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A B S T R A C T   

Schank (1980) wrote an editorial for Intelligence on “How much intelligence is there in artificial intelligence?”. 
In this paper, we revisit this question. We start with a short overview of modern AI and showcase some of the AI 
breakthroughs in the four decades since Schank’s paper. We follow with a description of the main techniques 
these AI breakthroughs were based upon, such as deep learning and reinforcement learning; two techniques that 
have deep roots in psychology. Next, we discuss how psychologically plausible AI is and could become given the 
modern breakthroughs in AI’s ability to learn. We then access the main question of how intelligent AI systems 
actually are. For example, are there AI systems that can solve human intelligence tests? We conclude that Shank’s 
observation, that intelligence is all about generalization and that AI is not particularly good at this, has, so far, 
withstood the test of time. Finally, we consider what AI insights could mean for the study of individual differ
ences in intelligence. We close with how AI can further Intelligence research and vice versa, and look forward to 
fruitful interactions in the future.   

In 1980 Roger C. Schank wrote an editorial for Intelligence entitled 
“How much intelligence is there in artificial intelligence (AI)?”. His first 
observation was the lack of any interaction between the fields of intel
ligence research and artificial intelligence research. Since then limited 
interactions have taken place. His second observation was that AI is 
relevant for intelligence research. This was based on the state of the art 
of research in both fields, at that time, when AI was still in its infancy. 
Given the breathtaking developments in modern AI, it is worthwhile to 
ask Schank’s question again. We contend that the question’s relevance 
has increased over time. Shank’s third observation was that real intel
ligence is all about generalization, which at that time was a weak point 
in AI, but perhaps not anymore. 

Schank was modest in claiming to speak for AI, given the multitude 
and diversity of AI approaches at that time. The current explosion of 
developments in AI research makes a systematic overview even more 
impossible. But we think it is useful to present a short overview here and 
discuss the relations between AI and intelligence research as it is re
ported in Intelligence. 

Perhaps it is helpful to start discussing possible reasons why AI may 
be irrelevant to intelligence research. The first well known argument is 
that AI may be building intelligent machines, but that machine intelli
gence is not similar to human intelligence or cognition. Dennett’s (2006) 
cognitive wheel idea illustrates this. The wheel is a beautiful invention, 
but it is not used in nature as a method of movement and therefore of no 

interest to biologists. This may apply to many AI inventions, e.g., 
cognitive wheels. The second reason is that AI, even if it has psycho
logical relevance, can only inform us about cognition and not intelli
gence, as the latter primarily concerns individual differences in 
cognitive functioning, and not cognitive functioning itself. This relates 
to Cronbach’s famous distinction between the psychology of processes 
or mechanisms versus the psychology of individual differences, where 
both apparently exist independently of each other (Cronbach, 1957). We 
will argue against both arguments, but first discuss current de
velopments in AI. 

1. A short history of modern AI 

One constant in the short but rich history of AI is the tension between 
two main goals. The first goal is to understand (human) intelligence and 
the second is to let computers do information processing tasks. Chess is 
an exemplary example. The earliest attempts to build computer chess 
programs were inspired by studies on human chess thinking (de Groot, 
1946). However, the grand steps were only made when approaches were 
developed that made use of the unique strengths of computers. Deep 
Blue, the program that beat Gary Kasparov, the world champion in 
1996, was a typical cognitive wheel. It applied advanced tree search 
algorithms that allowed deep search of positions based on a rather 
simple evaluation of resulting positions. Deep Blue mainly told us how 
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humans do not play chess, as it depended on a brute force computing 
approach, evaluating 200 million positions per second, that humans are 
particularly bad at. Humans are much better at evaluating positions 
(Gobet & Chassy, 2009). How chess players think is still largely a mys
tery (Gobet & Charness, 2018), but chess involves both high-level con
ceptual processing and low-level recognition of familiar patterns (Lane 
& Chang, 2018; Van Harreveld, Wagenmakers, & Van Der Maas, 2007; 
see Blanch (2020) for an overview of research on individual differences 
in chess). 

The renewed interest in AI among psychologists is based on novel 
techniques that have also revolutionized computer chess in the last 5 
years. AlphaZero chess (Silver et al., 2018) combines a deep learning 
network that values positions and predicts next moves, with a rein
forcement learning system (explained in more detail below). The 
amazing thing is that AlphaZero initially performs badly, but the un
derlying systems help each other to learn and improve during millions of 
self-played games. This approach radically departs from earlier, non- 
learning, programs where brute force search and built-in indexes of 
openings and endgames were the key to success. The open-source 
variant of AlphaZero chess, Leela Chess Zero, currently dominates 
chess rating lists and is praised for her human-like play (including oc
casional incomprehensible blunders). So, it could be said that the initial 
divergence between the two goals of AI (cognition vs application) has 
diminished given the latest spectacular developments in computer 
chess. 

Chess is not the only impressive example of recent successes in AI. In 
the last 10 years we have seen breakthroughs in areas such as natural 
language (NLP) processing, computer vision, robotics, and more. In the 
field of NLP, machine translation, AI assistants (like Alexa, Google and 
Siri), and automated closed captions in videos have become common
place in our lives. These have evolved from AI systems that obtained 
historical milestones such as IBM’s Watson question answering system 
defeating human champions at the popular trivia TV show Jeopardy in 
2011 and Microsoft’s speech recognition software successfully tran
scribing conversational telephone speech on the widely benchmarked 
Switchboard task in 2017. More recently, instead of transcribing or 
interpreting human text or speech, NLP models have been developed to 
generate original text and speech. A particularly impressive example is 
the recent GPT-3 model, which was able to write a complete and 
coherent article in the Guardian (GPT-3, 2020) arguing that robots will 
not destroy humanity, a fear held by several well-known people in sci
ence and industry. 

The advances in computer vision are similarly impressive. Perhaps 
the most well-known examples are in the domain of object and face 
recognition, where Google Lens (available on most Android smart
phones) is an excellent example of object recognition and Facebook’s 
automatic face tagging system uses the power of face recognition. AI 
powered vision systems have also been applied in other, more practical 
domains, such as medicine, in which they are used to assist medical 
doctors in disease diagnosis and pharmacologists with treatment 
development. For example, AI models are used to detect cancer from 
medical scans and to assist the development of novel medical drugs 
(Kaul, Enslin, & Gross, 2020). 

Another field that has seen remarkable developments is robotics. 
While robots before the turn of the century were mostly limited to 
simple repetitive tasks, modern AI powered robots are able to perform 
surgery, have been used in nursing homes to assist with medical docu
mentation and combat loneliness among their residents, and commer
cially available fully self-driving cars are expected to arrive at the 
market within 1 or 2 years (Siciliano & Khatib, 2016). The developments 
are spectacular and worrisome at the same time. The study of the soci
etal consequences of AI is becoming a research area in itself (Dubhashi & 
Lappin, 2017; Jobin, Ienca, & Vayena, 2019; Rudin, 2019). 

2. Modern AI techniques 

At the heart of the progress in AI lies the development of novel 
techniques and algorithms commonly known as “artificial neural net
works”. In the late 20th century, ANNs started to become the model of 
choice in many AI domains and are currently used in most modern AI 
applications. Because of their importance in modern AI, we discuss their 
origin and subsequent development, which shows a long history of 
mutual interaction between and inspiration from psychology, neuro
science, and (artificial) intelligence research. Then, we discuss (artifi
cial) reinforcement learning and other techniques that are common in 
modern AI. 

2.1. Artificial neural networks 

Nowadays, many applications using artificial intelligence are pow
ered, at least partly, by (deep) artificial neural networks (ANNs). ANNs 
come in many different varieties, but they all are composed of a 
collection of largely identical processing “units” structured in a hierar
chical fashion, not unlike the way biological neurons make up biological 
neural pathways. In fact, psychology and neuroscience had, and still 
have, a strong influence on the development of ANNs. 

As their name suggests, the development of ANNs in the 1950s was 
originally inspired by the structure and function of biological neurons 
and networks (McCulloch & Pitts, 1943). The goal was to model 
cognition using models that stayed true to what, at the time, was known 
about brain processing. This approach, sometimes called “connection
ism”, is complementary to the more symbolic approaches to artificial 
intelligence advocated by, among others, the psychologists Alan Newell 
and Herbert Simon (e.g., Newell & Simon, 1956). 

Initially, ANN models were composed of small arrays of artificial 
neurons with a single input layer and one output layer, such as the 
famous Perceptron model (Rosenblatt, 1958). These models were often 
used to demonstrate that they can learn simple logical functions (like the 
AND function) and embeddings (such as recoding decimals to binary 
numbers). Importantly, instead of explicitly programming the parame
ters (or “rules”) of the models (as was common in symbolic artificial 
intelligence), the parameters (or “weights”) of these networks were 
learned. 

After a period of reduced interest in and general pessimism about the 
potential of artificial intelligence in general and ANNs in specific 
(known as the first “AI winter”), ANNs regained their popularity when 
datasets and computing power increased throughout the first decade of 
the 21st century. Massive datasets, such as ImageNet (Deng et al., 2009), 
and the technological developments that allowed networks to be trained 
on powerful graphical cards allowed researchers to develop more 
complex models, which often manifested as networks with many hidden 
layers (i.e., deep neural networks; LeCun, Bengio, & Hinton, 2015). Also, 
a particular variant of ANNs, convolutional neural networks (CNNs), 
were developed specifically to take advantage of locally structured data 
(such as images and audio) by rectangular sets of parameters, called 
filters, that were learned. This made it unnecessary to carefully hand
craft filters (as was common in computer vision at the time). CNNs 
proved to be extraordinarily powerful on visual tasks such as object 
recognition, which was convincingly demonstrated when a CNN beat 
the then state-of-the-art object recognition model during the 2012 
ImageNet Large Scale Visual Recognition Challenge (Krizhevsky, 
Sutskever & Hinton, 2012). 

Since 2012, research into ANNs has exploded, fueled both by a wider 
interest from the AI community as well as the adaptation of ANNs in 
different academic domains. The general trend has been to develop more 
complex architectures with more layers, often referred to as deep 
learning. Extreme examples are the winning network from the ImageNet 
competition in 2015, which featured over 150 hidden layers (He, Zhang, 
Ren, & Sun, 2016) and the aforementioned GPT-3 language model 
featuring 96 layers and 175 billion parameters. Apart from (computer) 
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vision, ANNs have been adopted by other scientific domains, including 
neuroscience (Marblestone, Wayne, & Kording, 2016), biology and 
medicine (Ching et al., 2018), genomics (Zou et al., 2019), and geo
science (Zhang, Zhang, & Du, 2016). Common to these applications is 
that (deep) neural networks are used to estimate a (very) nonlinear 
mapping from a set of inputs to a set of outputs. 

The idea of stacking computations, as in the hierarchical layering of 
(deep) ANNs, has been integrated in other AI domains such as rein
forcement learning and natural language processing (NLP). This has 
given rise to deep reinforcement learning, used in the previously 
mentioned AlphaZero model, and deep-learning-based NLP models, 
such as the aforementioned GPT-3 model. In these layered models, ANNs 
are used as a separate “perceptual module” (which may or may not be 
pre-trained) that embeds information, such as images or speech, in a 
way that a reinforcement learning model or a language model can use 
the ANN as a basis. Importantly, although reinforcement learning 
models may use ANNs as part of their model architecture, they are 
fundamentally different from ANNs in terms of goal. Because of this, and 
because artificial reinforcement learning also has roots in psychology 
and neuroscience, we now discuss this class of models in more detail. 

2.2. Reinforcement learning 

Artificial reinforcement learning models learn optimal behavior in a 
given context, through experience. In contrast to ANNs, which tend to 
excel at perceptual tasks, reinforcement learning is used to make an 
artificial agent learn to behave. Unsurprisingly, much of the progress in 
artificial reinforcement learning was inspired by and used concepts from 
animal and human learning (Sutton & Barto, 1998, see chapter 11). 
Early artificial reinforcement learning models, which did not feature 
ANN modules, directly adapted or extended models from animal 
learning. For example, the extended Rescorla-Wagner classical condi
tional model (Rescorla & Wagner, 1972), called temporal difference 
learning (Sutton & Barto, 1987), is extensively used in both psychology 
(e.g., Gershman, Pesaran, & Daw, 2009), neuroscience (Neftci & Aver
beck, 2019) and AI research (e.g., deep Q learning; Mnih et al., 2015). 

These early reinforcement learning models were often evaluated on 
relatively simple problems using a relatively simple environment (i.e., 
with few “states”) and a restricted and discrete set of possible behaviors 
(i.e., with few “actions”). Examples of such “toy problems” are navi
gating a maze (in animal learning) or learning to choose the most 
rewarding (virtual) slot machine (in artificial reinforcement learning). 
Driven by the desire to scale up reinforcement learning models to 
complex environments and behaviors, 21st century researchers started 
to add ANNs to their reinforcement learning models. In these models, 
ANNs function as a preprocessing step that embeds a complex (possibly 
continuous) environment as a more tractable set of representations that 
can be fed into the reinforcement learning model. By adding ANNs re
searchers could scale up reinforcement learning models that in turn led 
to the development of systems capable of (super) human performance on 
a range of tasks, including playing board games (Silver et al., 2018) and 
video games (Mnih et al., 2015), as well as autonomous driving (Kiran 
et al., 2020). 

2.3. Other techniques 

ANNs and reinforcement learning are arguably the dominant tech
niques used in modern AI models, but far from the only ones. Here, we 
briefly discuss two other important techniques: generative modelling 
and Bayesian models. 

Within artificial intelligence, generative modelling is a broad set of 
models that are in fact (often) a specific implementation of a neural 
network. The difference with “standard” neural networks is that 
generative neural networks try to learn the distribution of the data (X) 
given a particular feature (y), p(X | y), in contrast to standard (or 
“discriminative”) neural networks that try to predict a particular feature 

given the data, p(y | X). For example, instead of predicting object 
category (y) from images (X), a corresponding generative model could 
try to learn what a particular image (X) of a particular object (y) would 
look like. For example, researchers trained a generative model on im
ages of faces using a generative adversarial network (GAN; e.g., Karras, 
Aila, Laine, & Lehtinen, 2017) and were then able to generate photo
realistic images of faces of non-existent people (convincingly demon
strated on https://thispersondoesnotexist.com). Generative models 
have also been successfully applied in NLP, with the recent GPT-3 model 
as a striking example (Brown et al., 2020), and across domains, such as 
the text-to-image model DALL-E, which is able to create images from 
text descriptions (see Fig. 1). 

Bayesian modelling (or Bayesian reasoning) is another technique 
worth mentioning. Although Bayesian techniques are used more in 
psychology than in AI, many have argued that Bayesian modelling is 
crucial to overcoming the current limitations of AI (Lake, Ullman, 
Tenenbaum, & Gershman, 2017; Marcus, 2018; Pearl, 2019). What’s 
more, the abstract problem domains that Bayesian models are often 
applied to are much closer to the problems presented in human intelli
gence tests than those presented to ANNs. 

Bayesian models come in many forms, but their common denomi
nator is that they aim to formalize interpretable and generalizable 
mechanisms and knowledge. In contrast to most ANNs, which are 
trained on a very specific task (e.g., object recognition) and often need 
massive amounts of data, Bayesian models are designed to learn 
generalizable mechanisms that need little data to train (Tenenbaum, 
Kemp, Griffiths, & Goodman, 2011). In a way, this approach resembles 
symbolic AI, with the major difference being that modern Bayesian 
techniques are able to handle more complex data and models. To ach
ieve models that can better generalize across domains (“far transfer”), 
Bayesian models stress the importance of abstract knowledge, func
tioning as priors in the Bayesian framework, that constrain their struc
ture and learning process. A well-known application of Bayesian 
modelling is in the realm of intuitive physics (e.g., Battaglia, Hamrick, & 
Tenenbaum, 2013). Here, Bayesian models are used to model how 
humans (learn to) understand the physical world and its physical laws in 
a causal way. While Bayesian modelling is still mostly confined to realm 
of psychology, many have advocated integrating “connectionism” 
(represented by ANN modelling) and “symbolic AI” (represented by 
symbolic/Bayesian models; Lake et al., 2017; Marcus, 2018), and initial 
efforts have produced some promising results (Mao, Gan, Kohli, Ten
enbaum, & Wu, 2019; Yi et al., 2018). The field of intelligence also sees a 
renewed interest in cognitive modelling (e.g., Frischkorn & Schubert, 
2018), which may provide new links between AI and intelligence 
research. 

To summarize, modern AI relies on a set of techniques that are able to 
solve complex tasks. ANNs are extraordinarily effective in the context of 
perceptual tasks (such as object and speech recognition), but are 
increasingly used as modules in other applications as well, for example 
by combining them with reinforcement learning and NLP models. 
Whereas ANNs are particularly suited to model perceptual processes, 
reinforcement learning represents a set of techniques that are very 
effective in terms of learning adaptive behavior and can outperform 
humans at a variety of tasks (including board and video games). In 
addition, generative modelling complements techniques for prediction 
by generating data, and Bayesian reasoning may provide AI with models 
that alleviate AI of its current shortcomings such as limited generaliz
ability and data-intensive training regimes. 

3. Is modern AI (more) psychologically plausible? 

Schank (1980) stated that early AI work [1950’s–1970’s] “did not 
have a very particular psychological flavor”, where questions about how 
“people do various tasks... were not of particular interest”, although AI 
researchers were becoming increasingly interested in cognition in recent 
years [late 70’s]. With the impressive development of AI techniques in 
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the past decades, we believe that the interest in cognition has only 
grown. Although much can be said about the limitations of current AI 
methods and models, such as the amount of data required to train state- 
of-the-art ANNs and inhuman complexity of some models (such as GPT- 
3), we see many ways in which AI has become more psychologically 
plausible since the time of Schank’s, 1980 article. We explain this ac
cording to David Marr’s (1982) three levels of analysis. 

In terms of the computational level, the problems modern AI solve 
are much more humanlike than the simple toy problems often used in 
early AI efforts: modern AI is often used, as witnessed by the applications 
introduced before, to solve complex tasks in real-world contexts and 
using real-world data. And these real-world modern AI models some
times achieve (super)human performance. Although most AI models 
that achieve (super)human performance are constrained to a single, 
narrow task, the observation that these artificial systems perform on par 
with actual human behavior is amazing nonetheless. Interestingly, one 
direction some researchers take to improve the performance of their 
models is to make the task that needs to be solved more “human”, or in 
other words, to align the computational level between artificial systems 
and humans. One characteristic example of this is “curiosity-based 
learning”, a specific implementation of reinforcement learning models 
which use “curiosity” instead of external reward to motivate learning 
(Burda, Edwards, Storkey, & Klimov, 2018). 

Equivalence at the computational level, however, does not neces
sarily mean equivalence at the algorithmic level (i.e., a cognitive wheel). 
In other words, although modern AI and human cognition aim to solve 
similar problems, the way AI and humans implement these solutions 
may differ fundamentally. There is, however, reason to be optimistic in 
this regard, given the abundance of studies showing that ANNs and 

reinforcement learning models learn representations and contain 
mechanisms that have plausible neural correlates. Especially in the 
domain of perception, researchers have shown that the representations 
learned by ANNs are similar to stimulus representations in the sensory 
cortex (e.g., Yamins et al., 2014). And, importantly, that deeper layers in 
ANNs contain information corresponding to stimulus features repre
sented in brain regions further down the sensory processing hierarchy 
(Güçlü & van Gerven, 2015). Indeed, at the moment, features from deep 
neural networks are better able to explain neural activity during natu
ralistic vision than features from classical computational models of the 
visual cortex (Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al., 
2018). In addition to ANNs, (deep) reinforcement learning models 
appear to have plausible neural correlations, such as the correspondence 
of parameters from the temporal difference learning model with 
midbrain dopamine activity during animal and human learning 
(Schultz, Dayan, & Montague, 1997; for a review on the correspondence 
between reinforcement learning models and the brain, see O’Doherty, 
Lee, & McNamee, 2015). This correspondence between artificial and 
biological representations is further supported by the fact that many AI 
models, once they are trained, can often be successfully applied to other 
tasks and (perceptual) domains with minimal or no retraining – a 
technique called transfer learning (Torrey & Shavlik, 2010). The success 
of transfer learning (Yosinski, Clune, Bengio, & Lipson, 2014), which 
includes the aforementioned reuse of ANNs in deep reinforcement 
learning (Botvinick, Wang, Dabney, Miller, & Kurth-Nelson, 2020) and 
deep language models (Lu, Grover, Abbeel, & Mordatch, 2021), thus 
shows that AI systems can learn generalizable representations, just like 
the brain. 

Another development that points to AI becoming more human at the 

Fig. 1. Examples of generated images in response to the text prompt “an armchair in the shape of an avocado” by DALL-E. Adapted from https://openai.com/bl 
og/dall-e. 
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algorithmic level is that researchers started to incorporate concepts and 
ideas from psychology and cognitive science in their AI systems. For 
example, researchers have shown that implementing an artificial version 
of “attention” in both language models (Vaswani et al., 2017) and vision 
models (Linsley, Shiebler, Eberhardt, & Serre, 2018; Xu et al., 2015) 
improves their performance (see for a comprehensive review Lindsay, 
2020), which mirrors recent developments in intelligence research that 
highlight the role of attention and attentional control in human intelli
gence (e.g., Burgoyne & Engle, 2020). 

A similar example in the domain of reinforcement learning is the 
implementation of “episodic memory” and meta-learning (“learning to 
learn”) in artificial reinforcement learning models, which has been 
shown to dramatically improve the speed and efficiency when training 
these models (Botvinick et al., 2019; Wang, 2021). Psychologically- 
infused reinforcement models also appear to have plausible neural 
correlations (Wang et al., 2018). 

Finally, even though early ANN models were in fact abstractions 
from biological neurons and networks, modern AI models are much 
more human and brain-like at the implementational level. Like the 
brain, modern AI models often feature hierarchical processing streams 
that contain a large set of parameters that match the complexity of the 
human brain. These developments include hierarchical layers, convo
lutions, synaptic pruning (Blalock, Ortiz, Frankle, & Guttag, 2020), and 
recurrence — all of which have plausible equivalents in the human brain 
(Kriegeskorte, 2015). 

4. Is AI intelligent? 

Although these recent breakthroughs are very impressive and based 
on methods with parallels in the human brain, the question whether 
such systems display real intelligence remains relevant. 

On this, opinions are divided. As said, AI already outperforms 
humans in several areas. In other areas, more computation power, a 
combination of existing techniques and new techniques that are under 
development now, may lead to similar levels of (super)human perfor
mance. According to Newell and Simon’s (2007) physical symbol system 
hypothesis, there is no principal reason why an extrapolation of recent 
advances in AI should not lead to true intelligence. 

Yet, the general assessment of how intelligent AI really is, and how 
much it still differs from human intelligence, is contradictory, at best. On 
the one hand, cognitive psychologists and neuroscientists generally 
acknowledge the merits of modern AI methods (Naselaris et al., 2018), 
especially in the context of perception (VanRullen, 2017) and language 
(Henderson, 2020). On the other hand, others argue that previous cri
tiques of early AI systems — including the famous arguments by Searle 
(1980), Dreyfus (1965), and Penrose (1994) — still hold for modern AI 
systems. Common to these critiques is that AI systems lack 
understanding. 

Chess again helps to illustrate the problem. In certain so-called “anti- 
computer positions” (such as the impenetrable fortress of pieces shown 
in Fig. 2), human chess players quickly see the point of the position, 
while AI systems are only able to evaluate the position after considering 
long sequences of moves. For example, the Leela Chess Zero engine has a 
difficult time with this kind of position. Humans somehow have the 
ability to use both general reasoning and automatic pattern recognition 
when playing chess, which suggests that the critique about lack of un
derstanding is still relevant. 

In the case of chess, the “lack of understanding” limitation is perhaps 
temporary. Leela chess might, in time, learn to understand “anti-com
puter positions”, where perhaps a modular approach in which Leela 
chess is combined with a symbolic or Bayesian approach might work. 
But this clearly would not end the debate. According to Searle, Dreyfus 
and others, the problem lies deeper. AI systems lack semantics, feelings, 
a body and goals. Some of these limitations can perhaps be overcome by 
using robots that do have a body or real time interactions with the actual 
(rather than digital, simulated) world, which is often thought to be 

necessary to grasp causality — an element that is sorely absent from 
most AI systems (Lake et al., 2017; Tenenbaum et al., 2011). 

So how should we assess the “lack of understanding” issue from the 
intelligence researcher’s point of view? We will answer this with two 
definitions of intelligence in mind. The first is a practical definition: 
intelligence is what the intelligence test measures. This definition is not 
taken very seriously (however, see van der Maas, Kan, & Borsboom, 
2014), but how well AI performs on human intelligence tests provides an 
interesting insight into the limitations of AI nonetheless (which is dis
cussed in the next section). 

In the most commonly accepted definitions of intelligence, we see 
two important requirements. One is the ability to deal with various 
forms of information and to solve all kinds of cognitive problems, and 
the other is the ability to both quickly and effectively learn how to deal 
with new situations (Legg & Hutter, 2007). 

AI clearly meets the first requirement, as there is arguably nothing 
wrong with AI’s crystallized intelligence: AI programs can play games 
like go and chess, compose music, create art, solve complex math 
problems, provide medical diagnosis, etc. But things are different when 
we confront a trained AI system with completely novel situations. 
Schank (1980) already mentioned the problem of generalizability. 
Humans are able to transfer solutions from one problem domain to 
another, apply general, abstract concepts (such as presented in “anti- 
computer problems” in chess) in reasoning and to develop solutions for 
completely new problems. AI, on the other hand, often fails to learn such 
abstract rules and if they do, it requires an immense amount of training 
examples (Lake et al., 2017). 

We think it is justified to say that generalization is still a weakness of 
AI systems. At the same time, we see many promising developments. We 
already mentioned transfer learning, which works by virtue of learning 
general representations that facilitate broad generalization. Multitask 
learning is an active area of research (Ruder, 2017). Ongoing attempts to 
integrate deep learning and symbolic AI or Bayesian reasoning may also 
be crucial for progress in this research area. New work on one-shot 
learning (Vinyals, Blundell, Lillicrap, Kavukcuoglu, & Wierstra, 2016) 
may also lead to breakthroughs. 

Whether these future developments also make AI systems 

Fig. 2. A typical anti-computer position. Human chess players quickly see that 
black, in spite of its material advantage, can not make progress. The best 
computer chess programs assess the position as much better for black. 
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‘understand’ things like we do is a topic of hot philosophical debate (for 
further discussion we refer to Cole, 2020). 

4.1. How well do AI systems perform on intelligence tests? 

Newell (1973) argued that if a single AI system could solve a diverse 
set of intelligence test problems, then we could consider it to be intel
ligent. Since the 1960’s there have been waves of efforts to have AI 
systems solve intelligence test problems. This started with Evan’s (1964) 
ANALOGY program that could solve geometric analogies from the WAIS 
and was intended to be able to generalize to other reasoning tasks (but 
not pursued). In Hernández-Orallo, Martínez-Plumed, Schmid, Siebers, 
and Dowe’s (2016) review we see that AI has tackled a broad range of 
intelligence subtests, ranging from letter and number series to block 
design and exclusion tasks, and without a doubt excels at what are 
considered tests of crystallized intelligence (e.g., math, vocabulary) and 
processing capacity (e.g., memory, speed). The one test that has 
continually popped up in the literature over the years is Raven’s Pro
gressive Matrices (RPM). AI programs have been used to study how 
people solve the RPM (Carpenter, Just, & Shell, 1990; Lovett & Forbus, 
2012) to fully independent programs that take raw images as input and 
induce rules and select the correct option (Correa, Prade, & Richard, 
2012; Kunda, McGreggor, & Goel, 2013) or even generate it (Pekar, 
Benny, & Wolf, 2020), in many cases reaching human level 
performance. 

An especially interesting case is that of Bongard problems (Bongard, 
1967 in Hofstadter, 1979). In Fig. 3 you see a simple Bongard problem 
where the test-taker has to induce which pattern the images on the left 
follow and those on the right do not. Hofstadter (1979) considered these 
types of reasoning tasks to lie at the core of human intelligence. His PhD 
student Foundalis (2006) created Phaeaco, a (by today’s standards) 
rudimentary AI system, to try to solve Bongard problems. Phaeco con
tains a cognitive architecture with modules to process the images, match 
visual patterns, learn, and to store and retrieve learned patterns. Phaeco 
was relatively successful, although the program did not reach human 
level performance. More recently, Nie et al. (2020) tried to solve Bon
gard problems using state-of-the-art deep learning methods. Their best 
model achieved 66% accuracy, and yet performance still falls behind 
that of humans who are able to solve about 90% of their Bongard 

benchmark problems. 
So, although in many cases intelligence tests can be solved by AI 

programs, most of these are specialized programs that can only solve one 
particular task. Some attempts have been made to create more general 
AI systems. For example, in Nie et al.’s (2020) study one of the models 
they used to solve Bongard problems was built upon one of the most 
successful Raven-like item solvers (Barrett, Hill, Santoro, Morcos, & 
Lillicrap, 2018), alas this model performed only around the level of 
chance. So currently, we cannot say that AI is “intelligent” by the psy
chometric definition in the sense of being able to achieve human level 
performance on all subtests of an intelligence test using one general AI 
system. 

But, what if we approach this question from the other side: How well 
do humans perform on tests of intelligence for AI? Over the AI lifespan, 
an interesting field has emerged that takes the psychometric approach to 
assessing general intelligence in AI, but then applied to problems 
generated specifically for AI research (e.g., Bringsjord & Schimanski, 
2003; Chollet, 2019; Evans, 1964; Hernández-Orallo et al., 2016). This 
approach is characterized by hundreds or thousands of (often computer 
generated) items fit for a non-verbal test of intelligence (Barrett et al., 
2018; Chollet, 2019; Liu et al., 2019; Nie et al., 2020; Zhang, Gao, Jia, 
Zhu, & Zhu, 2019). These item banks are referred to as benchmarks and 
used to objectively compare the performance of different AI systems, 
and, in some cases, also compare AI performance to that of humans. 
There is a clear role for Intelligence researchers in this field given our 
expertise in test development, sampling from the general population and 
in assessing human performance. There is also a role for AI in improving 
existing measures of human intelligence (e.g., automatic item genera
tion; Gierl & Haladyna, 2012). For AI, currently more intelligence test 
benchmarks are needed (e.g., for problem analogies, Ichien, Lu, & 
Holyoak, 2020). Also, these benchmarks only sometimes include 
humans among their comparison samples, which appear limited to 
adults (Nie et al., 2020) or only a few experts (Chollet, 2019). Unsur
prisingly, at this point in time humans generally outperform AI systems 
on these types of AI “fluid” intelligence tests (e.g., Chollet, 2019; Nie 
et al., 2020). Given the activity in the field, perhaps many strides will be 
made in the coming years to achieve human-like performance on these 
benchmarks, but also psychology can inspire innovation in AI by 
providing a developmental account of if and how humans learn to solve 

Fig. 3. Bongard visual pattern recognition problem, where the test-taker has to induce which pattern the images on the left follow and those on the right do not. In 
this example, the images on the left are convex and those on the right are concave. From https://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Bo 
ngard_problem_convex_polygons.svg. 
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these AI benchmarks. 

4.2. Individual differences in intelligence 

One question posed at the start of the paper, that has not yet been 
addressed, concerns the issue of individual differences. The intelligence 
researcher traditionally focuses on individual differences in cognitive 
functioning, and not so much on the cognitive architecture of the mind. 
Is AI then relevant for individual differences research? We can now 
answer this question with a definitive yes. 

The first somewhat trivial reply is that a deeper understanding of 
how the human mind operates informs us about possible sources of in
dividual differences in intelligence, but modern AI offers more inter
esting and explicit insights into individual differences in (artificial) 
intelligence. 

Chess, and in particular the previously discussed Leela Zero Chess 
models, again provides an interesting example. What has to be done 
before Leela Chess Zero can play superhuman chess? First, a network 
architecture, defined by the number of layers and filters of the neural 
network, is chosen. The choice depends on the hardware and compu
tation time available, where the largest networks are trained for months 
on an extensive and powerful array of computer hardware. Second, 
choices about the training methods are made. Official variants use 
reinforcement learning and self-play and learn largely from the ground 
up, but other variants incorporate supervised learning and rich knowl
edge bases (e.g., on openings) to improve performance. According to the 
Leela chess website the LCZero team has produced hundreds of thou
sands of AI chess playing systems. 

One could thus say that the development of all of these Leela chess 
variants mirrors the case of people in intelligence research. Humans and 
Leela chess both have information processing systems of very high 
complexity, to such a degree that we do not really understand their 
mechanisms. We could say that both nature (the network architecture 
and the hardware used to train the system) and nurture (training 
regime) are involved. And we have individual differences: Which vari
ants of Leela chess are actually the best? 

The strength of chess engines is measured by the Elo rating system, 
which is mathematically almost identical to the Rasch model, the root 
model of item response theory that forms the basis of the best mea
surement models in intelligence research. The Elo rating system suffices 
when deciding which chess system is best. However, Elo ratings provide 
a one-dimensional measurement of strength, while the many Leela 
variants probably differ in other dimensions too. Some may excel in 
speed chess, some may be exceptionally good at end games or tactical 
positions. Some Leelas might be quite adventurous and others rather 
conservative. Insight into these individual differences may be best 
achieved by devising tests with subtests consisting of items meant to 
measure these sub-abilities in chess, akin to what has been done in 
human chess research (van der Maas & Wagenmakers, 2005). 

The factor analytic study of these artificial individual differences is of 
interest too, not only to understand Leela zero chess better, but to also 
see what the factor analytic approach actually brings us in such a case. 
Suppose, and we think this is quite probable, we again find a general 
factor, what then does this mean? Is it a formative or a reflective factor 
(van der Maas, Kan, Marsman, & Stevenson, 2017)? Does this g-factor 
represent one underlying source of chess strength (computing speed, for 
instance), or does it summarize the collective force of the many building 
blocks of Leela? Note that a part of the success of current AI lies in the 
combination of techniques such as deep learning, reinforcement 
learning and powerful hardware. Having such a mirror system creates 
new possibilities to study intelligence and also raises interesting ques
tions regarding individual differences research. 

Similarly, as modern AI systems are systems that learn, it is inter
esting to rethink questions regarding the development of intelligence. 
One example might be the study of the third source hypothesis (Kan, 
Ploeger, Raijmakers, Dolan, & Van Der Maas, 2010), that states that 

nonlinear epigenetic processes cause variation that cannot be explained 
by genetic and environmental sources, nor by their interactions. This 
would occur when identical copies of Leela zero chess with the same 
learning regime diverge during development. We again used Leela as an 
example, but many other modern AI systems could be used instead 
(Scholte, 2018). 

One could even imagine that AI could be used to produce artificial 
research participants for experiments in intelligence research that would 
be unethical to perform on humans. Such experiments could consist of 
very rigid training regimes or drastic changes in the network structure of 
neural networks (e.g., adding lesions or simulating brain disease) after 
they have been trained. 

5. Discussion 

AI has seen multiple cycles of enthusiasm and disappointment, but 
the current wave seems to be of a different order. As we stated in the 
introduction of this paper, one of the original goals of AI was to learn 
more about human intelligence. This endeavor could be misguided as AI 
may only produce “cognitive wheels”, techniques that have no equiva
lent in human cognition. In this paper we argued that this might have 
been true for some older approaches (e.g., brute force search tech
niques), but is less the case for much of current AI. The progress made in 
recent years is certainly technologically driven, but inspired by biolog
ical and psychological knowledge about human information processing 
and learning. 

We expect that the recent progress in AI will change the way we think 
about intelligence. AI forces us to rethink the definition of intelligence. 
Definitions that center on just information processing and problem 
solving are perhaps insufficient. Shank’s observation that intelligence is 
all about generalization has, so far, withstood the test of time. Many 
information processing problems, from processing speech to playing 
chess, appear to be less difficult than perhaps expected. The really hard 
problem is to deal with completely novel cases. One requirement for 
solving this hard problem is the ability to learn invariant and thus 
generalizable patterns. And especially with regard to learning, the 
progress in AI has been spectacular. The main difference between AI 
systems of the past, such as expert systems, and modern AI is the fact 
that they learn. That deep learning and reinforcement learning, the core 
techniques in current AI, have deep roots in psychology is remarkable 
and promising for studying how artificial and human intelligence are 
related. 

AI is relevant to intelligence research because it enhances our un
derstanding of the core mechanisms of human cognition. How the 
immense neural systems in our brain are able to process extremely 
complicated information such as speech and produce logical thinking is 
an extremely difficult question. Having an artificial system that per
forms such tasks using the same basic principles is extremely useful. 
Classic questions regarding the modularity of the mind, the origin of 
creativity, and the organization of long-term memory spring to mind. In 
addition, we argued that the psychological relevance of AI extends to 
unexpected areas such as the understanding of individual differences 
and the development of cognition. It is relatively easy to create a pop
ulation of AI systems with minor differences in architecture and training 
regime. Modern AI provides us with a new playing field for individual 
differences research. 

On a practical level we expect fruitful interactions regarding the 
measurement of natural and artificial intelligence. As modern AI systems 
are incredibly complex, our experience in examining such systems may 
be relevant for AI. Vice versa, insights from AI may lead to new de
velopments in (adaptive) intelligence testing and educational 
interventions. 

We attempted to shed light on the future of intelligence research 
from the point of view of AI. Our overview is necessarily limited and 
probably quickly outdated, but hopefully we have given intelligence 
researchers some insights in the rapid developments in AI and the 
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possible consequences for our field. 
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