z? ∈ {0,∞}, whereas the original
pole at infinity has two pre-images at two punctures z±p = ±i, one on each Riemann sheet. The
dynamical variable z∗(t) = exp (ϕ(t)) satisfies has periodic motion with a linearly-evolving
angle variable ϕ(t) =ω t, as shown in Fig. 1.
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2.2 Classical limit of quantum correlation functions

We finally examine the expectation values of quantum observables computed in semi-classical
eigenstates. We explain how the latter manifest themselves as classical quantities, thereby
establishing an exact classical–quantum correspondence at the level of correlation functions.
In the semi-classical limit, the average of a quantum observable Ô should be identified with
ergodic phase-space averages

lim
n→∞,ħh→ E

ωn

〈n|Ô(t1, · · · , tm)|n〉=
1
T

∫ T

0

dt O(t + t1, · · · , t + tm), (2.36)

where T = 2π/ω denotes the fundamental period.
The correspondence can be readily exemplified on a few particular examples. We first con-

sider, as a simple example, operator Ô = x̂2(0). Expectation values on a normalised quantum
eigenstates read

〈n| x̂2(0)|n〉=
ħh

mω

�

n+
1
2

�

, (2.37)

which in the semi-classical limit yields

lim
n→∞,ħh→ E

ωn

〈n| x̂2(0)|n〉=
E

mω2
=
ω

2π

∫
ω
2π

0

dt x2(t). (2.38)

The outlined correspondence continues to hold even when Ô consists of several non-
commuting operators. To illustrate this, we consider two observables Ô1 = x̂(0)p̂(t0) and
Ô2 = p̂(t0) x̂(0), whose quantum averages yield

〈n|Ô1|n〉= 〈n| x̂(0)p̂(t0)|n〉=
iħh
2

�

eiωt0(n+ 1)− e−iωt0 n
�

, (2.39)

〈n|Ô2|n〉= 〈n|p̂(t0) x̂(0)|n〉=
iħh
2

�

eiωt0 n− e−iωt0(n+ 1)
�

. (2.40)

Taking again the semi-classical limit, we arrive at

lim
n→∞,ħh→ E

ωn

〈n|Ô1|n〉= lim
n→∞,ħh→ E

ωn

〈n|Ô2|n〉

= −
E
ω

sin(ωt0) =
ω

2π

∫
ω
2π

0

dt x(t)p(t + t0).
(2.41)

The upshot of this rather elementary calculation is that expectation values of quantum ob-
servables in the semi-classical limit of large mode numbers can be effectively replaced by the
corresponding classical observables. There is no ordering ambiguity at the leading order, which
only enter in the form of ‘quantum corrections’, i.e. subleading contributions (∼O(ħh)) to the
correlation functions.

This concludes our pedagogical introduction to the basic notions of algebro-geometric
methods. In the remainder of this article we shall employ the same methodology on a genuine
many-body interacting model – the quantum Heisenberg spin-1/2 chain with anisotropic in-
teraction (the XXZ model). Due to multiple degrees of freedom involved, analytical treatment
becomes much more challenging and how correlators simplify in the classical limit is no longer
a trivial task. Before we come back to this issue in Sec. 8 we first introduce the formalism and
other key ingredients.
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3 Asymptotic Bethe Ansatz: the XXZ Heisenberg model

The anisotropic (XXZ) quantum spin-1/2 chain is often considered as an archetypal model of
many-body quantum dynamics. Besides that, it is one of the best studied solvable models by
Bethe ansatz [37–39]

Ĥ = −J





L
∑

j=1

Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆

�

Ŝz
j Ŝ

z
j+1 −

1
4

�



 , (3.1)

using the generators Ŝα = σ̂α/2 (where σ̂α are the Pauli matrices) of the su(2) spin algebra,
satisfying commutation relations [σ̂α, σ̂β] = 2i

∑

γ εαβγσ̂
γ. We assume the periodic boundary

condition. We shall be interested in the ferromagnetic regime (J > 0, ∆ ≥ 0) and for our
convenience set (with no loss of generality) J = 1.

There are three phases (regimes) to be distinguished: ∆ > 1, ∆ = 1 and 0 ≤ ∆ < 1,
conventionally called as the gapped, isotropic and gapless regimes, in respective order. This
nomenclature refers to properties of the antiferromagnetic ground state. Our focus in this
article will be exclusively on the gapped regime. As customary, we parametrise anisotropy as

∆= 1
2(q+ q−1) = coshη, q = expη, η ∈ R, (3.2)

where q stands for ‘deformation parameter’ of quantum symmetry algebra Uq(su(2)).
The model can be diagonalised by the Bethe Ansatz, a celebrated method invented by Hans

Bethe [37]. In what follows, we adopt the ferromagnetic eigenstate |↑〉⊗L as the reference par-
ticle pseudovacuum to construct the entire spectrum of eigenstates. In fact, the ferromagnetic
states are two-fold degenerate and both ferromagnetic vacua are required to obtain the full
spectrum of eigenstates.1 Since the z-component of total spin is conserved, the Hamiltonian
block-decomposes into magnetisation sectors labelled by quantum number M , pertaining to
the number of down-turned spins with respect to pseudovacuum. For fixed M , every finite-
volume eigenstate, |{ϑ j}Mj=1〉, is uniquely characterised by a set of (in general complex-valued)
rapidities ϑ j called Bethe roots, corresponding to solutions to a coupled system of equations

�

sin(ϑ j + i η2 )

sin(ϑ j − i η2 )

�L M
∏

k 6= j

sin(ϑ j − ϑk − iη)

sin(ϑ j − ϑk + iη)
= 1, (3.3)

known as the Bethe equations (BE). A suggestive physical interpretation underneath the Bethe
equations is as follows: the term in the square bracket on the left-hand side equals eip, with
p = p(ϑ) being the (bare) momentum of a single magnon excitation

p(ϑ) = −i log
sin(ϑ+ iη2 )

sin(ϑ− iη2 )
, (3.4)

whereas the product of quotients of trigonometric functions appearing on the right-hand side
is interpreted as a net U(1)-valued scattering amplitude acquired by an individual magnon
upon undergoing elastic collisions with all the remaining magnons. The total momentum and
energy of an eigenstate are obtained by summing over all the constituent magnons, yielding
manifestly additive expressions of the form

P
�

{ϑ j}M
�

=
M
∑

j=1

p(ϑ j), E
�

{ϑ j}M
�

=
M
∑

j=1

sin2 iη
cos2ϑ j − cos iη

. (3.5)

1This is no longer the case if the SU(2) invariance is broken by a boundary twist, in which case a single vacuum
suffices.
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To facilitate the asymptotic analysis of Eqs. (3.3), it is convenient to express them in terms
of the Baxter Q-functions [40]

Q(ϑ; {ϑ j}) =
M
∏

j=1

sin
�

ϑ− ϑ j

�

, (3.6)

representing ‘trigonometric polynomials’ of degree M whose zeros (in the fundamental do-
main) correspond precisely to the Bethe roots of a given eigenstate. Denoting Q0(ϑ)≡ sinL(ϑ),
and making use of compact notations for imaginary shifts, f [±k](ϑ) ≡ f (ϑ± iη/2), the Bethe
equations can be presented in the form

Q+0 (ϑ j)

Q−0 (ϑ j)
=

Q[+2]
j (ϑ j)

Q[−2]
j (ϑ j)

, (3.7)

where Q j(ϑ)≡
∏M

k 6= j sin(ϑ− ϑk), or in an equivalent logarithmic form

logQ+0 (ϑ j)− logQ−0 (ϑ j) = 2n jπi+ logQ[+2]
j (ϑ j)− logQ[−2]

j (ϑ j). (3.8)

The above form is universal and provides a useful starting point to obtain the semi-classical
limits in many other quantum integrable models.

Thermodynamic limit. In physics applications one is mostly interested in thermodynamic
properties. To this end, one has to infer the structure of solutions to the Bethe equations for
large system size, i.e. in the L→∞ limit with M ∼O(L)→∞magnons. A typical thermody-
namic eigenstate comprises of elementary magnon excitations and bound states thereof. The
latter show up as compounds of complex Bethe roots (known as the Bethe strings) whose con-
stituent magnon rapidities with unit (imaginary) equidistant separation (neglecting finite-size
deviations that are typically exponentially small in L)

ϑ
(k)
j = ϑ

(k) +
iη
2
(k+ 1− 2 j), j = 1, . . . , k, (3.9)

with the centre ϑ(k) ∈ R.

Low-energy scaling limit. There exists another thermodynamic limit that is distinct to the
one described above. To extract the low-energy spectrum of spin fluctuations at long wave-
lengths, one has to consider a thermodynamic scaling limit by taking both L and M ∼ O(L)
large, while additionally demanding that all magnons have low momenta scaling as O(1/L).
This way we are left with a finite number m∼O(1)macroscopic bound states. We stress that,
in this regime, the Bethe’s original argument for the string formation is no longer valid. What
happens instead is that bound states become less dense and in general appreciably deformed.

This low-energy eigenstates have been first investigated by Sutherland [41] and afterwards
also in Ref. [42], where they are dubbed as ‘quantum Bloch walls’. Their classical nature has
however been elucidated only later in Ref. [12], establishing an explicit connection with (non-
linear) spin waves governed by the continuous Landau–Lifshitz ferromagnet with isotropic
interaction.

The method outlined in Ref. [12] is rather general and can be extended to accommo-
date also for the interaction anisotropy. As shown below, in the presence of the interaction
anisotropy η, the thermodynamic scaling limit that governs the semi-classical spectrum of
low-energy eigenstates requires to additionally assume that anisotropy is weak, ∆ § 1. To
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be more specific, after reinstating lattice spacing a and writing ` ≡ L a ∈ O(1), anisotropy
parameter η∼O(1/L)→ 0 has to be rescaled as

η=
ε`

L
+O

�

1
L2

�

, (3.10)

with parameter

ε≡
p

δ, δ =
2(∆− 1)

a2
∈O(1), (3.11)

kept fixed whilst taking the continuum thermodynamic limit, L → ∞ and a → 0. Here
parameter ` plays the role of a length and later on, in Sec. 3.1, we show that it corresponds
precisely to the circumference of the emergent classical phase space.

By first expanding the logarithm of Q±0 we find

logQ±0 (ϑ j) = logQ0(ϑ j)±
iη
2

d
dϑ

logQ0(ϑ)|ϑ=ϑ j
−
η2

8
d2

dϑ2
logQ0(ϑ)|ϑ=ϑ j

+O
�

1
L2

�

, (3.12)

where we have assumed that ϑ ∈ O(1). At this stage it is convenient to perform a change of
variable by introducing

µ=
η

`

d
dϑ

logQ0(ϑ) =
ε

tanϑ
, µ j = lim

ϑ→ϑ j

µ, (3.13)

which then yields

logQ+0 (ϑ j)− logQ−0 (ϑ j) = i`µ j +O
�

1
L2

�

. (3.14)

The part involving Q(ϑ) can be treated analogously. The details are given in Appendix B.
By combining the two contributions, we finally arrive at the following compact representation
in the µ-variable 2

µ j =
2π
`

n j −
2
L

M
∑

k 6= j

µ jµk +δ

µ j −µk
+O

�

1
L

�

. (3.15)

Upon taking the thermodynamic scaling limit, the Bethe roots µ j condense along certain one-
dimensional segments (contours). In general, there are several disjoint contours C ≡ ∪ jC j .
Accordingly, the Bethe equations turn into singular integral equations of the form

`µ

2
= πn j − `−

∫

C
dλKδ(µ,λ)ρ(λ), µ ∈ C j , (3.16)

with integral kernel

Kδ(µ,λ)≡
µλ+δ
µ−λ

. (3.17)

Eqs. (3.16) are known as the asymptotic Bethe equations (ABE). To satisfy the reality constraint,
the Bethe roots must appear in complex-conjugate pairs, implying that contours C j are sym-
metric under reflection about the real axis. The leading correction term to Eq. (3.15) is of the
order O(1/L) (cf. Appendix B),

1
L
πρ′(µ)`2(µ2 +δ)2 coth

�

π`(µ2 +δ)ρ(µ)
�

. (3.18)

It turns out that this correction to Eqs. (3.16) can only be safely discarded when

π`(µ2 +δ)ρ(µ) 6= iπn, n ∈ Z, (3.19)

2Exact solutions to this algebraic equation for a single mode number can be found in Ref. [43]. A similar
construction for the isotropic case appeared in Ref. [44].
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which is satisfied when the density of roots near the real axis is sufficiently low. In contrast,
when the density of Bethe roots is high enough, the assumptions underlying the above per-
turbative expansion are no longer justified and one has to resort to the full quantum Bethe
equations non-perturbatively (at least in the region near the real axis where the effect is most
pronounced). We shall return to this subtlety in Sec. 6.2 and examine it closely on a specific
class of solutions. As it turns out, the effect is responsible for emergence of certain special
features in the solutions called condensates [13].

Riemann–Hilbert problem. The asymptotic Bethe equations (3.16) can be formulated as a
Riemann-Hilbert problem. To this end, we define the spectral resolvent

G(µ) = `

∫

C
dλKδ(µ,λ)ρ(λ), (3.20)

and define

p(µ) = G(µ) +
`µ

2
. (3.21)

At every point µ along the density contour C j function p(µ) experiences a jump discontinuity
that is proportional to the density (of Bethe roots) ρ(µ),

p(µ+ i0)− p(µ− i0) = 2iπ`(µ2 +δ)ρ(µ), µ ∈ C j , (3.22)

with ±i0 denoting infinitesimal displacements to either side of the contour. 3 Individual con-
tours C j can thus be pictured as the jth branch cut (of square-root type) of a two-sheeted Rie-
mann surface. The end points of C j thus correspond to branch points. In this view, function
p(µ) is a double-valued complex function which, apart from contours C j , is analytic every-
where on the complex µ-plane. A branch cut of square-root type implies that upon crossing it
we end up on another Riemann sheet and p(µ) flips its sign. In addition, p(µ) in general picks
up an integer multiple of 2π, namely

p(µ+ i0) + p(µ− i0) = 2πn j , µ ∈ C j . (3.23)

Remarkably, p(µ) is precisely the classical quasi-momentum pertaining to the completely inte-
grable classical anisotropic ferromagnet. As explained and demonstrated in the next section,
quasi-momentum encodes the eigenvalues of the classical monodromy matrix obtained from
a path-ordered exponential of the classical Lax connection.

In the Sec. 6 we shall make a direct comparison between the branch cuts and discrete dis-
tributions of Bethe roots for finite system sizes. There we find it useful to rewrite the Riemann-
Hilbert problem in terms of variable ζ= 1/µ. In Appendix A we provide a dictionary between
the two parametrisations used.

3.1 Anisotropic Landau–Lifshitz field theory

The task at hand is to derive the classical equation of motion for the low-energy spectrum of
the Heisenberg XXZ chain. We present how to achieve this in a systematic fashion. The first
step is to infer the spatial component of the classical Lax connection from the semi-classical
expansion of the quantum monodromy matrix. This will also enable us to explicitly establish
that p(µ) from the previous section is truly the classical quasi-momentum that belongs to the
classical axially anisotropic Landau–Lifshitz model. Written in terms of a S2-valued classical
spin field ~S(x , t), the latter is described by the following partial differential equation

~St = ~S × ~Sx x + ~S × J ~S, J ≡ diag(0,0,δ). (3.24)

3Orientation of integration contours is in the direction towards the branch point with a negative imaginary part.

13

https://scipost.org
https://scipost.org/SciPostPhys.10.4.086


SciPost Phys. 10, 086 (2021)

Here and subsequently we make use of compact notations ~St ≡ ∂t
~S(x , t), ~Sx ≡ ∂x

~S(x , t), and
similarly for higher partial derivatives. The Hamiltonian that generates Eq. (3.24) is of the
form

H = 1
2

∫ `

0

dx
�

~Sx(x) · ~Sx(x) +δ−δ(Sz(x))2
�

. (3.25)

Zero-curvature representation. Complete integrability of Eq. (3.24) can be made manifest
by recasting it in the form of a zero-curvature condition

Ut(µ; x , t)−Vx(µ; x , t) + [U(µ; x , t),V(µ; x , t)] = 0. (3.26)

The latter ensures compatibility of the following auxiliary linear problem,

Ψx(µ; x , t) = U(µ; x , t)Ψ(µ; x , t), Ψt(µ; x , t) = V(µ; x , t)Ψ(µ; x , t), (3.27)

where [14]

U(µ; x , t) =
1
2i

�

µSz
p

µ2 +δS−
p

µ2 +δS+ −µSz

�

, (3.28)

V(µ; x , t) =
i
2

�

(µ2 +δ)Sz µ
p

µ2 +δS−

µ
p

µ2 +δS+ −(µ2 +δ)Sz

�

−
1
2i

�

µJ z
0

p

µ2 +δJ −0
p

µ2 +δJ +0 −µJ z
0

�

, (3.29)

are the spatial and the temporal component of the classical Lax connection, respectively, with

J0 ≡ ~Sx × ~S, (3.30)

denoting the spin current density at δ = 0.

Semi-classical limit. We next show how the above (classical) Lax connection can be re-
trieved from the Lax operator of the quantum chain. The quantum Lax operator is the elemen-
tary building block of commuting transfer matrices which facilitate algebraic diagonalisation
of the XXZ Hamiltonian (3.1). The fundamental Lax operator L(ϑ) acts on a one-site (physical)
Hilbert space Vp

∼= C2 of a spin-1/2 degree of freedom and an auxiliary space Va associated to
the fundamental representation of the quantum group Uq(su(2)) (with deformation parameter
q = eη), and depends analytically on the complex (spectral) parameter ϑ. It reads explicitly

L(ϑ) =
1

sinhη

�

sin(ϑ+ iηSz) i sinhηS−

i sinhηS+ sin(ϑ− iηSz)

�

, (3.31)

in terms of auxiliary spin generators which enclose the q-deformed commutation relations

[S+,S−] = [2Sz]q, q2Sz
S± = q±2S±q2Sz

, (3.32)

using the standard notation [x]q = sinh(η x)/ sinhη.
We proceed by constructing the fundamental row transfer matrix of the quantum XXZ

spin chain, obtained as a partial trace (over the fundamental auxiliary space Va
∼= C2) of the

monodromy matrix, i.e. an ordered product of Lax matrices

T (ϑ) = TrVa
M(ϑ) = TrVa

L(1)(ϑ)L(2)(ϑ) · · ·L(N)(ϑ). (3.33)

Here we have adopted the right-to-left ordering convention and used L(k)(ϑ) to denote the
embedding into the kth factor in an L-fold product Hilbert space H ∼= V⊗L

p . By virtue of
the quantum Yang–Baxter relation, matrices T (ϑ) mutually commute, [T (ϑ), T (ϑ′)] = 0 for
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all ϑ,ϑ′ ∈ C. Therefore, commuting transfer matrices serve as the generating operator for the
local (and nonlocal) conserved charges [12,38]. An infinite tower of commuting fused transfer
matrices T j(ϑ) with ( j + 1)-dimensional auxiliary unitary representations of Uq(su(2)) can be
constructed in a similar manner, providing additional quasilocal conservation laws of the XXZ
model. While these are of utmost importance for thermodynamic properties at finite energy
density (see e.g. Refs. [45–48]), they do not play any role upon taking the semi-classical limit.

We have thus far analysed the asymptotic scaling limit L →∞ at the level of the Bethe
equations by parametrising the interaction parameter as η = ε`/L → 0 and subsequently
taking η → 0 (q → 1). Now we do the same at the level of the transfer matrix, where we
are allowed to substitute the q-deformed spin generators with the fundamental su(2) spins,
Sα → Ŝα = 1

2 σ̂
α for α ∈ {x, y, z}. In this limit, the diagonal elements of the quantum Lax

operator become

lim
η→0

sin(ϑ1+ iηSz)
sinhη

=
sinϑ
η

1+ i cos (ϑ)Ŝz +O(η), (3.34)

whence

L(ϑ)'
sinϑ
η

�

1+ iη

�

cot (ϑ)Ŝz csc (ϑ)Ŝ−

csc (ϑ)Ŝ+ − cot (ϑ)Ŝz

��

. (3.35)

By reinstating the lattice spacing a = `/L and using the spectral parameter

µ=
ε

tanϑ
, (3.36)

the Lax matrix writes

L(µ)'
1

a
p

µ2 +δ

�

1+ ia

�

µŜz
p

µ2 +δŜ−
p

µ2 +δŜ+ −µŜz

��

, (3.37)

whereas the asymptotic scaling limit of the associated monodromy matrix M(µ) is given by
the following path-ordered product

M(µ)

(a
p

µ2 +δ)L
∼

1
∏

j=L

�

1+ ia

�

µŜz
j

p

µ2 +δ Ŝ−j
p

µ2 +δ Ŝ+j −µ Ŝz
j

��

. (3.38)

In the final step we replace the quantum spins Ŝα with classical spin variables viaSαj ≡ Sα(x = j a),
and subsequently take the continuum limit. We thus arrive as the following semi-classical ap-
proximation of the quantum monodromy matrix

Mcl(µ)≡P exp

�

i
2

∮ `

0

dx
2π

U(µ; x , t)

�

, (3.39)

with U(µ; x , t) being the spatial component of the Lax connection introduced earlier in Eq. (3.28).

4 Finite-gap integration method

Having retrieved the classical quasi-momentum p(µ) from the semi-classical expansion of the
Heisenberg quantum chain, we proceed to explain how its analytic structure encodes the spec-
trum of interacting nonlinear phases that characterise classical spin-field configurations. We
shall confined our considerations, as usual, to a class of solutions that involve only a finite num-
ber of excited nonlinear modes (corresponding to Riemann surfaces of finite genus), commonly
known in the literature as the finite-gap solutions [29,49,50].

15

https://scipost.org
https://scipost.org/SciPostPhys.10.4.086


SciPost Phys. 10, 086 (2021)

We next describe the full programme for performing an algebro-geometric integration of
completely integrable nonlinear partial differential equations which permits to solve the initial
value problem. The main steps comprise of:

1. prescribing an appropriately normalised meromorphic differential dp on a hyperelliptic
Riemann surface of finite genus,

2. constructing the fundamental matrix solution to the associated auxiliary linear problem,

3. identifying the dynamical separated variables and deriving their equations of motion,

4. employing the Abel–Jacobi transformation to obtain canonical action-angle variables
satisfying a linear evolution law on a Jacobian hypertorus,

5. expressing physical fields through the solution to the inverse problem.

We stress that the outlined finite-gap integration scheme is not particular to the model at
hand but rather applies universality. Moreover, the method has been previously developed
also for the Landau–Lifshitz model in Refs. [51,52]. Nevertheless, we wish to offer a different
formulation here that we find conceptually simpler. Specifically, we shall avoid the conven-
tional use of the Baker–Akhiezer vectors. Our plan is to first discuss some general aspects and
then to provide two explicit realisations for g= 0 and g= 1. We do not pay much attention to
the construction of the action-angle variables but rather give an explicit time dependence of
the physical spin fields in terms of the Riemann theta functions.

4.1 Auxiliary linear problem

In this section we describe how to solve the auxiliary linear problem (3.27). By formally
integrating along the spatial direction at a fixed time-slice, we have

ψ(µ; x) =P exp

�

∫ x

x0

dx ′U(µ; x ′)

�

≡ Tcl(x , x0). (4.1)

By imposing periodic boundary conditions ~S(x + `) = ~S(x), we define the monodromy ma-
trix (3.39)

Mcl(µ) = Tcl(x0 + `, x0). (4.2)

According to the Bloch theorem, there are two linearly-independent solutions that linearise
this translation,

ψ(µ; x + `) = Λ(µ)ψ(µ; x), (4.3)

where Bloch multiplier Λ(µ) = diag(Λ+(µ),Λ−(µ)) is given by eigenvalues of Mcl(µ), which
(by virtue of the zero-curvature condition (3.26)) are conserved under time evolution, ∂Λ±(µ)/
∂ t = 0. Since TrUcl(µ) = 0, monodromy matrix Mcl(µ) is unimodular and hence its eigenval-
ues can be parametrised as Λ±(µ) = exp (±ip(µ)) in terms of a single complex-valued function
p(µ) called quasi-momentum. Subsequently we make use of the following general parametri-
sation

Mcl(µ) = cos (p(µ)) + i sin (p(µ))Ψ(µ; x0). (4.4)

In analogy with the harmonic oscillator presented in the introductory section 2, we introduce
the squared eigenfunctions through

Ψ(µ; x0) =ψ(µ; x0)σ
zψ(µ; x0)

−1, (4.5)

representing a periodic matrix solution (that is Ψ(µ; x + `) = Ψ(µ; x)) to the adjoint linear
system

Ψ x(µ; x , t) =
�

U(µ; x , t),Ψ(µ; x , t)
�

, Ψ t(µ; x , t) =
�

V(µ; x , t),Ψ(µ; x , t)
�

. (4.6)
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Uniformisation. Introducing an uniformised spectral parameter z,

mu=
1
2

�

z −
δ

z

�

,
Æ

µ2 +δ =
1
2

�

z +
δ

z

�

, (4.7)

the solution to the above linear problem can be sought in the form of a formal Laurent series

Ψ(µ) =
∞
∑

n=0

Ψn

zn
. (4.8)

Defining S2-valued matrices

S≡ ~σ ⊗ ~S =
�

Sz S−
S+ −Sz

�

, eS≡ σz Sσz, (4.9)

the first few terms can be written compactly in the form

Ψ0 = S, Ψ1 = i[S,Sx], Ψ2 = −Tr(Sx)
2S− [S, [S,Sx x]] +

ε2

4
[S, [eS,S]], (4.10)

and so forth.

Local conserved charges. The quasi-momentum can be related to the squared eigenfunc-
tions via [14]

p(z) = −i

∫ `

0

dx Tr
�

U(Ψ +σz)−1
�

= −
z `
4
+
∞
∑

n=0

Qn

zn
, (4.11)

where coefficients Qn provide (extensive) local conserved charges for a given solution. The
first two take the form (modulo total derivatives)

Q0 =
i
4

∫ `

0

dx
S−S+x −S+S−x

1+Sz
= −

P
2

,

Q1 = −
1
2

∫ `

0

dx
�

~S2
x + ε

2
�

1− (Sz)2
�

−
ε2

2

�

= −H+ ε
2`

4
,

(4.12)

which yields

p(µ) = −
µ`

2
−
P
2
−
H
µ
+O(µ−2). (4.13)

4.2 Finite-gap solutions

The quasi-momentum p(µ) contains only information about the conserved quantities encoded
in a particular spectral curve. In order to reconstruct the spin field ~S(x , t) from the spectral
data, we also need knowledge of the dynamical degrees of freedom. Below we outline the
algebro-geometric procedure to infer the time evolution of the spin field ~S(x , t) for the class
of finite-gap solutions.

To achieve this, we parametrise the squared eigenfunction as

Ψg(µ) =
1

Æ

R2g+2(µ)

�

ag+1(µ)
p

µ2 + ε2 bg(µ)
p

µ2 + ε2 b̄g(µ) −ag+1(µ)

�

, (4.14)

where functions ad(µ), bd(µ) andRd(µ) are polynomials in variable µ of degree d In particular,
R2g+2(µ) is a polynomial of degree 2g+ 2,

R2g+2(µ) =
g+1
∏

j=1

(µ−µ j)(µ− µ̄ j) =
2g+2
∑

k=0

(−1)kr2g+2−kµ
k, (4.15)
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which specifies a hyperelliptic algebraic curve in C2,

Σ : y2(µ) =R2g+2(µ). (4.16)

The curve is fully characterised by 2(g+1) branch points µ j (or, equivalently, symmetric poly-
nomials rk thereof, with r2g+2 = 1). By the unimodularity constraint, detΨg = −1, functions
a(µ) and b(µ) are not independent but are instead subjected to an algebraic relation

a2
g+1(µ) +

�

µ2 +δ
�

bg(µ)b̄g(µ) =R2g+2(µ). (4.17)

From the trace identity (4.11) one can readily infer the following compact expression for
the quasi-momentum

p(µ) = −
µ

2

∫ `

0

dx Sz(x)−
µ2 +δ

4

∫ `

0

dx
S− b̄g(µ) +S+bg(µ)
Æ

R2g+2(µ) + ag+1(µ)
. (4.18)

This form is compatible with the correct asymptotic expansion about µ→∞. A series expan-
sion of p(µ) will thus involve only (g + 1) functionally independent integrals of motion Qn.
They can be expressed as certain functions of coefficients r j of R2g+2(µ). Moreover, the total
filling fraction ν with respect to ferromagnetic vacuum Sz

vac = 1,

ν≡
1
2`

∫ `

0

dx (1−Sz(x)), (4.19)

can be obtained as

p(µ= ±iε) = ∓
iε
2

∫ `

0

dx Sz(x) = ∓
iε`
2
(1− 2ν). (4.20)

4.2.1 Dynamical divisor

Off-diagonal elements of the fundamental matrix solution Ψg(µ), i.e. dynamical zeros of the
b-function, provide dynamical degrees of freedom of finite-gap solutions 4, enabling the re-
construction of the time-evolved spin field ~S(x , t).

To satisfy quadratic constraint (4.17), we parametrise

bg(µ; x , t) = S−(x , t)
g
∏

j=1

�

µ− γ j(x , t)
�

, (4.21)

where the leading coefficient has been fixed to match the asymptotics at µ→∞.
The set D = {γ j}

g
j=1 is known as the dynamical divisor of the Riemann surface Σ. Since

S−(x , t) should also be regarded as an independent dynamical variable, we have in total (g+1)
dynamical degrees of freedom. This number exactly matches the number of action variables
and corresponds to the number of forbidden zones in the finite-gap spectrum.

4Indeed, function bg(µ) can be interpreted as the classical analogue of the B-operator, namely the off-diagonal
element of the quantum monodromy matrix B ≡ M12, whose operator-valued zeros are the quantum separated
variables [53].
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Dubrovin equations. Dynamics of variables γ j = γ j(x , t) takes place on the Riemann sur-
face Σ. Below we employ an extended dynamical divisor Dext by adjoining it two extra non-
dynamical variables γ± ≡ ±iε which we label by γg+1 and γg+2, respectively. Using Lagrange
interpolation formula, we can then restore functions ag+1(µ) from Eq. (4.17), yielding

ag+1(µ; x , t) =
g+2
∑

j=1

q

R2g+2(γ j(x , t))
g+2
∏

k 6= j

µ− γk(x , t)
γ j(x , t)− γk(x , t)

. (4.22)

The equations of motion (4.6) in terms of γ-variables from Dext take the form

∂xγ j(x , t) = i
q

R2g+2(γ j(x , t))
g
∏

k 6= j

(γ j(x , t)− γk(x , t))−1,

∂tγ j(x , t) = i Γ (x , t)
q

R2g+2(γ j(x , t))
g
∏

k 6= j

(γ j(x , t)− γk(x , t))−1,

(4.23)

with

Γ (x , t)≡
r1

2
−

g
∑

k 6= j

γk(x , t), r1 =
g+1
∑

j=1

(µ j + µ̄ j). (4.24)

We have obtained a system of differential equations that governs the motion of the dynamical
divisor of a Riemann surface, commonly known in the literature under the name of Dubrovin
equations [29,49,54]. The form of these equations is universal, namely they do not depend on
the model under consideration. What is model-specific instead are the reconstruction formu-
lae, i.e. how γ-variables relate to physical fields. A spin field whose target space is a 2-sphere
can be described by two degrees of freedom, e.g. the Sz and S− components. These can be
restored from Eqs. (4.6), which yields

Sz(x , t) =
g+2
∑

j=1

Æ

R2g+2(γ j(x , t))
∏g+2

k 6= j(γ j(x , t)− γk(x , t))
, (4.25)

and

i
S−x (x , t)

S−(x , t)
=

g+2
∑

j=1

γ j
Æ

R2g+2(γ j(x , t))
∏g+2

k 6= j(γ j(x , t)− γk(x , t))
, (4.26)

i
S−t (x , t)

S−(x , t)
= i

r1

2

S−x (x , t)

S−(x , t)
−

g+2
∑

j=1

γ j
Æ

R2g+2(γ j)
�

∑g+2
k 6= j γk(x , t)

�

∏g+2
k 6= j(γ j(x , t)− γk(x , t))

. (4.27)

Abel–Jacobi transformation. Dubrovin equations (4.23) allow for exact integration. To this
end, we define the standard basis of 2g closed cycles on Σ. They further split into A-cycles
and their conjugate B-cycles according to the following prescription: A j-cycle encircles the the
jth branch cut C j on the upper Riemann sheet of Σ, whereas B jk denotes a cycle that passes
through cut C j on the upper sheet and closes back to itself through Ck, as shown in Fig. 2.

Dubrovin equations for the dynamical divisor on Σ can be integrated with aid of the Abel–
Jacobi transformation,

ϕ j = 2π
g
∑

k=1

∫ γk(x ,t)

γk(0,0)
ω j , (4.28)

where ω j form the basis of holomorphic differentials of the Riemann surface. The above
mapping provides a variable transformation from γ-variables to ϕ-variables of the angle-type,
{γ j(x , t)} 7→ {ϕ j(x , t)}.
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Figure 2: Cycles on a two-sheeted Riemann surface, illustrated on an example of
two cuts C j and Ck. Upon tunnelling to the other Riemann sheet, the integration
orientation is reversed [12].

The holomorphic differentials ω j are formally the form

ω j =
g
∑

k=1

C jkµ
g−kdµ

Æ

R2g+2(µ)
, j = 1,2, . . .g. (4.29)

Coefficients C jk are determined by requiring canonical normalisation with respect to A-cycles
∮

A j

ωk = δ jk. (4.30)

Taking into account Eq. (4.28), equations of motion of the dynamical divisor (4.23) lin-
earise. Indeed, making use of the Lagrange interpolation formulae, one can find

∂xϕ(x , t) = 2πi C j1, ∂tϕ(x , t) = 2πi
h r1

2
C j1 + C j2

i

, (4.31)

implying
ϕ j(x , t) = k j x +w j t +ϕ j(0, 0), (4.32)

with wave numbers k j are frequencies w j reading

k j = 2πiC j1, w j = 2πi
� r1

2
C j1 + C j2

�

. (4.33)

Phases ϕ j(x , t) satisfy linear evolution in both space and time, exercising a quasiperiodic
motion on a Liouville torus T2g of real dimension 2g. For any physically admissible initial
condition, γ-variables evolve along closed trajectories which are homotopically equivalent to
A-cycles A j , such that there is precisely one variable per cycle C j .
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Periodicity constraints. A family of periodic (i.e. closed) solutions ~S(x) = ~S(x+`) is further
distinguished by the periodicity of angles, ϕ j(x+`, t) = ϕ j(x , t)+2πn j where integers n j ∈ Z
specify the mode numbers assigned to each branch cut. Similarly, invariance under translation
for a temporal period T implies quantisation of frequencies w j . Under these extra conditions,
coefficients C j1 and (r1/2)C j1 + C j2 become integer-valued, imposing a non-trivial restriction
on the admissible algebraic curves.

Extra degree of freedom. Now we come to an important subtlety in the above construction:
the dynamical separated variables forming the divisor D ≡ {γ j}

g
j=1 do not provide the complete

set of dynamical degrees of freedom for the class of finite-gap solutions. It turns out there is an
additional degree of freedom that is not amongst the canonical angle variables (4.28) obtained
from dynamical zeros γ j of the b-functions. This fact indeed becomes apparent already in the
simplest case of genus-zero solutions which, as we in turn demonstrate, governs an evolution
of a spin field described by a single angle variable. More generally, for algebraic curves of
genus g, there are thus (g+1) phases in total (that is precisely the number of cuts, i.e. half the
number of branch points) and accordingly the linearised dynamics takes place in the Liouville
torus of real dimension 2(g+ 1).

Substituting the form of the b-functions (4.21), into Eq. (4.18), and using the restoration
formulae (4.25), (4.26), (4.27), we deduce the following identities

∫ `

0

dx
b̄(µ; x , t)S−(x , t)
p

R(µ) + a(µ)
=

∫ `

0

dx
b(µ; x , t)S+(x , t)
p

R(µ) + a(µ)
. (4.34)

Introducing an auxiliary function

r(µ,γ) =

p

R(µ)−
p

R(γ)
µ− γ

−
1
2

∑

σ∈{+,−}

p

R(σiε)−
p

R(γ)
σiε− γ

, (4.35)

we can present the quasi-momentum as a period integral of the form

p(µ) = −
1
2

∫ `

0

dx
g
∑

j=1

r(µ,γ j)
∏

k 6= j(γ j − γk)
. (4.36)

When g= 0, we put Eqs. (4.21) and (4.22) into Eq. (4.18), which yields

p(µ) = −
`

2

�

Æ

R2(µ)−
1
2

�
Æ

R2(iε) +
Æ

R2(−iε)
�

�

. (4.37)

Comparing Eq. (4.36) with Eq. (4.26), we find that

ng+1 ≡
1

2πi

∫ `

0

dx ∂x logS−, (4.38)

provides an extra mode number ng+1.
Using the fact that γ-cycles are topologically equivalent to A-cycles that encircle the cuts

of Σ, we can write

p(µ) =
i
2

g
∑

k=1

nk

∮

Ak

p

R(µ)−
p

R(γ)
µ− γ

dγ
p

R(γ)
−πng+1, (4.39)

where nk is the mode number of the kth cut.
On Riemann surface Σ, quasi-momentum p(µ) is a single-valued function. Alternatively,

it can be understood as a double-valued function on the complex spectral plane with µ ∈ C,
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experiencing jumps on different Riemann sheets upon traversing branch cuts with
p

R(µ)
flipping sign. The discontinuity condition for each cut reads

p(µ+ i0) + p(µ− i0) = 2π(nk − ng+1), µ ∈ Ck, (4.40)

where infinitesimal shifts ±i0 pertain to points on the either side of the cut Ck. The above
equations are known as the Riemann–Hilbert problem. An additional mode number ng+1 can
be inferred from the asymptotic condition at µ=∞±, reading

p(∞+) + p(∞−) = −2πng+1. (4.41)

It proves convenient to introduce a new basis of open B-cycles Bk (for k = 1,2, . . . ,g + 1),
connecting infinity∞+ on the upper sheet with∞− on the lower sheet by passing through
the cut Ck, as demonstrated in Fig. 2, Eqs. (4.40) alongside (4.41) can be compactly stated as

∮

Bk

dp(µ) = 2πnk, k = 1,2, . . . ,g+ 1. (4.42)

An alternative approach. Despite Eq. (4.39) provides a solution to the Riemann–Hilbert
problem (4.40), the behaviour at µ →∞ does not comply with the form of Eq. (4.13). An
extra requirement on the spectral curve is needed, namely demanding integrality of the wave
numbers (4.33). One route to achieve this is to construct quasi-momentum p(µ) that satisfies
the required asymptotics at µ→∞ by considering a meromorphic (second-kind) differential

dp= −
`

2

P2g+2(µ)dµ
p

R(µ)
, P2g+2(µ) =

g+1
∑

j=0

c jµ
j . (4.43)

Then p(µ) is unambiguously determined by demanding analyticity and specifying its asymp-
totics; the latter readily fixes the highest two coefficients of P2g+2(µ), namely

cg+1 = 1, cg = −
r1

2
= −

1
2

2g+2
∑

j=1

µ j , (4.44)

whereas the remaining m= g− 1 coefficients are fixed by
∮

A j

dp(µ) = 0, j = 1,2, · · ·g. (4.45)

Finally, the spectral curve is uniquely fixed by the condition (4.42).

5 Examples of finite-gap solutions

5.1 One-cut rational solution

The simplest solutions of the Riemann-Hilbert problem (3.23) belong to algebraic curves of
genus zero (Riemann surfaces with a single branch cut). These correspond to quadratic poly-
nomials of the form

R2(µ) = (µ−µ1)(µ− µ̄1), (5.1)

where branch points µ1, µ̄1 ∈ C are conjugate to one another in order to obey the reality
condition. This leads to solutions that involve two real degrees of freedom.
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In what follows, we set the classical period to `= 1. With this choice, the admissible values
of the wave numbers are k = 2πn with n integer. As a consequence, the branch points cannot
be chosen arbitrarily but get “quantised” as well.

Quasi-momentum p(µ) is given by Eq. (4.37). To satisfy the “quantisation condition” and
to obtain the prescribed filling fraction (4.20), we have

1
2

�
Æ

R2(iε) +
Æ

R2(−iε)
�

= 2πn, −
1
4

�
Æ

R2(iε)−
Æ

R2(−iε)
�

= −
iε
2
(1− 2ν), (5.2)

allowing us to parametrise the branch points as

µ1 + µ̄1 = 4πn(1− 2ν), |µ1|2 = 4π2n2 + 4δν(1− ν). (5.3)

The algebraic curve can be expressed in terms of mode number n and filling fraction ν, reading

y2(µ) =R2(µ) = µ
2 − 4πn(1− 2ν)µ+ 4π2n2 + 4δ(1− ν), (5.4)

whereas the associated quasi-momentum, cf. Eq. (4.37), can be written as

p1(µ) = −πn−
1
2

Æ

(µ−µ1)(µ− µ̄1)

= −πn−
1
2

Æ

µ2 − 4πn(1− 2ν)µ+ 4π2n2 + 4δ(1− ν).
(5.5)

On the other hand, the quasi-momentum can also be constructed as an integral of a suitable
meromorphic differential on the rational curve (cf. Eq. (4.43)). In g= 0 case, such differential
is described with coefficients c0 and c1,

dp1(µ)
dµ

= −
1
2

c1µ+ c0
p

R2(µ)
. (5.6)

In this case, both coefficients are readily fixed by the asymptotics, see Eq. (4.44), yielding
c1 = 1 and c0 = −(µ1 + µ̄1)/2. By taking an integral of dp1(µ), we correctly recover the
quasi-momentum (5.5).

Notice that presently (i.e. in the zero-genus case) there is no canonical A-cycle. There is
a single wave number which can be retrieved by evaluating the ‘open’ B-cycle

k =

∮

B1

dp1 = − (p1(∞+) + p1(∞−)) = 2πn. (5.7)

Here n ∈ Z is the mode number of the solution.
Coefficients of the asymptotic expansion of p1 (cf. Eq. (4.13))

µ→∞ : p1(µ)∼ −
µ

2
−
P
2
−
H
µ
+O

�

µ−2
�

, (5.8)

provide phase-space averages of local charges evaluated on a particular one-cut solution. The
initial two coefficients correspond to total momentum and energy, reading explicitly

P = 2πnν, H = 1
2
(4π2n2 +δ)ν(1− ν). (5.9)

The knowledge of the one-cut quasi-momentum allows to express the dynamics of the
spin field ~S(x , t) in terms of canonical separated γ-variables. However, since we deal with an
algebraic curve of genus zero, we remind that there is no genuine γ-variable present. Instead,
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the only dynamical degree of freedom is the transversal spin component S−(x , t). We first use
Eq. (4.25) to deduce the longitudinal component

Sz(x , t) =

p

R2(γ1)
(γ1 − γ2)

+

p

R2(γ2)
(γ2 − γ1)

= 1− 2ν, (5.10)

where we have made use of the frozen (i.e. non-dynamical) γ-variables γ1 = iε and γ2 = −iε.
In the next step, we can solve Eqs. (4.26) and (4.27) to find the transversal component of

the spin field,

i∂x logS− = 2πn, i
�

∂t logS− −πn(1− 2ν)∂x logS−
�

= δ(1− 2ν). (5.11)

By imposing normalisation constraint | ~S(x , t)| = 1, we finally arrive at the following general
form of the one-cut solution

Sz(x , t) = 1− 2ν= cosθ0, S±(x , t) = sinθ0 exp [±i(kx −wt)] , (5.12)

where the wave number and frequency are

k = 2πn, w= (4π2n2 +δ) cosθ0. (5.13)

The momentum and energy can be alternatively computed by direct integration using Eq. (4.13)

P = 1
2i

∫ 1

0

dx
S−S+x −S+S−x

1+Sz
= 2πnν,

H = 1
2

∫ 1

0

dx
�

~Sx · ~Sx +δ(1− (Sz)2)
�

=
1
2
(4π2n2 +δ)ν(1− ν),

(5.14)

in agreement with Eq. (5.9).

5.1.1 One-cut solution from asymptotic Bethe ansatz

Before describing how to perform semi-classical quantisation of finite-gap solutions (cf. Sec. 6),
we wish to briefly discuss the one-cut solutions from the vantage point of low-energy eigen-
states in the Heisenberg anisotropic spin chain. Our aim is mainly to identify which solutions
to the Bethe equations (3.3) show up classically as one-cut solutions. A numerical method
for achieving this is outlined in Appendix E.1. Specifically, we are seeking for low-energy
solutions comprising of macroscopically O(L) excited magnons that condense into a single
coherent mode. By fixing the mode number to n = 1, we can compute the total momentum
P and total energy E of such state with different system sizes L and filling fraction ν = M/L
fixed, see Eqs. (3.5). The results are shown in Fig. 3. On the other hand, we can likewise
compute the momenta and energies for classical one-cut solutions, cf. Eq. (5.9), by setting the
classical period `= 1.

Despite that the quantum quasi-momentum in the classical limit reduces to its classical
counterpart, we remind that a direct comparison of the respective energies requires to account
for an extra rescaling factor of L, namely H · L ∼ H, where H denotes the eigenvalue of
the quantum Hamiltonian defined in Eq. (3.1), while the classical Hamiltonian H is given by
Eq. (3.25).

At the classical level, one-cut solutions describe a simple precessional motion. In some
sense, one may view them as a finite-density analogue of Goldstone modes (representing ele-
mentary ferromagnetic excitations called magnons). Remarkably, it turns out (see Sec. 6) that
quantisation of such solutions can give rise to certain non-perturbative effects (first discussed
in Ref. [13]) which necessitate to incorporate quantum corrections into the picture.
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(a) (b)

Figure 3: (a) Comparison between momentum of a one-cut solution with mode num-
ber n= 1 (red dashed line, for both the isotropic and anisotropic interaction δ) and
momenta of the corresponding quantum eigenstates (shown for different system sizes
L = M/ν, with M = 30 and filling fraction ν), with green (black) circles representing
the isotropic (anisotropic, with δ = 1) cases. (b) Comparison between energies of
a one-cut solution with mode number n = 1 (red dashed line for isotropic case and
blue dashed line for anisotropic case with δ = 1) and rescaled energies (E · L) of the
corresponding quantum eigenstates (the same system sizes as in panel (a)).

5.2 Bions from degenerate two-cut solutions

As a non-trivial example, we next focus on the class of two-cut solutions. These are, physi-
cally speaking, periodic elliptic magnetisation waves which are often referred to as ‘cnoidal
waves’. The space of two-cut solution is associated to elliptic algebraic curves corresponding
to Riemann surfaces of genus g = 1, characterised by two branch cuts. In the special limit
of unit elliptic modulus, the profiles become trigonometric and one retrieves the celebrated
soliton solutions. For the particular case of the easy-axis anisotropic Landau–Lifshitz model,
there exist special types of two-cut solutions known as bions; these represent two-mode bound
states formed of a kink and an anti-kink. Moreover, a special degeneration of such a bion so-
lution (upon decompactifying the circumference) produces a static kink. As mentioned in the
introduction, kinks are ultimately responsible for the observed freezing of a magnetic domain
wall, as demonstrated in [16]. In Sec. 6.3 below, we shall perform the semi-classical quantisa-
tion on a bion and study its subtle features. Before that, we derive it here using the outlined
integration procedure.

The elliptic curve encoding the bion spectrum has the form

R2
bion(µ) =R2

4(µ) = (µ
2 + ξ2

1)(µ
2 + ξ2

2), (5.15)

parametrised by two pairs of complex-conjugate branch points located on the imaginary axis
Re(µ) = 0 at µ j ∈ {±iξ1,±iξ2}, satisfying conditions

ξ1 > ε > 0, 0< ξ2 < ε. (5.16)

The upshot here is that the bion solutions can only be found in the regime δ > 0 (the easy-axis
regime). In what follows we put, mostly for simplicity, δ = ε = 1. In fact, from the classical
equation of motion for the spin field ~S(x , t) given by Eq. (3.24), the solution at δ = 1 can be
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mapped to another solution with δ′ > 0 by a simple rescaling

~S(x , t) 7→ ~S(x ′ = ε x , t ′ = δ t). (5.17)

We next outline how to reconstruct of the spin field from the algebraic curve. To set the
stage, we introduce the standard full elliptic integrals, cf. Appendix C,

K1 = K

�

ξ2
2

ξ2
1

�

, K2 = K

�

1−
ξ2

2

ξ2
1

�

. (5.18)

When the argument of the elliptic function is omitted we adopt that k= ξ2/ξ1.
Since the Riemann surface involves two branch cuts, this time we do have a genuine dy-

namical γ-variable γ1(x , t). As said earlier, there exist two extra non-dynamical variables
pinned to locations γ2 = i and γ3 = −i (recall that ε= 1). From the Dubrovin equations (4.23)
we find

γ1(x , t) =
iξ1

sn(u)
= −iξ2 sn(u+ iK2), u= ξ1 x +%, (5.19)

where we have used sn(x + iK2)sn(x)k = 1, and used % to denote the integration constant.
Remarkably, it turns out that in this particular subclass of two-cut solutions even γ1 is static.

Using the reconstruction formulae (4.25) for Sz component, we thus have

Sz =

p

R4(γ1) + i
p

R4(i)γ1

γ2
1 + 1

. (5.20)

To fix the integration constant %, we impose the reality condition Sz ∈ R,

% = arcsn



i
ξ1

ξ2

√

√

√
1− ξ2

2

ξ2
1 − 1



 , (5.21)

which yields a time-independent profile

Sz(x) = −ξ2
cn(ξ1 x)
dn(ξ1 x)

. (5.22)

The solution has a spatial period

`=
4nK1

ξ1
, (5.23)

where ±n are the mode numbers associated with the two cuts. Variable γ1 can be therefore
expressed as

γ1(x) = −ξ1ξ2
−iξ1

p

R4(i) cn(ξ1 x)dn(ξ1 x) + i(ξ2
1 − ξ

2
2)sn(ξ1 x)

ξ2
1(1− ξ

2
2) + (ξ

2
1 − 1)ξ2

2 sn(ξ1 x)2
. (5.24)

The other independent component of the spin field, say S−(x , t), can be reconstructed
with aid of formulae (4.26) and (4.27), i.e.

S−(x , t) =
1

q

1+ γ2
1(x , t)

exp

�

−i

∫

dx
−i
p

R4(i)

1+ γ2
1(x , t)

�

. (5.25)

Using the properties of elliptic functions, we have

S−(x) = C
Θ(ξ1 x +% + iK2)
Θ(ξ1 x + K1)

exp
�

ξ1 x
πi

2K1
+ ξx

Θ′(β)
Θ(β)

�

, (5.26)
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Figure 4: Spin-field components of a typical bion solution, depicted for anisotropy
parameter δ = 1 and branch points ξ1 ' 1.0583559 and ξ2 = 0.9. Components
Sz(x), Sx(x) = ReS−(x), and Sy(x) = −ImS−(x) are shown by blue, yellow and
red curves, respectively. The branch points are determined using the method in Ap-
pendix E. The bion solution is periodic with period `2 = 4K1/ξ1 ' 15.956517.

where an auxiliary function Θ(x) is defined as (cf. Appendix C)

Θ(x) = ϑ3

�

πx
2K1

+
π

2
,−i

K2

K1

�

. (5.27)

Finally, constant C is can be fixed by requiring normalisation ~S2 = 1, yielding

S−(x) =
q

1− ξ2
2
Θ(ξ1 x +ρ + iK2)
Θ(ξ1 x + K1)

exp
�

ξ1 x
πi

2K1
+ ξx

Θ′(β)
Θ(β)

+ iφ0

�

, (5.28)

where φ0 ∈ R is a phase that is determined by the initial condition. We just found that for the
bion solution S− is time-independent as well. A representative example of a bion solution is
shown in Fig. 4.

Static kink. As our final example, we consider a particular degeneration of a bion solution
which produces a kink. One can think of it as ‘soliton limit’ which generally corresponds to
‘blowing up’ the period `. This requires to bring both branch points of

p

R4(µ) in the upper-
half plane together to meet at iε, that is sending ξ1,2→ ε (presently ε= 1) and thus collapsing
both branch cuts to a point. In order to perform this soliton limit, we first shift the argument
of the elliptic function by quarter period K1/ξ1; for instance the Sz field takes the form (cf.
Eqs. (C.6))

Sz(x) = −ξ1
cn(ξ1(x + K1/ξ1))
dn(ξ1(x + K1/ξ1))

= ξ1sn(ξ1 x). (5.29)

Now taking the limits ξ1,2→ 1 and accordingly k= ξ2/ξ1→ 1, we find

Sz
kink(x) = tanh(x), (5.30)

which is none other than a static kink! The transversal components can be easily deduced from
the equation of motion (3.24), yielding

S−kink(x) = sech(x) eiφ0 , (5.31)

where φ0 ∈ R is a phase determined by the initial condition.
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6 Semi-classical quantisation

We have now fully prepared the stage to carry out the semi-classical quantisation on finite-gap
solutions. In this respect, the associated spectral curves (encoding complete information about
the conserved quantities) will be of vital importance.

An important remark is in order at this point. First, recall that moduli of algebraic curves
are completely fixed by locations of the square-root branch points, i.e. roots of polynomial
R2g+2(µ), which (by the reality condition) must always appear in complex-conjugate pairs. Lo-
cal conserved charges are expressible as functions of symmetric polynomials of branch points,
namely coefficients r j of R2g+2(µ). While branch points {µ j} themselves are directly linked
physical quantities, the branch cuts (of square-root type) obtained by pairwise connecting the
branch points are not physical but merely a matter of convention. There is indeed plenty of
freedom in assigning branch cuts to a given set of branch points. For instance, the prevalent
choice in the finite-gap literature [36] is to place the cuts along straight vertical lines con-
necting every complex conjugate pair of branch points, which are in turn encircled by the
canonical basis A-cycles. Such a choice is, purely from the standpoint of classical finite-gap
solutions, perfectly adequate. One the other hand, if classical solutions are instead thought of
as emergent macroscopic bound states of magnons of the underlying quantum spin chain, it
is natural to cut the surface along one-dimensional disjoint segments associated to forbidden
zones of the classical transfer function [12], corresponding to contours on which magnons
(Bethe roots) condense. This prescription for the branch cuts is physically distinguished. As
demonstrated in turn, such physical cuts not only appreciably differ from the conventional
straight cuts in general, but also undergo the phenomenon of condensate formation. Comput-
ing the Bethe root densities along the physical contours is thus the essential step to perform
the semi-classical quantisation.

6.1 Physical contours

In this section we describe a general procedure to determine the physical contours. The al-
gorithm we employ has been proposed and implemented in Ref. [13]. We shall also facil-
itate a direct comparison with exact low-momentum quantum eigenstates at finite L in the
weakly-anisotropic regime. For our convenience, we carry out this computation in ζ-plane 5

by applying the following anti-holomorphic transformation 6

µ 7→ ζ(µ) : ζ=
1
µ
=

tanϑ
ε

. (6.1)

Firstly, we introduce the complex density function

ρ(ζ) =
p(ζ+ i0)− p(ζ− i0)

2iπ`(1+δζ2)
= ±

p(ζ± i0)−πn j

iπ`(1+δζ2)
, ζ ∈ C j , (6.2)

where n j ∈ Z is the mode number associated to cut C j . By virtue of the second equality
in Eqs. (6.2), the density function ρ(ζ) can be defined on the entire Riemann surface. As
a direct consequence of p(ζ = ζ?) = πn j at the square root branch points ζ? ∈ {ζ j , ζ̄ j},
the density always vanishes, ρ(ζ?) = 0. In a small neighbourhood around it, one finds
ρ(ζ = ζ? + ε) = O(

p
ε). Away from the branch points ρ(ζ) in general takes complex val-

ues.
5Our variable ζ is analogous to variable x used in Refs. [12, 13, 55] in the case of the isotropic Heisenberg

model.
6Upon this transformation, orientation of integration contours gets reversed.
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The task is to determine the physical contours C j The latter can be singled out by the fol-
lowing condition: starting from the branch point ζ j , the integrated density differential ρ(ζ)dζ
must always remain real,

∫ ζ

ζ j

dζ′ρ(ζ′) ∈ R for ζ ∈ C j . (6.3)

This prescription has a transparent physical interpretation; physically ρ(ζ)dζ corresponds to
the number of excitations (Bethe roots) within an infinitesimal interval in ζ-plane, which is a
positive definite quantity by definition. This condition alone is however not sufficient yet. In
particular, it turns out that there are three distinct contours emanating out of each branch point
compatible with the above positivity requirement [13]. Amongst those, one of the contour
carries an infinite filling fraction and can be thus immediately ruled out as unphysical. Out of
the remaining two contours, only one can be physical. The defining condition is that the total
filling fraction does not exceed the threshold value of maximal total filling νmax = 1/2, that is

∫

C
dζ′ρ(ζ′)≤ νmax, C =

⋃

j

C j . (6.4)

Consider now a certain reference finite-gap solution. To quantise it at the semi-classical
level, every density contour (physical cut) has to be dissolved into a large (but finite) number of
individual magnons. This invariably requires to reintroduce the length L of the underlying spin
chain, thus rendering the total magnetisation carried by individual coherent states to come in
integer quanta of M j ∼O(L). The precise requirements are that (i) M j/L ≈ ν j and (ii) that the
Bethe roots are distributed approximately with density ρ j(ζ) along C j . Here it is important to
make a distinction with the exact quantisation which instead takes quantum fluctuations fully
into account to all orders in the effective Planck constant. This means, in other words, that the
semi-classical solutions produced with the outlined procedure can be at best an approximation
of finite-volume exact quantum-mechanical eigenstates at large wavelengths, while a full non-
perturbative (i.e. exact) quantisation would require solving the Bethe ansatz equations (3.3).

Single contour at low density. To benchmark the above procedure, we proceed by illustrat-
ing first how one-cut solutions emerge as semi-classical eigenstates in the anisotropic gapped
Heisenberg spin-1/2 chain.

We shall first suppose that the filling fraction of a physical cut is sufficiently low, ensuring
that the finite-size effects (cf. Eqs. (3.18) and (B.16)) can be safely neglected at large system
sizes. We then find that the Bethe roots patterns which solve the asymptotic Bethe equations
distribute along certain arcs in the complex rapidity plane, as exemplified in Fig. 5. To be
concrete, we put anisotropy to δ = 1 and set the filling fraction to ν = 0.1 and the mode
number to n= 1. Using the above prescription, we next compute the density contour satisfying
Eqs. (6.3) and (6.4), as shown in Fig. 5 (the procedure to numerically solve the Bethe ansatz
equations (3.3) for the case of a single quantised one-cut solution is described in Appendix E.1).
Upon taking the L→∞ limit and rescaling the rapidity variable, the semi-classical eigenstate
will eventually be described by a dense arrangement of Bethe roots distributing along the
contour specified by the conditions (6.3) and (6.4).

By ramping up the filling fraction ν, we observe that ‘quantum fluctuations’ (contained in
higher order terms in the ABE) progressive amplify. As announced earlier, this eventually leads
to a critical phenomenon of condensate formation. This feature will be closely examined in
the next section.
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Figure 5: Direct comparison between the physical density contour of a classical one-
cut solution (red dashed line, corresponding to anisotropy δ = 1, filling fraction
ν = 0.1 and mode number n = 1) determined by imposing the positivity con-
dition (6.3), and the corresponding solution to Bethe ansatz equations (3.3) with
M = 30 Bethe roots, system size L = 300 and anisotropy η =

p
δ/L = 1/300 (blue

dots). The Bethe roots are given by ζ j = tan(ϑ j)/
p
δ.

6.2 Formation of condensates

Condensates refer to segments of a uniform density as a part of a physical contour. We borrowed
this name from Refs. [12, 56] where (to the best of our knowledge) such objects have been
first identified. Condensates enter the picture whenever the maximal density along one of the
physical contours exceeds a particular critical value which is signalled by a divergence of the
finite-size correction given by Eq. (3.18) (see also Eq. (B.16)).

We shall first examine the phenomenon on the simplest case of the one-cut solution, using
the ζ-plane parametrisation. By starting at some sufficiently low filling fraction ν we can
observed that upon gradually increasing the filling fraction, the value of ρ(ζ)(1+δζ2) on real
axis approaches the value of i. This value is reached at the critical filling fraction νcrit, precisely
when quantum fluctuation of order O(1/L) become divergent, as indicated by Eq. (B.16). For
larger fillings ν > νcrit, the density contour develops a vertically straight segment of unit
uniform density. Such a condensate appears first on the real axis (right after crossing νcric)
and progressively expands outwards upon further increasing ν. From the viewpoint of the
underlying quantum chain, the spacing between constituent Bethe roots is always equal to iη.
One can therefore think of condensates as giant regular Bethe strings. In the complex spectral
plane associated to finite-gap solutions, the ends points of a condensate correspond to branch
cuts of logarithmic type. 7

In spite of appearance of an additional condensate above ν > νcrit, it is still possible to
extract the physical contour solely from the knowledge of a finite-gap solution by taking into
account conditions (6.3) and (6.4).

Emergence of condensates is intimately tied to the notion of ‘fluctuation points’, playing

7Logarithmic branch cuts get likewise produced in a well-known soliton degeneration process, corresponding to
merging two nearby standard square-root branch cuts by coalescing their type branch points in a pairwise manner.
In effect, finite-gap quasi-momentum is no longer meromorphic. Condensates are different in this respect, as their
quasi-momentum differential remains meromorphic all the way through.
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(a) (b) (c)

Figure 6: Branch points (ζ1 and ζ̄1) and fluctuation points (ζF ) for the one-
cut solution with anisotropy parameter δ = 1 and various filling fractions
ν = {0.1,0.206354963, 1/3}, increasing from left to right. Panel (b) corresponds
to the critical filling fraction νc ' 0.206354963, when the fluctuation point ζF col-
lide with the physical cut.

a pivotal role in classical modulation stability theory [57]. Fluctuation points can perceived
as small fluctuations of a reference finite-gap solution, corresponding to tiny cuts that possess
infinitesimal filling fractions. Upon increasing their filling fraction, they grow up into nonlinear
finite-gap mode. Let us slightly expand on this point. Imagine a reference finite-gap solution
with m cuts, and let {n1, n2 · · ·nm} denote the occupied mode numbers. To excite a mode with
an unoccupied n, call it n∗, the following condition for the quasi-momentum p(ζ) has to satisfy
the periodic boundary condition,

p(ζm,n∗) = n∗π, (6.5)

using ζm,n∗ to label distinct fluctuation points. Note that these can either be real, or may
occur in complex-conjugate pairs (owing to the square-root branch cut nature of the quasi-
momentum).

Fluctuation points are treated as “almost degenerate” branch cuts, so small that they do
not affect the form of the quasi-momentum p(ζ). This raises an interesting question whether
classically any given finite-gap solution is modulationally stable under such fluctuations, see for
instance discussions in Ref. [57]. In this respect, we note that the stability condition coincides
with the condition for the formation of condensates.

In the following we shall first take a look at the basic case with a single cut. We find the
physical contours made out of Bethe roots consist of three pieces: two parts of to the contours
which connect to the square-root branch points are joined by a uniform condensate attached
to ‘the middle’, with two additional bent contours emanating from the intersection points that
connect to the nearby fluctuation point(s). We give an explicit demonstration of this scenario
in Sec. 6.2.1. Presence of multiple excited cuts makes the situation even more involved as
cuts exert among themselves an effectively attractive interaction. This situation is described
in Sec. 6.2.2.

Let us also mention that a somewhat reminiscent phenomenon is known to appear in the
context of matrix models [58] (which are described by a similar type of Riemann-Hilbert prob-
lems) and also elsewhere, e.g. in the large-N Yang–Mills theory [59–61] and random tiling
models [62, 63]. They commonly go under the name of the Douglas–Kazakov phase transi-
tion [61], a variant of a third-order phase transition. Analogous condensates also appear in
the semi-classical regime of the Lieb-Liniger model with attractive interaction [64,65] where
a quantum phase transition can be detected through the calculation of correlation functions in
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the ground state [65]. We emphasise however that in our case there is no real phase transition
going on in the sense that branch points and the quasi-momentum p(ζ) itself do not undergo
any discontinuous change, in distinction with the case of Douglas–Kazakov transition where
the free energy becomes non-smooth after formation of a “condensate” [63].

6.2.1 One-cut case with condensate

In the case of a single cut, we have
∫

C1

dζρ(ζ) = ν1 ∈O(1), (6.6)

with an upper-bounded filling fraction ν1 < 1/2. Locations of fluctuation points, denote below
by ζ1,k, can be inferred from the density

ρk(ζ) = ±
p(ζ)−πk

2πi(1+δζ2)
, p(ζ1,k) = kπ . (6.7)

Mode number n = 1. The condensate phenomenon can be best illustrated on the basic
example of a one-cut solution with mode number n= 1. Below the density threshold we find a
single smooth arc-shaped contour, as exemplified in panel (a) in Fig. 6. The closest fluctuation
point sits at a finite distance away from the cut (somewhere to the left of it), whereas the
density at the real axis satisfies

ρ(ζ∗)(1+δζ
2
∗)< i. (6.8)

Increasing the filling fraction will cause an increase in the density on the real axis. During
the process, the nearby fluctuation point approaches the physical contour until at the critical
filling it eventually collides with it at ζ∗,

ρ(ζ∗)(1+δζ
2
∗) = i. (6.9)

This event is shown in panel (b) in Fig. 6. 8

Upon increasing the filling fraction even further, the fluctuation points after collision ‘tun-
nel through’ the cut. This leaves behind a straight condensate positioned in a vertical direction.
The nearest fluctuation point on the real axis will then appear to the right of the physical cut,
as pictured in panel (c) in Fig. 6. One can nonetheless recover the same quasi-momentum p(ζ)
by considering an additional pair of contours which emanate out of the fluctuation point(s),
satisfying ρ2(ζ)dζ ∈ Rwith density defined through Eq. (6.7) (depicted by brown dashed lines
in panel (c) in Fig. 6). Due to an extra condensate, the original contour cannot accommodate
for all the Bethe roots, and some “excess” Bethe roots will lie along those additional contours.
We wish to emphasise again that the quasi-momentum p(ζ) remains intact.

There is a suggestive explanation behind the above picture if one pictures a one-cut solution
as a limiting (degenerate) case of a more general two-cut solution with one of its cuts ‘switched
off’ to a fluctuation point. This is neatly captured in Fig. 7 in panel (a), where the blue solid
lines represent parts of the original physical connecting to the pair branch points (ζ1, ζ̄1),
while the red dashed line depicts the Bethe-root condensate of uniform density. The extra
green solid line belongs to one of the “unphysical contours”9 associated with the infinitesimal
branch cut (ζF , ζ̄F ). Combining all the ingredients, we are therefore able to determine the

8Comparing to the isotropic case in [13], νc ' 0.2092896452, the condensate appears with a slightly smaller
filling fraction.

9We call it “unphysical” because the green contour alone does not yield the correct value for the filling fraction
for the infinitesimal cut. Yet the combination of all three parts here is clearly physically meaningful.
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Figure 7: (a) Fluctuation point ζF , lying on the real axis, can be viewed as an in-
finitesimal (collapsed) branch cut – a deactivated mode. (b) Comparison between
the classical contour (dashed line) with anisotropic parameter δ = 1, filling fraction
ν= 0.3, and mode number n= 1 (computed based on reality condition (6.3)) with a
condensate (red dashed line) and an additional contour originating from ζF (brown
dashed line) and the corresponding solution to the Bethe equations (cf. Eq. (3.3))
with M = 48, L = 144 and η =

p
δ

L =
1

144 (blue dots). Notice that the Bethe roots
plotted are tanϑp

δ
.

densities of Bethe roots along these three contours. This amounts to account for the leading-
order quantum corrections to ABE (3.16) in non-perturbatively fashion.

To better corroborate the above picture, we made a direct comparison with the contours ob-
tained numerically by solving the Bethe equations for large system sizes, cf. Fig. 7. Moreover,
we have performed another quantitative test for the proposed contours through the calcula-
tion of the leading-order Gaudin norm for the Bethe states, as shown in Fig. 13. We emphasise
that physical contours are a key ingredient for the functional integral approach to compute
overlaps (and norms) between semi-classical Bethe eigenstates, thus providing an opportu-
nity to verify whether the described contours are indeed suitable. The numerical evidence is
collected in Appendix D.1.

Mode number n≥ 2. One can encounter even more exotic situations. While p(ζ∗) = (n+1)π
has only one real solution for n= 1, higher mode numbers n≥ 2 permit for complex-conjugate
pairs of fluctuation points [13]. In this scenario, the same condition ρn+1(ζ)dζ ∈ R yields an
additional contour with a condensate appearing between the intersection points, along the
lines of the proceeding discussion. This time instead, such contours can be understood at the
classical level as arising from a three-cut solution with one large physical cut and two almost
degenerate tiny cuts located at the complex-conjugated fluctuation points ζF and ζ̄F . For in-
stance, in Fig. 8 we give an illustration of that for the isotropic Heisenberg spin chain with
mode number n = 2. Unfortunately, for the anisotropic ferromagnet the employed numerical
method for producing analogous solutions does not work for n ≥ 2, cf. Appendix E.1. Given
that the distributions of Bethe roots do not appreciably change upon introducing a tiny de-
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Figure 8: (Left) Complex fluctuation points ζF and ζ̄F . They can be seen as collapsed
cuts of a three-cut solution with ζF,1 → ζF,2 → ζF and ζ̄F,1 → ζ̄F,2 → ζ̄F . (Right)
Comparison between the classical density contour (dashed line), including with the
condensate (red dashed line) and the additional contours emanating from fluctua-
tion points ζF and ζ̄F (brown and purple dashed lines), obtained from reality condi-
tion (6.3) for the case of isotropic interaction (δ = 0), with filling fraction ν = 0.1
and mode number n = 2, to the corresponding solution to Bethe equations (3.3)
with M = 60, L = 600 and η= 0. The Bethe roots ζ j (blue dots) are rescaled by the
system size L and plotted in the inverse spectral plane, i.e. ζ j = 1/(Lλ j), where λ j

solve the isotropic Bethe equations,
�

λ j+i/2
λ j−i/2

�L
=
∏M

k 6= j
λ j−λk+i
λ j−λk−i .

formation parameter η ∼ O
� 1

L

�

, we expect the phenomenon to survive the presence of weak
interaction anisotropy.

6.2.2 Multiple cuts

When multiple cuts get involved, the situation is far more complicated. In that case, the
condensates can appear not only out of fluctuation points but also via an attractive interaction
amongst the physical cuts. Here we focus for simplicity on the two-cut case, since a general
scenario with more cuts can be largely described based on the phenomenology of the two-cut
case. In Ref. [13], the authors made an exhaustive survey on the two-cut case at isotropic point
(δ = 0). The anisotropic case with η = ε

L > 0 can be analysed in a similar fashion. There are
several discernible features we wish to highlight.

Firstly, when two physical cuts are far apart from one another, each branch cut can produce
a condensate upon colliding with their nearby fluctuation points, in analogy with the one-cut
case discussed in Ref. [13]. However, when the physical cuts approach closer their mutual
attraction amplifies until they eventually merge with one another. The result of this are two
joined contours glued via a condensate at the cusps.

A basic instance of the above phenomenon involves two cuts with consecutive mode num-
bers, namely n2 = n1 + 1. The moment the two physical contours intersect, say at points ζint
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(a) (b)

Figure 9: (Left) Comparison between the density contour (dashed line) of a classical
two-cut solution (shown for the isotropic case (δ = 0), with partial filling fractions
ν1 = 0.02, ν2 = 0.06 and mode numbers n1 = 1, n2 = 2), obtained from reality con-
dition (6.3), and the corresponding numerical solution to Bethe equations (3.3) with
M1 = 10, M2 = 30, L = 500 and η = 0 (blue dots). (Right) Comparison between
the classical contour (dashed line) (shown for the isotropic case (δ = 0), with partial
filling fractions ν1 = 0.025, ν2 = 0.075 and mode numbers n1 = 1, n2 = 2), ob-
tained from reality condition (6.3), to the corresponding numerical solution to Bethe
equations (3.3) with M1 = 10, M2 = 30, L = 400 and η = 0 (blue dots). The Bethe
roots plotted are ζ j = 1/(Lλ j), same as in Fig. 8.

and ζ̄int, the combined density satisfies
�

ρn1
(ζint) +ρn1+1(ζint)

� �

1+δζ2
int

�

=
�

ρn1
(ζ̄int) +ρn1+1(ζ̄int)

� �

1+δζ̄2
int

�

= i, (6.10)

giving birth to a condensate. Indeed, installing a condensate between the two such intersection
points does not alter the the quasi-momentum and hence the filling fraction stays intact. We
have confirmed this to be the case by numerically solving the Bethe equations for moderately
large system sizes, as demonstrated in Fig. 9 (again for the isotropic case). In particular, at low
filling fractions for both cuts their mutual “attraction” becomes apparent (cf. the second cut
connecting (ζ1, ζ̄1) in panel (a) in Fig. 9). The four branch points in panel (a) in Fig. 9, reading
ζ1 = 0.10884679+ 0.047665716i and ζ2 = 0.07330641+ 0.04152184i (with filling fractions
ν1 = 0.02, ν2 = 0.06, ` = 1 and mode numbers n1 = 1, n2 = 2), have been determined
numerically using the recipe given in Appendix E.2. At a certain critical value of the filling
fractions the two cuts merge together. The intersection point becomes a logarithmic branch
point of a condensate, as exemplified in panel (b) in Fig. 9. The four branch points in panel
(b) in Fig. 9 are ζ1 = 0.09587725+ 0.05961115i and ζ2 = 0.07169871+ 0.04814544i with
filling fractions ν1 = 0.025, ν2 = 0.075, ` = 1 and mode numbers n1 = 1, n2 = 2. For the
anisotropic interaction we encountered the same numerical difficulties as previously for the
one-cut solution with n ≥ 2, cf. Appendix E.1. We nevertheless do not expect any qualitative
difference compared to the isotropic model.
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Figure 10: Quantised bion configuration with the proposed density contours (phys-
ical cuts). The two nonlinear modes with δ = 1, parametrised by pairs of branch
points (ζ1, ζ̄1) and (ζ2, ζ̄2) on imaginary ζ-axis, have associated mode numbers
n1 = 1 and n2 = −1. The branch points have been found numerically and are lo-
cated at ζ1 = (1/0.9)i and ζ2 = (1/1.058355921)i, The red dashed line represents
the “double condensate”. The corresponding classical solution is plotted in Fig. 4.

6.3 Special case: bion

As discussed earlier, the easy-axis regime (i.e. for δ > 0) permits for a distinguished subclass
of two-cut solutions that do not take place in the other two (that is isotropic and easy-plane)
regimes. Here we have in mind the bion solution which we have described and parametrised
in Sec. 5.2. One part of the motivation for investigating this case in detail is to elucidate the
microscopic origin and stability of kinks in Landau–Lifshitz field theory, which we expect to
have a pivotal importance for understanding the freezing property of a domain-wall profile,
investigated recently in Refs. [16,17].

To quantise the classical bion solution we demand the same reality condition as previously
in the one-cut case. Notice however that bion solutions belong to maximally saturated states
with the total filling ν = 1

2 . Condensates appear to be a common feature at half filling. In
describing a bion solution, there is no loss of generality in fixing the mode numbers of the
two cuts to ±1, such that ∆n = 2. Recall that in a general situation with two cuts being far
apart, each cut can grow a condensate on its own. The bion case is different in that the two
branch cuts reside close to each other and share a condensate in common. In fact, in the
isotropic ferromagnet studied in Refs. [13, 56] the two-cut solution with mode numbers set
to ±1 is known to result in a “double condensate”. Led by this observation, we conjecture
that the same phenomenon takes place presently in the case of bions; a “double condensate”
emerges when a pair of branch cuts with mode numbers±1 intersect with one another, thereby
producing a logarithmic cut with of ‘doubled’ uniform density 2i. Analogous objects which are
twice as dense as ordinary Bethe strings have been previously found in Ref. [56] in the study
of solutions to the isotropic Bethe equations.

We proceed by semi-classically quantising the bion solution using the conjectured form of
its contours with a double condensate, depicted in Fig. 10 by the red dashed line satisfying

ρ(ζ)(1+δζ2) = 2i. (6.11)
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We have been able to explicitly match the classical values of the filling fraction, momentum and
energy: the two partial filling fractions add up exactly to one half, i.e. ν= ν1+ν2 =

1
2 , whereas

total momentum P = 0 (mod2π) and total energy E = 3.96045 (obtained by numerically
integrating along the proposed contours) match those of a classical bion configuration, with
P = 0 and E = 3.960358(6). These results strongly indicate that we have indeed correctly
identified the physical contours associated to a quantised bion.

As discussed earlier in Section 5.2, kinks arise as a particular (soliton) limit of a bion solu-
tion in which the two branch points ζ1,ζ2 on the imaginary axis coalesce at i/ε. By inspecting
this degeneration process at the level of semi-classical eigenstates, we find a uniform conden-
sate with a double density of Bethe roots running along the imaginary axis between −i/ε and
i/ε. We note that (anti)kinks are not compatible with periodic boundary conditions. In an
infinitely extended quantum chain however, the kink and antikink eigenstates represent ex-
tra degenerate ground states (with broken translational symmetry) of the XXZ ferromagnet
in the gapped phase. Kink eigenstates have been derived in Refs. [66, 67] using a curious
correspondence between the XXZ quantum chain and the problem of a melting crystal cor-
ner. This derivation however does not require any use of the Bethe quantisation condition and
consequently cannot reveal the internal magnon structure of the kink. It would be valuable
to devise a method to extract the corresponding numerical solution to the Bethe equations for
large system sizes. The task of solving the anisotropic Bethe equations (3.3) in the vicinity of
half filling remains quite challenging at this moment. Perhaps one could get some hints by
first scanning through the complete list of exact eigenstates for relatively small system sizes
(typically of order L ∼ 10, using e.g. the techniques proposed in Refs. [68, 69]) and look for
traces of finite-size bions. At this junction, our statements regarding the kink solution thus
remain to an extent conjectural.

7 Semi-classical norms and overlaps

In this section we outline how to compute an overlap between two semi-classical Bethe eigen-
states. We provide closed formulae for (i) the Gaudin norm and (ii) the Slavnov inner product
between an on-shell and off-shell Bethe states [70]. There are two possible routes to achieve
this. The first one, proposed by Gromov et al. in [31], is to perform coarse-graining directly
at the level of the general determinant formula for a specific finite-gap density resolvent. The
other approach, developed for the isotropic (XXX) Heisenberg model by Kostov and Bettelheim
in Refs. [32–34], makes use of functional integration techniques with a bit of complex analysis.
Both methods provide the leading (i.e. classical) contributions to the overlaps and norms. We
shall not repeat the derivations here but instead only succinctly summarise the main formulae
for the model of our interest. Moreover, in Sections D.1 and D.2 we provide a direct numerical
confirmation based on the finite-size analysis.

7.1 Gaudin norm

The method proposed by Kostov in Refs. [32,33] has already been generalised for the specific
case of the anisotropic Heisenberg model in [71,72]. To compute the Gaudin norm we instead
employ a more direct approach of [31], which we generalise here by including the interaction
anisotropy. The idea is to convert the logarithm of the Gaudin determinant into a Riemann
summation which, after taking the L →∞ limit, corresponds to complex integration along
the physical contours which support the Bethe roots.

The Gaudin norm of a finite-volume Bethe eigenstate,

N = 〈{ϑ}|{ϑ}〉, (7.1)
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grows exponentially in system size, i.e. logN ∼O(L) to the leading order of L. In the ζ-plane
parametrisation, we find the following explicit form

logN = C1 L + o(L),

C1 =

∫

C
dζ



iπ`(1+δζ2)ρ(ζ) + 2

∫ ρ(ζ)(1+δζ2)

0

dξ
1+δξ2

log
�

(2 sinh(πξ)
�



 ,
(7.2)

where we have expressed the volume-law coefficient C1 in terms of the resolvent density ρ(ζ)
with support on a union of contours C = ∪ jC j .

We note that the dominant subleading correction to the above formula is quite subtle and
has the form logN (L) = C1 L + 1

2 log L +O(L0) (for C1 ∈ O(1)), as discussed in Ref. [31].
Several numerical verifications (both with or without a condensate) are presented in Ap-
pendix D.1.

7.2 Slavnov overlap

To express the semi-classical overlaps we follow instead the functional integral approach de-
vised in Refs. [32, 33]. This method does not rely on the clustering properties of Gaudin
determinant as in Ref. [31]. Here we merely quote the final result of [71] (cf. formula (1.5)
in there) for the anisotropic Landau–Lifshitz field theory

log〈{ϑ1}|{ϑ2}〉 '
∮

C1∪2

dζ
2πi

logΦpη
�

p1(ζ) + p2(ζ) +π
�

, (7.3)

involving two classical quasimomenta p1(ζ) and p2(ζ) that correspond to the semi-classical
Bethe eigenstates |{ϑ1}〉 and |{ϑ2}〉 10, respectively. Function Φb(z) stands for quantum dilog-
arithm [73], defined through the following integral representation

Φb(z) = exp

�

i
2

∫

R+i0

dt
t

ezt

sin(b2 t) sinh(πt)

�

. (7.4)

This function can be understood of as a ‘quantum deformation’ 11 of the ordinary dilogarithm
function Li2(z) to which it reduces in the isotropic limit δ → 0. The contour prescription in
Eq. (7.3) is such that C1,2 wrap around tightly around the supports of the respective density
resolvents, cf. Ref. [33].

Further simplification of the above formula can be made in the semi-classical limit η→ ε/L
which implies b =pη→ 0. In this limit the quantum dilogarithm simplifies to [74] 12

lim
b→0
Φb(z) = exp

�

iL
p
δ

Li2(−eiz)
�

+O(L0), (7.5)

and accordingly at the leading order O(L) the logarithmic overlap is approximately

lim
η→ε/L

log〈{ϑ}1|{ϑ}2〉= C2 L + o(L),

C2 =
1
p
δ

∮

C1∪2

dζ
2π(1+δζ2)

Li2

�

ei
�

p1(ζ)+p2(ζ)
��

.
(7.6)

10Only one of the states has to be on-shell, i.e. solution to Bethe ansatz equations (3.3).
11The word ‘quantum’ here refers to the q-deformation parameter of ‘quantum calculus’ which should not be

confused with the q-parameter of the quantum algebra Uq(su(2)) of the underlying anisotropic Heisenberg chain.
12Beware that the definition of Φb(z) in [74] differs from the definition in [71] and the one used here.
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Similarly to the Gaudin norm, the dominant subleading correction is of form log〈{ϑ}1|{ϑ}2〉=
C2 L + 1

2 log L +O(L0).
For the coinciding sets of rapidities, this correctly reproduces the leading order expression

for the Gaudin norm,

lim
η→ε/L

log〈{ϑ}|{ϑ}〉 '
L
p
δ

∮

C

dζ
π(1+δζ2)

Li2
�

e2ip(ζ)
�

, (7.7)

which can be readily reconciled with Eq. (7.2) upon expressing the resolvent density in terms
of the quasi-momentum, iπρ(ζ) = πn− p(ζ), and performing the following integral

∫ ρ(ζ)(1+δζ2)

0

dξ
1+δξ2

log
�

2sinh(πξ)
�

=
1

2π
Li2
�

e2ip(ζ)
�

+
π

2
ρ2(ζ)(1+δζ2)2 −

π

12
. (7.8)

There is a practical limitation of Eq. (7.6) that concerns the placement of integration con-
tours, acknowledged previously in Ref. [33]. The requirement is that the integration contours
C must avoid crossing any branch cut of the function in the integrand. This issue is presently
further complicated by additional logarithmic branch cuts due to the dilogarithm function.
This shortcoming makes the numerical verification a challenging task. We nonetheless still
managed to verify its validity in special case of overlaps with a vacuum descendant (see Ap-
pendix D.2).

8 Correlation functions

We have thus far demonstrated that the knowledge of physical contours not only proves useful
in calculating the spectrum, overlaps and norms of semi-classical Bethe eigenstates, but also
facilitates the semi-classical quantisation of the finite-gaps solutions. On the other hand, we
have not yet addressed the expectation values of physical observables. This section is devoted
to discuss some properties of correlation functions at the semi-classical level.

Despite integrability, the task of computing exact expectation values of physical observ-
ables, including their correlation functions, appears quite challenging. There have already
been numerous works on this subject, employing either the form-factor expansion or bootstrap
methods, e.g. [38,75–78]. Here, however, we are particularly interested in the semi-classical
regime where those methods are not directly applicable.

We are specifically interested whether the aforementioned classical–quantum correspon-
dence for correlations functions, established analytically in the introductory section 2 on the
toy example of the harmonic oscillator, holds on more general grounds. A direct generalisation
of this principle from a single-particle paradigm is complicated by the fact that integrable field
theories governed by PDEs involve many degrees of freedom which, moreover, couple (i.e. in-
teract) in a non-trivial fashion. One viable empirical approach to obtain correlation functions
in classical regime (enabling a comparison with their quantum counterparts) is to build on
the semi-classical form-factor approach developed by Smirnov [79]. Accordingly, the matrix
elements would be represented as integrals over γ variables, see Eqs. (33)–(36) in [79].

Let us consider a periodic solution associated with one branch cut. It is described by a single
dynamic variable γ. We further replace the integration over variable γwith the integration over
one period, similar to the phase space averaging [80]. In addition, we compute numerically
(for small system sizes) the quantum correlators in the eigenstate that corresponds to the cut.

We focus only on static (i.e. equal-time) correlation functions, considering one-point func-
tions 〈σ̂x

j 〉 and 〈σ̂z
j〉 and two-point point functions 〈σ̂x

j σ̂
x
k〉 and 〈σ̂z

j σ̂
z
k〉. Specifically, we set the
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(a) (b)

Figure 11: (a) Quantum correlation functions 〈σ̂x
j σ̂

x
j+n〉 (shown in green circles for

L = 15 and black crosses for L = 18) versus averaged classical correlation functions
(red dashed line), with anisotropy δ = 1 and classical period ` = 1. (b) The same
comparison for longitudinal correlators 〈σ̂z

j σ̂
z
j+n〉.

filling fraction to ν= 1
3 and the mode number to n= 1. We present our results for system sizes

L = 15 and 18 with the with number of down-turned spins being 5 and 6, respectively. The
corresponding averages are denoted as 〈· · · 〉5 and 〈· · · 〉6. The coordinate Bethe ansatz wave-
functions can be represented in the local eigenstate basis of σ̂z by solving Bethe ansatz equa-
tions (3.3). An important thing to keep in mind is that quantum states (wavefunctions) are
eigenfunctions of the momentum operator and consequently expectations values of one-point
observables do not have any dependence on the spatial coordinate (lattice index). Two-point
functions on the other hand can only be a function of the distance. In contrast, classical spin
field configurations exhibit non-uniform dependence on the spatial coordinate x and can be
thus compared to the quantum correlation functions evaluated on semi-classical eigenstates
after an appropriate phase-space averaging. In particular, for a periodic classical spin-field
configuration with period ` and an operator (product of operators) O[S] that functionally de-
pends on the spin configuration S, we expect the corresponding correlation functions to take
the form

〈{ϑ}|O[S]|{ϑ}〉 ' 〈O[S]〉cl =
1
`

∫ `

0

dx O[S(x)], (8.1)

with |{ϑ}〉 denoting the corresponding semi-classical quantum eigenstate in the thermody-
namic limit L→∞. The classical spin configuration for n= 1 and ν= 1

3 reads

Sz(x , t) = 1− 2ν=
1
3

,

Sx = 4(ν− ν2) cos(kx +wt) =
8
9

cos

�

2π
`

x +
1
3

�

4π2

`2
+δ

�

t

�

.
(8.2)

Therefore for the one-point functions, we find

〈σ̂x
j 〉5 = 〈σ̂

x
k〉6 = 0=

1
`

∫ `

0

dx Sx(x), 〈σ̂z
j〉5 = 〈σ̂

z
k〉6 =

1
`

∫ `

0

dx Sz(x) =
1
3

, (8.3)
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for j = 1, 2, . . . 15 and k = 1,2, . . . , 18, thus confirming the correspondence.
Our results for two point functions are presented in Fig. 11. In this case we notice some

discrepancies between the classical expectation values,

〈σ̂x
j σ̂

x
j+n〉 '

1
`

∫ `

0

dx Sx(x)Sx
�

x +
n`
L

�

= 2(ν− ν2) cos
�

2πn
L

�

, (8.4)

〈σ̂z
j σ̂

z
j+n〉 '

1
`

∫ `

0

dx Sz(x)Sz
�

x +
n`
L

�

= (1− 2ν)2, (8.5)

and their quantum counterparts, which we attribute to the finite number of spins. Indeed,
instead of having a condensed contour of Bethe roots representing the branch cut in the com-
plex plane, we consider solutions with at most 6 Bethe roots. We nonetheless find it plausible
that with increasing system sizes the deviations would gradually diminish and we therefore
expect to recover the classical result in the L →∞ limit. Finite-size effects also depend on
type of operators that appear in the correlator; in the case of 〈σ̂z

j σ̂
z
j+n〉 the deviation from

the asymptotic result is found to be larger than in the case of 〈σ̂x
j σ̂

x
j+n〉, see Fig. 11. Here

we have demonstrated the first step in understanding such correlation functions. A system-
atic and comprehensive numerical analysis of the correspondence and finite-size corrections
is postponed for future work.

9 Conclusion and outlook

We have studied the structure of the semi-classical spectrum of the anisotropic Heisenberg
spin-1/2 chain in the easy-axis regime with weak anisotropies. Using the framework of alge-
braic integrability, we have established that these semi-classical eigenstates emerge classically
as interacting nonlinear spin waves governed by the Landau–Lifshitz field theory with uniaxial
anisotropy. Firstly, we have expressed the asymptotic Bethe equations in the form of a singular
integral equation for the spectral resolvent, which we subsequently recast in the form of the
Riemann–Hilbert problem, providing jump discontinuity conditions for a double-valued com-
plex function called quasi-momentum. The latter encodes the moduli of hyperelliptic Riemann
surfaces which provide complete information about the spectrum of nonlinear eigenmodes for
a class of finite-gap solutions of the anisotropic Landau–Lifshitz ferromagnet.

We have outlined the main ingredients of the algebro-geometric integration technique. The
starting point of this approach is the usual Lax representation which realises an auxiliary linear
problem of parallel transport on a smooth manifold with a flat connection. In our formulation
we made use of the adjoint representation, enabling us to parametrise the solutions in terms
of squared polynomial eigenfunctions whose zeros contain information about the dynamical
phases evolving on a finite-genus Riemann surface. We have demonstrated how their dynam-
ics can be mapped to a linear evolution on the Liouville hypertorus using the Abel–Jacobi
transform. Finally, individual components of the physical spin field can be retrieved with aid
of reconstruction formulae.

We have implemented the finite-gap integration procedure for two simplest classes of so-
lutions: (i) the single-mode (one-cut) solutions, describing precessional motion around the
anisotropy axis, and (ii) the two-mode (two-cut) solutions which take the shape of elliptic
waves. Amongst the two-cut solutions, there are special elliptic solutions that describe bions,
a bound state of kink and antikink. In a particular singular limit, the bion solution degenerates
into the static kink.

One central result of our work is an algorithm for performing semi-classical quantisation
of classical finite-gap solutions. In this respect, the key object is the density resolvent asso-
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ciated to the classical quasi-momentum. The spectral resolvent is supported on a union of
one-dimensional segments in the complex plane which may be adopted as branch cuts of a
Riemann surface of finite genus. By following the programme of Ref. [13], we described and
implemented a numerical algorithm for determining the locations of physical cuts (associated
with the density contours). Each branch cut is a magnon condensate that represents a non-
linear mode in the spectrum of the effective classical equation of motion. In this view, semi-
classical quantisation amounts to dissolve each branch cut of a finite-gap quasi-momentum
into a large but finite number of magnetisation quanta (carried by magnons) with a prescribed
accuracy; the resolvent density along each contour specifies a local density of magnon exci-
tations. When the local density of magnons exceeds a critical threshold value, the physical
contours experience a certain ‘non-perturbative effect’ which leads to the formation of special
condensates with uniform unit density of Bethe roots. A proper resolution of such situations
necessitates to take into account quantum corrections.

In this work we devote most attention to various formal properties of semi-classical eigen-
states and other related mathematical underpinnings. We hope this can provide a foundation
for further developments which would ultimately pave the way to physical applications. Par-
ticularly in the domain of out-of-equilibrium dynamics there has been tremendous progress
recently in employing integrability techniques that enabled us, among others, to study late-
time relaxation dynamics from highly-excited many-body initial states which goes commonly
under the name of ‘quantum quenches’ [3], see also [81–83]). A particularly useful tool in this
regard is the functional integral representation, dubbed the Quench Action [84,85], which ex-
ploits exact knowledge of thermodynamic overlap coefficients. Our hope is to obtain its semi-
classical counterpart. Despite that general expressions for the overlap coefficients between a
semi-classical eigenstates and an off-shell state are explicitly known due to Ref. [32, 33, 71],
we have not been successful in employing them in practice yet. We have nonetheless been able
to provide several benchmarks for the computation of Gaudin norms and Slavnov overlaps for
a few simple finite-gap solutions and found good convergence.

The main difficulty when dealing with the overlap formulae was to satisfy the requirements
for the contour prescription. Since avoiding all the branch cuts of the integrand does not
appear to be easily overcome, it seems that an alternative formula based solely on the resolvent
densities (similarly to that for the semi-classical limit of the Gaudin norm [31]) might be
preferable. Overcoming this issue would be a stepping stone for formulating a quench problem
at the level of semi-classical states, a prominent example of which would be the semi-classical
version of the domain wall melting which has recently been solved analytically by the authors
in [16] using the inverse scattering transformation. This could help to solidify the classical–
quantum correspondence also brought forward in [16] and corroborated in [17].

Lastly, we shortly examined the structure of correlation functions in the semi-classical
eigenstates of the Heisenberg XXZ chain and compared them to their classical counterparts,
namely correlators of classical fields as finite-gap solutions. We found empirical evidence for
a classical–quantum correspondence between static multipoint correlators on both sides, in
alignment with the earlier results of Ref. [79]. Importantly, the semi-classical correlators can
only be compared to correlators of classical fields after computing phase-space averages, as
demonstrated on a few basic examples. While there are strong indications that such a cor-
respondence should hold generally in quantum integrable models that possess (integrable)
classical limits, a proof is still lacking at the moment. We believe that it would be fruitful to
investigate this matter in the framework of quantum separated variables, see e.g. [53,86,87],
to learn how classical separated variables on Riemann surfaces [36] emerge from the micro-
scopic quantum model that sits underneath. In our opinion, quantum integrable lattice models
and spin chains provide paradigmatic examples to address these aspects.
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A Riemann-Hilbert problem in ζ-plane

In order to study the formation of condensates, the Riemann–Hilbert problem is most conve-
niently written in terms of spectral parameter ζ= 1/µ, namely

p(ζ+ i0) + p(ζ− i0) = 2πn j , ζ ∈ C j , (A.1)

where C j denotes the j-th branch cut in ζ plane, whereas quasi-momentum p(ζ) is defined as

p(ζ) = G(ζ)−
`

2ζ
= `

∫

dξK̃δ(ζ,ξ)ρ(ξ)−
`

2ζ
, (A.2)

with integration kernel

K̃δ(ζ,ξ) =
1+δξζ
ζ− ξ

. (A.3)

The density (of the Bethe roots) is accordingly given by

ρ(ζ) =
p(ζ+ i0)− p(ζ− i0)

2iπ`(1+δζ2)
, ζ ∈ C j . (A.4)

Note that the orientation of integration along C j is now in the opposite direction as previ-
ously, i.e. it goes from the branch point with negative imaginary part to the one with positive
imaginary part.

B Finite size corrections to Riemann-Hilbert problem

Here we outline how to take the semi-classical limit of the logarithm of Q[±2]
j . The first step is

to split the term into the anomalous part and normal part [55,88], i.e.

logQ[±2]
j (ϑ j) =

M
∑

k 6= j

log sin(ϑ j − ϑk ± iη)

=
∑

0<|k− j|≤K

log sin(ϑ j − ϑk ± iη) +
∑

|k− j|>K

log sin(ϑ j − ϑk ± iη),
(B.1)

where parameter K is a cut-off with the following properties,

ϑ j − ϑk ∼

¨

O (1/L) , |k− j| ≤ K

O (1) , |k− j|> K
. (B.2)
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We denote the anomalous part as

logQa
j (ϑ j ± iη) =

∑

0<|k− j|≤K

log sin(ϑ j − ϑk ± iη), (B.3)

while the normal part is

logQn
j (ϑ j ± iη) =

∑

|k− j|>K

log sin(ϑ j − ϑk ± iη). (B.4)

For the normal part, we can perform the same expansion as in Eq. (3.12), namely

logQn
j (ϑ j ± iη) = logQn

j (ϑ j)± iη
d

dϑ
logQn

j (ϑ)|ϑ=ϑ j

−
η2

2
d2

dϑ2
logQn

j (ϑ)|ϑ=ϑ j
+O

�

1
L2

�

,
(B.5)

and

iη
d

dϑ
logQn

j (ϑ)|ϑ=ϑ j
=
ε`

L

∑

|k− j|>K

1
tan(ϑ j − ϑk)

=
`

L

∑

|k− j|>K

µ jµk +δ

µ j −µk
. (B.6)

Combining the two parts, we obtain

logQn
j (ϑ j + iη)− logQn

j (ϑ j − iη) =
2`
L

∑

|k− j|>K

µ jµk +δ

µ j −µk
+O

�

1
L2

�

. (B.7)

Meanwhile, for the anomalous part, denoting m= k− j, we have

logQn
j (ϑ j + iη)− logQn

j (ϑ j − iη) =
∑

0<|m|<K

log
sin(ϑ j − ϑ j+m + iη)

sin(ϑ j − ϑ j+m + iη)

=
∑

0<|m|<K

log
L(µ j −µ j+m) + i`(µ2

j +δ)

L(µ j −µ j+m)− i`(µ2
j +δ)

.

(B.8)

We can develop an expansion

Lµ j+m ∼ c1 L + c2m+
1
2

c3m2

L
+O

�

1
L2

�

, |m| ≤ K , (B.9)

where all the “constants” can be expressed in terms of density ρ(µ), i.e.

c1 = µ j , c2 =
1

ρ(µ j)
, c3 = −

ρ′(µ j)

ρ(µ j)3
, (B.10)

and

ρ(µ) =
1
L

M
∑

j=1

δ(µ−µ j), ρ(µ)'
d j
dµ

. (B.11)

By combining the m-th and (−m)-th terms in the sum, we can express the leading order of the
sum as

K
∑

m=1

1
i

�

log
L(µ j −µ j−m) + i`(µ2

j +δ)

L(µ j −µ j−m)− i`(µ2
j +δ)

+ log
L(µ j −µ j+m) + i`(µ2

j +δ)

L(µ j −µ j+m)− i`(µ2
j +δ)

�

, (B.12)
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using

1
i

�

log
L(µ j −µ j−m) + i`(µ2

j +δ)

L(µ j −µ j−m)− i`(µ2
j +δ)

+ log
L(µ j −µ j+m) + i`(µ2

j +δ)

L(µ j −µ j+m)− i`(µ2
j +δ)

�

=
1
i

log
b2m2 − [i`(µ2

j +δ)−
c3m2

2L ]
2

c2
2 m2 − [i`(µ2

j +δ) +
c3m2

2L ]2

=
2c3`(µ2

j +δ)

c2
2 L






1−

1
c2
2

`2(µ2
j+δ)

2 + 1






+O

�

1
L2

�

.

(B.13)

The first part can be combined with the sum for |m|> K , since

2`(µ jµ j−m +δ)

L(µ j −µ j−m)
+

2`(µ jµ j+m +δ)

L(µ j −µ j+m)
'

2c3(µ2
j +δ)

c2
2 L

. (B.14)

Taking the limit K →∞ (beware that K/L→ 0), for the second part we have

−
∞
∑

m=1

2c3`(µ2
j +δ)

c2
2 L
�

c2
2

`2(µ2
j+δ)

2 + 1
� =

c3`(µ2
j +δ)

c2
2 L

�

1−
π`(µ2

j +δ)

c2
coth

�

π`(µ2
j +δ)

c3

��

. (B.15)

Substituting back in the values in Eq. (B.10), we will obtain the finite-size correction in Eq. (3.18).
In addition, the finite-size correction in terms of ζ variable takes the form

πρ′(ζ)`2(1+δζ2)2

L
coth

�

π`(1+δζ2)ρ(ζ)
�

+O
�

1
L2

�

. (B.16)

C Useful formulae for elliptic functions

We collect several useful functions and formulae used in the derivations in Section 5.2.
We begin by defining the elliptic integral of the first kind

K(k2) =

∫ 1

0

dx
p

(1− x2)(1− k2 x2)
. (C.1)

The Jacobi elliptic function sn(x , k2) is defined as the inverse of the elliptic integral of the first
kind,

w= sn(x , k2), x =

∫ w

0

dz
p

(1− z2)(1− k2z2)
, (C.2)

and, without ambiguity, we can put sn(x , k2) =: sn(x). Other types of Jacobi elliptic functions
can be defined in a similar way,

w= cn(x , k2), x =

∫ 1

w

dz
p

(1− z2)(1− k2 + k2z2)
, (C.3)

and

w= dn(x , k2), x =

∫ 1

w

dz
p

(1− z2)(z2 + k2 − 1)
, (C.4)
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such that
sn2 x + cn2 x = 1, k2sn2 x + dn2 x = 1. (C.5)

When shifting the argument by one quarter of the period of K(k2), we have

cn
�

x + K(k2)
�

= −
p

1− k2 sn(x)
dn(x)

, cn
�

x + K(k2)
�

=
p

1− k2 1
dn(x)

. (C.6)

In addition, we also make use of theta functions to express the spin field. The most impor-
tant one here is

ϑ3(z,τ) =
+∞
∑

n=−∞
eiπτn2+2izn. (C.7)

For a more detailed exposition and other properties of elliptic functions we refer the reader
to Refs. [89,90].

D Numerical tests

D.1 Gaudin norm

We present the data for several numerical checks. Firstly, we computed the Gaudin norm of a
one-cut solution without a condensate. Secondly, we include a condensate, and consider two
regimes: (i) isotropic interaction with δ = 0 and (a) anisotropic regimes with δ > 0. Case
(i) without a condensate has been studied in Ref. [31], and we use it as a benchmark. Case
(a) is more interesting, as it enables a non-trivial quantitative confirmation of our proposal for
determining the location of a condensate or additional contours, cf. Sec. 6.2.1.

We next present our numerical results for the Gaudin norm computed on the one-cut solu-
tion with mode number n = 1 and filling fraction ν = 0.1, for both cases (i) and (a). For this
choice of parameters, there is no condensates involved. A linear fit on the finite-size numerical
data yields

logN − 1
2

log L = 0.00714654(1) L + 0.068763(9), δ = 0, (D.1)

and

logN − 1
2

log L = 0.0083405(3) L + 0.083756(1), δ = 1. (D.2)

Comparing these results to those obtained from the functional integral approach, cf. Eq. (7.2)
(denoted by C1 in the table below), we have

C1 numerical C1 functional
δ = 0 0.00714654(1) 0.007156(1)
δ = 1 0.0083405(3) 0.008383(8)

We can see that the functional approach (only requiring the knowledge of the density contours)
yields very accurate results in both the isotropic (i) and anisotropic (a) case.

Next up, we analyse the cases (i) and (a) with an extra condensate, computing the Gaudin
norm for a one-cut solution with mode number n = 1 and filling fraction ν = 1

3 . In the
functional integral approach, this amounts to compute the integral in Eq. (7.2) along a contour
C comprising of three parts,

C = C1 + C2 + Ccond. (D.3)

Here C1 pertains to the original contour with density ρ1(ζ) in Eq. (6.7) (green dashed line in
panel (b) in Fig. 7), whereas contour C2 has density ρ2(ζ), depicted in Eq. (6.7) by yellow
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Figure 12: Logarithm of the Gaudin norm, shown for the one-cut solution with n= 1
and ν= 0.1. Green circles (black crosses) show numerical results for δ = 0 (δ = 1),
respectively. Linear fits are indicated by dashed lines.

dashed line in panel (b) of Fig. 7. Finally, Ccond is the straight condensate contour with density
ρcond =

i
1+δζ2 .

This time, a linear extrapolation of the numerical finite-size data yields

logN − 1
2

log L = 0.091273(6) L + 1.92813(4), δ = 0, (D.4)

and

logN − 1
2

log L = 0.082597(1)L + 2.09809(5), δ = 1, (D.5)

while comparing to the results of the functional integral approach, see Eq. (7.2) (C1 in the
table below), we obtain

C1 numerical C1 functional
δ = 0 0.091273(6) 0.091121(9)
δ = 1 0.082597(1) 0.081761(2)

In spite of an extra condensate, the functional integral method yields very accurate results.
Even more importantly, this check provides a robust confirmation for the additional condensate
contour(s). We note that any different contour, e.g. the usual arc-shaped contour without a
condensate, produces an appreciable numerical mismatch.

D.2 Slavnov overlap

In this section, we present a numerical check of an overlap formula. Here we compute the
overlap between a semi-classical Bethe eigenstate with a single cut and a vacuum descendant
state, which is a “domain-wall state” of the form | ↓ · · · ↓↑ · · · ↑〉. Again, we perform computa-
tions for both the isotropic case (i) at δ = 0 and for the anisotropic interaction (a) by setting
the anisotropy parameter to δ = 1.

The (unnormalised) overlap can be obtained from the general Algebraic Bethe ansatz de-
terminant formula due to Slavnov with help of L’Hôpital rule (presented previously in e.g.
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Figure 13: Logarithm of the Gaudin norm, shown for the one-cut solution with n= 1,
ν= 1

3 . Green circles (black crosses) show numerical results for δ = 0 (δ = 1). Linear
fits are indicated by dashed lines.

Re �

Im �

�1

�¯1

(a) (b)

Figure 14: (a) Integration contours for computing the overlap coefficient between a
one-cut state and the vacuum descendant. Square-root branch cut of p(ζ) is indicated
by blue dashed line, whereas all the additional branch cuts due to the dilogarithm
function are marked by green dashed line. The integration contour, marked in red
(orange) on the upper (bottom) Riemann sheets, escape to infinity on the bottom
sheet. (b) Logarithm of the overlap coefficient between the one-cut solution with
n = 1 and ν = 0.1 and a vacuum descendant state. Green circles (black crosses)
show numerical data for interaction parameter δ = 0 (δ = 1), respectively, with
dashed lines corresponding to linear fits.
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[91]),

V = 〈φ|{ϑ}〉=
M
∏

l=1

sin
�

ϑl + i
η

2

�M det H
∏

j<k sin(ϑ j − ϑk)
, (D.6)

Hab = cot
�

ϑa − i
η

2

�b
− cot

�

ϑa + i
η

2

�b
, (D.7)

taking the “domain-wall state” |φ〉 = | ↓ · · · ↓↑ · · · ↑〉 with M down-turned spins and lattice
size L. In the isotropic limit, we obtain

V = 〈φ|{λ}〉=
M
∏

l=1

�

λl +
i
2

�M det H
∏

j<k(λ j −λk)
, (D.8)

Hab =
�

1
λa − i/2

�b

−
�

1
λa + i/2

�b

. (D.9)

In the following we shall ignore the phase and consider only the absolute value of the
overlap. We expect, similarly as previously for the Gaudin norm, the following behavior at
large L,

log |V |= C2 L +
1
2

log L +O(1), C2 ∈O(1). (D.10)

The results of computations are shown in Fig. 14. By numerically fitting the finite-size data,
we obtained

log |V | − 1
2

log L = −0.144278(5)L − 0.272812(7), δ = 0, (D.11)

and

log |V | − 1
2

log L = −0.143827(7)L − 0.254592(6), δ = 1. (D.12)

Before we can repeat the computation using Eq. (7.6), we need to find the “quasi-momentum”
corresponding to the vacuum descendant |φ〉. With aid of Algebraic Bethe ansatz, a vacuum
descendant state (with no inhomogeneities) is given by [91]

|φ〉= | ↓ · · · ↓
︸ ︷︷ ︸

M

↑ · · · ↑〉= lim
ξ j→0

M
∏

j=1

B(ξ j)|0〉, |0〉= | ↑ · · · ↑〉, (D.13)

where |0〉 is the ferromagnetic Bethe vacuum | ↑ · · · ↑〉, and B(λ) is the magnon excitation
operator corresponding to the upper off-diagonal element of the quantum monodromy matrix.

The density of the “off-shell Bethe roots” can then be expressed as

ρφ(ζ) = ν1δ(ζ), ξ1, · · ·ξM → 0. (D.14)

With no loss of generality, we set subsequently the classical period to ` = 1. The quasi-
momentum associated to |φ〉 then reads

pφ(ζ) = `

∫

Cφ
dζ′
ρ(ζ′)(1+δζζ′)

ζ− ζ′
−
`

2ζ
=
ν1 − 1/2
ζ

. (D.15)

Now we are ready to employ the functional integral formula (7.6). The appropriate choice
of contours is shown in panel (a) in Fig. 14 13. Comparing the two computations of coefficient
C2, we find

13The rationale behind this choice is to avoid the branch cuts of the dilogarithm function. More details on this
can be found in [33].
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C2 numerical C2 functional
δ = 0 -0.144278(5) -0.144485(3)
δ = 1 -0.143827(7) -0.142267(2)

Once again the computation using formula (7.6) works quite well, both in the isotropic and
anisotropic cases.

E Numerical recipes

E.1 Numerical solution to Bethe equations

We outline how to numerically solve for the Bethe roots to equations (3.3) (for finite but pos-
sibly large system length L) for a specific class of quantum eigenstates that in the thermody-
namic limit become one-cut classical solution. To this end, we employ the algorithm described
in Section 7 of Ref. [13] for the rational Bethe equations (i.e. for isotropic interaction, δ = 0).

We use this method in combination with another method, given in Appendix C of Ref. [71],
where the solution to the isotropic chain is used as the initial condition for the Newton-Raphson
iteration during which the anisotropy parameter gets gradually increased. However, while
this procedure works quite well for the simplest case of mode number n = 1, we could not
achieve good convergence for mode numbers n > 2 and consequently could not perform any
benchmark on classical solutions with two or more cuts.

E.2 Determining branch points from filling fractions and mode numbers

We describe a numerical procedure to determine the branch points from a given set of moduli,
that is the mode numbers and filling fractions. The method is completely general and applies
to solutions with an arbitrary number of cuts. For simplicity however, we demonstrate it below
on the class of two-cut solutions.

There are four branch points {µ1, µ̄1, µ2, µ̄2} that appear in complex-conjugate pairs.
Thus, there are in total four real parameters (real and imaginary components of each branch
point). The finite-gap solution is parametrised by equivalently four parameters, i.e. mode
numbers and filling fractions of both branch cuts, relating to the previous four parameters in
a nonlinear manner. In addition, the solution must be periodic with the period `, which adds
an additional constraint.

We would like to remark that, unlike in the one-cut case, the determination is highly nonlin-
ear, related to elliptic functions and integrals. Hence, there is not a simple analytic closed-form
formula available in this case. Instead, we are going to use the following numerical procedure:

• We first fix the real part of branch points of the first cut to a ≡ Reµ1 = 1.

• We next scan a range of values Imµ1 ∈ (b1, b2) and Reµ2 ∈ (c1, c2), and find the value
of Imµ2 that yields the required mode numbers n1 and n2. More specifically, for any
Imµ2, we compute dp

` by demanding the A-cycle to vanish. Since the classical period
reads

`=
2πn1
∫

B1
dp/`

, (E.1)

we can numerically determine Imµ2 from the requirement
∫

B2

dp= 2πn2. (E.2)
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• Having done the above, we can readily compute following quantities,

ν̃1 =

∮

A1

dp
µ

, ν̃2 =

∮

A2

dp
µ

, (E.3)

which moreover depend on Imµ1 and Reµ2.

• By requiring that ν̃1 = ν1, we obtain a “curve” in the plane spanned by Imµ1 and Reµ2.
By finally requesting also that ν̃1 = ν2, we are left with a single point, say (b, c). The
last point, call it d, corresponds to Imµ2.

• We have thus determined to complex branch points µ1 = 1+ bi, µ2 = c + di (alongside
their complex conjugates) which yields the prescribed classical period `, mode number
n1, n2 and filling fraction ν1, ν2 of a general two-solution.

In making a comparison with the Bethe root distributions, we normally prefer to set the
classical period to ` = 1. In this case we simply divide the above branch points by `, see
Eq. (E.1), that is

µ1,n =
1
`
+

b
`

i, µ2,n =
c
`
+

d
`

i, (E.4)

or equivalently in terms of spectral parameter ζ= 1/µ,

ζ1,n =
1
µ̄1,n

, ζ2,n =
1
µ̄2,n

. (E.5)
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