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A B S T R A C T   

Addiction is a complex biopsychosocial phenomenon, impacted by biological predispositions, psychological 
processes, and the social environment. Using mathematical and computational models that allow for surrogative 
reasoning may be a promising avenue for gaining a deeper understanding of this complex behavior. This paper 
reviews and classifies a selection of formal models of addiction focusing on the intra- and inter-individual dy-
namics, i.e., (neuro) psychological models and social models. We find that these modeling approaches to 
addiction are too disjoint and argue that in order to unravel the complexities of biopsychosocial processes of 
addiction, models should integrate intra- and inter-individual factors.   

1. Introduction 

Addiction involves an interplay of many factors: biological in the 
form of genetic predispositions, psychological related to the processes of 
choice and craving, social by for example peer influence, and societal 
factors concerning the availability of substances (Heilig, Epstein, Nader, 
& Shaham, 2016; Reiter, Heinz, & Deserno, 2017; Heyman, 2009; Prom- 
Wormley, Ebejer, Dick, & Bowers, 2017). The interplay between these 
factors makes it intrinsically hard to create theories of addiction. One 
approach to handle this complexity and make progress on theory is 
formal, mathematical, modeling (Borsboom, van der Maas, Dalege, 
Kievit, & Haig, 2021). Formal modeling does not allow ambiguities and 
thus forces us to be very precise. Formal models can be extended and 
integrated into each other, allowing for accumulation of knowledge. 
Models allow us to engage in surrogative reasoning (Swoyer, 1991; 
Robinaugh, Haslbeck, Ryan, Fried, & Waldorp, 2020) as they are rep-
resentations of the real system and by studying these representations we 
can infer and learn about the behavior of the real system. 

This review aims to provide psychological and social scientists 
insight into the others’ approaches, assumptions, and methods. Rather 
than being a systematic, exhaustive review, it is a discussion of a diverse 

selection of interesting behavioral-focused models. In addition, it offers 
a way of classifying models from these domains. We start with formal 
psychological models of addiction. The second section focuses on 
models taking the role of the social environment into account. We 
conclude this review by discussing the findings and suggesting future 
model-development. 

2. (Neuro-) psychological theories and mathematical 
implementations 

Psychological theories and models of addiction can roughly be 
divided into two classes: theories representing the mechanisms that 
generate the desire to self-administer drugs, and theories of the decision- 
making and self-control mechanisms that ultimately result in whether or 
not the desired drug is administrated. These conceptual theories are 
often synergistic with others and could be integrated using formal 
models, something recent research has called for Robinson and Berridge 
(1993) and Gueguen, Schweitzer, and Konova (2021). 

Theories are explained briefly and a selection of formal models 
representing or using these theories are reviewed. For a more extensive 
explanation of a selection of theories, we refer to the review of Bickel 
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et al. (2018). Tables 1 and 2 give an overview of all models discussed, 
including their scope both in terms of type of drug and stage of addiction 
described. They also include the type of validation performed and give 
an indication of the level of abstraction used. A high level of abstraction 
indicates that phenomena and patterns are described in an abstract, 
simple way. This makes it easier to learn about that representation but 
comes at the cost of some realism. Finally, the tables include which type 
of mathematical framework is used, giving an indication of the type of 
the main variables and methods used. While we discuss some models 
that focus on the psychophysiological effects of drug intake, we refer to 
the recent work by Mollick and Kober (2020) for a more in-depth review 
of models of this type. 

2.1. Drug desire mechanisms 

We can divide the first class of theories—mechanisms that generate 
the desire to self-administrate drugs—furthermore into two subclasses: a 
class of theories in which dopamine plays a vital role in the reward 
signal system, investigating the dynamics which result in the ‘high’ of 
drug intake, and a class of theories based on the assumption that the 
brain aims to keep homeostasis, counteracting the drug’s effects. We 
discuss these two subclasses below. 

2.1.1. Dopamine function models 
Behavior highly depends on the processes of identifying, judging, 

and pursuing goals. The idea that the dopaminergic system is a central 
part of these processes has been longstanding (McClure, Daw, & Read 
Montague, 2003; Keramati, Ahmed, & Gutkin, 2017). There are clear 
pharmacodynamic differences in the way different drugs increase 

dopamine levels, sometimes making these models not universal (Bad-
iani, Belin, Epstein, Calu, & Shaham, 2011). For some addictive sub-
stances the centrality of the mesocorticolimbic dopamine system has 
even been questioned. Multiple different theories on the exact role of 
dopamine have been posited. The two main ideas are dopamine being a 
reward signal in temporal difference reinforcement learning (TDRL), and 
the theory of incentive salience or incentive sensitization (McClure et al., 
2003). They share the result that increased dopamine activation in-
creases the desire of choosing the action that leads to reward, and that 
addiction can be seen as the result of some dysfunction in the dopamine 
circuitry. 

In TDRL approaches, an individual learns the value of different 
‘states’: the outcomes of decisions depending on the previous state. 
These values are updated by prediction errors if outcomes occur that are 
different from the expected value. Redish (2004) models cocaine 
addiction by adding a noncompensable drug-induced dopamine surge to 
the TDRL model. Here, drugs produce a positive reward-error signal 
independent of the change in value function, making it impossible to 
learn a value function to mitigate this dopamine surge. The model then 
can describe how the pattern of initiation of self-administration can 
evolve within different availability constraints. However, in this model 
cocaine-induced dopaminergic responses do not accommodate at all and 
thus keep increasing infinitely, while biological compensation mecha-
nisms likely limit the maximal effect of cocaine on the neural systems 
(Keramati et al., 2017; Redish, 2004). This issue is tackled by Dezfouli 
et al. (2009), who introduce a weighting factor on dopamine response as 
well as rewards, keeping the value of states finite. This way, the value of 
the drug choice is increased compared to other expected rewards, but 
the total remains finite. Relative expected rewards from the environ-
ment are then decreased, which can be seen as incentive salience of drug 
rewards in the incentive sensitization theory. 

Redish, Jensen, Johnson, and Kurth-Nelson (2007) add a situation 
recognition process to the TDRL model. In TDRL, extinction is modeled 
by unlearning. This makes it impossible to quickly relearn associations, 

Table 1 
Structure of models and their characteristics. Drug shows whether the model is 
applied to a specific drug, or if it describes a general phenomena in addiction. 
Stages shows which stage of the addiction process the models describe. Method 
explains the mathematical framework the models are based on, giving an indi-
cation of the type of variables used. The Scale is an arbitrary indication of the 
level of modeling. At 1: pharmakinetic models, modeling real molecules in the 
brain, 2: pharmakinetics with arbitrary units, 3: Cognitive, 4: Abstract Cognitive, 
where representation of variables are abstract, 5: Behavioral: focused not on 
correct inner workings but on resulting behavior. Validation methods are as 
follows: Qualitative (QL): validation matches behavior as qualitatively observed, 
QL-D: qualitative behavior matched with population level data. QN: quantitative 
data such as questionnaires, and ANML: animal behavior data.   

Model Drug Stages Method Scale Val 
Drug Desire 
Mechanisms 

General, 
Nicotine, 
Cocaine, 
Opioids 

Initial, 
Stable, 
Recovery  

1–5 QL, QN, 
QL-D, 
ANML 

Dopamine 
Function       

(Redish, 
2004) 

G I TDRL 2 QL  

(Dezfouli 
et al., 2009) 

C I, S TDRL 2 QL  

(Redish 
et al., 2007) 

G I, R TDRL 2 ANML  

(Zhang 
et al., 2009) 

G I, S TDRL 1 ANML  

(Keramati 
et al., 2017) 

C I, S, R HRL 1 ANML  

Opponent 
Process       

(Ahmed & 
Koob, 2005) 

C I Diff. 
Eq. 

2 QL  

(Amigó 
et al., 2008) 

C I Diff. 
Eq. 

3 QL  

(Caselles 
et al., 2010) 

C I, S Diff. 
Eq. 

3 QL  

(Bobashev 
et al., 2017) 

N I, S, R Diff. 
Eq. 

4 QL-D  

Table 2 
Continuation of 1, for decision-making models.  

Decision Making Process      

Behavioral economics       
(Becker & Murphy, 
1988) 

G I, S, 
R 

Utility F 4 QL  

(Orphanides & Zervos, 
1995) 

G I, S Utility F 4 QL  

(O’Donoghue & Rabin, 
1999) 

G I, S, 
R 

Utility F 4 QL  

(Gruber & Koszegi, 
2001) 

N I, R Utility F 4 QL- 
D  

(Wang, 2007) G I, S, 
R 

Utility F 4 QL  

(Field et al., 2019) G S, R Diffusion 2 QL  

Dual 
Process        

(Bernheim & Rangel, 
2004) 

G S Utility F 4 QL  

(Siegelmann, 2011) G I, S, 
R 

Functions 5 QL  

(Redish & Johnson, 
2007) 

O I, S TDRL Utility 
F 

3 QL  

Strength Theory       
(Grasman et al., 2012) N I, S, 

R 
Diff. Eq. 
Stoch. 

3 QL- 
D  

(Grasman et al., 2016) G I, S, 
R 

Diff. Eq. 
Stoch. 

3 QL- 
D  

(Duncan et al., 2019) G S, R Diff. Eq. 4 QL- 
D  

Multi-Level       
(Levy et al., 2013) G I, S, 

R 
Diff. Eq. 3–5 QL- 

D  
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and therefore normal TDRL is unable to model the rapid reacquisition of 
addictive behavior occurring during relapse (Bouton, Winterbauer, & 
Todd, 2012). The added recognition process categorizes observed cues 
into situations, making it possible to remember and recognize them and 
thus to model the rapid relearning of relapse accurately. 

Zhang, Berridge, Tindell, Smith, and Aldridge (2009) model incen-
tive salience based on an adjusted reinforcement model. They add a 
physiological factor, or ‘gating parameter’ κ, in the obtained reward of 
the value function. They discuss two ways in which this factor can be 
implemented: as a multiplication of the reward function or an addition 
to it using logκ. This gating parameter depends on the physiological state 
and thus can represent either sensitization or satiation. 

Keramati, Durand, Girardeau, Gutkin, and Ahmed (2017) continue 
on the model of Zhang et al. (2009) with the homeostatically regulated 
reinforcement learning model. Instead of a single internal variable κ, they 
propose that the reward is calculated depending on the internal state at 
the time of the action. Here the pathology is not in the rewards system 
but in the ‘needs’ machinery. They are able to show that seeking rewards 
is equivalent to the more fundamental objective that is physiological 
stability, and that a disruption can lead to over-consumption. 

2.1.2. Opponent-process theory 
The opponent-process theory, first described by Solomon and Corbit 

(1974), describes the dynamics of acquired motives, including addictive 
substance use Koob and Le Moal (2008). The theory is based on the 
assumption that the brain self-organizes to keep homeostasis: opposing 
hedonic processes and emotional arousal, regardless of whether they 
were generated by positive or negative stimuli. The opponent-process 
counteracts the effects of drug intake (different for each drug, and 
especially strong with opioids (Badiani et al., 2011)). It occurs on longer 
timescales and is therefore still active while the surge of the drug has 
subsided. The theory aims to explain phenomena such as falling into 
addiction, craving, building tolerance, and eventually overcoming 
addiction. 

Ahmed and Koob (2005) use the opponent-process theory to inte-
grate pharmacokinetic, pharmacodynamic, and motivational variables 
in a single model of cocaine intake. It uses a dual compartment system of 
nonlinear dynamics: one system to account for brain concentration and 
reward responsivity, and another threshold system which includes 
motivation to simulate intravenous self-administration. Using this they 
simulate accurately the allostatic effects on the reward function as well 
as sensitization. 

Amigó, Caselles, and Micó (2008) connected this hedonic state with 
personality traits of introversion and extraversion. Certain personality 
types have a higher risk for certain substances (Conrod, Pihl, Stewart, & 
Dongier, 2000), and by using a nonlinear dynamics implementation of 
the opponent-process, they show how different personalities react 
differently to a single dose of cocaine. Caselles, Micó, and Amigó (2010) 
continue on this model by integrating the unique personality trait theory 
with the acute effect of drugs and addiction. Modeling periodical drug 
intake, they show that initially, a user is increasingly extroverted. 
However, over time habituation results in a decrease of activation level 
to below baseline levels, pushing the user to be more introverted. 

Bobashev, Holloway, Solano, and Gutkin (2017) have created an 
abstract nonlinear dynamical model of smoking based on the opponent- 
process and the allostatic theory. They use a system of five differential 
equations, each dependent on the previous, with the first representing 
the hedonic result of drug input. Each ‘process’ has a delay over the one 
it is based on. They assign abstract theoretical meaning to these equa-
tions, going from short term hedonic drug effect to the opponent- 
process, habit, and eventually long term hedonic memory of the drug 
which has a timescale of years. Then using these processes, they define a 
threshold for self-administration actions and equations for levels of 
withdrawal and craving. 

2.2. Decision-making theories 

The previous section focused on the strength of desires and the 
mechanisms that make self-administration attractive. These theories do 
not yet incorporate cognitive aspects to addiction; individuals often 
know that the pleasure of taking drugs does not weigh up to the costs, 
yet they still choose to take them, making addictive behavior seem ir-
rational and self-defeating (Stacy & Wiers, 2010; Bickel et al., 2018; 
Wiers, Le Pelley, Harbecke, & Herrmann-Pillath Routledge, 2020). In 
this section, different theories and formal models to describe the 
decision-making process resulting in this contradictory behavior are 
discussed. Broadly, these can be categorized into three classes: rational 
choice models based on behavioral economics, dual-process systems, 
and models that focus on self-control. 

2.2.1. Behavioral economics 
Behavioral economic theory is based on the assumption that an indi-

vidual acts rationally in its consumption of goods and services to 
maximize their utility: their satisfaction within their capabilities and 
resources. The value of a good depends on its benefit/cost ratio 
compared to all other possible actions. This concept has given economic 
researchers a generalizable modeling framework, which has been 
applied to many decision-making scenarios (Hommes, 2013). This 
behavioral economic framework was adjusted and applied to addiction 
by Becker and Murphy (1988) creating a new approach to studying 
addiction: the theory of rational addiction (RA) (Rogeberg, 2020; Fergu-
son, 2000). 

In the RA model, individuals with nicotine addiction maximize value 
through balancing tolerance, withdrawal, and reinforcement: con-
sumption of an addictive good gives a higher return on consumption in 
the future, while also decreasing baseline utility. This feedback can 
cause moderate use states to become unstable, and small deviations can 
lead to a large increase in consumption over time, or to sudden 
abstention. The model can account for binges, responses on price 
change, anxiety and stress can precipitating addiction. However, in this 
model, only stopping ‘cold turkey’ can be used to end addiction. 

Delay-discounting can be used to provide an explanation for impul-
sivity as well as loss of control as drug dependence increases (Bickel & 
Marsch, 2001). Later models added imperfections in the decision- 
making process, creating imperfectly rational models (Sloan & Wang, 
2008). Examples are time-inconsistent preferences (O’Donoghue & 
Rabin, 1999; Gruber & Koszegi, 2001), wrongfully perceiving proba-
bilities of results of their behaviors, or imperfect information about 
decisions (Wang, 2007). Other additions are models where, for example, 
youths have imperfect information about the propensities of becoming 
addicted, which results in experimentation escalating to addiction 
(Orphanides & Zervos, 1995). 

Field et al. (2019) apply a different approach used in behavioral 
economics: value-based decision making (Rangel, Camerer, & Montague, 
2008). In their rendition, they assume that an individual’s speed and 
accuracy in the estimation of the perceived value are the results of an 
internal drift–diffusion process. In this process, internal evidence for 
each possible choice accumulates over time. Random noise is added 
representing uncertainty. When one of the possibilities has accumulated 
enough evidence to reach a threshold, it will be the chosen action. The 
rate of evidence accumulation is then different for substance-related 
choices for an addicted individual. However, self-control can counter 
the faster discounting and possibly change the outcome. Recovery can 
be accounted for by a change in parameters. As there is an interaction 
effect between multiple parameters, a simultaneous intervention on 
different vulnerabilities would yield the best results. 

2.2.2. Dual-process system 
The theory of dual-processes, or dual-decision systems (Bickel et al., 

2007), hypothesizes that two different decision-making systems 
compete: the ‘hot mode’, the reward-driven, impulsive subcortical 
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system, pulling towards choosing short-term pleasure over long-term 
consequences, and the ‘cold mode’, the prefrontal cortex executive con-
trol system, capable of long-term planning, complex decision making, 
and behavioral inhibition (Metcalfe & Mischel, 1999; Strack & Deutsch, 
2004). These two systems are normally in balance, and a person is able 
to flexibly modulate behavior in accordance with many different situa-
tions. In certain cases the decision-making process can be ‘overruled’ by 
emotions, taking over from the normal objective value estimating pro-
cess (Loewenstein, Weber, Hsee, & Welch, 2001). In the case of addic-
tion, the impulsive system is hypothesized to dominate control (Bechara, 
2005; Stacy & Wiers, 2010; Bickel et al., 2007). More recently the dual- 
process theory has received criticism on its explanatory strength and 
predictive power as a result of its binary nature (Keren & Schul, 2009), 
making the similar but more nuanced models of self-control, discussed 
in the section below, an interesting alternative. 

A specific instance of a dual-process model is the model of Bernheim 
and Rangel (2004). It models environmental cues as stochastic processes 
that can cause either the hot or cold mode dominate control in the de-
cision-makers’ brain. It then describes how the model accounts for 
distinctive features of addiction, such as unsuccessful attempts to quit, 
self-described mistakes, and the role of self-control. Furthermore, the 
authors give policy objectives based on their model. 

Redish and Johnson (2007) combine the dual-process system with 
temporal-difference reinforcement mechanisms and a situation- 
recognition component in an attempt to form a unified theory of 
decision-making processes. When the planning component reaches a 
goal with a high value, a strong desire, or craving is triggered. Their 
model also implements sensitization: in certain repeated situations it 
remembers that a high-value outcome can be reached. This triggers 
craving and the individual then limits the exploration of other possi-
bilities, appearing as cognitive blinding, or obsession. The authors 
continue on this path by creating a theory for a unified framework for 
addiction, based on vulnerabilities in the decision process in the three 
systems (Redish, Jensen, & Johnson, 2008). While not a formal model, 
this theory could provide a good basis for future formal models of the 
decision-making process. 

Siegelmann (2011) uses the dual-process system as a basis for a 
dynamical-systems model. It is composed of two main equations: one 
representing the internal processes such as craving, or strength of inhi-
bition, and another one representing the actual decision-making pro-
cess. Instead of a binary hot or cold mode, decisions are dependent on a 
scaling emotional-cognitive rationality factor as well as the physiolog-
ical state. This factor is influenced by environmental drug cues and 
factors such as stress. It has a certain recovery rate as well, making it act 
similar to the self-control discussed in the following section. 

2.2.3. Self-control and strength theory 
In strength theory, self-control can be seen as an abstract finite 

resource, which costs effort to exert, which in terms of the dual-process 
view, limits the strength of the impulsive, short term decision-making 
system. When this resource runs out, an individual has impaired self- 
control, termed ego-depleted (Baumeister, Bratslavsky, Muraven, & 
Tice, 1998; Baumeister, Vohs, & Tice, 2007). When ego-depleted, one is 
less capable of putting long term goals over short term desires. In the 
case of addiction, it means that they are less able to hold off their desire 
for self-administration. Many tasks cause ego-depletion: from regulating 
attention, making choices and thinking analytically, to overriding some 
desires in favor of others. 

Grasman, Grasman, and van der Maas (2012, 2016) developed an 
abstract dynamic systems model using a two-state system of abstract 
notions of craving and self-control. Self-control can be decreased by the 
amount of craving or by giving into the craving, however, it is restored 
over time. They use a stochastic process to model external cues, which 
influence the amount of craving. These then determine the extent of 
addiction. Using empirically obtained data on alcohol and nicotine re-
covery rates to determine the parameters, the model is then able to 

explain the bi-stability of the system, where an outside cue could drive 
the system state from non-addicted to addicted. 

Duncan, Aubele-Futch, and McGrath (2019) use a mathematical 
approach to analyzing relapse-recovery cycles. They create a fast-slow 
dynamical system existing of two coupled differential equations: the 
‘level of craving’ and the ‘mood’. Mood changes are a fast process while 
craving is slower, increasing over time of abstinence. This simple system 
has bifurcations, which represent falling into depression caused by 
abstinence, and relapse. Using the coupling of mood and craving this 
model is able to predict relapse frequency with psychologically relevant 
parameters, and it can be used to measure the relationships between 
treatment and relapse frequency. 

2.2.4. Multi-scale models 
Levy, Levy, Meyer, and Siegelmann (2013) combine multiple com-

ponents of neuropsychology, cognition, and behavior in a single 
knowledge repository nonlinear dynamical model (Bobashev, Costen-
bader, & Gutkin, 2007). It is an extension of the rationality model of 
Siegelmann (2011) with added components such as stress, pain, and 
craving. Because the more than 70 parameters are separated into mul-
tiple components, each of which can be analyzed individually with 
empirical data, calibration and validation are claimed to still be 
attainable, although additional investigation is necessary. However, 
surrogative reasoning using such a complex model is very hard none-
theless. The preliminary main result of the model is that intervention 
efficacy is increased by combining pharmacological treatment along 
with counseling therapies. 

3. Social models 

Although the influence of social environments consists of complex 
processes and is hard to measure empirically (Birk et al., 2020), the 
social environment has a high impact on many stages of addiction 
(Heyman, 2009). Important factors for initial use include parental 
modeling of drug use and involvement with drug-using peers (Gorsuch 
& Butler, 1976). Peer pressure has influence on initiation as well as on 
drug abuse (Borsari & Carey, 2001; Larsen, Overbeek, Granic, & Engels, 
2012). Social norms and stigmatization of illicit drugs and addiction can 
make it harder to seek or find help (Heyman, 2009). Also recovery is 
affected and social support is an essential part of the success of treat-
ments (Meyers, Roozen, & Smith, 2011; Higgins, Heil, & Lussier, 2004). 
In addition, drug abuse impacts an individuals’ social network over time 
as well, which in turn has influence on the abusive behavior of the 
individual. 

The occurrences of waves of drug epidemics such as the prescription 
opioid crisis spreading over a population are a clear example of the 
magnitude of the effects a social environment can have (Heyman, 2009), 
and confirm that in order to accurately represent addictive behavior in a 
formal model, the impact of social environments should be taken into 
account. Therefore, this section focuses on inter-individual models, 
divided into epidemiological models and agent-based models. Epidemio-
logical models treat the spread of addictive behavior via social in-
teractions as similar to the spread of infectious diseases. Agent-based 
models consider each individual, or agent, to make its own decisions 
depending on individual variations in psychology and local 
environment. 

3.1. Epidemiological models 

The spread of infectious diseases and social contagious issues such as 
addiction have many similar characteristics; the use of the word epidemic 
when talking about the rapid spread of drug-use is indicative. Mathe-
matical epidemiology is a field of research that is well-developed, and 
using the experience in this field offers obvious opportunities when 
modeling addiction and other social contagion issues (Pastor-Satorras, 
Castellano, Van Mieghem, & Vespignani, 2015). Epidemiology aims to 
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understand the prevalence and distribution of a disease on a population- 
level. It distinguishes individuals only by placing them into different 
compartments of physiological state, with certain rules on how transi-
tions between compartments occurs. We discuss two subclasses of 
epidemiological models: non-structured models that ignore the exact 
social structure of individuals in a population, and structured models 
that incorporate spatial or social structures in a population. 

3.1.1. Non-structured epidemiological models of addiction 
White and Comiskey (2007) created a model using three states: 

‘susceptible’1, ‘using while not in treatment’, and ‘using while in treat-
ment’. They demonstrated that the spread was most dependent on the 
rate at which the susceptible population transfers to the addicted one. 
Rather than focusing on recovery, reducing this initial descent into 
addiction is highly important, and they conclude that prevention should 
be the highest priority on policies. Battista (2015) adds a recreational- 
use population to this model. Battista, Pearcy, and Strickland (2019) 
also adjusts the model of White and Comiskey (2007) by adding a pre-
scribed but not addicted population, modeling the opioid epidemic. 

A series of models on alcohol abuse started with the work of Sánchez, 
Wang, Castillo-Chávez, Gorman, and Gruenewald (2007). They created 
a model consisting of ‘susceptible individuals’, ‘problem drinkers’, and 
‘temporarily recovered individuals’. Buonomo, Giacobbe, and Mulone 
(2019) extend this by splitting problem drinkers into people that admit 
they have a problem and those who do not, resulting in a stable binge- 
drinking endemic state. Similarly, Manthey, Aidoo, and Ward (2008) 
apply this to model the spread of problematic drinking behavior in 
college. Walters, Straughan, and Kendal (2013) add complete recovery 
and look into what policymakers should focus on to reduce the total 
population of problem drinkers. Their results are similar to the ones of 
White and Comiskey (2007) and Manthey et al. (2008) in that preven-
tion is better than cure. It is important to note however, that while the 
models discussed above can be good representations, they are all purely 
theoretical and have not been validated. 

3.1.2. Structured epidemiological models on addiction 
Spatial compartment models in epidemiology separate the population 

into different states, but also in spatial compartments. While in these 
compartments homogeneous mixing still occurs, there is added 
complexity in the mixing and spread to and from spatial compartments. 
A simple implementation of this is the model of Mubayi, Greenwood, 
Castillo-Chávez, Gruenewald, and Gorman (2010), that continues the 
work of Manthey et al. (2008) by adding a low and high-risk drinking 
environment. Moderate drinkers can move in between them, making it 
possible to better study the effects of increased recruitment to high-risk 
environments. They conclude that policies reducing transitions to initial 
use and heavy use should be prioritized. 

Social network structures representing the specific social connec-
tions of individuals are even more accurate descriptions of connectivity. 
Recently, these social networks can be obtained via empirical data, such 
as the Framingham Heart Study (Mahmood, Levy, Vasan, & Wang, 2014; 
Christakis & Fowler, 2013) or AddHealth Study (Jeon & Goodson, 2015; 
Harris & Udry, 2018). Therefore network epidemics can be used to 
improve models on spreading dynamics (Pastor-Satorras et al., 2015). 
The work done using these data confirms that the spread of social con-
tagious issues can be modeled accurately with epidemiological methods. 

Bahr, Browning, Wyatt, and Hill (2009) model social contagion of 
obesity, which arguably has similar neurobiological properties as 
addiction (Volkow, Wang, Tomasi, & Baler, 2013). They implement 
multiple structures, such as a compartmental square lattice, and hypo-
thetical social networks with similar characteristics as real-world social 

networks such as small-world and random networks (Newman, 2010). 
They find that obesity can quickly spread in the whole population on all 
structures, but that pinning the BMI of some healthy individuals can 
stabilize clusters. 

Hill, Rand, Nowak, and Christakis (2010b) apply an infectious dis-
ease model to the social network of the Framingham Heart Study data. 
They use obesity as a case study, but mention that their model applies to 
smoking cessation and alcohol consumption and abstinence as well. 
They add a possibility for spontaneous non-social infection to the SIR 
model, creating the SISa model. Using regression of the data they obtain 
values for the parameters in the SISa model and show that the obesity 
epidemic may be driven by increasing rates of becoming obese both via 
spontaneous as well as by social transmission. Hill et al. (2010b) sub-
sequently use the fitted SISa model to make predictions and analyze the 
course of the spread. While in other statistical-physics-based models 
obesity quickly reaches 100% (Bahr et al., 2009), the network-based 
SISa predicts an endemic state of 42%, or between 25% and 54% with 
95% confidence (Hill et al., 2010b). Using sensitivity analysis, they show 
that the spontaneous infection and recovery rates have much larger ef-
fects than the social infections for the obesity prevalence, but the 
interpersonal transmission rates are increasing and do contribute 
significantly to the overall prevalence. While substantial, these rates are 
not high enough for clustering to occur. Hill, Rand, Nowak, and Chris-
takis (2010a) apply the SISa model also on emotional state and perform 
similar analyses. They find that the emotional states are also social- 
contagious; content and discontent can spread between socially con-
nected individuals. 

3.2. Agent-based models 

Agent-based models (ABM) are a class of complex system models 
existing of interacting autonomous individuals, or agents. Instead of 
looking at a system as a whole, as in SIR models, ABMs define rules and 
interactions for each agent. These agents then interact with each other 
and with the environment of their simulated, simplified world. These 
rules and interactions can range in complexity and can be extended to 
include stochasticity, learning, and many other mechanisms. Agent- 
based models are most useful if the agents’ interactions impact the 
emergent behavior of the system, when spatial dynamics are applicable, 
time-symmetry is not satisfied, and when the agents can adapt to in-
terventions and changes. All of these are very relevant to the social 
spreading of addiction, which makes it a promising field (Castellani, 
Barbrook-Johnson, & Schimpf, 2019). Behaviors that are well-described 
using ABMs in addiction are mostly the adaptations agents make to 
changes in the physical environment. Examples are how agents adapt to 
changes in availability, or how different housing and drug-related lo-
cations impacts heavy use. 

Below we review ABMs on substance use and abuse. They can be 
divided into two subclasses: epidemic ABMs that extend on the epide-
miological modeling discussed above, and stylized ABMs implementing 
a simulated environment with complex interacting agents, attempting to 
re-create and predict behavior of addiction. 

3.2.1. Epidemic agent-based models 
Gorman, Mezic, Mezic, and Gruenewald (2006) have created a model 

that is a mix between an ABM and a SIR model on a one-dimensional 
lattice. Each spatial compartment can be seen as a certain house, 
room, or pub. Next to the SIR states, some agents are set to always be 
abstaining. The agents can stochastically move about the lattice, with 
the probability of starting to drink depending on the relative amount of 
drinkers at their site. Similarly, stopping depends on the number of 
people already abstaining. 

Ip et al. (2005) apply a similar idea to a college population, simu-
lating the drinking culture at a college. The multiple compartments are 
the different starting years, with every year there an influx of freshmen 
and outflux of the senior population. Interactions are different 

1 Note that the epidemiological term ‘susceptible’ describes healthy in-
dividuals that can become addicted, and does not indicate individual differ-
ences in terms of susceptibility to addiction. 
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depending on each compartment, and parameters and initial conditions 
are set to match qualitative survey data. Different scenarios were tested 
to see the effects of higher conductivity or relapse numbers. 

3.2.2. Stylized agent-based models 
Stylized ABMs have fully individual agents with complex, heuristic 

decision making, and a complex environment to interact with Epstein 
(2012). These models range widely in their complexity and can reach an 
ontology of over 50 variables (Lamy, Perez, Ritter, & Livingston, 2005). 
Many different subjects have been researched using these ABMs. 
Methods vary significantly, and psychological foundation on the agents’ 
rules are often lacking, as the field is not yet mature. The subjects that 
have been researched using stylized agent-based models are: drug epi-
demics (Agar & Wilson, 2002), effects of the workings of a local heroin 
market (Hoffer, Bobashev, & Morris, 2009; Hoffer, Bobashev, & Morris, 
2012), alcohol-related problems (Lamy et al., 2005), college students’ 
personality and party drinking behavior (Garrison & Babcock, 2009), 
weekend drug-related harms (Moore et al., 2009; Scott et al., 2016), and 
binge drinking (Giabbanelli & Crutzen, 2013). Their main characteris-
tics are summarized in Table 3. 

4. Discussion 

In this paper, we reviewed psychological and social approaches to 
modeling addiction. We found that psychological models, summarized 
in Table 1 and 2, often focus on drug desire mechanisms and decision- 
making processes. The impact of the social environment was often 
ignored or implemented as a one-directional covariate. Validation too 
proves to be challenging. Most models either depend solely on (ever- 
changing) theoretical consensus, or are based on animal data. Psycho-
logical models often describe specific processes, and while they can be 
accurate descriptions of some aspects of addiction, they are often too 
specific. Improvements on integrating these existing psychological 
models could already provide an interesting way to create more intricate 
and more general models. 

Social models on the spread of addiction often apply epidemiological 
modeling. This field has seen great progress in the past decades, but 
severe limitations remain. As the exact structure of social networks is 
unclear, many successful models in epidemiology completely forgo this 
structure. In addition, the exact process of contagion of addiction is not 
well understood, especially compared to the tractable spread of virus 
particles in traditional epidemiology. These limitations result in 
restrictive assumptions and thus abstract implementations. While this 
works well when examining populations as a whole, it may be less 
insightful when more detailed processes such as intra-individual dy-
namics are included. Agent-based models are promising as they are 
capable of implementing both intra- and inter-individual dynamics. 
However, this field is not yet mature regarding addiction; models 
implementing a social environment are scarce and the psychological 
foundation of the agents’ decision-making dynamics is very limited. 

In conclusion, while it is clear that psychological processes as well as 
social interactions play a pivotal role in all stages of addiction, our re-
view suggests that the two main modeling approaches are currently 
disjoint; we found no published computational model that incorporated 
both psychological and social dynamics. To improve our understanding 
of the biopsychosocial issue of addiction, it is critical to understand the 
feedback loops that social interactions have on the inner workings of an 
individual, as well as the influence the individual has on his peers (Heilig 
et al., 2016; Reiter et al., 2017). 

Future work should focus on implementing progress made in both 
fields. Integrating certain models from both disciplines described in this 
review could already provide more intricate models. For example, an 
agent-based model of interacting agents in a social network (Gueguen 
et al., 2021) where the agents are equipped with sound decision-making 
behavior based on psychological theory, could lead to advancements in 
both fields. Alternatively, recent research has suggested that the 

dynamics of social decision-making are of similar cognitive nature to 
some of the internal models described in this review (Rilling & Sanfey, 
2011; Sanfey, 2007; Cacioppo et al., 2007; Smith & DeCoster, 2000), 
making modeling social decision-making as well as drug-use behavior 
within an integrated model an interesting way forward as well. 

By combining the modeling work of psychological and social scien-
tists in this review, we aim to present both sides a view into the others’ 
approaches, assumptions, and methods. We believe that the complexity 
of addiction can only be unraveled when both these approaches are 
taken into account, and encourage the simultaneous modeling of intra- 
and interpersonal dynamics to further the understanding of addictive 
behavior. 
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