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Abstract
This work strives for the classification and localization of human actions in videos, without the need for any labeled video
training examples.Where existing work relies on transferring global attribute or object information from seen to unseen action
videos, we seek to classify and spatio-temporally localize unseen actions in videos from image-based object information only.
We propose three spatial object priors, which encode local person and object detectors along with their spatial relations. On
top we introduce three semantic object priors, which extend semantic matching through word embeddings with three simple
functions that tackle semantic ambiguity, object discrimination, and object naming. A video embedding combines the spatial
and semantic object priors. It enables us to introduce a new video retrieval task that retrieves action tubes in video collections
based on user-specified objects, spatial relations, and object size. Experimental evaluation on five action datasets shows the
importance of spatial and semantic object priors for unseen actions. We find that persons and objects have preferred spatial
relations that benefit unseen action localization, while using multiple languages and simple object filtering directly improves
semantic matching, leading to state-of-the-art results for both unseen action classification and localization.

1 Introduction

The goal of this paper is to classify and localize human
actions in video, such as shooting a bow, doing a pull-up,
and cycling. Human action recognition has a long tradi-
tion in computer vision, with initial success stemming from
spatio-temporal interest points (Chakraborty et al. 2012;
Laptev 2005), dense trajectories (Wang et al. 2013; Jain et al.
2013), and cuboids (Kläser et al. 2010; Liu et al. 2008).
Progress has recently been accelerated by deep learning,
with the introduction of video networks exploiting two-
streams (Feichtenhofer et al. 2016; Simonyan and Zisserman
2014) and 3D convolutions (Carreira and Zisserman 2017;
Tran et al. 2019; Zhao et al. 2018; Feichtenhofer et al. 2019).
Building on such networks, current action localizers have
shown the ability to detect actions precisely in both space
and time, e.g., (Gkioxari and Malik 2015; Hou et al. 2017;
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Kalogeiton et al. (2017a); Zhao and Snoek 2019). Common
amongst action classification and localization approaches
is the need for a substantial amount of annotated train-
ing videos. Obtaining training videos with spatio-temporal
annotations (Chéron et al. 2018; Mettes and Snoek 2019) is
expensive and error-prone, limiting the ability to generalize
to any action. We aim for action classification and localiza-
tion without the need for any video examples during training.

In action recognition, many have explored the role of
semantic action structures, from uncovering the grammar of
an action (Kuehne et al. 2014) to enabling question answer-
ing in videos (Zhu et al. 2017). Language also plays a central
role in zero-shot action recognition. Pioneering approaches
transfer knowledge from attribute adjectives (Liu et al. 2011;
Gan et al. (2016b); Zhang et al. 2015), object nouns (Jain
et al. (2015a)), or combinations thereof (Wu et al. 2014).
The supervised action recognition literature has already
revealed the strong link between actions and objects for
recognition (Gupta and Davis 2007; Jain et al. (2015b); Wu
et al. 2007). Especially when object classification scores are
obtained from large-scale image datasets (Deng et al. 2009;
Lin et al. 2014) and matched with any action through word
embeddings (Grave et al. 2018). We follow this object-based
perspective for unseen actions. We add a generalization to
spatio-temporal localization, by including local object detec-
tion scores and prior knowledge about prepositions, and we
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examine the linguistic relations between actions and objects
to improve their semantic matching.

Our first contribution are three spatial object priors that
encode local object and actor detections, as well as their
spatial relations. We are inspired by the supervised action
classification literature, where the spatial link with objects is
well established, e.g., (Gupta and Davis 2007; Kalogeiton
et al. (2017b); Moore et al. 1999; Wu et al. 2007; Yao
et al. 2011). To incorporate information about spatial prepo-
sitions without action video examples, we start from existing
object detection image datasets and models. Box annota-
tions in object datasets allow us to assess how people and
objects are commonly related spatially. Fromdiscovered spa-
tial relations, we propose a score function that combines
person detections, object detections, and their spatial match
for unseen action classification and localization. The spatial
priors were previously introduced in the conference ver-
sion (Mettes and Snoek 2017) preceding this paper.

Our second contribution, not addressed in (Mettes and
Snoek 2017), are three semantic object priors. Common
in unseen action recognition using objects is to estimate
relations using word embeddings (Chang et al. 2016; Jain
et al. (2015a); Li et al. 2019; Wu et al. 2016). They provide
dense representations on which similarity functions are per-
formed to estimate semantic relations (Mikolov et al. 2013).
Similarities from word embeddings have several linguistic
limitations relevant for unseen actions. Our semantic pri-
ors address three limitations with simple functions on top of
word embedding similarities. First, we leverageword embed-
dings across languages to reduce semantic ambiguity in the
action-object matching. Second, we show how to filter out
non-discriminative objects directly from similarities between
all objects and actions. Third, we showhow to focus on basic-
level names in object datasets to improve relevant matching.
We combine the spatial and semantic object priors into a
video embedding.

Experiments on five action datasets demonstrates the
effectiveness of our six object priors. We find that the use of
prepositions in our spatial-aware embedding enables effec-
tive unseen action localization using only a few localized
objects. Our semantic object priors improve both unseen
action classification and localization, with multi-lingual
word embeddings, object discrimination functions, and a bias
towards basic-level objects for selection. We also introduce
a new task, action tube retrieval, where users can search for
action tubes by specifying desired objects, sizes, and prepo-
sitions. Our object prior embedding obtains state-of-the-art
zero-shot results for both unseen action classification and
localization, highlighting its effectiveness and more gener-
ally, emphasizing the strong link between actions and objects.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Sections 3 and 4 detail our spatial and

semantic object priors. Sections 5 and 6 discuss the experi-
mental setup and results. The paper is concluded in Sect. 7.

2 RelatedWork

2.1 Unseen Action Classification

For unseen action classification, a common approach is to
generalize from seen to unseen actions by mapping videos
to a shared attribute space (Gan et al. (2016b); Liu et al.
2011; Zhang et al. 2015), akin to attribute-based approaches
in images (Lampert et al 2013). Attribute classifiers are
trained on seen actions and applied to test videos. The
obtained attribute classifications are in turn compared to a
priori defined attribute annotations.With the use of attributes,
actions not seen during training can still be recognized. The
attribute-based approach has been extended by using knowl-
edge about test videodistributions in transductive settings (Fu
et al. 2015;Xu et al. 2017) and by incorporating domain adap-
tation (Kodirov et al. 2015; Xu et al. 2016). While enabling
zero-shot recognition, attributes require prior expert knowl-
edge for every action, which does not generalize to arbitrary
queries. Hence we refrain from employing attributes.

Several works have investigated skipping the intermedi-
ate mapping to attributes by directly mapping unseen actions
to seen actions. Li et al. (2016) and Tian et al. (2018) map
features from videos to a semantic space shared by seen and
unseen actions, while Gan et al. ((2016c)) train a classifier for
unseen actions by performing several levels of relatedness to
seen actions. Other works propose to synthesize features for
unseen actions (Mishra et al. 2018, 2020), learn a universal
representation of actions (Zhu et al. 2018), or differentiate
seen from unseen actions through out-of-distribution detec-
tion (Mandal et al. 2019). All these works eliminate the need
for attributes for unseen action classification. We also do not
require attributes for our action classification, yet with the
same model, we also enable action localization.

Several works have considered object classification scores
for their zero-shot action, or event, classification by perform-
ing a semantic matching through word vectors (An et al.
2019; Bishay et al. 2019; Chang et al. 2016; Inoue and Shin-
oda 2016; Li et al. 2019; Jain et al. (2015a); Wu et al. 2016)
or auxiliary textual descriptions (Gan et al. (2016a); Habib-
ian et al. 2017). Objects provide an effective common space
for unseen actions, as object scores are easily obtained by
pre-training on existing large-scale datasets, such as Ima-
geNet (Deng et al. 2009). Objects furthermore allow for
a generalization to arbitrary unseen actions, since relevant
objects for new actions can be obtained on-the-fly through
word embedding matching with object names. In this work,
we follow this line of work and generalize to spatio-temporal
localization by modeling the spatial relations between actors
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and objects. This allows us to perform action classification
and localizationwithin the same approach.Different from the
common setup for zero-shot actions (Junior et al. 2019), we
do not assume access to any training videos of seen actions.
We seek to recognize actions in video without ever having
seen a video before, solely by relying on prior knowledge
about objects in images and their relation to actions.

To improve semantic matching, Alexiou et al (2016) cor-
rect class names to increase unseen action discrimination.
Similar in spirit are approaches that employ query expan-
sion (Dalton et al. 2013; de Boer et al. 2016) or textual action
descriptions (Gan et al. (2016c); Habibian et al. 2017; Wang
andChen 2017) tomake the action inputsmore expressive. In
contrast, we focus on improving the semantic matching itself
to deal with semantic ambiguity, non-discriminative objects,
and object naming.

2.2 Unseen Action Localization

Spatio-temporal localization of actions without examples
is hardly investigated in the current literature. Jain et al.
((2015a)) split each test video into spatio-temporal propos-
als (Jain et al. 2017). Then for each proposal, boxes are
sampled and individually fed to a pre-trained object classifi-
cation network to obtain object scores. The object scores of
each proposal are semantically matched to the action and the
best matched proposal is selected as the location of interest.
In this paper, we employ local object detectors and embed
spatial relations between humans and objects. Where Jain
et al. ((2015a)) implicitly assume that the spatial location
of objects and the humans performing actions is identical,
our spatial object priors explicitly model how humans and
objects are spatially related, whether objects are above, to
the left, or on the human. Moreover, we go beyond standard
word embedding similarities for semantic matching between
actions and objects to improve both unseen action classifi-
cation and localization. Soomro and Shah (2017) investigate
action localization in an unsupervised setting,which discrim-
inatively clusters similar action tubes but does not specify
action labels. In contrast, we seek to discover both action
locations and action labelswithout training examples orman-
ual action annotations.

Severalworks have investigatedunseen action localization
in the temporal domain. (Zhang et al. 2020) perform zero-
shot temporal action localization by transferring knowledge
from temporally annotated seen actions to unseen actions.
Jain et al. (2020) learn an action localization model from
seen actions in trimmed videos, enabling zero-shot tempo-
ral action localization by a semantic knowledge transfer of
unseen actions. Sener and Yao (2018) learn to temporally
segment actions in long videos in an unsupervised manner.
Different from these works, we perform unseen action local-
ization in space and time simultaneously.

2.3 Self-supervisedVideo Learning

Recently, a number of works have proposed approaches for
representation learning for unlabeled videos through self-
supervision. The general pipeline is to train a pre-text task
on unlabeled data and transfer the knowledge to a supervised
downstream task (Jing and Tian 2020) or by clustering video
datasetswithoutmanual supervision (Asano et al. 2020). Pre-
text tasks include dense predictive coding (Han et al. 2020),
shuffling frames (Fernando et al. 2017; Xu et al. 2019),
exploiting spatial and/or temporal order (Jenni et al. 2020;
Tschannen et al. 2020; Wang et al. 2019), or by matching
frames with other modalities (Afouras et al. 2020; Alayrac
et al. 2020; Owens and Efros 2018; Patrick et al. 2020).
Self-supervised approaches utilize unlabeled train videos to
learn representations without semantic class labels. In con-
trast, we do not use any training videos and instead classify
and localize actions using object classes and bounding boxes
from images. Since we do not assume any video knowledge,
common losses and notions from the zero-shot and self-
supervised literature can not be leveraged. It is the object
priors that still allow us to classify and spatio-temporally
localize unseen actions in videos.

3 Spatial Object Priors

In unseen action localization, the aim is to discover a set of
spatio-temporal action tubes from test videos for each action
in the set of all actions A = {A1, . . . , AC }, with C the total
number of actions. Furthermore, unseen action classification
is concerned with predicting the label of each test video from
A. For each action, nothing is known except its name. The
evaluation is performed on a set of N unlabeled and unseen
test videos denoted as V . In this section, we outline how
to obtain such a localization and classification with spatial
priors from local objects using prior knowledge.

3.1 Priors from Persons, Objects, and Prepositions

For a test video v ∈ V and unseen action a ∈ A, the first
step of our approach is to score local boxes in the video with
respect toa. For a bounding boxb in video frame F , we define
a score function s(·) for action class a. The score function is
proportional to three priors.

Object prior I (person prior) The likelihood of any action
in b is proportional to the likelihood of a person present in b.
The first prior follows directly from our human action recog-
nition task. The first condition is independent of the specific
action class, as it must hold for any action. The score function
therefore adheres to the following:

s(b, F, a) ∝ Pr(person|b). (1)
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Object prior II (object location prior) The likelihoodof action
a in box b is proportional to the likelihood of detected objects
that are (i) semantically close to action class a and (ii) the
detection is sufficiently close to b.
The second prior states that the presence of an action in a
box b also depends on the presence of relevant objects in the
vicinity of b. We formalize this as:

s(b, F, a) ∝
∑

o∈L
Ψ (o, a) · max

b′∈oD(F,b)
Pr(o|b′), (2)

where L denotes the set of pre-trained object detections and
oD(F, b) denotes the set of all object detections of object
o in frame F that are near to box b. Empirically, the sec-
ond object prior is robust to the pixel distance to determine
the neighbourhood set oD(F, b) for box b, as long as it is a
non-negative number smaller than the frame size. We use a
value of 25 throughout. FunctionΨ (o, a) denotes the seman-
tic similarity between object o and a and is defined as the
word embedding similarity:

Ψ (o, a) = cos(φ(o), φ(a)), (3)

with φ(·) ∈ R
300 the word embedding representation.

The word embeddings are given by a pre-trained word
embedding model, such as word2vec (Mikolov et al. 2013),
FastText (Grave et al. 2018), or GloVe (Pennington et al.
2014).
Object prior III (spatial relation prior) The likelihood of
action a in b given an object o with box detection d that
abides object prior II, is proportional to the match between
the spatial awareness of b and dwith the prior spatial aware-
ness of a and o.
The third prior incorporates spatial awareness between
actions and objects. We exploit the observation that people
interact with objects in preferred spatial relations. We do this
by gathering statistics from the same image dataset used to
pre-train the object detectors. By reusing the same dataset,
we keep the amount of knowledge sources contained to a
dataset for object detectors and a semantic word embedding.
For the spatial relations, we examine the bounding box anno-
tations for the person class and all object classes. We gather
all instances where an object and person box annotation
co-occur.We quantize the gathered instances into representa-
tions that describe coarse spatial prepositions between people
and objects.

The spatial relation between an object box relative to a
person box is quantized into a 9-dimensional grid. This grid
represents how the object box is spatially distributed to the
person boxwith respect to the following prepositions: {above
left, above, above right, left, on, right, below left, below,
below right}. Since no video examples are given in our set-
ting, prepositions can only be obtained from prior image

left on right

above
on

below

Prior

min max

Fig. 1 Intuition behind spatial object priors. The spatial relations (end
of green arrows) of the two persons (red boxes) have different spatial
relations with the detected skateboard (blue box). The spatial relations
for the person on the left are a better match with the spatial relations
obtained from prior knowledge. This match enforces the likelihood that
the person on the left is involved in a skateboarding activity

sources and we therefore exclude relations such as in front of
and behind of. Let d1(b, d) ∈ R9 denote the spatial distribu-
tion of object box d relative to person box b. Furthermore,
let d2(person, o) denote the gathered distribution of object
o with respect to a person from the image dataset. We define
the spatial relation function as:

Φ(b, d, o) = 1 − JSD2(d1(b, d)||d2(person, o)), (4)

where JSD2(·||·) ∈ [0, 1] denotes the Jensen-Shannon
Divergence with base 2 logarithm. Intuitively, this function
determines the extent to which the 9-dimensional distribu-
tions match, as visualized in Fig. 1. The more similar the
distributions, the lower the divergence, and the higher the
score according to Equation 4.
Combined spatial priors Our final box score combines the
priors of persons, objects, and spatial prepositions. We com-
bine the three priors into the following score function for a
box b with respect to action a:

s(b, F, a) = Pr(person|b) + ∑
o∈O Ψ (o, a) ·

maxb′∈oD(F,b)

(
Pr(o|b′) · Φ(b, b′, o)

)
. (5)

3.2 Linking Action Tubes

Given scored boxes in individual frames, we link boxes into
tubes to arrive at a spatio-temporal action localization. We
link boxes that have high scores from our object embeddings
and have a high spatial overlap. Given an action a and boxes
b1 and b2 in consecutive frames F1 and F2, the link score is
given as:

w(b1, b2, a) = s(b1, F1, a) + s(b2, F2, a) + iou(b1, b2),

(6)
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where iou(·, ·) states the spatial intersection-over-union
score. We solve the problem of linking boxes into tubes with
the Viterbi algorithm (Gkioxari andMalik 2015). For a video
V , we apply the Viterbi algorithm on the link scores to obtain
spatio-temporal action tubes. In each tube, we continue link-
ing as long as there is at least one box in the next frame with
an overlap higher than 0.1 and with a combined action score
of at least 1.0. Otherwise we stop linking. Incorporating the
stopping criterion allows us to localize actions in time also,
akin to (Gkioxari and Malik 2015). We reiterate this process
until we obtain T tubes. The action score for a of an action
tube t is defined as the average score of the boxes in the tube:

�tube(t, a) = 1

|t |
|t |∑

i=1

s(bti , Fti , a), (7)

where bti and Fti denote respectively the box and frame of
the i th element in t .
Unseen action localization and classification For unseen
action localization, we gather tubes across all test videos
and rank the tubes using the scores provided by Equation 7.
We can also perform unseen action classification using the
spatial priors by simply disregarding the tube locations. For
each video, we predict the action class label as the action
with the highest tube score within the video.

3.3 Action Tube Retrieval

The use of objects with spatial priors extends beyond unseen
action classification and localization. We can also perform
a new task, dubbed action tube retrieval. This task resem-
bles localization, as the goal is to rank the most relevant
tubes the highest. Different from localization, we now have
the opportunity to specify which objects are of interest and
which spatial relations are desirable for a detailed result. Fur-
thermore, inspired by the effectiveness of size in actor-object
relations (Escorcia andNiebles 2013), we extend the retrieval
setting by allowing users to specify a desired relative size
between actors and objects. The ability to specify the object,
spatial relations, and size allows for different localizations
of the same action. To enable such a retrieval, we extend the
box score function of Equation 5 as follows:

s(b, F, o, r , s) = Pr(person|b) + maxb′∈oD(F,b)(
Pr(o|b′) · Φr (b, b′, r) · (

1 − | size(b′)
size(b) − s|)

)
, (8)

where o denotes the user-specified object, r ∈ R
9 the spec-

ified spatial relations, and s the specified relative size. The
spatial relation function is modified to directly match box

relations to specified relations:

Φr (b, d, r) = 1 − JSD2(d1(b, d)||r). (9)

With the three user-specified objectives, we again score indi-
vidual boxes first and link them over time. The tube score is
used to rank the tubes across a video collection to obtain the
final retrieval result.

4 Semantic Object Priors

Spatial object priors relying on local objects enables a spatio-
temporal localization of unseen actions. However, local
objects do not tell the whole story. When a person performs
an action, this is typically happens in a suitable context.
Think about someone playing tennis. While the tennis racket
provides a relevant cue about the action and its location,
surrounding objects from context, such as tennis court and
tennis net, further enforce the action likelihood. Here, we add
three additional object priors to integrate knowledge from
global objects for unseen action classification and localiza-
tion. We start from the common word embedding setup for
semanticmatching, whichwe extendwith three simple priors
that make for effective unseen action matching with global
objects. Lastly, we outline how to integrate the semantic and
spatial object priors for unseen actions. Figure 2 illustrates
our proposal.

4.1 Matching and Scoring withWord Embeddings

To obtain action scores for a video v ∈ V , the common setup
is to directly use the object likelihoods from a set of global
objects G and their semantic similarity. Since G typically
contains many objects, the usage is restricted to the objects
with the highest semantic similarity to action a:

Ψ (g, a) = cos(φ(g), φ(a)) such that g ∈ Ga, (10)

where Ga the set of k most similar objects with respect to a.
The video score function is defined as:

�video(v, a) =
∑

g∈Ga

Ψ (g, a) · Pr(g|v), (11)

where Pr(g|v) denotes the likelihood of g in v, as given
by the softmax outputs of a pre-trained object classifica-
tion network. Such an approach has shown to be effective
for unseen action classification (Jain et al. (2015a)). Here,
we identify three additional semantic priors to improve both
unseen action classification and localization.
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(a) Semantic disambiguation. (b) Object discrimination. (c) Object naming.

Fig. 2 Intuition behind our three semantic object priors. The red and
orange distributions denote the word embeddings of the action kicking
in English andDutch. The closer to the center an object is, the higher the
semantic similarity to the action. In (a), the object football is enforced,
because its semantic similarity is high across languages, reducing

semantic ambiguity. In (b), the importance of grass is decreased, as it
is also relevant for another action, while the opposite happens for goal
post. In (c), the importance of football is increased and of adjudicator
decreased, as football follows basic-level object naming, in contrast to
adjudicator (a referee)

4.2 Priors for Ambiguity, Discrimination, and
Naming

Similar to the common word embedding setup, for a video
v ∈ V , we seek to obtain a score for action a ∈ A using a
set of global objects G. Global objects generally come from
deep networks (Mettes et al. 2020) pre-trained on large-scale
object datasets (Deng et al. 2009). We build upon current
semantic matching approaches by providing three simple
priors that deal with semantic ambiguity, non-discriminative
objects, and object naming.
Object prior IV (semantic ambiguity prior) A zero-shot like-
lihood estimation of action a in video v benefits fromminimal
semantic ambiguity between a and global objects G.
The score of a target action depends on the semantic rela-
tions to source objects. However, semantic relations can be
ambiguous, sincewords can havemultiplemeanings depend-
ing on the context. For example for the action kicking, an
object such as tie is deemed highly relevant, because one of
its meanings is a draw in a football match (Mettes and Snoek
2017). However, a tie can also denote an entirely different
object, namely a necktie. Such semantic ambiguity may lead
to the selection of irrelevant objects for an action.

To combat semantic ambiguity in the selection of objects,
we consider two properties of object coherence across
languages (Malt 1995). First, most object categories are com-
mon across different languages. Second, the formation of
some categories can nevertheless differ among languages.
We leverage these two properties of object coherence across
languages by introducing a multi-lingual semantic similar-
ity. For computing multi-lingual semantic representations of
words at a large-scale, we are empowered by recent advances
in the word embedding literature, where embedding models
have been trained and made publicly available for many lan-
guages (Grave et al. 2018). In a multi-lingual setting, let L
denote the total number of languages to use. Furthermore,
let τl(g) denote the translator for language l ∈ L applied to
object g. Multi-lingual unseen action classification can then

be done by simply updating the semantic matching function
to:

ΨL(g, a) = 1

L

L∑

l=1

cos(φl(τl(g)), φl(τl(a))), (12)

where φl denotes the semantic word embedding of language
l. The multi-lingual semantic similarity states that for a high
semantic match between object and action, the pair should
be of a high similarity across languages. In this manner,
accidental high similarity due to semantic ambiguity can
be addressed, as this phenomenon is factored out over lan-
guages.
Object prior V (object discrmination prior) A zero-shot
likelihood estimation of action a in video v benefits from
knowledge about which objects in G are suitable for action
discrimination.
The second semantic prior is centered around finding
discriminative objects. Only using semantic similarity to
select objects ignores the fact that an object can be non-
discriminative, despite being semantically similar. For exam-
ple, for the action diving, the objects person and diving board
might both correctly be considered as semantically relevant.
The object person is however not a strong indicator for the
action diving, as this object is present in many actions. The
object diving board on the other hand is a distinguishing
indicator, as it is not shared by many other actions.

To incorporate an object discrimination prior, we take
inspiration from object taxonomies. When organizing such
taxonomies, care must be taken to convey the most impor-
tant and discriminant information (Murphy 2004). Here, we
are searching for the most unique objects for actions, i.e.,
objects with low inclusivity. It is desirable to select indicative
objects, rather than focus on objects that are shared among
many actions. To do so, we propose a formulation to predict
the relevance of every object for unseen actions. We extend
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the action-object matching function as follows:

Ψr (g, a) = Ψ (g, a) + r(g, ·, a), (13)

where r(g, ·, a) denotes a function that estimates the rele-
vance of object g for the action a. We propose two score
functions. The first penalizes objects that are not unique for
an action a:

ra(g, A, a) = Ψ (g, a) − max
c∈A\a Ψ (g, c). (14)

An object g scores high if it is relevant for action a and for
no other action. If either of these conditions are not met, the
score decreases, which negatively affects the updated match-
ing function.

The second score function solely uses inter-object rela-
tions for discrimination and is given as:

ro(g,G, a) = Ψ (g, a) − 1

|G|
∑

g′∈G\g
Ψ (g, g′)

1
2 . (15)

Intuitively, this score function promotes objects that have an
intrinsically high uniqueness across the set of objects, regard-
less of their match to actions. The square root normalization
is applied to reduce the skewness of the object set distribu-
tion.
Object prior VI (object naming prior) A zero-shot likelihood
estimation of action a in video v benefits from a bias towards
basic-level object names.
The third semantic prior concerns object naming. Thematch-
ing function between actions and objects relies on the object
categories in the set G. The way objects are named and cat-
egorized has an influence on their matching score with an
action. For example for the action walking with a dog, it
would be more relevant to simply name the object present
in the video as a dog rather than a domesticated animal, or
an Australian terrier. Indeed, the dog naming yields a higher
matching score with the action walking with a dog than the
too generic domesticated animal or too specific Australian
terrier namings.

As is well known, there exists a preferred entry-level of
abstraction in linguistics, for naming objects (Jolicoeur et al.
1984;Rosch et al. 1976). The basic-level naming (Rosch et al.
1976; Rosch 1988) is a trade-off between superordinates and
subordinates. Superordinates concern broad category sets,
while subordinates concern very fine-grained categories.
Hence, basic-level categories are preferred because they con-
vey themost relevant information and are discriminative from
one another (Rosch et al. 1976). It would then be valuable to
emphasize basic-level objects rather than objects from other
levels of abstraction. Here, we enforce such an emphasis by
using the relativeWordNet depth of the objects inG to weight

each object. Intuitively, the deeper an object is in the Word-
Net hierarchy, the more specific the object is and vice versa.
To perform the weighting, we start from the beta distribution:

Beta(d|α, β) = dα−1·(1−d)β−1

B(α,β)
,

B(α, β) = Γ (α)·Γ (β)
Γ (α+β)

, (16)

where d denotes the relative depth of an object and Γ (·)
denotes the gamma function. Different values for α and β

determine which levels to focus on. For a focus on basic-
level we want to weight objects of intermediate level higher
and the most specific and generic objects lower. We can do
so by setting α = β = 2. Setting α = β = 1 results in the
common setup where all objects are equally weighted. We
incorporate the objects weights by adjusting the semantic
similarity function between objects and actions.
Combined semantic priors We combine the three semantic
object priors into the following function of global objects for
unseen actions:

�video(v, a) =
∑

g∈Ga

((ΨL(g, a) + Δ(o, ·, a)) ·

Beta(dg|α, β)) · Pr(g|v), (17)

where dg denotes the depth of object g, [0,1] normalized
based on the minimum WordNet depth (2) and maximum
WordNet depth (18) over all objects in G. In this formulation,
the proposed embedding is more robust to semantic ambigu-
ity, non-discriminative objects, and non-basic level objects
compared to Equation 10.

4.3 Object Prior Embedding

Unseen action localization and classification benefit from
both a spatial and semantic priors. For unseen action localiza-
tion, we obtain an object prior embedding by simply adding
the tube score (Equation 7) and the score of the correspond-
ing video (Equation 17). For unseen action classification we
add the highest score of the tubes in the video with the video
score.

5 Experimental Setup

5.1 Datasets

We experiment on UCF Sports (Rodriguez et al. 2008),
J-HMDB (Jhuang et al. 2013), UCF-101 (Soomro et al.
2012), Kinetics (Carreira andZisserman 2017), andAVA (Gu
et al. 2018). Due to the lack of training examples, all these
datasets still formopen challenges in unseen action literature,
even though high scores can be achieved with supervised
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approaches on e.g.,UCF-101 (Carreira and Zisserman 2017;
Zhao and Snoek 2019).

UCF Sports contains 150 videos from 10 actions such as
running and horse riding (Rodriguez et al. 2008). The videos
are from sports broadcasts. We employ the test split provided
by Lan et al. (2011).

J-HMDB contains 928 videos from 21 actions such as
brushing hair and catching (Jhuang et al. 2013), from
HMDB (Kuehne et al. 2011). The videos focus on daily
human activities.We employ the test split provided by Jhuang
et al. (2013).

UCF-101 contains 13,320 videos from 101 actions such
as skiing and playing nasketball (Soomro et al. 2012). The
videos are taken from both sports and daily activities. We
employ the test split provided by Soomro et al. (2012).

Kinetics-400 contains 104,000 videos from 400 actions
such as playingmonopoly and zumbaCarreira and Zisserman
(2017) from Youtube videos. We use all videos as test for
unseen action classification.

AVAv2.2 contains 437 15-minutes clips from movies cov-
ering 80 atomic actions such as listening andwritingGu et al.
(2018). For 61 out of 64 validation videos, the YouTube links
are still available and we use these as test videos for unseen
action localization.

Note that for all datasets, we exclude the use of any infor-
mation from the training videos.We employ the action labels
and ground truth box annotations from the test videos to
evaluate the zero-shot action classification and localization
performance.

5.2 Object Priors Sources

Object scores and detections To obtain person and local
object box detections in individual frames, we employ Faster
R-CNN (Ren et al. 2015), pre-trained on MS-COCO (Lin
et al. 2014). The pre-trained network includes the per-
son class and 79 objects, such as car, chair, and tv. For
the global object scores over whole videos, we apply a
GoogLeNet (Szegedy et al. 2015), pre-trained on12,988 Ima-
geNet categories (Mettes et al. 2020). The object probability
distributions are averaged over the sampled frames to obtain
the global object scores. On all datasets except AVA, frames
are sampled at a fixed rate of 2 frames per second. On AVA,
we use the annotated keyframes as frames. All frames have
an input size of 224x224 (Table 1).

Spatial priors sources For the spatial relations, we reuse
the bounding box annotations of the training set of MS-
COCO, as also used to pre-train the detection model, to
obtain the prior prepositional knowledge between persons
and objects.

Semantic priors sources For the semantic priors, we rely
onFastText, pre-trained on 157 languages (Grave et al. 2018).
This collection of word embeddings enables us to investi-

gate multi-lingual semantic matching between actions and
objects. For the multi-lingual experiments, we employ five
languages: English, French, Dutch, Italian, and Afrikaans.
We obtain action and object translations first fromOpenMul-
tilingualWordNet (Bond and Foster 2013). For the remaining
objects and all actions, we use Google Translate with manual
verification.

Code is available at https://github.com/psmmettes/object-
priors-unseen-actions.

5.3 Evaluation Protocol

We follow the zero-shot action evaluation protocol of (Jain
et al. (2015a);Mettes andSnoek2017;Zhuet al. 2018),where
no training is performed on a separate set of actions; the set of
test actions are directly evaluated. For each dataset, we evalu-
ate on the videos in the test set. For classification experiments
where the number of test actions is lower than the total num-
ber of actions in the dataset, we perform five random selec-
tions and report the mean accuracy and standard deviation.

For unseen action localization, we compute the spatio-
temporal (st) overlap between action tube a and ground truth
b from the same video as:

st-iou(a, b) = 1

|Ω|
∑

f ∈Ω

iou f (a, b), (18)

where Ω states the union of frames in a and b. The function
iou f (a, b) is 0 if either one of the tubes is not present in
frame f . For overlap threshold τ , an action tube is positive
if the tube is from a positive video, the overlap with a ground
truth instances is at least τ , and the ground truth instance
has not been detected before. For unseen action localization,
we report the AUC and video mAP metrics on UCF Sports
and J-HMDB, following Mettes and Snoek (2017). On AVA,
we report frame mAP, following Gu et al. (2018). Unless
specified otherwise, the overlap threshold is 0.5. For unseen
action classification, we evaluate using multi-class classifi-
cation accuracy.

6 Results

6.1 Spatial Object Priors Ablation

In the first experiment, we evaluate the importance of spa-
tial relations between persons and local object detections
for unseen action classification and localization. We use the
80 local objects pre-trained on MS-COCO for this ablation
study. We investigate the desired number of local objects to
select per action and the effect of modelling spatial relations.

Results are shown in Table 1. When relying on only the
first prior, person detections, we unsurprisingly obtain ran-
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Table 1 Effect of spatial object priors for unseen action classification (acc, %) and localization (mAP@0.5, %), on UCF Sports

Classification Localization

Number of object detections Number of object detections

0 1 2 5 10 0 1 2 5 10

Object prior I Person 8.5 – – – – 10.1 – – – –

Object prior I+II + Objects – 21.3 19.2 27.7 27.7 – 22.8 22.8 24.4 23.6

Object prior I+II+III + Spatial relations – 12.8 25.5 29.8 29.8 – 26.0 22.4 27.0 22.8

Bold indicates best performance for each setting (relevant for the corresponding experiment)
We investigate three spatial prior settings; only person detections (I), person and object detections (I+II), and with the additional spatial prepositions
between people and objects (I+II+III). For both unseen classification and localization, using the top five objects with spatial relations obtains the
highest scores

(a) (b) (c)

(d) (e) (f)

Fig. 3 Spatial preposition priors for six local objects. Different objects
have different spatial preferences relative to persons. These prepo-
sitional preferences align with our intuitions of the objects, e.g., an
umbrella tends to be above a person, while a backpack tends to be on a
person

dom classification and localization scores, since there is no
direct manner to differentiate actions. Naturally, the first
object prior is still vital, since it determines which boxes
to consider in video frames. When adding the second prior,
we find that the scores improve drastically for both classi-
fication and localization. Objects are indicative for unseen
actions, whether actions need to be classified or localized.

Lastly, we include the spatial preposition prior. This pro-
vides a further boost in the results, showing that persons and
objects have preferred spatial relations that can be exploited.
In Fig. 3, we provide six discovered spatial relations from
prior knowledge that are used in our action localization.

The results of Table 1 show that for unseen action classifi-
cation, more local objects improve accuracy as they provide
a richer source for action discrimination. For action localiza-
tion, having many local objects may hurt, as the local box
scoring becomes noisier, resulting in action tubes with lower
overlap to the ground truth. Based on the scores obtained in

Table 2 Object prior IV (semantic ambiguity prior) ablation

UCF-101

Number of test classes

25 50 101

Single language

English 52.6 ± 4.7 43.3 ± 2.1 33.3

Dutch 49.7 ± 3.5 40.4 ± 3.3 30.2

Portuguese 44.4 ± 4.6 37.8 ± 4.0 28.5

Afrikaans 43.6 ± 3.4 36.3 ± 4.0 27.7

French 44.7 ± 2.5 36.2 ± 3.4 27.5

German 38.0 ± 2.0 31.2 ± 2.6 26.0

Multi-lingual

English and Dutch 54.3 ± 4.5 45.8 ± 2.4 35.7

All languages 51.8 ± 4.8 43.2 ± 2.7 32.8

Bold indicates best performance for each setting (relevant for the cor-
responding experiment)
Unseen action classification accuracies (%) on UCF-101 for multiple
languages in the semantic matching for 25, 50, and 101 test classes.
Combining two languages improves results. For this dataset, a combi-
nation of English and Dutch is best

this experiment, we recommend the use of spatial preposi-
tions and five local object detections per action.

6.2 Semantic Object Priors Ablations

In the second experiment, we perform ablation studies on the
three semantic object priors for semantic matching between
unseen actions and objects.We evaluate unseen action classi-
fication on UCF-101. Throughout this experiment, we focus
on global object classification scores from the 12,988 Ima-
geNet concepts applied and averaged over sampled video
frames.
Object prior IV (semantic ambiguity prior) We first investi-
gate the importance of multi-lingual semantic similarity to
deal with semantic ambiguity. We evaluate on three settings
of UCF-101 for 25, 50, and 101 test classes. We perform
this evaluation on all five individual languages, as well as
their combination. We select the top-100 objects per action,
following Mettes and Snoek (2017).
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Fig. 4 Pairwise multilingual evaluation of all six languages on UCF-
101 with all 101 test actions. The better the performance of the
individual language, themore that language benefits others. ForEnglish,
only adding the second best performing language (Dutch) is beneficial.
Whennot takingEnglish into account,wefind that combining languages
is mutually effective for seven out of the ten combinations

The results are shown in Table 2. We first observe that
individually English performs better than the other four lan-
guages. Dutch performs roughly three percent point lower,
while the other three languages perform five to nine percent
lower. A likely explanation for the lower results of the other
languages is that the starting language of the objects and
actions is English. The object and action names of the other
languages are translated from English. Translation imperfec-
tions and breaking up compound nouns into multiple terms
result in less effective word representations. As a result, there
is a gap between English and the other languages.

In Fig. 4, we show the relative accuracy scores for all
language pairs on UCF-101 with all 101 test actions. We
find that combining languages always boosts the least effec-
tive language of the pair. For the most effective English
language, only the addition of Dutch results in a higher
accuracy. For all other language pairs, the combined lan-
guage performance is higher than the best individual lan-
guage, except for German-Portuguese, German-Afrikaans,
and Dutch-Portuguese. These are likely a result of poor indi-
vidual performance (German) or low lexical similarity to
other languages (Portuguese). Overall, multi-lingual simi-
larity with English and Dutch results in an improvement of
1.7% 2.5% and 2.4% for 25, 50 and 101 classes. Further
improvements are expected with better translations.

To investigate why multiple languages aid unseen action
classification, we have performed a qualitative analysis for
the action field hockey penalty in UCF-101. We consider the
most similar objectswhen usingEnglish only andwhen using
English andDutch combined. Figure 5 shows that for English
only, several of the top ranked objects are not correct due to
semantic ambiguity. These objects include penal institution,

Fig. 5 Object prior IV (semantic ambiguity prior) analysis with multi-
ple languages for unseen recognition of the action field hockey penalty.
When relying on English, several irrelevant objects rank high due to
semantic ambiguity (red boxes). When Dutch is added, ambiguous
objects are downgraded, resulting in better recognition

Table 3 Object prior V (object discrimination prior) ablation

UCF-101

Number of test classes

25 50 101

Standard setup 52.6 ± 4.7 43.3 ± 2.1 33.3

+ action-based discrimination 53.2 ± 4.3 44.3 ± 1.9 34.3

+ object-based discrimination 54.0 ± 3.6 44.7 ± 2.1 34.0

Bold indicates best performance for each setting (relevant for the cor-
responding experiment)
Unseen action classification accuracy (%) on UCF-101 with the pro-
posed object discrimination functions for the English language. Both
action-based and object-based discrimination aid recognition, espe-
cially when using fewer actions

field artillery, and field wormwood. Evidently, such objects
were selected because of their similarity to the English words
field and penalty, but they are not related to the action of inter-
est. When adding Dutch to the matching, such objects are
ranked lower, because the ambiguity of these objects do not
translate to Dutch. Hence, more relevant objects are ranked
higher, which is also reflected in the results, where the accu-
racy increases from 0.07 to 0.27 for the action.

We conclude that using multiple languages for seman-
tic matching between actions and objects reduces semantic
ambiguity, resulting in improved unseen action classification
accuracy.
Object prior V (object discrimination prior) For the object
discrimination prior ablation, we investigate both the pro-
posed object-based and action-based prior variants.We again
report on UCF-101 with 25, 50, and 101 test actions, with
the top 100 objects selected per action.

The results in Table 3 show consistent improvements are
obtained by both the action-based and the object-based vari-
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Table 4 Object prior V (object discrimination prior) analysis for two
UCF-101 actions

Apply eye makeup Pizza tossing

Most discriminative objects

Makeup 0.63 0.88 Pizza

Eyeliner 0.57 0.85 Pepperoni pizza

Eyebrow pencil 0.52 0.82 Sausage pizza

Eyeshadow 0.51 0.79 Cheese pizza

Mascara 0.50 0.78 Anchovy pizza

Least discriminative actions

Edam (cheese) − 0.07 − 0.06 Argali (sheep)

Hokan (people) − 0.07 − 0.07 Lhasa (terrier dog)

Lincoln (sheep) − 0.07 − 0.07 Yautia (food)

Dicot (plant) − 0.08 − 0.08 Caddo (people)

Loranthaceae (plant) − 0.09 − 0.08 Filovirus (virus)

We show objects deemed most and least discriminative for apply eye
makeup and pizza tossing, along with their scores. By finding out which
objects are uniquely discriminative for an action in comparison to all
other actions, we are able to highlight relevant objects and in turn
improve unseen action classification

Table 5 Object prior VI (object naming prior) ablation

Weighting preference α β accuracy

Uniform 1 1 43.3 ± 2.1

Specific only 5 1 7.6 ± 0.7

Generic only 1 5 30.2 ± 1.1

Basic-level 2 2 43.9 ± 2.0

Bold indicates best performance for each setting (relevant for the cor-
responding experiment)
Unseen action classification accuracy (%) on UCF-101 for 50 test
classes using English. Only a small gain is feasible with a focus on
basic-level objects compared to uniform weighting

ants. While the object-based taxonomy is preferred when
recognizing 25 or 50 actions, the action-based taxonomy is
preferred when recognizing 101 activities. In all three cases,
incorporating a selection of the most discriminative objects
yields better results. To highlight what kind of objects are
boosted and subdued, we show the most and least discrimi-
native objects of two actions in Table 4.
Object prior VI (object naming prior) For the third semantic
object prior, we evaluate the effect ofweighting objects based
on theirWordNet depth to understand whether a bias towards
basic-level objects is desirable in unseen action classification.
This experiment is performed onUCF-101 for 50 test actions.

Table 5 shows the results for the basic-level weighting
preference compared to three baselines, i.e., uniform (no
preference), specific only, and generic only. We find that
focusing on only the most specific or generic objects is not
desirable and both result in a large drop in classification accu-
racy. The weighting preference for basic-level objects has a

Fig. 6 Object prior VI analysis on UCF-101. Akin to our basic-level
object prior does the uniform weighting result in a distribution that
favors basic-level objects. This explains the competitive performance
of uniform weights versus the basic-level object prior; a bias towards
basic-level objects is inherent in large-scale object sources. An explicit
basic-level prior provides marginal gains

slight increase in accuracy compared to uniform, although
the difference is small. This results shows that a prior for
basic-level objects is not as effective as the semantic ambi-
guity and object discrimination priors.

To better understand our results, we have analysed the
WordNet depth distribution of the top 100 selected objects
for all actions inUCF-101. The distributions are visualized in
Fig. 6. The two extreme preference weightings select objects
from expected depth distributions and focus on the leftmost
or rightmost side of the depth spectrum. Similarly for the
basic-level weighting, objects from intermediate depth are
selected. The uniformweighting however behaves unexpect-
edly anddoes not result in a uniformobject depth distribution.
In fact, this function also favors basic-level objects. The rea-
son for this behaviour is found in the depth distribution of all
12,988 objects. For large-scale object collections, the Word-
Net depth distribution favors basic-level objects, following a
normal distribution. As a result, the depth distribution of the
selected objects follows a similar distribution, hence creating
an inherent emphasis on basic-level objects. The basic-level
object prior puts an additional emphasis on these kinds of
objects and ignores specific and generic objects altogether.

We conclude that a prior on basic-level objects is impor-
tant for unseen actions. Such a bias is inherently incorporated
in large-scale object sources and no additional weighting
is required to assist the object selection, although a small
increase is feasible (Fig. 7).
Combining semantic priors In Table 6, we report the unseen
action classification performance on Kinetics-400 using the
semantic priors. Our approach does not require any class
labels and videos during training, enabling a 400-way unseen
action classification. When performing 400-way classifica-
tion, the semantic ambiguity (IV) and object naming (VI)
priors are most decisive, resulting in an accuracy of 6.4%,
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Table 6 Unseen action classification on Kinetics-400 for the three semantic priors

Object prior Test actions

Semantic ambiguity (IV) Object discrimination (V) Object naming (VI) 25 100 400

Random 4.0 1.0 0.3

English only 21.8±3.5 10.8±1.0 6.0

� 20.9±4.1 10.8±1.0 6.3

� � 21.2±3.9 10.7±1.0 6.1

� � 22.0±3.7 11.2±1.0 6.4

� � � 21.9±3.8 11.1±0.8 6.4

Even with hundreds of unseen actions, the object priors help to assign action labels to videos. Across the three action sizes, semantic ambiguity
and object naming work best, especially when having more unseen actions to choose from

Table 7 The top-10 and bottom-10 performing actions (acc, %) on
UCF-101 and Kinetics using an English-Dutch vocabulary

UCF-101 Kinetics

Bowling 98.1 65.0 Playing poker

Ice dancing 96.8 54.2 Strumming guitar

Sumo Wrestling 92.2 51.5 Using segway

Horse riding 91.5 48.5 Golf chipping

Playing piano 91.4 48.1 Bowling

Playing sitar 90.4 43.6 Playing bass guitar

Rowing 89.8 41.5 Playing cymbals

Biking 89.6 40.8 Playing squash

Golf swing 89.2 39.2 Playing badminton

Playing violin 88.0 39.2 Playing cello

Yo yo 00.0 00.0 Zumba

Hammer throw 00.0 00.0 Skiing

Jump rope 00.0 00.0 Egg hunting

Front crawl 00.0 00.0 Exercising arm

Frisbee catch 00.0 00.0 Exercise with ball

Floor gymnastics 00.0 00.0 Crosscountry skiing

Jumping jack 00.0 00.0 Faceplanting

Writing on board 00.0 00.0 Feeding fish

Lunges 00.0 00.0 Eating chips

Pizza tossing 00.0 00.0 Situp

Across both datasets, our approach is effective for actions with clear
object interactions (e.g., bowling, playing instruments, horse riding,
and biking). Actions can not be recognized when they are without direct
object interactions (e.g., fitness actions such as jumping jacks, zumba,
and exercising arm) or when they use objects for which we have no
detector or classifier (e.g., yo yo and exercising with exercise ball)

compared to 0.25% for random performance. For the Kinet-
ics experiment, we evaluate unseen action classification as a
function of the number of actions. For each size of the action
vocabulary, we perform a random selection of the actions
and perform 5 runs. We report both the mean and standard
deviation.
For which actions are semantic priors effective? In Table 7,
we show respectively the top and bottom performing actions

onUCF-101 andKineticswhenusingour priors.OnKinetics,
high accuracies can be achieved for actions such as playing
poker (65.0%) and strumming guitar (54.2%), the accuracy
is hampered by actions that can not be recognized, such as
zumba and situp, likely due to the lack of relevant objects.
Figure 8 divides the UCF-101 actions into three classes;
person-object, person-person, and person-only, to analyse
when semantic priors are effective and when not.

6.3 Combining Spatial and Semantic Priors

Based on the positive effect of the six individual spatial and
semantic priors, we evaluate the impact on combining all
priors for classification and localization. The results on UCF
Sports are shown in Table 8. Naturally, spatial objects pri-
ors are leading for unseen action localization, since this is
impossible with semantic priors only. The reverse holds for
action classification, where semantic priors on global objects
are leading. We do find that for both tasks, using a combina-
tion of all priors is best. We recommend to use a combination
of the six object priors to best deal with unseen actions.

We show success and failure cases for unseen actions in
Fig. 7. Adding the semantic priors on top of the spatial priors
is especially beneficial when actions do not directly depend
on an interacting object, see e.g. Fig. 7b. Since there is no
relevant interacting object for the diving action, the corre-
sponding tube relies solely on the person detection, resulting
in a high overlap but with a low AP since the score is akin
to non-diving tubes. Adding the scores from the semantic
priors however, results in the highest diving score for the
shown action tube over all other test tubes. Interestingly, the
global objects from the semantic priors are ambiguous for
the action, e.g., diving suit, but they still help for diving, as
it is the only aquatic action.

6.4 Action Tube Retrieval

In the fourth experiment, we qualitative show the potential
of our new task action tube retrieval. In this setting, users
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(a) (b) (c)

Fig. 7 Qualitative analysis on UCF Sports. For the video example of
skateboardingwe obtain a correct localization due to a clear match with
relevant objects. The example of golfing obtains an incorrect localiza-
tion.While the global objects are correct and relevant, the local object is

incorrect. Upon inspection, we found that this error was due to the lim-
ited vocabulary of the local objects; no golf-based objects are present
in MS-COCO

Fig. 8 UCF-101 accuracies aggregated into three categories; person-
object, person-person, and person-only. As expected our approach
favors person-object interactions due to our object priors. Person-only
actions, such as gymnastics and fitness actions, obtain lower scores,
highlighting the importance of having relevant objects to recognize
actions in our approach

query for desired objects, spatial prepositions, and optionally
relative object size. In Fig. 9, we show three example queries
along with top retrieved action locations.

6.5 Comparative Evaluation

In the fifth experiment,we compare our proposed approach to
other works in action classification and localization without
examples. For the classification comparison, we report on the
UCF-101 dataset, since it is most used for this setting. For the
localization comparison, we report on the other two datasets.
For all comparisons, we use both spatial and semantic object
priors.
Unseen action classification In Table 9, we show the unseen
classification accuracies on UCF101 for three common

Table 8 Effect of combining spatial and semantic priors on the unseen
action classification and localization results on UCF Sports

Object priors Classification Localization
spatial semantic accuracy (%) mAP@0.5 (%)

� 29.8 27.0

� 59.6 –

� � 68.1 34.9

Bold indicates best performance for each setting (relevant for the cor-
responding experiment)
For both tasks, combining semantic matching for global objects with
spatial matching for local objects is beneficial

dataset splits using 101, 50, and 20 test classes. We first note
the difference in scores with our conference version (Mettes
and Snoek 2017), which are due to the three new semantic
object priors. In the unseen setting, where no training actions
are used, we are state-of-the-art. Moreover, we are competi-
tive with zero-shot approaches that require extensive training
on large-scale action datasets, such as Zhu et al. (2018) and
Brattoli et al. (2020). Each approach employs different prior
knowledge, making a direct comparison difficult. The com-
parison serves to highlight the overall effectiveness of our
approach.
Unseen action localization In Table 10, we show the results
for unseen action localization on UCF Sports and J-HMDB.
The comparison is made to the only two previous papers
with unseen localization results (Jain et al. (2015a); Mettes
and Snoek 2017). On UCF Sports, we obtain an AUC score
of 33.1%, compared to 7.2% for Jain et al. ((2015a)). We
also outperform our previous work (Mettes and Snoek 2017),
using spatial object priors only, by 2%, reiterating the empir-
ical effect of semantic object priors. We furthermore provide
mAP scores on both UCF Sports and J-HMDB. The larger
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(a) (b) (c)

Fig. 9 Qualitative results for action tube retrieval on J-HMDB. The
examples for chair and backpack show that our object embedding is
capable of retrieving relevant action locations from user queries on the

fly. The example for sports ball shows that we can additionally request
a preferred object size. In this example, a localization with a baseball
is retrieved, since a small ball size was queried

Table 9 Comparison for unseen action classification accuracy (%) on
UCF-101 for multiple numbers of test classes

UCF-101
Number of actions Accuracy
Train Test

Jain et al. ((2015a)) – 101 30.3

Mettes and Snoek (2017) – 101 32.8

This paper – 101 36.3

Zhu et al. (2018) 200 101 34.2

Brattoli et al. (2020) 664 101 37.6

Mettes and Snoek (2017) – 50 40.4

This paper – 50 47.3

An et al. (2019) 51 50 17.3

Bishay et al. (2019) 51 50 23.2

Mishra et al. (2020) 51 50 23.9

Mandal et al. (2019) 51 50 38.3

Zhu et al. (2018) 200 50 42.5

Brattoli et al. (2020) 664 50 48.0

Mettes and Snoek (2017) – 20 51.2

This paper – 20 61.1

Gan et al. ((2016b)) 81 20 31.1

Bishay et al. (2019) 81 20 42.7

Zhu et al. (2018) 200 20 53.8

The train and test columns denote the number of action used for training
and testing. Our approach is state-of-the-art in the unseen setting, where
no training actions are used, and competitive to Zhu et al. (2018) and
Brattoli et al. (2020), who require extensive training on ActivityNet and
Kinetics respectively

gap in scores compared to the AUC metric on UCF Sports
shows that we are now better at ranking correct action
localizations at the top of the list for actions. Similarly for J-
HMDB, we find consistent improvements across all overlap
thresholds, highlighting our effectiveness for unseen action
localization.We conclude that object priorsmatter for unseen

action classification and localization, resulting in state-of-
the-art scores on both tasks.

Next to unseen action localization experiments on UCF
Sports and J-HMDB, we also provide, for the first time,
unseen localizationonAVA. InFig. 10,we show the frameAP
for all 80 actions. We obtain a mean AP of 3.7%, compared
to 0.7% for random scores with the same detected objects
and persons. This result shows that large-scale multi-person
action localization without training videos is feasible. Our
zero-shot approach can identify contextual actions such as
play musical instrument and sail boat, while it struggles with
fine-grained actions that focus on person dynamics instead
of object interaction, such as crawl and fall down.

The quantitative results on AVA show that large-scale
unseen action localization is feasible, but multiple open chal-
lenges remain. In Fig. 11, we highlight three open challenges
to improve localization performance. Most notably, it is
unknown in the zero-shot setting how many actions occur at
each timestep, while person-centric actions are often missed
due to the lack of informative objects and context. Fine-
grained actions (e.g., listen to versus playing music) are also
difficult in dense scenes. Addressing these challenges require
priors that go beyond objects, including but not limited to
action priors and person skeleton priors.

7 Conclusions

This work advocates the importance of using priors obtained
from objects to enable unseen action classification and local-
ization. We propose three spatial object priors, allowing for
spatio-temporal localizationwithout examples. Additionally,
we propose three semantic object priors to deal with seman-
tic ambiguity, object discrimination, and object naming in
the semantic matching. Even though no video examples are
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Table 10 Unseen action
localization comparisons on
UCF Sports and J-HMDB using
AUC and mAP across 5 overlap
thresholds

AUC mAP

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

UCF Sports

Jain et al. ((2015a)) 38.8 23.2 16.2 9.9 7.2 – – – – –

Mettes and Snoek (2017) 43.5 39.3 37.1 35.7 31.1 47.4 43.5 42.1 32.0 23.2

This paper 47.3 43.0 40.7 37.9 33.1 61.2 54.2 54.0 41.5 34.9

J-HMDB

Mettes and Snoek (2017) 34.6 33.3 30.5 26.8 23.0 27.5 27.0 23.2 19.2 15.1

This paper 37.3 37.1 33.9 31.0 26.7 32.1 31.5 27.2 22.6 17.6

Bold indicates best performance for each setting (relevant for the corresponding experiment)
Across all settings, we obtain improved results, indicating the effectiveness of our approach

Fig. 10 Quantitative results of our approachwith all six object priors on
AVA. We show the frame AP over all classes on the validation videos.
The mean AP over all classes is 3.7%, with notable high-performing
actions that either involve clear interacting objects (answer phone,
player musical instrument, and sail boat) or involve multiple people

that stand next to each other, in line with the spatial priors (listen to and
talk to a person), highlighting that we can deal with multiple persons
performing actions at the same time. Our approach struggles for single
person actions, without any object interactions, such as crawl and fall
down

(a) (b) (c)

Fig. 11 Challenges for unseen action localization with object priors in
the wild on AVA keyframes (Gu et al. 2018). For each keyframe, we
show the top three highest scoring actions (below frame) for the detected
persons (red boxes), compared to the ground truth actions (above frame
and blue boxes). In all three keyframes, at least one ground truth action
is in our top actions due to relevant objects, resp. a phone in (a), a book

in (b), and an instrument in (c). The keyframes also show open chal-
lenges, e.g.,: it is unknown how many actions are relevant in a frame
(a–c), person-centric actions are often missed (talk to in b and sit in c),
and fine-grained actions can not be distinguished (listed to music versus
playing instrument in c)
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available during training, the object priors provide strong
indications what actions happen where in videos. Due to the
generic setup of our priors, we also introduce a new task,
action tube retrieval, where users specify object type, spatial
relations, and object size to obtain spatio-temporal locations
on-the-fly. The use of spatial and semantic object priors
results in state-of-the-art scores for unseen action classifica-
tion and localization. We conclude that objects make sense
for unseen actionswhen the set of actions is heterogeneous, as
is the case in common action datasets. When actions become
more fine-grained, e.g., throwing versus catching a ball, spa-
tial and semantic priors alone might not be sufficient, urging
the need for causal temporal priors about objects and persons.
For zero-shot interactions between persons, a fruitful source
of priors to explore relate to knowledge about body pose.
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