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Abstract
This paper studies unobserved heterogeneity in hedonic

price models, arising from missing property and locational

characteristics. Specifically, commercial real estate is very

heterogeneous, and data on detailed property characteris-

tics are often lacking. We show that adding mutually inde-

pendent property random effects to a hedonic price model

results in more precise out-of-sample price predictions,

both for commercial multifamily housing in Los Angeles

and owner-occupied single-family housing in Heemstede,

the Netherlands. The standard hedonic price model does

not take advantage of the fact that some properties sell

more than once. We subsequently show that adding spa-

tial random effects leads to an additional increase in predic-

tion accuracy. The increase is highest for properties without

prior sales.

1 INTRODUCTION

This paper studies unobserved heterogeneity in hedonic price models (HPMs). These models are widely

used, for example, to create price indexes (and concomitant deprecation) for cars (Berndt, Griliches, &

Rappaport, 1995), computers (Reis & Santos Silva, 2006), and residential housing (Hill, 2012), among

many other types of goods. The number of applications within real estate is large. The HPM has,

for example, been used to value residential housing (Francke & De Vos, 2000; Sirmans, MacDonald,

Macpherson, & Zietz, 2006), commercial real estate (Bokhari & Geltner, 2011), (residential) land
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(Diewert, de Haan, & Hendriks, 2015), and to estimate the depreciation rate of houses (Francke &

van de Minne, 2017b; Knight & Sirmans, 1996).

Rosen (1974) explicated the formal microeconomic theory underlying HPMs, although the technique

has older roots in consumer and marketing empirical analytics practice (Court, 1939). The basic idea

is that heterogeneous goods can be described by their attributes (de Haan & Diewert, 2013). In other

words, a good is a bundle of characteristics. In the case of real estate properties, the relevant bundle

contains attributes of the building structure and location site of the property. For example, attributes

might include the size, age, and type of building, and the distance of the site from downtown or the

airport or the nearest subway station. There is no market for the individual characteristics as such,

since they cannot be sold separately. In the market for property occupancy, demand and supply in the

market for built space (the rental market) determine the characteristics’ marginal contributions to the

total value of the bundle. Regression-based techniques are typically used to estimate these marginal

value contributions.

HPMs for residential and in particular commercial real estate properties are in practice hard to

develop. First, properties are heterogeneous in nature, implying many potential value drivers. Second,

the property turnover rate, and so the number of transactions, is relatively low. Third, the number of

recorded property characteristics is in most real estate databases quite limited: many value drivers are

missing. And when they are sufficiently available, there is the risk of misspecification and overfitting.

This paper focuses on unobserved heterogeneity in HPMs, due to missing property and locational

characteristics, at least from the perspective of the econometrician. Unobserved heterogeneity in HPMs

arises when available characteristics do not fully account for the observed heterogeneity in sale prices

of individual properties. If characteristics that are related to sale prices are missing, the estimated

coefficients of the included characteristics will be biased (Arellano, 2003). The focus of this paper is

on out-of-sample sale price prediction accuracy.

This paper has broad relevance, but real estate is a particularly important area (see Gormley &

Matsa, 2013, for other applications). Real estate is characterized by very long-lived goods that there-

fore often transact more than once, and also by the importance of spatial location. With this in mind,

we control for time invariant property-related unobserved heterogeneity by adding mutual independent

property-level random effects to the HPM, taking advantage of the fact that some properties transact

more than once. Moreover, we add time invariant spatial random effects to deal with spatial depen-

dencies. Spatial dependencies exist because nearby properties often have similar characteristics and

also share locational amenities (Basu & Thibodeau, 1998). It is expected that the inclusion of property

and spatial random effects in the HPM captures time invariant unobserved heterogeneity, and increases

out-of-sample prediction performance, in particular for repeat sales.

The property random effects HPM is related to the hybrid hedonic-repeat sales model (Case &

Quigley, 1991). The main difference is that the former includes random effects for all properties, where

the latter inconsistently includes fixed effects for repeat sales only, and not for one only sales.

We use two different specifications to model spatial property effects. The first one is a Besag-type

model (Besag, 1974), and the second one a newly proposed spatial random walk model. Both models

have in common that the spatial effect for each property depends on its neighbors.

The spatial random walk can be viewed as a special case of the Besag model, where neighbors are

defined by the Travelings Salesperson Problem (TSP) route, the shortest route visiting every property

only once, and returning to the starting point. The shortest route is calculated by algorithms solving the

TSP. Using the TSP route to define neighbors restricts each property to have at most two neighbors, the

preceding and subsequent property on the TSP-route. We keep the model structure simple, and apply a

random walk model on the ordered properties, even without taking into account the distance between

the properties on the TSP route. An obvious disadvantage of the spatial random walk is that we reduce
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a two-dimensional plane into a one-dimensional line, at the risk of ignoring important information. An

important advantage of the spatial random walk over the general Besag model is its relative ease of

estimation; it considerably reduces computation time, especially in a large data environment.

We evaluate out-of-sample predictions for seven HPMs: the standard HPM, the hybrid model, the

property random effects HPM (all three including location fixed effects), and two spatial models (Besag

and spatial random walk) for the hybrid model and property random effects HPM (all four excluding

location fixed effects). We perform leave-one-out (LOO) cross-validation to measure the out-of-sample

prediction performance for the seven HPMs, so we can check whether adding property and spatial

random effects helps to increase out-of-sample prediction accuracy, and whether the spatial random

walk model performs similar to the Besag model. We use an efficient Bayesian estimation procedure,

Integrated Nested Laplace Approximation (INLA, see Rue, Martino, and Chopin, 2009), for all HPMs,

as LOO analysis is computational expensive.

To illustrate the different methods, we estimate the seven HPMs on multifamily housing (income

generating properties) in Los Angeles and single-family housing (owner-occupied) in Heemstede, a

city close to Amsterdam in the Netherlands. Both data sets cover the period from 2001 up to 2017. In

both Los Angeles and Heemstede, approximately 30% of the transactions are repeat sales.

The results are in line with expectations. Adding property random effects to the standard HPM
improves the prediction accuracy, more than in the hybrid model. The standard deviation of the LOO
residuals is reduced by approximately 5% in both markets. Adding property and spatial random effects

reduces the standard deviation of the LOO residuals by 23% and 24% in Los Angeles and Heemst-

ede, respectively. The differences in prediction accuracy between the Besag and spatial random walk

model are small, so using a restricted version of the Besag model—having at most two neighbors, the

preceding and subsequent property on the TSP-route —does not lead to a loss in prediction accuracy.

However, the spatial random walk model is computationally much more efficient. In Los Angeles, the

spatial random walk model is the best performing one, in Heemstede the Besag. The estimated spatial

effects are correlated among the models. Correlations range between .93 and .99 in Los Angeles, and

between .88 and .99 in Heemstede.

When having only one sale per property, the property random effects HPM including spatial effects

performs better than the model excluding spatial effects. The difference in performances becomes

smaller when the number of sales per property increases; then the property random effects pick up most

of the unobserved heterogeneity, and there is less additional gain from the spatial structure. Finally,

the property and spatial random effects HPM outperforms more standard HPMs even after excluding

important characteristics.

The contribution of the paper is threefold. First, we add to the literature a property random effects

HPM that controls for unobserved heterogeneity, a consistent model for one only and repeat sales,

unlike the hybrid model, and in our applications better performing than the hybrid model. Second, we

specify spatial random effects by a spatial random walk model, having similar performance as the well-

established Besag model, however, having a large computational advantage. Third, we systematically

perform LOO cross-validation to analyze out-of-sample performance for the seven HPMs. In many

other studies, in-sample fit statistics are mainly being used.

The paper proceeds as follows. Section 2 gives the methodology. Section 3 provides a data descrip-

tion. Section 4 gives the estimation results, and finally, Section 5 concludes.
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2 METHODOLOGY AND ESTIMATION

2.1 Hedonic price model
The HPM is widely used for modeling and tracking the prices of heterogeneous goods (including real

estate). The HPM can be expressed as

𝑦𝑝 = 𝑥𝑝𝛽 + 𝜖𝑝, 𝜖𝑝 ∼ 
(
0, 𝜎2

𝜖
𝐼𝑛𝑝

)
, 𝑝 = 1,… , 𝑃 , (1)

where the dependent variable 𝑦𝑝 is a (𝑛𝑝 × 1) vector of log prices for property 𝑝, and 𝑛𝑝 is the

number of transactions for property 𝑝. For one only sales, it holds that 𝑛𝑝 = 1 and for repeat sales,

𝑛𝑝 > 1. 𝑃 is the number of properties, and 𝑁 =
∑𝑃

𝑝=1 𝑛𝑝 is the total number of transactions over all

properties.1

The (𝑛𝑝 ×𝐾)matrix 𝑥𝑝 represents observable hedonic characteristics with corresponding coefficient

vector 𝛽, constant over time. Apart from property characteristics and a constant, the matrix 𝑥𝑝 could

include location and time fixed effects. Note that we allow for changes over time in the characteristics

of the same property. The error term 𝜖𝑝 is assumed to be normally and independently distributed with

zero mean and variance 𝜎2
𝜖
𝐼𝑛𝑝

, where 𝐼 denotes the identity matrix.

The HPM is typically estimated by ordinary least squares (OLS). The estimated coefficient vector

𝛽 represents the marginal value contributions, and can subsequently be used to predict the value of all

properties—including the ones that were not sold— as long as we observe the hedonic attributes 𝑥.

The estimated coefficients of the time fixed effects reflect longitudinal changes in the market, and can

be interpreted directly as a time trend in the central tendency of market values, and hence, can be used

to produce a price index (pooled HPM).

In this paper, we take specific interest in how to cope with time invariant unobserved heterogeneity.

Unobserved heterogeneity is reflected in omitted variable bias, lower model fit, and out-of-sample

prediction performance. Unobserved heterogeneity is in specific a problem for commercial real estate

(Francke & van de Minne, 2017a), as properties are very heterogeneous, transaction prices are scarce,

and detailed property characteristics are often lacking.

2.2 Property random effects
A way to model unobserved heterogeneity in the HPM is to include mutually independent property

random effects 𝜙𝑝 in Equation (1), taking advantage of the fact that some properties transact more than

once, leading to the following model,

𝑦𝑝 = 𝑥𝑝𝛽 + 𝑗𝑛𝑝
𝜙𝑝 + 𝜖𝑝, 𝜖𝑝 ∼ 

(
0, 𝜎2

𝜖
𝐼𝑛𝑝

)
, (2)

𝜙 ∼ 
(
0, 𝜎2

𝜙
𝐼𝑃

)
, (3)

where 𝑗 is a vector of ones. The property random effects 𝜙𝑝 absorb time invariant omitted variables

and model misspecification, and the error terms 𝜖𝑝 represent transaction noise, the difference between

1Note that the HPM can be expressed simpler in terms of individual transactions. However, we specify the HPM per property,

to keep our notation consistent with the other models presented in the remainder of this section.
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the market value (𝑥𝑝𝛽 + 𝑗𝑛𝑝
𝜙𝑝), and the actual transaction price (𝑦𝑝). Note that we allow for changes

over time in the characteristics of the same property (𝑥𝑝), as in the standard HPM.

𝑦 = (𝑦′1,… , 𝑦′
𝑃
)′ and 𝑋 = (𝑥′1,… , 𝑥′

𝑃
)′. Conditional on variance parameters 𝜎2

𝜖
and 𝜎2

𝜙
estimates

of 𝛽 and 𝜙𝑝 in the property random effects HPM (Equations (2) and (3)) are provided by

𝛽|𝑦,𝑋, 𝜎2
𝜖
, 𝜎2

𝜙
∼ 

(
𝛽,Var

(
𝛽
))

, (4)

𝛽 = Var
(
𝛽
) 𝑃∑
𝑝=1

(
𝑥′
𝑝
Ω−1
𝑝
𝑦𝑝

)
, Var

(
𝛽
)
=

(
𝑃∑
𝑝=1

(
𝑥′
𝑝
Ω−1
𝑝
𝑥𝑝

))−1

,

𝜙𝑝|𝑦,𝑋, 𝜎2
𝜖
, 𝜎2

𝜙
∼ 

(
�̂�𝑝,Var

(
�̂�𝑝

))
, (5)

�̂�𝑝 = 𝜔𝑝𝑛𝑝
(
�̄�𝑝 − �̄�𝑝𝛽

)
, Var

(
�̂�𝑝

)
= 𝜎2

𝜖
𝜔𝑝 +

(
𝑛𝑝𝜔𝑝

)2
�̄�𝑝Var

(
𝛽
)
�̄�′
𝑝
,

where Ω𝑝 = 𝜎2
𝜖
𝐼𝑛𝑝

+ 𝜎2
𝜙
𝑗𝑛𝑝

𝑗′
𝑛𝑝

, Ω−1
𝑝

= 𝜎−2
𝜖

(
𝐼𝑛𝑝

− 𝜔𝑝𝑗𝑛𝑝
𝑗′
𝑛𝑝

)
, 𝜔𝑝 = 𝜎2

𝜙
∕
(
𝜎2
𝜖
+ 𝑛𝑝𝜎

2
𝜙

)
, and �̄�𝑝 and �̄�𝑝

are the averages of transactions prices and characteristics of property 𝑝. A derivation of Equations (4)

and (5) is provided in the Appendix.

The part (𝜔𝑝𝑛𝑝) of the average residual (�̄�𝑝 − �̄�𝑝𝛽) that is attributed to the property random effect

thus depends on the ratio of the variance parameters and the number of transactions for property 𝑝,

see Equation (5): The larger 𝑛𝑝 and the smaller the ratio of 𝜎2
𝜖
∕𝜎2

𝜙
is, the larger this part is. When

𝜎2
𝜙
→ ∞, corresponding to property fixed effects, �̂�𝑝 is equal to (�̄�𝑝 − �̄�𝑝𝛽), the fixed effect estimator.

The shrinkage is identical for all properties with equal number of transactions. Clapp and Zhou (2019)

allow the shrinkage to depend on property characteristics (aptypicality). Note that also for one only

sales (𝑛𝑝 = 1), it is possible to estimate the random effect 𝜙𝑝.

The predicted values for property 𝑝—conditional on the ratio of the variance parameters 𝜎2
𝜖

and

𝜎2
𝜙

—can subsequently be expressed as �̂�𝑝 = 𝑥𝑝𝛽 + 𝑗𝑛𝑝
�̂�𝑝.

A necessary condition for identification of (𝜎2
𝜖
, 𝜎2

𝜙
)—in the absence of prior information for these

variance parameters—is that the number of transactions 𝑁 must be larger than the number of proper-

ties 𝑃 , so 𝑁 > 𝑃 . In other words, some—not all—properties need to transact more than once in the

sample period.

To provide some intuition on the identification of (𝜎2
𝜖
, 𝜎2

𝜙
), we split Equation (2) in two parts:

group (property) means and deviations from the means. The estimate of 𝜎2
𝜖

is primarily based on

the observations in deviation from the group means, canceling out the property random effects: �̃�𝑝 =
�̃�𝛽 + 𝜖𝑝, Var(𝜖𝑝) = (𝐼𝑛𝑝 − 1∕𝑛𝑝 × 𝑗𝑛𝑝

𝑗′
𝑛𝑝
)𝜎2

𝜖
, where the tilde denotes observations in deviation from

their group means, so with elements �̃�𝑖𝑝 = 𝑦𝑖𝑝 − �̄�𝑝, where 𝑖 indicates an individual transaction. Note

that the deviations from the means equation need some properties to have more than one transaction, so

repeat sales. Given an estimate of 𝜎2
𝜖

from the observations in deviation from their property mean, an

estimate of 𝜎2
𝜙

can be derived from the property means equation: �̄�𝑝 = �̄�𝑝𝛽 + 𝜙𝑝 + 𝜖𝑝, Var(𝜙𝑝 + 𝜖𝑝) =
𝜎2
𝜙
+ 𝜎2

𝜖
∕𝑛𝑝. For more details, see, for example, Greene (2008, Chapter 13).

More formally, estimation of (𝜎2
𝜖
, 𝜎2

𝜙
) can be done by likelihood-based methods (without the need for

splitting the observations in means and deviations from means). The loglikelihood function 𝓁(𝑦|𝜎2
𝜖
, 𝜎2

𝜙
)

for Equations (2)–(3) is proportional to

−1
2

𝑃∑
𝑝=1

(
𝑛𝑝 ln 𝜎2𝜖 + ln

(
1 + 𝑛𝑝𝜎

2
𝜓
∕𝜎2

𝜖

)
+
(
𝑦𝑝 − 𝑥𝑝𝛽

)′ Ω−1
𝑝

(
𝑦𝑝 − 𝑥𝑝𝛽

))
.
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The loglikelihood function can be maximized with respect to (𝜎2
𝜖
, 𝜎2

𝜙
). In this paper, we apply

a Bayesian estimation method, combining the likelihood function with uninformative priors for

(𝛽, 𝜎2
𝜖
, 𝜎2

𝜙
).2

Note that it is practically infeasible to replace the random effects by fixed effects: By including

property fixed effects, one effectively excludes all one only sales, which are in many applications the

majority of the transactions. One could formally test whether the 𝛽 coefficients are different in the fixed

and random effects model by the Hausman test. An important reason why the two estimators could be

different is the existence of correlation between 𝑋 and 𝜙, although other sorts of misspecification may

also lead to rejection of the null hypothesis of no difference in the 𝛽 estimates. We will not apply the

Hausman test, because the fixed effects estimator does not allow for time invariant characteristics, and,

in practice, most of the characteristics do not change between the date of buying and selling.

In this paper, we will focus on out-of-sample cross-validation to compare model performance, see

Section 2.5 for more details. In an HPM with property fixed effects, out-of-sample prediction is not

possible, unless another sale of the same property has been included in the estimation. This drawback

does not hold for random effects models, although the random effect will be zero when the property

has not been included in the model estimation.

2.3 Hybrid model
The property random effects HPM is related to the hybrid hedonic-repeat sales model as proposed

by Case and Quigley (1991), although the focus in hybrid models is primarily on price indexes, see

also Quigley (1995) and Hwang and Quigley (2004). They split the sample in two parts representing

one only sales 𝑦𝑆 (𝑛𝑝 = 1) and repeat sales 𝑦𝑅 (𝑛𝑝 > 1), and provide different specifications for both

subsamples. The hybrid model is given by(
𝑦𝑆
𝑝

Δ𝑦𝑅
𝑝

)
=

(
𝑥𝑆
𝑝

Δ𝑥𝑅
𝑝

)
𝛽 +

(
𝜖𝑆
𝑝

Δ𝜖𝑅
𝑝

)
,∀𝑝 ∶

(
𝑛𝑝 = 1
𝑛𝑝 > 1

)
, (6)

whereΔ𝑦𝑅
𝑝

is a (𝑛𝑝 − 1) vector of “first differences” of log prices of the same property (𝑝) with elements

(𝑦𝑅
𝑝,𝑡

− 𝑦𝑅
𝑝,𝑠

), the difference in the log price at the time of selling 𝑡 and the time of buying 𝑠. The hybrid

model can be estimated by OLS.

A statistical equivalent representation of the repeat sales part (𝑛𝑝 > 1) of the hybrid model is in

levels, provided by 𝑦𝑅
𝑝
= 𝑥𝑅

𝑝
𝛽 + 𝑗𝑛𝑝

𝜙FE
𝑝

+ 𝜖𝑅
𝑝

, including property fixed effects 𝜙FE
𝑝

. This shows that

the hybrid model is inconsistent by specifying property fixed effects for repeat sales only. Therefore,

we propose as an alternative the property random effects HPM to model unobserved heterogeneity, a

consistent model for one only and repeat sales.

2.4 Spatial dependencies
The property random effects have been specified as mutually independent, Cov(𝜙𝑝, 𝜙𝑞) = 0 for 𝑝 ≠ 𝑞,

so spatial dependencies have not been explicitly taken into account. Spatial dependencies exist because

nearby properties often have similar structure characteristics and share location characteristics and

2In order to be consistent, we estimate all models within this paper by a computational efficient Bayesian method, see Section 2.5

for more details; the more complicated models in Section 2.4 are hard to estimate by maximum likelihood. In our applications,

the differences between the maximum likelihood estimators and the Bayesian posterior means are small.
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amenities (Basu & Thibodeau, 1998). We add spatial property effects 𝜃 to the property random effects

HPM, leading to

𝑦𝑝 = 𝑥𝑝𝛽 + 𝑗𝑛𝑝
𝜙𝑝 + 𝑗𝑛𝑝

𝜃𝑝 + 𝜖𝑝, 𝜖𝑝 ∼ 
(
0, 𝜎2

𝜖
𝐼𝑛𝑝

)
. (7)

The spatial property effect requires having latitude and longitude coordinates for all properties, which

in most cases are easy to obtain.

We use two different specifications for the spatial property effects 𝜃. The first one is a Besag-type

model (Besag, 1974), and the second one a newly proposed spatial random walk model, which can

be seen as a special case of the Besag model. Both models have in common that the spatial property

effect for property 𝑝 depends on its neighbors, although the spatial dependence structure is different.

The next subsections provide more details on both models.

We are interested in the estimates of 𝛽,𝜙, and 𝜃, and predictions of log sale prices including property

and spatial random effects, �̂�𝑝 = 𝑥𝑝𝛽 + 𝑗𝑛𝑝
�̂�𝑝 + 𝑗𝑛𝑝

�̂�𝑝. For this reason, we restrict ourselves to a specific

class of spatial random effects models described in this section and do not, for example, consider the

widely used spatial (spatiotemporal) autoregressive models (Pace, Clapp, & Rodriquez, 1998; Pace,

Sirmans, & Slawson, 2002). Spatial-temporal autoregressive models have been used in recent literature,

but most applications have been on residential properties. Some commercial real estate examples are

Tu, Yu, and Sun (2004), Nappi-Choulet and Maury (2009), and Chegut, Eichholtz, and Rodrigues

(2015), all focusing on price indexes. For an extensive overview of spatial HPMs, see Anselin and

Lozano-Gracia (2009).

2.4.1 Besag model
Intrinsic and conditional autoregressions were introduced by Besag (1974), and later extended by

Besag, York, and Mollié (1991) and Besag and Kooperberg (1995). These models are examples of

Gaussian Markov random fields (Lindgren, Rue, & Lindström, 2011), which are specified through the

set of conditional distributions of one component (𝜃𝑝) given all the others (𝜃−𝑝).

Let 𝑤𝑝,𝑞 denote a symmetric proximity measure for properties 𝑝 and 𝑞. It is nonnegative when 𝑝 ≠ 𝑞,

and 0 otherwise. In our application, we use 𝑤𝑝,𝑞 = 1 if the distance between the properties is smaller

than a predefined threshold, and 0 otherwise.3 Let 𝜕𝑝 denote all 𝑚𝑝 neighbors of property 𝑝; all prop-

erties 𝑞 for which it holds that 𝑤𝑝,𝑞 ≠ 0. The conditional distribution of 𝜃𝑝 is given by

𝜃𝑝|𝜃−𝑝, 𝜎2𝜃 ∼ 

(∑
𝑞∈𝜕𝑝 𝑤𝑝,𝑞𝜃𝑞

𝑚𝑝

,
𝜎2
𝜃

𝑚𝑝

)
, (8)

where 𝜃−𝑝 is the vector of spatial property effects excluding property 𝑝. From the right-hand side of

Equation (8), is it clear that the spatial effect for property 𝑝 is directly inferred from its neighbors

only. In case 𝑤𝑝,𝑞 = 1 for neighboring properties, the conditional mean is simply the mean of the

spatial effects of neighboring properties, and the conditional variance inversely related to the number

of neighboring properties.

3We use a maximum distance of 770 and 35 m for Los Angeles and Heemstede, respectively, resulting in at least one neighboring

property for each property.
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Note that the unconditional joint distribution of 𝜃 is not proper, even in case 𝑚𝑝 > 0, the rank of the

precision matrix is only positive semidefinite (see Gelfand & Vounatsou, 2003). A proper specification

is obtained by adding a positive parameter 𝑑 to the denominator, giving

𝜃𝑝|𝜃−𝑝, 𝜎2𝜃 , 𝑑 ∼ 

(∑
𝑞∈𝜕𝑝 𝑤𝑝,𝑞𝜃𝑞

𝑑 + 𝑚𝑝

,
𝜎2
𝜃

𝑑 + 𝑚𝑝

)
. (9)

This model is sometimes referred to as a proper Besag model (Blangiardo & Cameletti, 2015). The

parameter 𝑑 will be estimated from the data.

2.4.2 Spatial random walk
In this section, we present a new two-step method to model spatial property effects, closely related to

the Besag model. In the first step, we calculate the shortest route visiting every property only once, and

returning to the starting point. The shortest route is calculated by algorithms solving the TSP. This gives

an ordering of the properties and distances between the ordered properties. The TSP is a well-known

and important combinatorial optimization problem (Gutin, Yeo, & Zverovich, 2002; Lawler et al.,

1985). There are multiple TSP-algorithms to be found in the literature. We use eight different versions:

(a) nearest neighbor algorithm, (b) insertion algorithm, (c) nearest insertion, (d) farthest insertion, (e)

cheapest insertion, (f) arbitrary insertion, (g) 𝑘-opt heuristics, and (h) the Lin–Kernighan heuristic.

For more information on these different TSP-algorithms, see Lawler et al. (1985) and Hahsler and

Hornik (2007). Subsequently, we pick the version that renders the shortest route. Except for showing

the shortest route, we do not give any statistics on this first step. Note that most software packages will

pick a random starting point. This should not affect the results too much, as the route remains similar,

irrespective of the starting point.

In our application, see Section 3, we “only” have about 2,000 observations for each of our two

markets. Solving all of the above-mentioned TSP-algorithms is therefore not a computational issue.

However, for large dat sets, the time required to solve some TSP-algorithms becomes infeasible. In

our study, we find that the nearest neighbor and arbitrary insertion algorithms finish within a second.

The other algorithms take between 30 and 60 s. Bentley (1992) gives computation times for some

TSP-algorithms for large data problems. Even in this relatively old paper, Bentley solves the nearest

neighbor algorithm for 1M observations within 10 min.

In the second step, we use a structural time series specification for the value profile over the TSP-

route. Structural time series models have been widely and successfully applied in the last few decades

(Harvey, 1989), but not so much in a spatial setting. In this application, we keep the specification

simple, and use a random walk, even without taking into account the distance between the ordered

properties on the TSP-route. More complex structural time series models, like local linear trend and

autoregressive representations (Van de Minne, Francke, Geltner, & White, 2020), taking into account

distances between properties, could also be applied, potentially improving model fit, but we leave this

for future research.

The spatial random walk specification is given by

𝜃(𝑝) ∼ 
(
𝜃(𝑝−1), 𝜎

2
𝜃

)
, (10)

where subscripts (𝑝) denote properties ordered by the TSP-route. For identification purposes, we will

impose the restriction that the sum of the value profiles over all properties is zero,
∑𝑃

𝑝=1 𝜃𝑝 = 0.

Note that the spatial random walk is a special case of the Besag model in Equation (8). In the

spatial random walk, the neighbors of property 𝑝—denoted by 𝜕𝑝 in Equation (8)—are defined by
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the TSP-route. The TSP-route restricts all properties—except the first and the last—to have at most

two neighbors, the preceding and subsequent property on the TSP-route.

The advantage of this specification over the Besag model is its relative ease of estimation, espe-

cially in a large data environment. Besag models need a large 𝑃 × 𝑃 (sparse) matrix of zeros and ones

identifying neighbors. Given that it is not uncommon to have large 𝑃 , especially with housing data,

this can result in computational issues. The spatial random walk only needs a vector (1 × 𝑃 ) indi-

cating the ordering of the TSP-route, thus reducing the size issue considerably. However, even with

sparse data (as is the case in this paper), we find that estimation time itself is reduced considerably

as well, especially when using Markov chained Monte Carlo (MCMC) algorithms. In fact, we find

that estimating the spatial random walk instead of the Besag model using our relative small data set

with MCMC procedures decreases computation time 20-fold.4 The gain in computation time is less

profound when using Laplace approximation. However, we still find a 25% computation time decrease

when using the spatial random walk. Computation time differences become larger when the number

of observations increases. Also note that the spatial random walk can be estimated using the Kalman

filter, reducing computation time even more. An obvious disadvantage of the two-step approach is

that we reduce a two-dimensional plane into a one-dimensional line, at the risk of ignoring important

information.

2.5 Leave-one-out cross-validation and estimation
We do a full LOO analysis to compare out-of-sample model performance. More specifically, we leave

one observation (𝑖) out of the data, and predict the value for this observation 𝑦𝑖, the posterior mean

𝐸[𝑦𝑖|𝑦−𝑖], based on the remaining 𝑁 − 1 observations 𝑦−𝑖 for the HPMs in Table 2. We redo this

analysis for every observation, so 𝑁 times. By simply subtracting our predicted value from the actual

log sale price, we get the LOO residual, which is essentially an out-of-sample prediction error. Subse-

quently, we use the LOO residuals to calculate out-of-sample performance statistics, such as the mean,

the absolute mean, and the standard deviation.

As the LOO analysis is computationally expensive, we use an efficient Bayesian estimation proce-

dure, the Integrated Nested Laplace Approximation (INLA, Rue et al., 2009) for all HPMs.5 In essence,

INLA computes an approximation to the posterior marginal distribution of the hyperparameters. Opera-

tionally, INLA proceeds by first exploring the marginal joint posterior for the hyperparameters in order

to locate the mode, a grid search is then performed and produces a set of “relevant” points together with

a corresponding set of weights, to give the approximation of the distributions. Each marginal posterior

can be obtained using interpolation based on the computed values and correcting for (probably) skew-

ness, by using log-splines. For each hyperparameter, the conditional posteriors are then evaluated on a

grid of selected values for the prior and the marginal posteriors are obtained by numerical integration.

In this paper, we specify noninformative (flat) priors for all hyperparameters.

4In an earlier version, we ran our models using the No-U-Turn-Sampler (Hoffman & Gelman, 2014). Even after very efficient

reparametrization of the models, the Besag models would take over 24 h to estimate, compared to less than an hour for the spatial

random walk.

5The HPMs excluding spatial random effects could be estimated by less sophisticated methods, but for consistency, we estimate

all HPMs by the same method.
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T A B L E 1 Descriptive statistics

mean sd min max
Los Angeles

Sales price ($)a 6,389,494 6,460,729 1,550,000 64,250,000

Net Operating Income ($) 325,223 353,270 67,200 3,600,000

Age (Years) 45 21 2 97

Size (SqFt) 31,718 31,972 5,964 271,757

Years between sales 4.61 2.87 0.17 12.00

Garden (R) 0.87 0 1

Mid/Highrise 0.13 0 1

Observations 2,263

Unique properties 1,936

Heemstede
Sales price (€ )a 484,612 189,106 200,000 1,195,000

Age (Years) 65 22 15 106

Size (SqMt) 151 39 82 288

Years between sales 7.07 3.67 0.42 16.25

Maintenance [bad] (R) 0.18 0 1

Maintenance [average] 0.59 0 1

Maintenance [good] 0.24 0 1

Row house (R) 0.44 0 1

Semidetached (1) 0.03 0 1

Semidetached (2) 0.23 0 1

Corner home 0.25 0 1

Detached 0.05 0 1

Yard (yes) 0.94 0 1

Observations 2,468

Unique properties 2,065

Note. R gives the reference categories in our model. Semidetached (1) are the properties that are connected via a garage, and semidetached

(2) are the properties that are connected wall-to-wall.
aEstimates for Moran’s 𝐼 (sales prices) for Los Angeles and Heemstede are, respectively, +0.04 and +0.23.

3 DATA AND DESCRIPTIVE STATISTICS

We use two different data sources, commercial multifamily real estate (income generating properties)

in the city of Los Angeles and single-family housing (owner-occupied) in Heemstede, a city relatively

close to Amsterdam in the Netherlands.

The first database is provided by Real Capital Analytics, and captures approximately 90% of all

commercial property transactions in the United States over $2.5 million. The database contains 2,263

prefiltered transactions, of which 1,936 are unique properties, in the period 2001–2017. The annual

number of transactions is 140 transactions on average. We observe the net operating income (NOI),
property subtype (garden versus mid/highrise), the age and size of the structure (in square feet), latitude

and longitude, and the transaction price. The upper panel of Table 1 provides some descriptive statistics.
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T A B L E 2 Overview of model specifications

Model Specification Spatial effect (𝜽𝒑)
Standard Equation (1): 𝑦𝑝 = 𝑥∗

𝑝
𝛽 + 𝜖𝑝

Hybrid Equation (6):

(
𝑦𝑆
𝑝

Δ𝑦𝑅
𝑝

)
=

(
𝑥∗𝑆
𝑝

Δ𝑥∗𝑅
𝑝

)
𝛽 +

(
𝜖𝑆
𝑝

Δ𝜖𝑅
𝑝

)
,∀𝑝 ∶

(
𝑛𝑝 = 1
𝑛𝑝 > 1

)
RE Equation (2): 𝑦𝑝 = 𝑥∗

𝑝
𝛽 + 𝑗𝑛𝑝𝜙𝑝 + 𝜖𝑝

Besag(Hybrid)
(

𝑦𝑆
𝑝

Δ𝑦𝑅
𝑝

)
=

(
𝑥𝑆
𝑝

Δ𝑥𝑅
𝑝

)
𝛽 +

(
𝜃𝑝

0

)
+

(
𝜖𝑆
𝑝

Δ𝜖𝑅
𝑝

)
,∀𝑝 ∶

(
𝑛𝑝 = 1
𝑛𝑝 > 1

)
Equation (9)

Besag(RE) Equation (7): 𝑦𝑝 = 𝑥𝑝𝛽 + 𝑗𝑛𝑝𝜙𝑝 + 𝑗𝑛𝑝𝜃𝑝 + 𝜖𝑝 Equation (9)

SRW(Hybrid)
(

𝑦𝑆
𝑝

Δ𝑦𝑅
𝑝

)
=

(
𝑥𝑆
𝑝

Δ𝑥𝑅
𝑝

)
𝛽 +

(
𝜃𝑝

0

)
+

(
𝜖𝑆
𝑝

Δ𝜖𝑅
𝑝

)
,∀𝑝 ∶

(
𝑛𝑝 = 1
𝑛𝑝 > 1

)
Equation (10)

SRW (RE) Equation (7): 𝑦𝑝 = 𝑥𝑝𝛽 + 𝑗𝑛𝑝𝜙𝑝 + 𝑗𝑛𝑝𝜃𝑝 + 𝜖𝑝 Equation (10)

Note. The models including property random effects—RE, Besag(RE) and SRW(RE)—all have the same property random effect speci-

fication given by 𝜙 ∼  (0, 𝜎2
𝜙
𝐼𝑃 ), see Equation (3).

The spatial effect from the Besag model is provided by 𝜃𝑝|𝜃−𝑝 ∼ 
(∑

𝑞∈𝜕𝑝 𝑤𝑝,𝑞 𝜃𝑞

𝑑+𝑚𝑝

,
𝜎2
𝜃

𝑑+𝑚𝑝

)
, see Equation (9).

The spatial effect from the spatial random walk model is provided by 𝜃(𝑝) ∼  (𝜃(𝑝−1), 𝜎2
𝜃
), see Equation (10).

The matrix 𝑥 consists of property characteristics and time fixed effects.

The models Standard, Hybrid, and RE have also location fixed effects. All other models do not. The location fixed effects have been

added to 𝑥, denoted by 𝑥∗.

In the models Besag(Hybrid) and SRW(Hybrid), spatial random effects have been added to the one only sales in the hybrid specification

(Equation (6)).

The average transaction price is about $6.4 million, the average size is about 32,000 square feet, and

the average age is 45 years. Most properties are designated garden.

The second database is provided by the Dutch Association of Real Estate Brokers and Real Estate

Experts (NVM), the largest brokers organization in the Netherlands. About 70% of all real estate bro-

kers in the Netherlands are affiliated to the NVM. The database contains residential real estate 2,262

transactions, of which 2,065 are unique properties, in the period 2001 to 2017 for the Dutch city of

Heemstede. The majority of the transactions is one only sales (69%). The annual number of trans-

actions is approximately 145 transactions on average. We observe the property subtype (row houses,

corner house, two types of semidetached homes and detached), the age and size of the structure, the

maintenance level (three groups from bad to good), the presence of a yard, latitude and longitude, and

the transaction price. The lower panel of Table 1 provides some descriptive statistics. The average

transaction price is about €485,000, the average size 151 m2 (1,625 square feet), and the average age

is 65 years. The largest numbers of properties are row houses (44%). The NVM distinguishes between

two types of semidetached homes: (a) two properties are connected via a garage and (b) two properties

are connected wall-to-wall. Most of the semidetached properties fall in the second category, 24% of the

observations. More than half of the properties have an average maintenance level at the time of listing,

compared to 18% badly maintained and 23% well maintained.6 Almost all properties have a yard, and

in only 6% of the transactions, this is not the case.

6See Francke and van de Minne (2017b) for a discussion on how the maintenance data in the NVM data are compiled.
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4 RESULTS

In this section, we provide estimation results for seven different HPM specifications. All models have

the natural logarithm of the transaction price as a dependent variable, and the natural logarithm of the

size as one of the independent variables. In addition, we use the natural logarithm of the NOI per square

foot as an independent variable in the Los Angeles model. Property age is entered in a quadratic way.

All other variables have been entered as dummy variables, including the annual time fixed effects. The

seven HPM specifications are

1. Standard: The standard HPM including location fixed effects: Equation (1).

2. Hybrid: The hybrid model including location fixed effects: Equation (6).

3. RE: The property random effects HPM including location fixed effects: Equations (2) and (3).

4. Besag(Hybrid): The hybrid model including spatial property effects, specified by the Besag model:

Equations (6) and (9).

5. Besag(RE): The property and spatial random effects HPM, where spatial effects are specified by

the Besag model: Equations (3), (7), and (9).

6. SRW(Hybrid): The hybrid model including spatial effects, specified by the spatial random walk

model: Equations (6) and (10).

7. SRW(RE): The property and spatial random effects HPM, where spatial effects are specified by the

spatial random walk model: Equations (3), (7), and (10).

An overview of the model specifications is provided in Table 2. Note that only the standard, hybrid,

and RE model include location fixed effects.7 For Los Angeles, we have six locations, defined by RCA:

East LA/Long Beach, Hollywood/Santa Monica, Los Angeles - CBD, North LA County, Valley/Tri-

Cities, and West Covina/Diamond Bar. For Heemstede, we have four locations, defined by the first four

digits of the ZIP codes.

The remainder of this section is organized as follows. In the next subsection, we discusses the main

estimation results. The following subsection provides summary statistics for the LOO cross-validation.

The third subsection discusses the spatial effects, and finally, the fourth subsection gives some robust-

ness checks.

4.1 Estimation results
Tables 3 and 4 provide the posterior means of the coefficients and significance levels for Los Angeles

and Heemstede, respectively.8 The estimates of the time dummies can be interpreted as a log price

index for Heemstede. In Los Angeles, the interpretation is less straightforward, given that we also

include the NOI in the model, which picks up a large part of the time variation (or the macroeconomic

cycle). We first discuss the results for Los Angeles, and subsequently the results for Heemstede.

4.1.1 Los Angeles
The estimated elasticity for NOI per square foot on prices is about 0.7 on average over all models.

The coefficient for size is slightly less than 1, indicating that prices increase less than proportional

to property size. If the property doubles in size, the price increases with 95% on average. Most real

7Bourassa, Cantoni, and Hoesli (2007) advocate to use submarket fixed effects, defined by real estate agents.

8The highest posterior density intervals are not shown for the sake of brevity. They are available on request.
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T A B L E 3 Posterior means and in-sample fit statistics for Los Angeles

Besag SRW
Standard Hybrid RE Hybrid RE Hybrid RE

(Intercept) 3.940*** 4.091*** 4.053*** 4.135*** 4.096*** 4.029*** 4.033***

ln Size 0.932*** 0.924*** 0.928*** 0.945*** 0.952*** 0.956*** 0.961***

ln (𝑁𝑂𝐼

Size
) 0.735*** 0.708*** 0.700*** 0.613*** 0.609*** 0.603*** 0.602***

Age −0.001*** −0.001*** −0.001*** −0.003*** −0.004*** −0.004*** −0.004***

Age2 0.000*** 0.000 0.000 0.000 0.000* 0.000 0.000***

Mid/Highrise 0.018 0.014 0.019 −0.003*** −0.002*** −0.004*** −0.005***

2002 0.060 0.014 0.032 0.054 0.048 0.089* 0.094**

2003 0.170*** 0.153* 0.140* 0.192*** 0.184*** 0.216*** 0.202***

2004 0.275*** 0.272*** 0.264*** 0.308*** 0.293*** 0.334*** 0.326***

2005 0.318*** 0.328*** 0.336*** 0.409*** 0.397*** 0.439*** 0.437***

2006 0.344*** 0.350*** 0.362*** 0.433*** 0.421*** 0.464*** 0.461***

2007 0.309*** 0.321*** 0.333*** 0.416*** 0.398*** 0.446*** 0.437***

2008 0.318*** 0.315*** 0.329*** 0.410*** 0.402*** 0.444*** 0.440***

2009 0.217*** 0.220*** 0.213*** 0.287*** 0.264*** 0.312*** 0.297***

2010 0.192*** 0.188*** 0.203*** 0.281*** 0.273*** 0.311*** 0.309***

2011 0.253*** 0.247*** 0.258*** 0.324*** 0.317*** 0.365*** 0.359***

2012 0.287*** 0.292*** 0.294*** 0.364*** 0.356*** 0.398*** 0.392***

2013 0.320*** 0.324*** 0.330*** 0.454*** 0.450*** 0.478*** 0.475***

2014 0.411*** 0.428*** 0.439*** 0.558*** 0.547*** 0.592*** 0.585***

2015 0.528*** 0.545*** 0.554*** 0.664*** 0.656*** 0.693*** 0.691***

2016 0.628*** 0.621*** 0.641*** 0.762*** 0.762*** 0.791*** 0.796***

2017 0.622*** 0.639*** 0.648*** 0.775*** 0.767*** 0.814*** 0.811***

Location FE FE FE

𝜎𝜖 0.190 0.184 0.124 0.126 0.123 0.137 0.120

𝜎𝜙 0.146 0.149 0.040

𝜎𝜃 0.033 0.029 0.011 0.064

𝜎𝜃∕
√
𝑑 + �̄�𝑝+ 0.010 0.008

Moran 𝐼 0.112 0.079 0.084 0.000 0.003 −0.003 −0.002

DIC −1,072.1 −919.8 −1,850.6 −2,132.5 −2,412.0 −2,035.4 −2,502.4

WAIC −1,070.6 −1,031.9 −1,891.2 −2,220.0 −2,443.5 −2,074.4 −2,459.2

Note. The model specifications are provided in Table 2. The omitted dummy variable is garden apartment (for property subtype) and

2001 (for time of sale). NOI stands for net operating income.

Moran’s 𝐼 is a measure for spatial autocorrelation. DIC denotes deviance information criterion, and WAIC Watanabe information

criterion.
***means the parameter is statistically significantly different from 0 at the 1% level, **at the 5% level, and *at the 10% level.

estate studies find this “law of diminishing returns” (Bokhari & Geltner, 2018). The coefficient for

Mid/Highrise properties in Los Angeles is positive but insignificant for the standard, hybrid, and RE
model. For the Besag and SRW models, the coefficient becomes statistically significant and negative,

which might indicate an interaction between property type and location, which the location fixed effects

in the standard, hybrid, and RE model do not pick up. Also, ceteris paribus, one would expect that

lowrise housing would be more popular compared to highrise housing. Age has a negative coefficient
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T A B L E 4 Posterior means and in-sample fit statistics for Heemstede

Besag SRW
Standard Hybrid RE Hybrid RE Hybrid RE

(Intercept) 8.010*** 8.060*** 8.135*** 8.836*** 8.891*** 9.127*** 9.095***

ln Size 0.898*** 0.889*** 0.876*** 0.723*** 0.714*** 0.685*** 0.694***

Age 0.004*** 0.002** 0.003*** 0.003*** 0.003*** 0.001 0.001

Age2 −0.000*** −0.000*** −0.000*** −0.000*** −0.000*** −0.000*** −0.000***

Semidetached (1) 0.148*** 0.162*** 0.137*** 0.083*** 0.074*** 0.088*** 0.073***

Semidetached (2) 0.199*** 0.214*** 0.205*** 0.167*** 0.152*** 0.174*** 0.163***

Corner Home 0.094*** 0.117*** 0.104*** 0.100*** 0.087*** 0.109*** 0.094***

Detached 0.337*** 0.357*** 0.347*** 0.307*** 0.292*** 0.301*** 0.286***

Maintenance [average] 0.128*** 0.127*** 0.133*** 0.129*** 0.130*** 0.123*** 0.128***

Maintenance [good] 0.216*** 0.209*** 0.208*** 0.204*** 0.208*** 0.206*** 0.207***

Yard 0.025 0.031* 0.025 0.013 0.014 0.015 0.016

2002 0.047** 0.041* 0.036* 0.031* 0.034** 0.032** 0.031**

2003 0.039* 0.036 0.027 0.026 0.029* 0.038* 0.038**

2004 0.078*** 0.084*** 0.068*** 0.071*** 0.071*** 0.075*** 0.068***

2005 0.141*** 0.133*** 0.134*** 0.128*** 0.130*** 0.140*** 0.139***

2006 0.171*** 0.180*** 0.170*** 0.168*** 0.171*** 0.185*** 0.181***

2007 0.261*** 0.261*** 0.252*** 0.247*** 0.253*** 0.270*** 0.272***

2008 0.280*** 0.290*** 0.278*** 0.284*** 0.283*** 0.295*** 0.286***

2009 0.244*** 0.232*** 0.232*** 0.225*** 0.227*** 0.239*** 0.241***

2010 0.224*** 0.213*** 0.216*** 0.204*** 0.213*** 0.228*** 0.228***

2011 0.224*** 0.212*** 0.223*** 0.216*** 0.224*** 0.228*** 0.238***

2012 0.135*** 0.132*** 0.133*** 0.115*** 0.116*** 0.132*** 0.133***

2013 0.135*** 0.136*** 0.135*** 0.118*** 0.113*** 0.123*** 0.121***

2014 0.176*** 0.173*** 0.185*** 0.158*** 0.161*** 0.177*** 0.184***

2015 0.216*** 0.207*** 0.230*** 0.221*** 0.229*** 0.232*** 0.241***

2016 0.344*** 0.340*** 0.354*** 0.334*** 0.343*** 0.358*** 0.365***

2017 0.420*** 0.415*** 0.434*** 0.403*** 0.408*** 0.420*** 0.427***

Location FE FE FE

𝜎𝜖 0.171 0.164 0.102 0.096 0.095 0.116 0.098

𝜎𝜙 0.139 0.011 0.070

𝜎𝜃 0.119 0.118 0.057 0.053

𝜎𝜃∕
√
𝑑 + �̄�𝑝+ 0.049 0.048

Moran’s 𝐼 0.089 0.037 0.019 0.005 −0.021 −0.017 −0.011

DIC −1,671.4 −1,517.1 −2,835.4 −2,581.9 −3,538.2 −2,813.2 −3,395.0

WAIC −1,670.3 −1,664.6 −2,925.9 −2,700.3 −3,569.0 −2,834.2 −3,384.3

Note. The model specifications are provided in Table 2. The omitted dummy variables are row house (for property subtype), maintenance

[bad], and having no yard. Semidetached (1) are houses connected by a garage, and semidetached (2) are houses that are connected wall-

to-wall and 2001 (for time of sale).

Moran’s 𝐼 is a measure for spatial autocorrelation. DIC denotes deviance information criterion, and WAIC Watanabe information

criterion.
***means the parameter is statistically significantly different from 0 at the 1% level, **at the 5% level, and *at the 10% level.
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and the square of age a positive coefficient. This confirms expectations, as depreciation is fastest when

a property is young, see Bokhari and Geltner (2018). Here, the estimated coefficient is also lower

compared to other studies because of the inclusion of NOI (and age squared is not always significantly

different from zero). It is well known that depreciation results in lower NOI, and not so much in higher

cap rates (Bokhari & Geltner, 2018; Geltner & van de Minne, 2017). As such, most depreciation is

“captured” by the NOI variable.

The year 2001 is the omitted category, and therefore, the reference year. The estimates of the year

fixed effects for the standard, hybrid, and RE models are always smaller than that of the other models

(especially compared to the SRW models). This is explained by the differences in the estimate for NOI
per square foot, which considerably differ between models. Given that NOI also “captures” changes in

the macroeconomic environment, this is expected. In other words, models with a high estimate for NOI
per square foot (like the standard model) will result in less variation in the time fixed effects and vice

versa. Note that the crisis and subsequent recovery are still clearly visible in all models. However, the

timing differs. The trough of the time fixed effects is in 2010 for the standard, hybrid, RE, and Besag

models. The trough is a full year earlier for the other models.9

The residual standard error is highest in the standard model, 𝜎𝜖 = 0.19. In other words, the model-fit

is quite low. The standard error reduces to 0.18 in the Hybrid model, and is around 0.13 for the other

models. The standard error of the property random effects 𝜎𝜙 is 0.15 in the RE and Besag models,

and it reduces to 0.04 in the SRW models. The standard errors of the spatial property effects 𝜎𝜃 in

the Besag and SRW are difficult to compare, because the underlying models are different. Note that in

the SRW models, 𝜎𝜃 is much lower in the RE model than in the Hybrid model. The Moran 𝐼 statistic

suggests that there is some spatial autocorrelation left in the residuals only for the nonspatial models:

The standard, hybrid, and RE model. The WAIC10 of the Hybrid model is actually higher compared to

the standard model, meaning worse model fit. The WAIC for the RE does improve considerably over

the standard model with 820 points. The models including both property and spatial random have the

lowest WAIC. The best performing model is SRW(RE).

4.1.2 Heemstede
Compared to row houses, detached houses are valued the highest, followed by semidetached and corner

houses. Compared to poorly maintained houses, average and good maintained houses sell at a premium

of 14% and 23%, respectively. The estimated premium for a yard sits at 2% on average, however, is

statistically insignificant different from zero for most of our models. The coefficient for size varies

between .69 and .90, depending on the specification, indicating that prices increase less than propor-

tional to property size. Age has a positive coefficient and the square of age a negative coefficient. In

other words, older houses have higher values. An 80 years old house—built in the thirties—has a 16%

premium compared to a new house. This has most likely to do with vintage effects (see, e.g., Coulson

& McMillen, 2008; Francke & van de Minne, 2017b; Wilhelmsson, 2008), combined with the fact that

we hold constant for physical deterioration by controlling for maintenance. Interestingly, the effect of

age on house prices is statistically insignificant for the SRW models (however, the age squared term is

significant).

9Although it should be noted that the different index levels do not differ from each other significantly between 2009 and 2010.

This is not shown here, but is available upon request.

10The Watanabe–Akaike or widely applicable information criterion (WAIC, Watanabe, 2010) is based on the series expansion

of LOO cross-validation. WAIC can be viewed as an improvement of the deviance information criterion (DIC, Spiegelhalter,

Best, Carlin, & van der Linde, 2002). Lower values indicate a better model-fit.
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T A B L E 5 LOO cross-validation

Besag SRW
Standard Hybrid RE Hybrid RE Hybrid RE
Los Angeles

Mean 0.000 −0.005 0.001 −0.001 0.000 −0.001 0.000|Mean| 0.146 0.146 0.140 0.111 0.108 0.111 0.109

Standard deviation 0.191 0.190 0.184 0.150 0.147 0.148 0.146

Minimum −0.777 −0.769 −0.759 −0.814 −0.830 −0.850 −0.846

Maximum 1.022 1.005 1.003 0.747 0.755 0.772 0.775

Heemstede
Mean 0.000 0.004 −0.001 0.001 0.001 0.004 −0.001|Mean| 0.137 0.137 0.133 0.108 0.105 0.109 0.106

Standard deviation 0.172 0.172 0.164 0.173 0.130 0.136 0.133

Minimum −0.656 −0.639 −0.663 −0.719 −0.547 −0.634 −0.653

Maximum 0.463 0.462 0.467 0.491 0.457 0.418 0.426

Note. The table provides summary statistics of the leave-one-out residuals. The model specifications are provided in Table 2 .

Since we have no variables that move with the economic cycle (like NOI) in Heemstede, the coef-

ficients of the time dummy variables can be interpreted as a log price index. Between 2001 and 2008,

prices increased by 32%–34%. Subsequently, prices dropped between 2008 and 2013 by 13%–16%.

Note that the crisis took relatively long in the Netherlands. From 2013 to 2017, prices increased by

33%–36%. The difference between the models is negligible.

The Moran 𝐼 statistic suggests that there is some spatial autocorrelation left in the residuals only for

the standard model. The WAIC of the hybrid model is almost similar to the standard model. The RE
model performs better, the WAIC of the RE model is 1,261 points lower compared to the hybrid model.

The models including both property random and spatial effects have the lowest WAIC. The WAIC of

the best performing model, Besag(RE), is 643 points lower compared to the RE model.

4.2 Leave-one-out cross-validation
Table 5 provides the results of the LOO cross-validation, the upper part for Los Angeles, and the

lower part for Heemstede. In general, the out-of-sample model fit is slightly better for single-family in

Heemstede compared to multifamily housing in Los Angeles.

In Los Angeles, the standard deviation of the LOO residuals is similar for the standard and hybrid

models, about 0.190. In the RE model, the standard deviation is 0.184, which is still not a big improve-

ment over the standard model. The main reason for this small reduction is the relative small portion

of repeat sales. Adding spatial random effects reduces the standard deviation considerably though, to

0.146 in the best performing model SRW(RE), a reduction of 24% (23%) compared to the standard

(hybrid) model. The spatial models including property random effects perform better than the hybrid

spatial models, although the differences seem small.

In Heemstede, the standard deviation of the LOO residuals is similar for the standard and hybrid

model, both 0.172. In the RE model, the standard deviation is 0.164, a small reduction of 4.7% com-

pared to the standard model. Adding spatial random effects reduces the standard deviation even more,

to 0.130 in the best performing model Besag(RE), a reduction of 24% compared to the standard and

hybrid model. The spatial models including property random effects perform better than the hybrid

spatial models.
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T A B L E 6 Absolute mean of LOO residuals as a function of the number of sales per property

# Sales Besag SRW
per property Standard Hybrid RE Hybrid RE Hybrid RE Prop.

Los Angeles
1 0.148 0.149 0.149 0.115 0.112 0.115 0.114 1,643

2 0.138 0.141 0.115 0.098 0.096 0.098 0.095 261

3 0.139 0.121 0.112 0.112 0.101 0.110 0.102 30

Total 0.146 0.146 0.140 0.111 0.108 0.111 0.109 2,263

Heemstede
1 0.139 0.139 0.139 0.112 0.108 0.112 0.110 1,703

2 0.129 0.130 0.102 0.093 0.090 0.094 0.091 644

3 0.120 0.100 0.091 0.088 0.087 0.088 0.083 117

Total 0.137 0.137 0.133 0.108 0.105 0.109 0.106 2,468

Note. The model specifications are provided in Table 2.

The best performing models measured by the standard deviation of the LOO residuals coincide with

the best ones measured by the WAIC criterion. Unlike LOO statistics, one cannot compare WAICs over

different data sets.

Table 6 provides the absolute mean of the LOO residuals as a function of the number of sales per

property (the first column). The final column gives the corresponding number of properties. Note that

when the number of sales per property is 𝑛, in the leave-on-out analysis 𝑛 − 1 sales of the property

have been used to estimate the model.

In the standard HPM, the-out-of-sample model fit increases when the number of sales per property

increases, although the gain is relatively small. In Los Angeles, it goes down from 0.148, when having

only one sale, to 0.139, when having three sales per property (−6.1%), and in Heemstede from 0.139,

when having one sale, to 0.120, when having three sales per property (−13.8%).

Note that the reduction is much higher for RE models. In Los Angeles, it goes down from 0.149,

when having only one sale, to 0.112, when having three sales per property (−24.8%), and in Heemstede

from 0.139, when having one sale, to 0.091, when having three sales per property (−35.0%). The prop-

erty random effects HPM clearly takes advantage of the fact that some properties transact more than

once.

Note that the hybrid model performs less than the RE model, in particular when the number of sales

per property is two. In fact, the hybrid model performs equal to the standard model with just two sales.

This is expected, given that the hybrid model can only get property-level estimates if the number of

sales is three or more (because one observation is lost in the LOO analysis).

When having only one sale per property (zero during the LOO analysis), the property random effects

HPM including spatial effects performs better than the model excluding the spatial effects. The dif-

ference in performance becomes smaller when the number of sales per property increases. Then the

property random effects pick up most of the unobserved heterogeneity, and there is almost no additional

gain from the spatial random effects.

4.3 Spatial effects
Figure 1 gives the TSP routes for both Los Angeles and Heemstede. The (random) starting point is

given in the figure as well. In both cases, the TSP route goes clockwise. Figure 2 provides the size

of the spatial effects 𝜃 along this route for the Besag and SRW models. Higher (lower) values for the

spatial random effect means that the property has a higher (lower) value than can be explained by just
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(a) Los Angeles. (b) Heemstede.

F I G U R E 1 Estimated TSP-route [Color figure can be viewed at wileyonlinelibrary.com]

Note. The dots represents individual properties in the data. From the starting point (START), follow the lines clockwise

for the actual TSP-route. North is up, and note that the Pacific coast line is visible in the South in Figure 1a. The model

specifications are provided in Table 2.

the covariates. It is already clear from Figure 2 that there is substantial variability in the spatial random

effects. For more details on the spatial distribution of these random effects, see the online Appendix.

Table 7 provides some descriptive statistics on the spatial effects 𝜃. In Los Angeles, the difference

between the 2.5% and 97.5% percentile of 𝜃 is about 0.644, corresponding to a 90% difference between

the cheapest and most expensive property, after correction for differences in property characteristics

and NOI. In Heemstede, the difference between the 2.5% and 97.5% percentile of 𝜃 has similar magni-

tude, 0.615, corresponding to a 85% difference between the cheapest and most expensive property. The

estimated spatial effects 𝜃 are positively correlated among the models. Correlations range between .93

and .99 in Los Angeles, and between .88 and .99 in Heemstede.

4.4 Robustness check
In this subsection, we perform a simple robustness check. In Heemstede, we omit the level of main-

tenance and the property-type dummy variables as explanatory variables and rerun both the standard

HPM and the spatial random walk with property random effects, the SRW(RE) model. Our basic inter-

est is to compare the SRW(RE) model on the reduced data set with the standard HPM with all variables

included. This can learn us something on how effectively the spatial and property random effects con-

trol for omitted variables/unobserved heterogeneity.

We do something similar for the commercial properties. It is well known that NOI explains a large

part of prices, where higher NOI results in higher prices (Kok, Koponen, & Martínez-Barbosa, 2017).

For example, Geltner and van de Minne (2017) show that the (cross-sectional) variation in NOI is

much higher compared to capitalization rates, using the same RCA data. For Los Angeles, we therefore

omit NOI per square foot from the HPM and repeat the estimation and LOO analysis. A summary of

robustness checks is given in Tables 8 and 9.

Overall, the results are in line with our earlier findings. The SRW(RE) model outperforms the stan-

dard HPM to a large extent on the same set of characteristics, and in the SRW(RE) model, the fit is

better for properties that transacted more often. Also unsurprisingly is that omitting explanatory vari-

ables deteriorates the model fit considerably. The standard deviation of the LOO residual increases
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T A B L E 7 Summary statistics of spatial effects 𝜃

Besag(Hybrid) Besag(RE) SRW(Hybrid) SRW(RE)
Los Angeles

Mean 0.000 0.000 0.000 0.000|Mean| 0.124 0.156 0.159 0.182

Standard deviation 0.168 0.171 0.169 0.171

Minimum −0.515 −0.509 −0.367 −0.345

2.5%-perc −0.277 −0.269 −0.259 −0.262

97.5%-perc 0.367 0.380 0.368 0.381

Maximum 0.702 0.631 0.593 0.595

Correlations
Besag(Hybrid) .988 .935 .933

Besag(RE) .942 .948

SRW(Hybrid) .996

Heemstede
Mean 0.000 0.000 0.000 0.000|Mean| 0.033 0.037 0.070 0.069

Standard deviation 0.161 0.166 0.162 0.161

Minimum −0.486 −0.483 −0.377 −0.370

2.5%-perc. −0.319 −0.326 −0.303 −0.299

97.5%-perc. 0.296 0.299 0.266 0.259

Maximum 0.521 0.514 0.343 0.334

Correlations
Besag(Hybrid) .975 .896 .880

Besag(RE) .904 .908

SRW(Hybrid) .991

Note. The model specifications are provided in Table 2.

T A B L E 8 Standard metrics for the robustness check

All variables Reduced data set
Standard SRW(RE) Standard SRW(RE)
Los Angeles

𝜎𝜖 0.190 0.120 0.289 0.139

DIC −1,072.1 −2,502.4 825.1 −1,243.8

WAIC −1,070.6 −2,459.2 831.0 −1,302.6

Heemstede
𝜎𝜖 0.171 0.098 0.204 0.118

DIC −1,671.4 −3,395.0 −824.2 −2,531.8

WAIC −1,670.3 −3,384.3 −823.2 −2,510.8

Note. The results with all variables can also be found in Tables 3 and 4. For Los Angeles, the reduced data set does not include (log

of) net operating income per square foot. To create the reduced data set for Heemstede, we omit the variables on property types and

maintenance levels.
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Los Angeles

Heemstede

(a)

(b)

F I G U R E 2 Spatial random effects 𝜃 values over the TSP-route [Color figure can be viewed at

wileyonlinelibrary.com]

Note. The estimated TSP-route can be found in Figure 1. The horizontal axis gives the numbered property (𝑝) along the

TSP-route. The model specifications are provided in Table 2.

with almost 20% in Heemstede and even with 50% in Los Angeles, for both the standard and the

SRW(RE) model.

However, our main interest is in comparing the performance of the SRW(RE) model on the reduced

data set to the standard HPM using all variables. In Heemstede, the SRW(RE) model on the reduced data

set clearly outperforms the standard model on the full data set. Both “traditional” metrics in Table 8 as

the LOO residuals in Table 9 are better for the first over the latter. The average absolute LOO residual

is 0.122 for the SRW(RE) on the reduced data, compared to 0.135 for the standard model on the full

data. For properties that sold more than once, the relative gain is even bigger.

In Los Angeles, the standard HPM including NOI as an explanatory variable actually performs

better than the SRW(RE) model excluding NOI on some metrics, but not on others. For example, the

“noise” (𝜎𝜖 in Table 8) is considerably lower for the SRW(RE) model excluding NOI compared to

the standard model including NOI and the WAIC also improves. However, the DIC is “better” for the
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T A B L E 9 Absolute mean of LOO residuals as a function of the number of sales per property for the robustness

check

# Sales All variables Reduced data set
per property Standard SRW(RE) Standard SRW(RE) Prop.

Los Angeles
1 0.148 0.114 0.222 0.172 1,643

2 0.138 0.095 0.219 0.125 261

3 0.139 0.102 0.248 0.124 30

Total 0.146 0.109 0.222 0.159 2,263

Heemstede
1 0.139 0.110 0.164 0.130 1,703

2 0.129 0.091 0.151 0.107 322

3 0.120 0.093 0.130 0.087 39

Total 0.135 0.104 0.159 0.122 2,468

Note. The results with all variables can also be found in Tables 3 and 4 . For Los Angeles, the reduced data set does not include (log

of) net operating income per square foot. To create the reduced data set for Heemstede, we omit the variables on property types and

maintenance levels.

standard model over the SRW(RE) model. The average absolute LOO residuals in Table 9 also give

an inconsistent picture. For properties that sold only once, the standard model including NOI as an

explanatory variable outperforms the SRW(RE) model excluding NOI. More specifically, the average

absolute LOO residual is 0.148 (0.172) for the standard model including NOI (SRW(RE) excluding

NOI). However, for properties that sold multiple times, the SRW(RE) model results in a better model-

fit. Given that we do not have that many repeat sales in Los Angeles, the mean absolute LOO residuals

are lower for the standard model including NOI data overall. Still, given how much of the variance of

property prices is explained by NOI, it is impressive how well the property and spatial random effects

HPM excluding NOI data performs.

5 CONCLUSION

This paper studies unobserved heterogeneity in HPMs, arising from missing property and locational

characteristics. In specific, commercial real estate is very heterogeneous, and detailed property char-

acteristics are often missing.

We show that adding mutually independent property random effects to an HPM results in more

precise out-of-sample price predictions, both for commercial multifamily housing in Los Angeles and

owner-occupied single family-housing in Heemstede. The larger the share of repeat sales, the higher the

increase in prediction accuracy is. Put differently, having more (previous) sales, reduces the prediction

error for a property when property random effects are included in the HPM. The standard HPM does

not take advantage of the fact that some properties sell more than once, and so, the prediction accuracy

only marginally improves when having previous sales. The HPM including property random effects

also outperforms the related hybrid hedonic-repeat sales model, including property fixed effects for

repeat sales only.

We subsequently show that adding spatial effects leads to an additional increase in prediction accu-

racy. The increase in prediction accuracy is highest for properties without prior sales. When for a
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property, a prior sale is available, the unobserved heterogeneity is already captured in the property

random effect, and there is almost no additional gain from the spatial structure.

We use two different specifications for the spatial effects. The first specification is a Besag model

where a neighbor is defined by properties within a specific radius from the subject property. The second

and new specification is a spatial random walk, a restricted Besag model, where neighbors are defined

by the preceding and subsequent property on the TSP-route, so having at most two neighbors. The out-

of-sample prediction results for both models are comparable, so the reduction of a two-dimensional

plane to a one-dimensional line does not lead to a lower performance in our applications, and the

correlations between the estimated spatial effects in both models are high. Moreover, the spatial random

walk model is computationally much more efficient.

Note that we use a simple time series structure, a random walk, to model the spatial effects. More

complex structural time series models, taking into account distances between properties, could also be

applied, possibly improving model fit, but we leave this for future research.
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APPENDIX: ESTIMATION OF THE RANDOM EFFECTS HEDONIC PRICE
MODEL

This appendix provides a derivation of the estimation of 𝛽 and 𝜙 in the property random effects

HPM, given by of Equations (2) and (3). A stacked representation is provided by

𝑦 = 𝑋𝛽 +𝐷𝜙 + 𝜖, 𝜖 ∼  (0,Σ) , (A1)

𝜙 ∼  (0,Φ) (A2)

where 𝐷 is a selection matrix, where each row contains exactly one 1 to select the appropriate property,

the remaining row elements are 0. Equation (A2) can be seen as a prior distribution of the coefficients
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𝜙. Φ and Σ are nonsingular variance matrices. In Equations (2) and (3), it holds that both variance

matrices are a multiple of the identity matrix, Σ = 𝜎2
𝜖
𝐼𝑁 and Φ = 𝜎2

𝜙
𝐼𝑃 .

Conditional on (Σ,Φ) estimates of (𝜙, 𝛽) are given by(
�̂�

𝛽

)
=
[
𝐷′Σ−1𝐷 + Ψ−1 𝐷′Σ−1𝑋

𝑋′Σ−1𝐷 𝑋′Σ−1𝑋

]−1(
𝐷′Σ−1𝑦

𝐷′Σ−1𝑋

)
. (A3)

By using the matrix inverse lemma for block matrices, one can derive from Equation (A3) that

𝛽 = Var(𝛽)𝑋′(𝐷Φ𝐷′ + Σ)−1𝑦, (A4)

Var(𝛽) = (𝑋′(𝐷Φ𝐷′ + Σ)−1𝑋)−1, (A5)

where 𝐷Φ𝐷′ + Σ is the variance of (𝐷𝜙 + 𝜖).
An expression for �̂� can be derived by observing that (by premultiplying the left- and right-hand side

in Equation (A3) with the matrix between square brackets) (𝐷′Σ−1𝐷 + Ψ−1)�̂� +𝐷′Σ−1𝑋𝛽 = 𝐷′Σ−1𝑦,

leading to

�̂� = (𝐷′Σ−1𝐷 + Ψ−1)−1(𝐷′Σ−1𝑦 −𝐷′Σ−1𝑋𝛽). (A6)

Var(�̂�) can also be derived by applying the matrix inverse lemma for block matrices in Equation (A3):

Var(�̂�) = Λ−1 + Λ−1(𝐷′Σ−1𝑋)Var(𝛽)(𝑋′Σ−1𝐷)Λ−1, (A7)

where Λ = 𝐷′Σ−1𝐷 + Ψ−1 is the upper left matrix in Equation (A3).

Substituting Σ by 𝜎2
𝜖
𝐼𝑁 and Φ by 𝜎2

𝜙
𝐼𝑃 in Equations (A4)–(A7) gives the estimates provided in

Equations (4) and (5).


