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Abstract An accurate, spherically symmetric description of the mass distribution is presented for two quite
virialized galaxy clusters, Abell 1689 and Abell 1835. A suitable regularization of the small eigenvalues of
the covariance matrices is introduced. A stretched exponential profile is assumed for the brightest cluster
galaxy. A similar stretched exponential for the dark matter and halo galaxies combined, functions well,
as do thermal fermions for the dark matter and a standard profile for the halo galaxies. To discriminate
between them, sensitive tests have been identified and applied. A definite verdict can follow from sharp
data near the cluster centers and beyond 1 Mpc.

1 Introduction

In the present era of precision cosmology, various cos-
mological parameters are known at the percent level,
while serious tension remains, in particular, concern-
ing the value of the Hubble parameter [1]. As a next
step, a similar precision is desired for galaxy clusters,
to be called clusters from now on. Cluster masses can
be several times 1015M� and their size, several Mpc. A
good understanding of suitable clusters may provide an
additional grip on the nature of dark matter.

While interesting details can be derived from dynam-
ical clusters such as the Bullet Cluster [2] and the Cos-
mic Train Wreck Cluster Abell 520 [3,4], their struc-
ture is complicated and their analysis subject to ques-
tions. We shall focus here on clusters that are reason-
ably spherically symmetric, so that spherical symmetry
is a good, and often employed, approximation.

Apart from interest for its own right, study of clus-
ters [5,6] provides information on the dark matter ver-
sus modified Newton force dispute. In particular, the
MOND theory [7] has achieved success for galaxies [8].
However, for fat clusters with M200 ∼ 1015M�, the
gravitational acceleration starts out large in the center,
and the Newton regime holds up to the MOND radius√

GM200/a0 ≈ 1 Mpc, given that a0 ≈ 1.2 × 10−10

m/s2 [9]. In fact, self-gravitating isothermal spheres
are unstable in Newtonian dynamics, hence they would
expand to fill up their MOND radius, causing even high-
acceleration systems like galaxy clusters to be affected
by MOND in the sense that their size should correspond

a e-mail: t.m.nieuwenhuizen@uva.nl (corresponding
author)

to their MOND radius [10]. Likewise, the observed
velocity dispersion profile of Dragonfly 44 falsifies MOG
at 5.5σ [11]. In short, modifications of gravity, such as
MOND, but also EG [12,13], MOG [14] and f(R) are
under severe stress [15–17]. Like the related f(T ) and
f(R, T ) theories, they do not change matters apprecia-
bly inside the huge 1 Mpc domain, so that Zwicky’s
conundrum—there must be dark matter or something
alike—remains unsolved [16].

In principle, dark matter and modified gravity may
co-exist, and this combination may actually be required
to fully explain the properties of galaxy clusters like El
Gordo [18]. In a MOND context, the best developed
such proposal is the νHDM framework [19], in which
galaxy clusters are explained together with the CMB
anisotropies using 11 eV/c2 sterile neutrinos with the
same overall density as the CDM in ΛCDM. This frame-
work might also account for the Hubble tension [20].

Another issue of importance is to establish whether
dark matter is self-interacting. Analysis of clusters puts
forward a cross section-to-mass ratio σ/m ∼ 1 cm2/gr
[21,22], although the question is not settled [23]. This
large value excludes a lot of parameter space for various
models of dark matter. Indeed, for MACHOs of Earth
mass, the cross section would be comparable to the size
of the Earth orbit (π AU2), while in reality its cross
section is πR2

⊕ with R⊕ the Earth radius. Hence any
type of 100% MACHO dark matter, even if consisting
of axion stars or of (primordial) black holes, would be
ruled out. Even dark matter particles heavier than,
say, 0.4 GeV/c2, need mediators to establish the self-
interaction [24].

Clusters are mostly dynamical, meaning that they are
an aggregate of subclusters, which still need giga years

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00101-4&domain=pdf
mailto:t.m.nieuwenhuizen@uva.nl


1138 Eur. Phys. J. Spec. Top. (2021) 230:1137–1148

to get into an equilibrium to form a (meta)stable clus-
ter. For such situations, at best a reasonable description
can be achieved. Two well studied exceptions are the
clusters Abell 1689 and Abell 1835. A1689 actually has
one in-falling subcluster, far away from the center, with
not very large mass, so that including or excluding the
quadrant in which it lies, does not cause marked dif-
ferences. A proper description of A1689 requires triax-
iality [25], but actually, the mostly employed spherical
approximation functions rather well. A1835 looks even
more symmetrical visually, and the spherical approx-
imation works well, but see [26] for triaxiality in its
X-ray gas and lensing.

The setup of this article is as follows. In Sect. 2 we
present lensing and gas data for A1689 and A1835. In
Sect. 3 we discuss models for their mass distributions.
In Sect. 4 the fits to A1689 are discussed and in Sect. 5
those to A1835. In Sect. 6 we compare these fits and we
close with a summary.

2 Data for Abell 1689 and Abell 1835

2.1 Strong lensing data for A1689

The galaxy cluster Abell 1689 lies at redshift z = 0.183
and acts as a strong lens, lensing many background
galaxies into a number of up to 5 arclets, i.e., pieces
of the ideal Einstein ring. From the observed strong
lensing (SL) arclets, 2D mass maps have been gener-
ated using the program Lenstool [27], a strong lens-
ing inversion algorithm. The code utilises the positions,
magnitudes, shapes, multiplicity and spectroscopic red-
shifts for the multiply imaged background galaxies to
derive the detailed mass distribution of the cluster.
The overall mass distribution in cluster lenses is mod-
eled in Lenstool as a superposition of smoother large-
scale potentials and small scale substructure that is
associated with the locations of bright, cluster mem-
ber galaxies. Both potentials are described using para-
metric mass models. The parameters are adjusted in a
Bayesian way, i.e., their posterior probability is probed
with a MCMC sampler. This process allows an easy
and reliable estimate of the errors on derived quantities
such as the amplification maps and the mass maps.

This inversion is an underdetermined problem, so
that an ensemble N = 1001 of maps compatible with
the data is produced. Integrated over the interior of
circles around the cluster center, this yields data for
M2d(r), the mass inside a cylinder of projected radius
r around the sightline to the cluster centre [17]. For
each map m, these M

(m)
2d values are evaluated at radii

rn = r1a
n−1 with n = 1, . . . , 149 and a = 1.0388, such

that (r1, r149) = (3.15, 879) kpc. Only N = 117 of these
rn contain physical data, the other ones are omited.
The ensemble averages M2d(rn) define the cylindrical
mass density Σn = M2d(rn)/πr2n, while their covari-
ances Γmn also follow as averages over the maps [17].
The Σn data with error bars equal to (Γnn)1/2 are pre-

Fig. 1 Strong lensing data for the cylindrical mass density
Σ as function of the radius for the clusters A1689 (upper,
black) and A1835 (lower, blue). Both clusters behave simi-
larly around their centers; A1689 has more mass around 100
kpc; the clusters behave similarly beyond 500 kpc

sented in Fig 1, for the present cluster A1689 and for
the later discussed cluster A1835. For small and large r,
they show quite similar behavior, while at intermediate
r, A1689 is denser than A1835.

2.2 Regularization of the covariance matrix

We shall fit theoretical models for Σ(r) by minimizing

χ2(Σ) =
N∑

i,j=1

[Σ̄(ri) − Σ̄i]C−1
ij [Σ̄(rj) − Σ̄j ]. (1)

In principle, one has Cij = Γij . However, the matrix Γ
has a big spread of eigenvalues, from 4.4×10−15 to 0.216
gr2/cm4. The near-degeneracies arise since the 2d maps
are based on bins of which many are empty. The small
eigenvalues are somewhat reflected in the small diag-
onal element around 120 kpc, see Fig. 1. But Eq. (1)
with C = Γ is dominated by the very small eigenval-
ues, which are numerical artefacts. To regularize them,
it is customary to employ a Tikhonov regularization
counting for further scatter, by adding a constant to
the diagonal elements of Γ [28–30],

C = Γ + σ2
SL1. (2)

In [29], where the data are binned, we take σSL =
0.19 gr/cm2 and in [30] 0.16 gr/cm2; the latter value
is employed in Fig. 2. It is seen that the Tikhonov-
regularized Cii lie for large r much above the empirical
values Γii , so that those data hardly play any role in the
analysis.. To acknowledge the decay of Σ as function of
r, we add, instead instead of (2), a constant times Σ2 to
the diagonal, so that we adopt instead the “poor man’s
regularization”

C = Γ + α2Σ
2

(3)
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Fig. 2 Lower data (black): empirical values Γii of the Σi

covariances, versus ri. The middle-upper data (red) show
the Tikhonov regularized Cii with σSL = 0.16 gr/cm2. We
employ the “poor man’s regularization” (3) for the Cii for
α2 = 0.001 (in blue), which does more justice to the Γii data

with diagonal (Σ)ij ≡ δijΣi and constant α. Writing
this as

C̃ = Γ̃ + α2 1, C̃ = Σ
−1

C Σ
−1

,

Γ̃ = Σ
−1

ΓΣ
−1

, (4)

it is seen to generalize Eq. (2) for cases where Σ changes
appreciably, as happens in cluster lensing. This reg-
ularization weighs the contributions to χ2 with basi-
cally equal weight for all ri. In Fig. 2 the lower (black)
data present the Γii . The red points (upper on the right
side), present Eq. (2), while the blue ones (middle on
the right), presenting Eq. (3), do more justice to the Γii

data.

2.3 The transversal shear

The transversal shear is defined as

gt(r) =
Σ(r) − Σ(r)
Σc − Σ(r)

, (5)

where Σ was introduced above, Σc is a constant, and Σ
is the line-of-sight density (projected density, 2d den-
sity) at transversal distance r of the center,

Σ(r) =

∞∫

−∞
dz ρ

(√
r2 + z2

)
. (6)

Weak lensing (WL) data for Σ and for gt with Σc =
0.6815 gr/cm2 in A1689 have been reported by Umetsu
et al. [31] and employed by us [30]. They are represented
in Figs. 5 and 8, respectively. Since here all bins were
filled, their covariance matrices are well behaved.

2.4 Mass profile of the X-ray gas

The mass density of the X-ray gas follows from the
observation of the electron density. Recent data at
r < 900 kpc have been presented in [17], which fit well
to a cored Sérsic profile [30]

nS(r) = n0
e exp

[

kg − kg

(
1 +

r2

R2
g

)1/(2ng)
]

. (7)

Data for r > 1 Mpc, taken from Planck-ROSAT [32],
fit to

nT =
d2t n

0
e

r2 + R2
t

, ρg,T = mNnT =
σ2

g

2πG(r2 + R2
t )

.

(8)

These behaviors combine into the global fit

ne(r) =
[
nst

S (r) + nst

T (r)
]1/st

. (9)

so that ne(0) = n0
e. The best fit parameters are

n0
e = 0.04376 ± 0.00098 cm−3, kg = 2.06 ± 0.12,

Rg = 21.8 ± 1.4 kpc, ng = 3.044 ± 0.062,

dt = 81.6 ± 1.6 kpc, σg = 476.5 ± 7.7 km/s,

Rt = 718 ± 108 kpc, st = 8.4 ± 2.7. (10)

For a typical Z = 0.3 in units of Solar metallicity
[33,34], the mass density of the X-ray gas reads

ρg(r) = αmHne(r) (11)

where α ≈ 15/13 is the average number of nucleons per
proton, mH is the mass of a neutral hydrogen atom,
and ne(r) is the electron number density.

2.5 Generating Σ data by numerical differentiation

It is useful to derive data for Σ, which can be obtained
from the SL data for Σ. We start from the relation

Σ(r) = Σ(r) +
1
2

dΣ(r)
d log r

, (12)

which follows from the relation between the cylindrical
mass density Σ and the line-of-sight mass density Σ,

Σ(r) =
M2d(r)

πr2
=

2
r2

∫ r

0

duuΣ(u), (13)

where M2d is the mass in a cylinder of radius r around
the cluster center. By taking dΣ and d log r from 58
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pairs of adjacent data points, we work with the numer-
ical derivative

ΔΣ(r)
Δ log r

=
Σ(1)

2n − Σ(1)
2n−1

log r
(1)
2n − log r

(1)
2n−1

, (14)

to be considered at the geometrical average position,

r(2)n =
√

r
(1)
2n−1r

(1)
2n . (15)

Here Σ(1)
n and r

(1)
n denote the original unbinned data

(having bin size b = 1). The data for Σ follow from
these as

Σ(2)
n = Σ(2)

n +
Σ(1)

2n − Σ(1)
2n−1

2 log r
(1)
2n /r

(1)
2n−1

,

Σ(2)
n ≡ Σ2n−1 + Σ2n

2
. (16)

In these definitions, the superscript denotes that two Σ
data points are employed for each Σ value. The covari-
ance matrix of the Σ, to be denoted as Γ(Σ(2)) follows
by the rule (16) from the covariance matrix Γ(Σ) ≡ Γ.
It has to be regularized as well. In analogy with (3) we
take

Cmn(Σ(2)) = Γmn(Σ(2)) + α2δmn(Σ(2)
n )2. (17)

It turns out that several of the Σ(2)
n − Σ(2)

n are nega-
tive, an unphysical effect arising from noise in the data
and/or lack of perfect sphericality. This can be over-
come when first binning the data in bins of b = 3 points.
For general b one has

Σ(b)
n =

1
b

b−1∑

k=0

Σ(1)
nb−k. (18)

The binned position is located at

r(b)n =
(
Πb−1

k=0r
(1)
bn−k

)1/b

(19)

After the binning, the quantities are defined as in (16),

Σ(2b)
n = Σ(2b)

n +
Σ(b)

2n − Σ(b)
2n−1

2 log r
(b)
2n /r

(b)
2n−1

,

Σ(2b)
n =

Σ(b)
2n−1 + Σ(b)

2n

2
, (20)

and located at the binned position

r(2b)
n =

√
r
(b)
2n−1r

(b)
2n . (21)

With the same rules taken bilinearly, the correla-
tor Γ(Σ(2b)) follows the Γ(Σ), and its regularization
C(Σ(2b)) involves Σ(2b)

i and the common value α =√
0.001 = 0.032.
We bin the data in bins of b = 3; this produces 19

pairs of data points from which Σ is determined. Like-
wise, we produce the related 19 data points for the com-
binations Σ − Σ and 2Σ − Σ.

Their covariance matrices are constructed along sim-
ilar lines, with a common value of α. Like the Σ, these
observables are made up by combining two adjacent
bins,

Oi = λ
(b)
2i−1Σ

(b)
2i−1 + λ

(b)
2i Σ(b)

2i , (22)

with coefficients determined by (18) and (20). Their
covariances,

Γij (O) =
1∑

s,s′=0

λ
(b)
2i−sλ

(b)
2j−s′ Γ(Σ

(b)
)2i−s,2j−s′ , (23)

inherit small eigenvalues from Γ(Σ), so regularization
is again needed. We take C(O) = Γ(O) + α2O2, taking
a common α for O = Σ, Σ − Σ and 2Σ − Σ.

It is our philosophy to use all information available,
and in particular, not to skip the data for, say, r < 300
kpc. While such a restricted data set would involve
small scatter also in the differentiated data, its fit would
be stronger driven by the regularization, see Figs. 2
and 3. The global outcome of such analyses is that the
present fits still work, though less decisive, while other
fits would be less ruled out, or even comparably accept-
able.

2.6 Data for A1835

The galaxy cluster Abell 1835 lies at redshift 0.2532 and
shares many characteristics with Abell 1689. In Fig. 1
it is seen that it has a similar mass in the center, less
mass around 100 kpc, and quite similar mass beyond
500 kpc.

Strong lensing and X-ray data for A1835 were pre-
sented recently by us [17]. Our routine generates mass
maps as in A1689, at the radii rn = r1a

n−1 for n =
1, · · · , 149. This involves the same ratio a but different
r1, such that with (r1, r149) = (4.027, 1120) kpc. Again
117 points contain physical information. We produced
1001 mass maps M

(m)
2d , which are averaged to yield data

for Σ.
In A1835 the covariance matrix for Σ encounters the

same problem as in A1689: there are very small eigen-
values (they range from 4.4 ×10−15 to 0.22 gr2/cm4)
and the diagonal elements have a minimum at 187 kpc,
see Fig. 3. Instead of the Tikhonov regularization (2),
we again adopt the “poor man’s regularization” (3),
here with α = 0.05. The elements Γii and Cii are pre-
sented in Fig. 3. The values of Cii/Σ2

i vary over a factor
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Fig. 3 The empirical covariance elements Γii as function
of the ri (lower data, black). The Tikhonov regularization
(2) with σSL = 0.03 gr/cm2 (red) exceeds the data strongly
at large r. The “poor man’s regularization” (3) with αSL =
0.01 (blue) does more justice to the large-r data

9.3. Making α still smaller would enhance this ratio and
induce an overfitting of the data around 187 kpc.

As before, we also construct 19 data points for Σ,
Σ − Σ and 2Σ − Σ from the Σ data in A1835.

The X-ray data for the electron density have been
presented by us as well [29]. We found that the following
profile explains the data well,

ρg(r) = mNne(r),

ne(r) =
(1 + r2/R2

0)n0
e

(1 + r2/R2
1)(1 + r2/R2

2)
. (24)

The best fit parameters are

n0
e = 0.0927 ± 0.0070 cm−3, R0 = 91 ± 13 kpc,

R1 = 31.8 ± 2.9 kpc, R2 = 169 ± 15 kpc. (25)

In these clusters, the gas mass density only becomes
significant at large r, because the galaxies are dominant
at small r.

3 Theoretical mass profiles

3.1 Generalities

A celebrated profile in astrophysics is the Sérsic profile
for the line-of-sight (2d) luminosity of galaxies, which
has the form of a stretched exponential, see Eq. (26)
below. In cosmology, the most popular mass profile is
the so-called NFW profile, (see Eq. (30) below), which
has a cusp at the origin and falls of as a power law [35].
With further coauthors, the NFW authors observe in
dark-matter-only simulations that the stretched expo-
nential profile describes the 3d mass density better
than the NFW profile [36]. As exposed in their Fig. 6,
the authors find good fits for families of dwarf galax-
ies, families of galaxies and families of galaxy clus-

ters, with mass densities ranging from ×104M�/kpc3 to
108M�/kpc3. The scales range from 0.2 kpc for dwarf
galaxies, to several hundred kpc for galaxies, up to
1.5 Mpc for fat galaxy clusters, respectively. The mean
Sérsic n values are 3.0 for dwarf- and galaxy-sized halos
and 2.4 for cluster-sized halos, similar to the values that
characterize luminous elliptical galaxies [36]. We con-
sider two mass profiles: the double stretched exponential
profile (DSE) and thermal fermions.

3.2 The stretched exponential BCG mass profile

A stretched exponential profile has three parameters,
the amplitude ρ0, the scale R, and the index n,

ρSE = ρ0 exp[−(r/R)1/n]. (26)

It has total mass

M =
4π

3
Γ(1 + 3n)ρ0R3, (27)

where Γ(n) is the standard generalization of (n − 1)! It
corresponds to a central line-of-sight mass density

S ≡ Σ(0) = Σ(0) = 2Γ(1 + n)ρ0R =
Γ(n)M

2πΓ(3n)R2
.

(28)

3.3 Double stretched exponential profile

The stretched exponential is an interesting candidate
to model the combined mass density of the dark matter
and the galaxies. For this aim, one assumes a sort of
equilibration between them. To put it bluntly, for this
profile one works with the adagio “where there are stars,
there can not be dark matter”.

Since the central, brightest cluster galaxy is much
heavier than the cluster halo extrapolated towards the
center, we adopt an additional stretched exponential for
it and arrive at the double stretched exponential profile
(DSE). For the modeling of clusters, we thus assume
a stretched exponentials for the total cluster (halo, h),
and an additional one for the brightest cluster galaxy
(BCG, b). Incorporating the gas, the total mass density
reads

ρ = ρbe
−(r/Rb)

1/nb + ρhe−(r/Rh)
1/nh + ρg(r). (29)

In the central regions, ρg is much smaller than the other
two, and hence irrelevant. While ρh decays exponen-
tially fast to zero for r beyond Rh, ρg only decays as a
power law, so it assures a power law decay of the total
density.
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3.4 NFW profiles for the halo

A popular profile is the NFW profile,

ρNFW =
A

(r/R)(1 + r/R)2
, (30)

and its generalization the gNFW profile (any n),

ρgNFW =
A

(r/R)n(1 + r/R)3−n
. (31)

This often employed profile has first been inferred from
dark matter-only simulations, and it is often supposed
to hold with the baryon density is included. This has
the benefit of very few fit parameters (2 for NFW, 3 for
gNFW). A drawback is then that it does not provide a
handle on the matter density of the galaxies.

Putting things together, we have a stretched expo-
nential for the BCG, a (g)NFW for the halo, on top of
the gas density, viz.

ρ(r) = ρbe
−(r/Rb)

1/nb + ρ(g)NFW(r) + ρg(r). (32)

3.5 Thermal fermionic dark matter

In 2009 we found the first indications that thermal
fermions provide a good fit for lensing data of the clus-
ter Abell 1689 [34]. Our followup studies have confirmed
this [17,29,30]. Here we subject this profile to a more
stringent test.

Consider g thermal fermion species of mass m at tem-
perature T = mσ2, where σ is the velocity dispersion
and μ chemical potential per unit mass, in the local
gravitational potential ϕ(r). Their mass density reads

ρν(r) =
∫

d3p

(2π�)3
gm

exp{[p2/2m + mϕ(r) − mμ]/T} + 1

= gm
( mσ√

2π�

)3

Li3/2

[μ − ϕ(r)
σ2

]
. (33)

The index ν expresses that a possible realization lies in
sterile neutrinos, as suggested by [19,20] in the context
of MOND [7], for which also arguments from the El
Gordo cluster were given [37].

The logarithmic integral is in general defined as

Liα(x) =
1

Γ(α)

∫ ∞

0

dy yα−1

ey−x + 1

= −Liα[−ex] =
∞∑

k=1

(−1)k−1

kα
ekx (34)

with Γ(α) Euler’s Gamma function and Liα(y) the stan-
dard logarithmic integral. For �(α) > 0 the integral is
well defined at all real x. The sum converges for x ≤ 0,

so that Liα(x) ≈ ex for x � −1. A better approxima-
tion is

Liα(x) ≈ ex

1 + 1
2α ex

(x � −1). (35)

Exact to order e6x is the Padé approximant

Liα(x)

≈ ex + (2
α

3α − 1
2α )e2x + 1

2a e3x + (2
α

5α + 2α

9α − 2
4α )e4x

1 + 2α

3α ex + 1
2a e2x + 2α

5α e3x
.

(36)

For any α > 0 the coefficients are positive. In our case
α = 3

2 , Eq. (36) takes at x = 0 the value 0.768095, close
to the exact value (1 − 1

21/2 )ζ3/2 = 0.765147.
In this approach, the baryonic mass has to be spec-

ified. Various components contribute to the baryonic
matter: the brightest cluster galaxy, the other (“halo”)
galaxies, globular clusters, cold gas clouds, the X-ray
gas, etc. A fit to data for the X-ray gas has been dis-
cussed above. For the brightest cluster galaxy (BCG,
“b”) we adopt the previous stretched exponential form

ρb(r) =
1

Γ(1 + 3nb)
3Mb

4πR3
b

exp[−(r/Rb)1/nb ]. (37)

All other parts are lumped into the term “mass density
of galaxies” (G). An adequate profile with total mass
MG , inner scale Rc and outer scale Rg is [38]

ρG(r) =
(Rc + Rg)MG

2π2(r2 + R2
c)(r2 + R2

g)
, (38)

These components model the total mass density of
galaxies ρb(r) + ρG(r) which has at r = 0 the prop-
erty

Σb(0) + ΣG(0) =
Γ(nb)
Γ(3nb)

Mb

2πR2
b

+
MG

2πRcRg
. (39)

The gravitational potential ϕ, which enters ρν in
Eq. (33), is solved self-consistently from the Poisson
equation

ϕ′′ +
2
r
ϕ′ = 4πGρ, ρ = ρb + ρG + ρg + ρν .

(40)

3.6 Lensing observables

We focus on the line-of-sight mass density (2d-density)

Σ(r) =
∫ ∞

−∞
dz ρ(

√
r2 + z2) =

∫ ∞

r

du
2uρ(u)√
u2 − r2

,

(41)
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and the cylindrical mass density

Σ(r) =
1

πr2
M2d(r) =

2
r2

∫ r

0

ds sΣ(s)

=
∫ r

0

du
4u2

r2
ρ(u) +

∫ ∞

r

du
4uρ(u)

u +
√

u2 − r2
. (42)

In the fermionic application, the Poisson equation
allows to express Σ(r) as [29]

Σ(r) =
1

2πG

∫ ∞

0

ds
cosh 2s

sinh2 s
[
ϕ′(r cosh s) − ϕ′(r)

cosh2 s

]
, (43)

and Σ(r) as the simpler expression [34]

Σ(r) =
1

πG

∫ ∞

0

dsϕ′(r cosh s). (44)

We also consider the combinations Σ − Σ and 2Σ −
Σ. If the mass density is cored at the origin, Σ − Σ
will vanish there, so this combination tests the central
behaviors. 2Σ − Σ, on the other hand, tests the decay
at large r. Indeed, consider an isothermal fall off ρ ≈
σ2/2πGr2, for which

Σ ≈ σ2

2Gr
, Σ ≈ σ2

Gr
+

M0

r2
. (45)

In our cases where ρ always exceeds at intermediate r
its large-r asymptote, the “excess” mass M0 is positive.
While Σ − Σ starts linearly from 0 at the origin, it will
decay as σ2/2Gr + M0/r2 for large r. On the contrary,
the combination 2Σ−Σ starts at some finite Σ(0), while
at large r the leading terms cancel, leaving a −M0/r2

decay. Obviously, it changes sign at some finite r; hence
2Σ − Σ is a sensitive quantity for testing the large-r
regime. It actually holds by definition that

2Σ(r) − Σ(r) =
1
π

d
dr

(
M2d(r)

r

)
, (46)

so its zero crossing occurs at the maximum of M2d/r.
This is reminiscent of the circular rotation speed of
objects in the cluster, vrot(r) =

√
GM3d(r)/r. The cir-

cular speed can have a maximum and, with it, M3d/r.
Eq. (46) changes sign at an intermediate r.

4 Fits for A1689

We fit models for the mass distribution in A1689 to the
strong lensing data for Σ and the weak lensing for Σ and

gt data. We combine with the SL data for Σ, Σ−Σ and
2Σ − Σ, derived numerically from Σ, while neglecting
their mutual correlations. Hereto one may imagine that
each of them derives from averages over 250 of the in
total 1001 M

(m)
2d maps. Alternatively, one may view the

derived values of Σ, Σ − Σ and 2Σ − Σ just as tools to
optimize fit to the Σ data.

In A1689 the total χ2 is taken as

χ2 =
1
4
χ2

SL(Σ) + χ2
WL(Σ) + χ2

WL(gt) + Δχ2
SL

Δχ2
SL = χ2

SL(Σ) + χ2
SL(Σ − Σ) + χ2

SL(2Σ − Σ).
(47)

The first term involves the 117 SL data for Σ, with
a weight factor 1/4 adopted to compensate for not-
binning these data. χ2

WL(Σ) involves the 14 WL data
points for Σ and their covariance matrix, and χ2

WL(gt)
involves the 13 WL data points for gt and their diagonal
covariance matrix. The correlation matrix C(Σ) is reg-
ularized by adding α2Σ2 on the diagonal of Γ(Σ). Like-
wise, for C(Σ − Σ) and C(2Σ − Σ) we add α2(Σ − Σ)2

and α2(2Σ − Σ)2, respectively, to their diagonals. In
A1689 we adopt the values

α(Σ)=0.03, α(Σ)=α(Σ − Σ)=α(2Σ − Σ)=0.1.

(48)

We neglect the correlation between the various SL
terms in (47), but keep the off-diagonal elements in each
one.

We have attempted various further regularization
schemes, without much improvement of the fits.

As typical when working with SL data that involve
very small eigenvalues, the choice of our regularization
parameter α in Eq. (3) needs some care. Extreme cases
are to be avoided: a too large α effectively discards all
information in the covariance matrix, while taking it
too small gives too much weigth to the numerical arti-
facts in it. Hence it has been selected to get values χ2/ν
of order 1 for the best fit. It then serves to establish the
relative quality of fits, and varying it within a reason-
able range does not alter the relative quality much.

4.1 Double stretched exponentials

The minimum of χ2 is determined as function of the
parameters. The errors in the parameters {pi} are set
by linear regression. First, the Hessian Hij = 1

2∂pi
∂pj

χ2

is calculated by numerical differentiation and inverted.
The diagonal elements provide the 1σ error bars δpi =√

(H−1)ii , while the off-diagonal elements represent
parameter covariances. The best fit in A1689 reads

Mh = (171.2 ± 6.7)1013M�, Mb = (6.7 ± 2.7) × 1011M�,

Rh = (1.91 ± 0.81)kpc, Rb = (1.56 ± 0.56)kpc,

nh = 2.84 ± 0.07, nb = 1.29 ± 0.44 (49)
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Table 1 The separate χ2 values in A1689, for the dou-
ble stretched exponential (DSE) model, and for the thermal
fermion dark matter model

A1689 DSE Fermions

χ2
SL(Σ)/117 1.13 1.10

χ2
WL(Σ)/14 0.68 0.60

χ2
WL(gt)/13 2.32 2.01

χ2
SL(Σ)/19 3.05 0.20

χ2
SL(Σ − Σ)/19 0.19 2.60

χ2
SL(2Σ − Σ)/19 3.72 1.42

χ2/ν 1.81 1.44

Fig. 4 Strong lensing data for the cylindrical mass den-
sity Σ in A1689 with the best double stretched exponential
(DSE, red) and fermion (blue) fits. Both are very good

While the halo is quite well confined, the brightest clus-
ter galaxy is less so; this is no big surprise, since the
central data are scarce and relatively noisy. The Mb

value is to be compared with (13.0 ± 2.7)1011M� from
Loubser et al [39].

The values of the separate χ2 terms of Eq. (47) are
listed in the second column of Table 1. The last line
gives χ2/ν, with the number of free parameters ν =
N − 6 for the DSE model. The number of data points
corresponding to (47) is N = 1521

4 . The value χ2/ν =
1.81 presents an acceptable fit. The enclosed mass at
overdensity of 200 and 500 reads, respectively,

r200 = 1992 kpc, M200 = (163 ± 5) × 1013M�,

r500 = 1435 kpc, M500 = (139 ± 4) × 1013M�.

(50)

4.2 Thermal fermions in A1689

The best fit occurs at parameter values

m12 = 1.56± 0.14 eV, μ = (7.3± 1.4)× 106 km2/s2,

σ = 1290± 120 km/s, MG = (8.97± 0.47)× 1013M�,

Rc = 33.8± 0.48 kpc, Rg = 119± 21 kpc,

Fig. 5 The strong lensing data of the line-of-sight mass
density Σ in A1689 (small symbols) stem well with the weak
lensing data (large symbols). The difference between the
best double stretched exponential (DSE, red, lower) and the
best fermion (blue, upper) fit at large r is statistically not
relevant

Fig. 6 Data of Σ − Σ in A1689 with the best double
stretched exponential fit (red) and the best fermion fit (blue)

Mb = (13.0± 2.7)× 1011M�, Rb = 4.27± 0.47 kpc,

nb = 0.90± 0.13. (51)

where m12 = (g/12)1/4m, which we employ for compar-
ison with earlier work. The first six compare well with
earlier fits, while the last three, referring to the BCG,
are new. The value for Mb is adopted from Loubser et
al [?]. The χ2 values for the various components are
presented in the right column of Table 1. The overall
value χ2/ν = 1.32 represents a good fit. The enclosed
masses at r200 and r500 in the fermion model are very
close to the ones (50) of the DSE model,

r200 = 2048 kpc, M200 = (165 ± 6) × 1013M�
r500 = 1389 kpc, M500 = (126 ± 4) × 1013M�,

(52)

the reason being that both fits are good. For com-
parison, the MOND radius

√
GM200/a0 with a0 ≈

1.2 × 10−10 m/s is 1.4 Mpc.
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Fig. 7 Data of r(2Σ − Σ) in A1689 with the best DSE fit
(red, lower) and the best fermion fit (blue, upper). Addi-
tional data beyond 1 Mpc may settle their difference statis-
tically

Fig. 8 Data of the transversal shear gt in A1689. The small
data points are obtained, without binning, from the strong
lensing Σ data. The large data points are from weak lensing
analysis. Both sets agree well. The best DSE fit (red) is the
lowest, except around 1 Mpc, and the best fermion fit is in
blue

4.3 NFW-type profiles in A1689

Fitting the 2-parameter NFW profile combined with
the gas profile to secure a proper fall off at large r,
to the SL data of Σ alone yields the good fit χ2/ν =
0.88. However, this deteriorates when other data are
included, the reason being in particular the behavior
at r ∼ 2 − 3 Mpc. With the weak lensing data for Σ
and gt added, the fit is already bad, with χ2/ν ∼ 10.
When the Σ−Σ and 2Σ−Σ are included, the situation
worsens considerably; then the failure at large r already
becomes relevant for r < 1 Mpc. To employ only 2 fit
parameters is too poor, given the precise data.

Taking the sum of 2 NFW profiles does not work
well either. Neither does the case regularly adopted in
literature of one NFW profile at small r and another at
larger r (which corresponds to taking their maximum).

One of our further attempts to improve the fit
involves a gNFW profile for the halo and a stretched
exponential for the BCG, to which the gas density is
again added for the behavior at large r. The best case

Table 2 The separate χ2 values per data point for the
double stretched exponential (DSE), and thermal fermion
profiles, fit to data in A1835

A1835 DSE Fermions

χ2
SL(Σ)/117 0.42 0.43

χ2
SL(Σ)/19 0.66 0.66

χ2
SL(Σ − Σ)/19 1.75 2.01

χ2
SL(2Σ − Σ)/19 2.17 6.34

χ2/ν 1.15 2.18

is found when the gNFW index is n = 0, that is to say:
no cusp in the halo part, the BCG being fully accounted
for by the stretched exponential. This cored case n = 0
goes against the philosophy of a cuspy NFW profile.
Since the remaining fit is by far not so good as in the
DSE and thermal fermion model, we refrain from pre-
senting further details.

5 Fits for Abell 1835

In this cluster we take half of the regularization param-
eters (48) in A1689,

α(Σ) = 0.015, α(Σ)

= α(Σ − Σ) = α(2Σ − Σ) = 0.05. (53)

This sharpening is permissible, since the cluster looks
more regular, and, perhaps, because there are no WL
data upto 2–3 Mpc that would put further constraints.

5.1 Double stretched exponentials in A1835

We repeat the above procedure. The best fit reads

M1 = (0.60± 0.21)× 1013M�, M2 = (161± 15)× 1013M�
R1 = (8.0± 4.8)kpc, R2 = (29± 14)kpc,

n1 = 1.04± 0.36, n2 = 1.94± 0.20. (54)

Over-densities of 200 and 500 relate to

r200 = (1926± 42) kpc, M200 = (160± 10)× 1013M�,

r500 = (1327± 30) kpc, M500 = (131.0± 8.8)× 1013 M�.

(55)

Accidentally, this M200 = 1.61×1015M� is close to the
M200 = 1.65 × 1015M� for A1689. Hence the MOND
radius

√
GM200/a0 with a0 ≈ 1.2 × 10−10 m/s is again

1.4 Mpc.
The χ2 values for the separate components are given

in Table 2. It is seen that the DSE fit is stunningly
good, with the only large term in the weakly determined
BCG. The excellence of the fit is also observed from the
red curves in Figs. 9, 10, 11 and 12.
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Fig. 9 Data of Σ in A1835 with the best Double Stretched
Exponential (red) and best fermion fit (blue) fits

Fig. 10 Data of Σ in A1835 with the best Double
Stretched Exponential fit (red) and the best fermion fit
(blue)

Fig. 11 Data of Σ − Σ in A1835 with the best Double
Stretched Exponential fit (red) and the best fermion fit
(blue)

5.2 Thermal fermions in A1835

For the thermal fermion profile in this cluster it appears
that the scale parameters Rc and Rg of the galaxy dis-
tribution are both about 100 kpc. Taking them equal,
Rg = Rc, eliminates one free parameter, and giving as

Fig. 12 Data of r(2Σ − Σ) in A1835 with the best Dou-
ble Stretched Exponential fit (red) and the best fermion
fit (blue). While the difference between the two models is
statistically relevant, precise data beyond 1 Mpc could be
decisive

best fit

m12 = (1.45 ± 0.16) eV, σ = (1308 ± 19) km/s,

μ = (5.61 ± 0.70) × 106km2/s2,
MG = (7.6 ± 6.2) × 1013M�,

Rc = (112 ± 32) kpc, Rg = (150 ± 55)kpc,

Sb = (1.47 ± 0.21)gr/cm2, Rb = (8.6 ± 0.16) kpc,
nb = 1.06 ± 0.16. (56)

with Sb defined by (28). The best BCG parameters
coincide with those in the DSE fit, but are more con-
strained. The BCG mass is

Mb = (7.2 ± 0.9) × 1012M�. (57)

Similar values at r200 and r500 arise, however, with
smaller error bars,

r200 = (1926 ± 25) kpc, M200 = (160 ± 6) × 1013M�,

r500 = (1327 ± 15) kpc, M500 = (131.0 ± 4.4) × 1013 M�.

(58)

5.3 NFW-type profiles in A1835

The NFW situation is comparable to that in A1689, but
here no WL data exist, hence no lensing data beyond
1.12 Mpc, which allows more flexibility.

The Σ-only fit has again a very good χ2/ν = 0.72.
Similarly to the case in A1689, this deteriorates when
more data are included, the basic reason seeming to be
that the NFW profile decays too slowly at large r.

6 Summary

We have considered precise strong lensing data for the
clusters A1689 and A1835. For A1689 we include exist-
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ing weak lensing data. In both cases, the X-ray gas den-
sity is known from observations and fit to an analytical
profile.

The strong lensing data have been gathered for cylin-
drical mass M2d(r) or, equivalently, the cylindrical mass
density Σ(r) = M2d/πr2, where r is the projected dis-
tance to the cluster center. After binning, the data allow
numerical differentiation, to yield data for the line-of-
sight mass density Σ and, consequently, for the combi-
nations Σ−Σ and 2Σ−Σ. They emphasize the behavior
at the origin and at large r, respectively.

Fits to a double stretched exponential (DSE) pro-
file and to thermal fermion profile are considered. It
is observed that both profiles fit reasonably well, with
the fermions fitting better in A1689 and the DSE bet-
ter in A1835. Somewhat surprisingly, NFW-type pro-
files fit considerably less well at this level of accuracy,
even though the NFW profile is expected in the ΛCDM
framework [35]; this is compensated, however, by the
good fit of the DSE profile, of which the halo part was
put forward as a better profile by the same authors with
their collaborators [36]. Sharp data beyond 1 Mpc may
help to discriminate more between the profiles, with the
“winner” expected to be the double exponential profile.
NFW and NFW-type profiles fit these precise data con-
siderably less well.

The covariance matrix of the strong lensing data has
very small eigenvalues, hence a cutoff is needed, as is
well known. We propose a “poor man’s” regulariza-
tion, which is better suited in situations such as lens-
ing, where the observable decays at large distance. The
regularization parameter has been chosen to get a rea-
sonable value for χ2/ν, but a theoretical criterion to fix
it, such as by some maximal entropy condition, would
be welcome.
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