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REVIEW

Bioethanolic yeasts from dung beetles: 
tapping the potential of extremophilic yeasts 
for improvement of lignocellulolytic feedstock 
fermentation
Anita Ejiro Nwaefuna1*  , Karl Rumbold2, Teun Boekhout3,4 and Nerve Zhou1* 

Abstract 

Bioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce 
greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security 
concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the 
cost of production, one major drawback of this technology is that the pre-treatment process creates environmen-
tal stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative 
yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine 
and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on 
a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung 
beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand 
inhibitory environmental stresses typically associated with bioethanol production. The review further discusses estab-
lished methods used to isolate bioethanolic yeasts, from dung beetles.
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Background
Bioethanol and bioethanolic yeasts: gaps, limitations, 
and challenges
Bioethanol is an attractive alternative to petroleum fuels 
due to its numerous advantages [1–7]. Reduced reli-
ance on non-renewable energy sources and a decrease 
in greenhouse gas emissions are the two major merits. 
Although fossil fuels meet our demand for energy, their 
contribution to climate change as a result of greenhouse 
gas emissions is a global dilemma. The transportation 

sector is the world’s biggest contributor to greenhouse 
gas emissions due to its high dependence on fossil fuels 
[8–11]. The use of renewable fuel in this sector to achieve 
greenhouse gas emission neutrality is an imminent 
solution for sustainable and environmentally friendly 
energy sources. However, for bioethanol to be competi-
tive against non-renewable fuel sources, there are many 
hurdles to overcome [11–13]. One of the most impor-
tant hurdles is food security. First-generation bioetha-
nol produced from edible food crops such as corn, rice, 
barley, potatoes, sugarcane, and other starchy food crops 
[14–18] has led to controversies due to competition 
with food production and land use. The competition for 
land use increases the demand and price of food crops 
[19–23]. Second-generation bioethanol using non-edi-
ble, inexpensive, and abundant lignocellulosic biomass 
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such as woody and herbaceous biomass, forest residues, 
industrial and agricultural wastes, and other non-food 
crops [16, 18, 24] as raw materials address the food ver-
sus fuel challenge associated with the use of food-grade 
feedstocks. Although second-generation bioethanol pro-
cessing generates far lower levels of greenhouse gases 
as compared to the first-generation alternative [25], it 
is not without demerits. Production costs associated 
with separate hydrolysis and fermentation (SHF) pro-
cesses where each step is carried out under optimal pH 
and temperature conditions [26] are extremely high to 
achieve sustainability. Recently, however, Simultaneous 
Saccharification and Fermentation (SSF) is a method that 
has become increasingly attractive in the production of 
bioethanol from non-edible lignocellulosic feedstocks, 
as well as dedicated energy crops [13, 27, 28] as it pro-
duces higher bioethanol yields than SHF [2, 7, 29–31]. 
This method allows hydrolysis and fermentation under-
taken simultaneously to reduce production costs. Lig-
nocellulosic feedstocks are pre-treated using physical, 
chemical, and biological pre-treatments [32, 33]. Chemi-
cal pre-treatment exploiting either acid or alkali treat-
ments [34–37] at high temperatures is the most preferred 
method. However, this pre-treatment process creates 
another hurdle, because there are limited robust yeasts 
strains that can tolerate the presence of inhibitory toxic 
compounds such as acetic acids, levulinic acids, furfural, 

5-hydroxymethylfurfural (HMF), and ferulic acids [7, 
16, 20, 38, 39] which are generated during this process 
(Fig. 1). In addition, the process exerts extreme osmotic 
and oxidative stresses [19, 32, 40, 41] (Fig. 1), which are 
extremely harsh for the conventional bioethanolic yeasts. 
These conditions can inhibit or reduce speed of growth 
and fermentation efficiency of yeasts [16, 17, 28, 36]. The 
use of biological treatments, such as thermotolerant cel-
lulolytic enzymes (optimal temperature 45–80 °C) [42], is 
another option. One major drawback is the wide differ-
ence of temperature requirements for this treatment and 
those used for growth and fermentation of yeasts which 
ranges from 20 to 35 °C [26] if the process is to be simul-
taneous as a cost-cutting measure. Therefore, using fer-
mentative yeasts with extreme stress tolerance attributes 
such as thermotolerance, ethanol tolerance, oxidative 
stress tolerance, osmotolerance, and tolerance to inhibi-
tory substrates among others would be ideal to overcome 
these drawbacks. Currently, mesophilic yeasts are used to 
produce bioethanol. The most desirable yeasts are ther-
mophiles fermenting at temperatures of 40  °C or higher 
as this reduces the costs of pumping and cooling as well 
as allowing for efficient saccharification [43]. Efficient 
saccharification subsequently increases the amount of 
available fermentable sugars, which improves the overall 
fermentation productivity. In addition, higher tempera-
ture fermentation minimises contamination risks among 

Fig. 1  An overview of challenges affecting bioethanol production in the pre-treatment and fermentation stages
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other advantages. Examples of thermophilic yeasts such 
as Issatchenkia orientalis [44] and Kluyveromyces marxi-
anus [45] are ideal, although they have their limitations 
such as lower ethanol yield from lignocellulosic feed-
stocks, poor tolerance to inhibitors and ethanol leading 
to a lower fermentation efficiency [46]. Hydrolysis of lig-
nocellulosic feedstocks, which typically consists of cellu-
lose, hemicellulose, and lignin, yields various fermentable 
sugars, such as pentoses (for example, xylose and arab-
inose) and hexose sugars (for example, mannose and 
galactose) [1, 16, 19]. A wide substrate utilization range 
is an essential characteristic of bioethanol production 
yeasts. The wild-type conventional/traditional yeast used 
in bioethanol fermentation, Saccharomyces cerevisiae, 
is incapable of fermenting pentose sugars, which sub-
sequently reduces the efficiency of the process (Fig.  1). 
For example, this yeast cannot ferment xylose, the most 
abundant pentose sugar in lignocellulosic feedstocks [3]. 
The search for extremophilic and robust fermentative 
yeasts from dung beetles inhabiting extreme environ-
ments is one way to progressively increase productivity 
and subsequently the sustainability of bioethanol.

Dung beetles of the Scarabaeidae family and order 
Coleoptera are dependent on lignocellulose-rich ani-
mal dung for survival and reproduction [47, 48]. About 
80% of dung is composed of indigestible carbon sources 
such as cellulose, tannin, and lignin with low nutritional 
content and quality [49–51]. Such a recalcitrant mate-
rial for a diet suggests that symbiotic associations are 
obligatory for dung beetles to efficiently process ligno-
cellulose within their guts. Such a diet requires immense 
specialisation for resident yeasts, which could serve as 
a unique ecological niche for novel yeasts with the abil-
ity to degrade inexpensive lignocellulosic feedstocks 
in bioethanol production processes. For decades, dung 
beetle research suggests that their guts possess micro-
bial consortia, including yeasts which provide nutrition 
and assist in the digestion of such complex substrates 
[49]. The search for yeasts from dung beetles could be 
extended to those beetles inhabiting harsh environments 
like the hot deserts and tropical surroundings as extre-
mophilic environments. Such ecological niches could be 
even more attractive as a source of multi-stress tolerant 
yeasts, which are likely to be found in association with 
resident extremophilic beetles. Robust stress tolerance is 
a phenotype of interest for the techno-economic feasibil-
ity of bioethanol production. Stressors such as weak acids 
and furans generated by hydrolysis of lignocellulosic 
feedstocks, ethanol, and high-temperature fermentation 
severely reduce the fermentative capacity of the bioetha-
nolic yeasts.

This review presents an overview of challenges encoun-
tered during bioethanol production by conventional 

yeasts and the potentiality of dung beetles in harbour-
ing novel yeasts with various attributes beneficial to the 
bioethanol industry.

Dung beetle as a source of extremophilic 
and ethanologenic yeasts
Symbiotic relationships between phylogenetically diverse 
insects and yeasts are well documented [52–55]. Insects 
mutually benefit from an association with yeasts; by 
attraction to food, whereas yeasts are vectored by insects 
from one food substrate to another [53, 54, 56]. Yeasts 
have a role to play in the nutrition of beetles, for example, 
secretion of enzymes for digestion of food [57–59], pro-
vision of essential organic acids, vitamins, as well as other 
products of their carbon metabolism pathway [58, 60, 
61]. Well-documented examples of yeasts associated with 
Drosophilid insects suggest that yeasts provide essential 
vitamins (e.g., thiamin) and lipids needed for metabo-
lism, and also assist with their reproduction by facilitat-
ing chemical communications and mating activities [54, 
58, 62]. The growth and development of insects colonies 
such as honeybees are enhanced by yeasts inhabiting 
their gastrointestinal tract [54]. Yeasts found in termites 
play a role in the digestion of wood by producing rel-
evant enzymes for xylose degradation [54, 63]. Further-
more, yeasts help to regulate various interactions among 
insect species. Yeasts are vectored by insects from one 
environment to another and are protected from adverse 
environments as well as resource depletion [53, 54, 58], 
as compared to their microbial counterparts, bacteria, 
and fungi, which can be dispersed through air; for exam-
ple, flower beetle insects vector yeasts (e.g., Kuraishia 
capsulata and Yamadazyma tenuis) from one flower to 
another [54]. The environment within the insect gastro-
intestinal tract is conducive for yeast growth, reproduc-
tion, and survival. Yeasts inhabiting beetle intestines are 
provided with xylose sugar therefore enabling such yeasts 
to acquire xylose utilization and fermentative traits.

Yeast biodiversity in many insects like dung beetles for 
industrial applications has been poorly studied. About 
1% of yeasts species is currently known and more are yet 
to be discovered [64]. Over 650 yeasts have been isolated 
from beetle guts [65]. Candida sp, Hanseniaspora sp, 
Kluyveromyces sp, Metschnikowia sp, Pichia sp, and Sac-
charomyces sp  [65] are examples of yeast genera isolated 
from beetle guts that can be used for lignocellulosic feed-
stocks fermentations. A novel yeast Trichosporon helio-
copridis sp. nov isolated from a dung beetle (Heliocopris 
bucephalus  Fabricius) [66] was reported to assimilate a 
variety of carbon sources like glucose, sucrose, galactose, 
maltose, raffinose, trehalose, D-arabinose, and lactose to 
mention a few. The yeast was incapable of assimilating 
other carbon sources such as cellobiose, soluble starch, 
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melibiose, D-xylose, L-arabinose, and L-sorbose. A major 
downside to this is that the yeast could not ferment glu-
cose. However, the yeast’s ability to ferment other sugars, 
as well as its thermotolerance ability are ideal background 
traits for strain development for example via evolutionary 
engineering [67]. Evolutionarily engineering of Candida 
intermedia, for example, enhanced xylose conversion, 
production of ethanol, and tolerance to lignocellulose-
derived compounds [68]. Exploring robust fermentative 
yeasts capable of utilizing inexpensive and abundant car-
bon sources as well as exhibiting extremophilic stress tol-
erance traits from dung beetles that inhabit extreme and 
pristine environments could tremendously improve the 
economic feasibility of bioethanol.

Other than the ability to ferment multiple sugars, stress 
tolerance is an essential attribute for bioethanol ferment-
ing strains. Yeasts from dung beetles inhabiting extreme 

environments with abilities to withstand stresses such 
as high temperatures, high salt, sugar, and ethanol con-
centrations could be isolated. Examples of such traits are 
listed in Table 1.

Fermentation of sugars found in lignocellulosic feedstock: 
a key trait sought for in dung beetle yeasts
Yeasts are facultative anaerobes that can shift to fer-
mentation in the absence of oxygen, a process that 
allows them to break down sugars, producing ethanol 
as a byproduct. Some yeasts termed as Crabtree posi-
tive yeasts can ferment even in the presence of oxygen 
[69]. They inhabit sugar-rich environments such as fruits 
in nature. Bioethanol production yeasts can either be 
acquired from culture collections or commercial suppli-
ers, developed using classical genetic methods as well-
developed evolutionary engineering or can be isolated 

Table 1  Possible yeasts with extremophilic traits for efficient bioethanol production

Trait Yeast species References

High ethanol productivity S. cerevisiae [98]

Brettanomyces (= Dekkera) bruxellensis [85, 99, 100]

K. marxianus [45, 101, 102]

Lignocellulosic-based carbon (e.g., cellulose, arabinose, 
xylose)

P. stipitis, C. shehatae, and P. tannophilus, Schizosaccharomyces 
spp

[103]

Thermotolerance K. marxianus [13, 18, 32, 86–88, 104–106]

O. polymorpha [87–91]

P. kudriavzevii [86, 107–113]

Osmotolerance Z. rouxii [86, 88, 91, 114–116]

Torulaspora delbrueckii [86, 116, 117]

Z. bailii [91, 115, 117, 118]

Metschnikowia pulcherrima [86]

Wickerhamomyces anomalus [24, 86, 119]

Debaryomyces hansenii [86, 117, 120]

Schizosaccharomyces pombe [86, 115, 117]

P. kudriavzevii [117]

Halotolerance Z. rouxii [88, 115, 116]

T. delbrueckii [86, 88]

W. anomalus [86, 88, 115]

D. hansenii [86, 88, 106, 115, 117]

Ethanol tolerance O. polymorpha [87, 89–91, 121]

W. anomalus [86]

D. bruxellensis [86, 91, 115, 122]

S. pombe [115]

T. delbrueckii [86, 123]

Z. bailii [86, 115, 120]

Furan derivative tolerance P. kudriavzevii [86, 91, 124, 125]

W. anomalus [24]

Acid tolerance Z. bailii [86, 91, 114, 115, 118, 126]

W. anomalus [115]

P. kudriavzevii [115, 125]
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from their natural environments. Yeasts from nature are 
most exploited in bioethanol production, due to their 
ability to utilize various fermentable sugars and convert 
them into ethanol. High ethanol productivity is an indis-
pensable attribute for bioethanol production.

Saccharomyces cerevisiae, the ‘conventional’ yeast, an 
extensive model fermentation organism used for bioetha-
nol production [3, 19, 70, 71] monopolised the bioetha-
nol industry before the use of inexpensive and abundant 
lignocellulosic feedstock. Lignocellulosic feedstocks con-
tain a wide range of sugars, which cannot be fermented 
by S. cerevisiae. One reason could be the ecology and 
niche preferences, since S. cerevisiae is a fruit sugar yeast 
whose niches in ripening and rotting fruits do not con-
tain lignocellulosic sugars. It evolved to ferment a wide 
range of hexose sugars found in fruits and subsequently 
producing ethanol as a niche engineering strategy [2, 32, 
72]. Its high ethanol tolerance made it the most employed 
yeast for industrial ethanol production. In addition to this 
attribute, its GRAS (generally regarded as a safe microor-
ganism) status by the US FDA Organization, its genetic 
amenability, and its well-established systems-level attrib-
utes made it an ideal organism, which also accounts for 
its monopoly. Pentose sugars and sugar polymers repre-
sent a significant proportion of sugars in inexpensive and 
abundant lignocellulosic feedstocks [32]. Xylose, arab-
inose, glucose, galactose, and mannose are examples of 
key sugars present in lignocellulosic feedstocks [73–75]. 
The ability of yeasts to assimilate even a small amount of 
a variety of all available sugars enhances the productivity 
of the bioethanol production process and subsequently 
increases its economic feasibility [32]. Some researchers 
have reported several yeasts such as Pichia spp, Candida 
spp, Brettanomyces spp, Scheffersomyces spp, and others 
that can ferment xylose albeit at lower yields for sustain-
able production [46]. Cofermentation of key hexoses and 
pentoses has been touted as attractive in the reduction of 
the uneconomical fermentation time when pentoses are 
fermented, after the exhaustion of hexoses. This strategy 
is known to increase the economic feasibility of bioetha-
nol [32]. Numerous approaches to enhance bioethanol 
production by the introduction of pentose pathways 
into yeasts strains via metabolic engineering have been 
reported [39, 40, 76–79]. Another approach would be to 
scout for yeasts that can utilize and ferment a wide range 
of sugars from nature. Such strains can be used as they 
are, or their genetic novelty can be used for reverse meta-
bolic engineering of robust strains.

Current sources of extremophilic yeasts for bioethanol 
fermentations
Yeasts with extremophilic traits are ideally important 
for the improvement of the efficiency of bioethanol 

production. Several extremophilic traits have been doc-
umented (Table 1). In general, stress tolerance is known 
among non-conventional yeasts. Some noticeable genera 
include Saccharomyces spp [15, 32, 80–82], Schizosaccha-
roymces spp [15, 32], Dekkera spp [15, 83–85], Pichia spp 
[32], Pachysolen spp [15], and Kluyveromyces spp [80–
82]. Thermotolerance is one of the most desirable char-
acteristics of a bioethanol production strain. Alcoholic 
fermentation during simultaneous saccharification and 
fermentation is carried out at elevated temperatures. This 
decreases cooling costs, lowers the risk of contamination, 
and increases ethanol yields [32]. Ogataea (Hansenula) 
polymorpha, Pichia kudriavzevii (= Issatchenkia ori-
entalis = Candida krusei), and K. marxianus are well-
known thermotolerant yeasts [86–88]. O polymorpha is 
a methylotrophic yeast with thermotolerant traits, whose 
ability to ferment xylose is advantageous in bioethanol 
fermentation [89–91]. P. kudriavzevii although an oppor-
tunistic pathogen, has been identified as a multi-stress 
tolerant yeast that can be used for bioethanol produc-
tion. It can tolerate elevated temperatures, high sugar 
concentrations, furan derivatives, and weak acids (e.g., 
acetic acid) (Table  1). Thermotolerant yeast, such as K. 
marxianus (Table  1), can assimilate various sugars like 
xylose, cellobiose, lactose, and arabinose [91]. Osmotol-
erance is another desirable attribute of bioethanol fer-
menting yeasts. Non-conventional yeast species such as 
Zygosaccharomyces rouxii and Zygosaccharomyces bailii 
are known to possess outstanding osmotolerant abilities 
(Table 1), even though their ethanol production capacity 
is poor [32].

Other yeasts with beneficial traits have also been iso-
lated. Pichia stipitis, Candida shehatae, and Pachysolen 
tannophilus have in common xylose fermentation abili-
ties [16, 32, 92–94]. The recently described Spathaspora 
passalidarum also has xylose fermentation attributes [74, 
90, 94–97].

Sources of yeasts currently used in bioethanol production
Yeasts currently used for bioethanol fermentation have 
been isolated from different sources (Table  2). How-
ever, these yeast strains have not sufficiently addressed 
the current challenges of stream-lined carbon substrate 
utilization range, poor stress tolerance, and low ethanol 
productivity.

Described methods and advances in isolation of yeasts 
from dung beetles
Dung beetles harbour yeasts in their guts in either a 
mutualistic or symbiotic relationship [143]. The pre-
cise roles of yeasts in specific sections of the dung bee-
tle guts (foregut, midgut, and hindgut) could yield yeasts 
adapted to different niches whose potential in bioethanol 
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production needs to be explored. Isolation of yeasts from 
dung beetles was extensively studied by [65]. Dung bee-
tles are starved for some days to reduce the microbial 
populations as well as removing contaminating organ-
isms [144, 145]. As a strategy to exclude non-resident 
surface microorganisms, beetles are initially surface dis-
infected with ethanol and rinsed with saline to wash off 
excess ethanol before dissection [65, 144–146]. After 
dissection, removal of guts is carried out aseptically 
before chopping them into pieces for isolation of resi-
dent yeasts. Alternatively, the legs, wings, and elytra can 
be removed before grinding the remaining body parts to 
isolate yeasts [66]. Use of homogenised gut contents as 
inoculum for selective isolation of yeasts with a specific 
phenotype using enrichment media supplemented with 
targeted compounds, such as preferred carbon sources, 
nitrogen sources, vitamin sources, and compounds sup-
plying trace elements, or a specific stressor environment 
is common. As with the norm in isolation of yeasts, inhi-
bition of growth of contaminating bacteria and moulds 
is carried out using antibiotics as well as using media 
with growth inhibitory compounds such as dichloran or 
biphenyl [147]. Culturing yeasts by simply streaking into 
an appropriate medium, without enrichment or after 

serial dilutions and subsequent plating of the suspensions 
into selective media agar [52, 144, 145], has been well 
documented to be successful. Single yeast colonies can 
then be isolated and verified using morphological, physi-
ological, and biochemical tests. With the advent of DNA 
sequencing and sequence analysis technologies, the use 
of molecular approaches has become the most preferred 
for rapid and accurate identification of yeasts.

Yeasts can be selected for their abilities to consume dif-
ferent carbon sources by growing them on Yeast Extract 
Peptone Dextrose (YPD) media and substituting the 
dextrose with other carbon sources. Similarly, to select 
yeasts with abilities to tolerate different stresses, they 
can be grown in YPD media containing stressors (e.g., 
acetic acid, furfural, formic acid, and ethanol) of varying 
concentrations.

To check for the ability of yeasts to ferment a variety 
of sugars, they can be grown in fermentation media as 
described by [67], in test tubes containing Durham tubes 
and incubating at 30  °C for about 5  days. The presence 
of a gas bubble in the Durham tube will indicate that the 
yeast ferments the sugar [67].

Conclusion and future of yeasts from dung beetles 
in producing bioethanol
Bioethanol has the potential to reduce greenhouse gas 
emissions. One noteworthy drawback of the petroleum 
fuel alternative is its economic feasibility due to the 
soaring costs of its production. One way to increase the 
feasibility of bioethanol development is a cost-effective 
bioprocess such as the utilization of inexpensive indus-
trial and agro-industrial lignocellulosic feedstocks. 
However, there is a limited choice of robust yeasts with 
extreme traits needed to efficiently produce high etha-
nol titres for the feasibility of bioethanol commercializa-
tion. Due to the rich lignocellulose diet that dung beetles 
survive on, the isolation of specialised lignocellulosic 
degrading yeasts was proposed. Exploration of robust 
yeasts with novel traits from novel reservoirs needed to 
advance bioethanol production processes by reducing 
production costs, enhancing pre-treatment methods, and 
increasing ethanol yields is an attractive strategy that can 
be used to decrease greenhouse gas emissions. This aug-
ments the feasibility of conventional bioethanol produc-
tion processes.
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