
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Foundations of structural causal models with cycles and latent variables

Bongers, S. ; Forré, P. ; Peters, J ; Mooij, J.M.
DOI
10.1214/21-AOS2064
Publication date
2021
Document Version
Final published version
Published in
The Annals of Statistics
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal
models with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915.
https://doi.org/10.1214/21-AOS2064

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1214/21-AOS2064
https://dare.uva.nl/personal/pure/en/publications/foundations-of-structural-causal-models-with-cycles-and-latent-variables(f99e9800-845f-4e25-b5f0-3acf5f48be82).html
https://doi.org/10.1214/21-AOS2064


The Annals of Statistics
2021, Vol. 49, No. 5, 2885–2915
https://doi.org/10.1214/21-AOS2064
© Institute of Mathematical Statistics, 2021

FOUNDATIONS OF STRUCTURAL CAUSAL MODELS WITH CYCLES AND
LATENT VARIABLES

BY STEPHAN BONGERS1,*, PATRICK FORRÉ1,†, JONAS PETERS2 AND JORIS M. MOOIJ3

1Informatics Institute, University of Amsterdam, *s.r.bongers@uva.nl; †p.d.forre@uva.nl
2Department of Mathematical Sciences, University of Copenhagen, jonas.peters@math.ku.dk

3Korteweg–De Vries Institute, University of Amsterdam, j.m.mooij@uva.nl

Structural causal models (SCMs), also known as (nonparametric) struc-
tural equation models (SEMs), are widely used for causal modeling purposes.
In particular, acyclic SCMs, also known as recursive SEMs, form a well-
studied subclass of SCMs that generalize causal Bayesian networks to allow
for latent confounders. In this paper, we investigate SCMs in a more gen-
eral setting, allowing for the presence of both latent confounders and cycles.
We show that in the presence of cycles, many of the convenient properties
of acyclic SCMs do not hold in general: they do not always have a solution;
they do not always induce unique observational, interventional and counter-
factual distributions; a marginalization does not always exist, and if it exists
the marginal model does not always respect the latent projection; they do not
always satisfy a Markov property; and their graphs are not always consistent
with their causal semantics. We prove that for SCMs in general each of these
properties does hold under certain solvability conditions. Our work general-
izes results for SCMs with cycles that were only known for certain special
cases so far. We introduce the class of simple SCMs that extends the class of
acyclic SCMs to the cyclic setting, while preserving many of the convenient
properties of acyclic SCMs. With this paper, we aim to provide the founda-
tions for a general theory of statistical causal modeling with SCMs.

1. Introduction. Structural causal models (SCMs), also known as (nonparametric)
structural equation models (SEMs), are widely used for causal modeling purposes [4, 48,
51, 68]. They form the basis for many statistical methods that aim at inferring knowledge
of the underlying causal structure from data (see, e.g., [7, 34, 42, 45, 52]). In these mod-
els, the causal relationships between the variables are expressed in the form of deterministic,
functional relationships and probabilities are introduced through the assumption that certain
variables are exogenous latent random variables. SCMs arose out of certain causal models
that were first introduced in genetics [74], econometrics [22], electrical engineering [36, 37]
and the social sciences [11, 21].

Acyclic SCMs, also known as recursive SEMs, form a special well-studied subclass of
SCMs that generalize causal Bayesian networks [48]. They have many convenient properties
(see, e.g., [14, 15, 31, 32, 47, 54, 73]): (i) they induce a unique distribution over the variables;
(ii) they are closed under perfect interventions; (iii) they are closed under marginalizations;
(iv) their marginalization respects the latent projection; (v) they obey (various equivalent ver-
sions of) the Markov property and (vi) their graphs express the causal relationships encoded
by the SCM in an intuitive manner.

One important limitation of acyclic SCMs is that they cannot model systems that involve
causal cycles. In many systems occurring in the real world, there are feedback loops between
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observed variables. For example, in economics the price of a product may be a function of the
demanded or supplied quantities, and vice versa, the demanded and supplied quantities may
be functions of the price. The underlying dynamic processes describing such systems have an
acyclic causal structure over time. However, causal cycles may arise when one approximates
such systems over time [16, 39, 40] or when one describes the equilibrium states of these
systems [3, 5, 24, 26, 30, 43, 53]. In particular, in [5] it was shown that the equilibrium states
of a system governed by (random) differential equations can be described by an SCM that
represents their causal semantics, which gives rise to a plethora of SCMs that include cycles
(we provide some examples of such feedback systems in Appendix D.1 of the Supplemen-
tary Material [6]). In contrast to their acyclic counterparts, SCMs with cycles have enjoyed
less attention in the literature and are not as well understood. In general, none of the above
properties (i)–(vi) hold in the class of SCMs. However, some progress has been made in the
case of discrete [46, 49] and linear models [24, 28, 59, 65–67], and more recently, for more
general cyclic models the Markov properties have been elucidated [17].

Contributions. The purpose of this paper is to provide the foundations for a general theory
of statistical causal modeling with SCMs. We study properties of SCMs and allow for cycles,
latent variables and nonlinear functional relationships between the variables. We investigate
to which extent and under which sufficient conditions each of the properties (i)–(vi) holds, in
particular, in the presence of cycles. In the next paragraphs, we describe our contributions in
more detail.

When there are cyclic functional relationships between variables, one encounters various
technical complications, which even arise in the linear setting. The structural equations of an
acyclic SCM trivially have a unique solution. This unique solvability property ensures that
the SCM gives rise to a unique, well-defined probability distribution on the variables. In the
case of cycles, however, this property may be violated, and consequently, the SCM may not
have a solution at all, or may allow for multiple different probability distributions [23]. Even
if one starts with a cyclic SCM that is uniquely solvable, performing an intervention on the
SCM may lead to an intervened SCM that is not uniquely solvable. Hence, a cyclic SCM
may not give rise to a unique, well-defined probability distribution corresponding to that
intervention, and whether or not this happens may depend on the intervention. We provide
sufficient conditions for the existence and uniqueness of these probability distributions after
intervention. In general, it is not clear whether the solutions of the structural equations of an
SCM are measurable if cycles are present. In addition, we provide sufficient and necessary
conditions for the measurability of solution functions of cyclic SCMs.

SCMs provide a detailed modeling description of a system. Not all information may be
necessary for a certain modeling task, which motivates to consider certain classes of SCMs
to be equivalent. In this paper, we formally introduce several of such equivalence relations.
For example, we consider two SCMs observationally equivalent if they cannot be distin-
guished based on observations alone. Observationally, equivalent SCMs can often still be
distinguished by interventions. We consider two SCMs interventionally equivalent if they
cannot be distinguished based on observations and interventions. While these concepts have
been around in implicit form for acyclic SCMs, we formulate them in such a way that they
also apply to cyclic SCMs that have either no solution at all or have multiple different in-
duced probability distributions on the variables. Finally, we consider two SCMs counterfac-
tually equivalent if they cannot be distinguished based on observations and interventions and
in addition encode the same counterfactual distributions, which are the distributions induced
by the so-called twin SCM via the twin network method [1]. These different equivalence re-
lations formalize the different levels of abstraction in the so-called causal hierarchy [50, 64].
In addition, we add another, strong version of equivalence, such that equivalent SCMs have
the same solutions. This notion clarifies ambiguities when a function is constant in one of its
arguments, for example.
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Marginalization becomes useful if not all variables are observed: given a joint probability
distribution on some variables, we obtain a marginal distribution on a subset of the variables
by integrating out the remaining variables. Analogously, we can marginalize an acyclic SCM
by substituting the solutions of the structural equations of a subset of the endogenous vari-
ables into the structural equations of the remaining endogenous variables. For acyclic SCMs,
the induced observational and interventional distributions of the marginalized SCM coincide
with the marginals of the distributions induced by the original SCM (see [14, 15, 70, 73], a.o.).
In other words, for acyclic SCMs the operation of marginalization preserves the probabilistic
and causal semantics (restricted to the remaining variables). We show that for cyclic SCMs
a marginalization does not always exist without further assumptions. In [17], it is shown that
for modular SCMs, which can be seen as an SCM together with an additional structure of a
compatible system of solution functions, a marginalization can be defined that preserves the
probabilistic and causal semantics. We prove that this additional structure is not necessary and
use a local unique solvability condition instead. Under this condition, we show that an SCM
and its marginalization are observationally, interventionally and counterfactually equivalent
on the remaining endogenous variables. Analogously, we define a marginalization operation
on the associated graph of an SCM, which generalizes the latent projection [14, 71, 73]. In
general, the marginalization of an SCM does not respect the latent projection of its associ-
ated graph, but we show that it does so under an additional local ancestral unique solvability
condition.

In graphical models, Markov properties allow one to read off conditional independencies
in a distribution directly from a graph. Various equivalent formulations of Markov properties
exist for acyclic SCMs [31], one prominent example being the d-separation criterion, also
known as the directed global Markov property, which was originally derived for Bayesian
networks [47]. Markov properties have been of key importance to derive various central re-
sults regarding causal reasoning and causal discovery. For cyclic SCMs, however, the usual
Markov properties do not hold in general, as was already pointed out by Spirtes [66]. His
solution in terms of collapsed graphs was recently generalized and reformulated for a gen-
eral class of causal graphical models [17] by adapting the notion of d-separation into what
has been termed σ -separation. This resulted in a general directed global Markov property
expressed in terms of σ -separation instead of d-separation. Here, we formulate these general
Markov properties specifically within the framework of SCMs. Again, they only hold under
certain unique solvability conditions.

In addition to its interpretation in terms of conditional independencies, the graph of an
acyclic SCM also has a direct causal interpretation [48]. As was already observed in [46],
the causal interpretation of SCMs with cycles can be counterintuitive, as the causal semantics
under interventions no longer needs to be compatible with the structure imposed by the func-
tional relations between the variables. We resolve this issue by showing that under certain
ancestral unique solvability conditions the causal interpretation of SCMs is consistent with
its graph.

Cycles lead to several technical complications related to solvability issues. We introduce
a special subclass of (possibly cyclic) SCMs, the class of simple SCMs, for which most of
these technical complications are absent and which preserves much of the simplicity of the
theory for acyclic SCMs. A simple SCM is an SCM that is uniquely solvable with respect
to every subset of the variables. Because of this strong solvability assumption, simple SCMs
have all the convenient properties (i)–(vi): they always have uniquely defined observational,
interventional and counterfactual distributions; we can perform every perfect intervention and
marginalization on them and the result is again a simple SCM; marginalization does respect
the latent projection; they obey the general directed global Markov property, and for special
cases (including the acyclic, linear and discrete case) they obey the (stronger) directed global
Markov property; their graphs have a direct and intuitive causal interpretation.
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FIG. 1. Overview of the objects constructed from an SCM and the mappings between them. The numbers cor-
respond to the definition, proposition or theorem of the corresponding object, mapping or result. When an arrow
is dashed, the relation only holds under nontrivial assumptions that can be found in the corresponding definition
or theorem. The symbol “⊆” stands for the subgraph of a directed mixed graph (see Definition A.1 in the Sup-
plementary Material [6]) and the symbol “�” denotes that the surrounding diagram commutes. Table 1 gives an
overview of the commutativity results for each pair of mappings between the objects with the names in bold.

The scope of this paper is limited to establishing the foundations for statistical causal
modeling with cyclic SCMs (Figure 3 in Appendix A.4 of the Supplementary Material [6]
shows an overview of how SCMs relate to other causal graphical models). For a detailed
discussion of causal reasoning, causal discovery and causal prediction with cyclic SCMs we
refer the reader to other literature (e.g., [13, 20, 24, 25, 55, 57, 58]). Several recent results
(generalizations of the do-calculus, adjustment criteria and an identification algorithm) for
modular SCMs [18, 19] directly apply to the subclass of simple SCMs, as well. Finally, many
causal discovery algorithms that have been designed for the acyclic case also apply to simple
SCMs with no or only minor changes [41, 44].

Overview. Figure 1 gives an overview of the different objects that can be constructed from
an SCM and the different mappings between them. For pairs of mappings between the objects
with the names in bold, we prove commutativity results which are summarized in Table 1.

TABLE 1
Overview of the commutativity results of different pairs of mappings, defined on SCMs

(left table) and on graphs (right table). All results apply under the assumptions stated in
the corresponding proposition. The entries denoted by dots are omitted due to symmetry.

We do not consider the commutativity of the twin operation with itself in this paper.
Proposition 5.11 (in parentheses) is not a commutativity result but a weaker relation.

The graphical twin operator is only defined for directed graphs

SCMs do twin marg

G,Ga 2.14 2.19 (5.11)
do 2.15.(1) 2.21.(1) 5.5.(1)
twin · · · – 5.5.(2)
marg · · · · · · 5.4

Graphs do twin marg

do 2.15.(1) 2.21.(2) 5.9.(1)
twin · · · – 5.9.(2)
marg · · · · · · 5.8
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Outline. This paper is structured as follows: In Section 2, we provide a formal definition of
SCMs and a natural notion of equivalence between SCMs, define the (augmented) graph cor-
responding to an SCM, and describe perfect interventions and counterfactuals. In Section 3,
we discuss the concept of (unique) solvability, its properties and how it relates to self-cycles.
In Section 4, we define and relate various equivalence relations between SCMs. In Section 5,
we define a marginalization operation that is applicable to cyclic SCMs under certain condi-
tions. We discuss several properties of this marginalization operation and discuss the relation
with a marginalization operation defined on directed mixed graphs. In Section 6, we discuss
Markov properties of SCMs. In Section 7, we discuss the causal interpretation of the graphs
of SCMs. Section 8 introduces and discusses the class of simple SCMs.

The Supplementary Material [6] introduces causal graphical models in Appendix A. This
section also contains details on Markov properties and modular SCMs. Appendix B provides
additional (unique) solvability properties, some results for linear SCMs are discussed in Ap-
pendix C, other examples in Appendix D and the proofs of all the theoretical results are in
Appendix E. Appendix F contains some lemmas and measurable selection theorems that are
used in several proofs.

2. Structural causal models. In this section, we provide the definition and properties
of structural causal models (SCMs). Our definition of SCMs slightly deviates from existing
definitions [4, 48, 68], because we make the definition of the SCM independent of the random
variables that solve it. This enables us to deal with the various technical complications that
arise in the presence of cycles.

2.1. Structural causal models and their solutions.

DEFINITION 2.1 (Structural causal model). A structural causal model (SCM) is a tuple1

M := 〈I,J ,X ,E,f ,PE〉,
where:

1. I is a finite index set of endogenous variables,
2. J is a disjoint finite index set of exogenous variables,
3. X = ∏

i∈I Xi is the product of the domains of the endogenous variables, where each
domain Xi is a standard measurable space (see Definition F.1),

4. E = ∏
j∈J Ej is the product of the domains of the exogenous variables, where each

domain Ej is a standard measurable space,
5. f :X × E →X is a measurable function that specifies the causal mechanism,
6. PE = ∏

j∈J PEj
is a product measure, the exogenous distribution, where PEj

is a prob-
ability measure on Ej for each j ∈ J .2

In SCMs, the functional relationships between variables are expressed in terms of deter-
ministic equations, where each equation expresses an endogenous variable (on the left-hand
side) in terms of a causal mechanism depending on endogenous and exogenous variables
(on the right-hand side). This allows us to model interventions in an unambiguous way by
changing the causal mechanisms that target specific endogenous variables (see Section 2.4).

1We often use boldface for variables that have multiple components, for example, vectors in a Cartesian product.
2For the case J =∅, we have that E is the singleton 1 and PE is the degenerate probability measure P1.
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DEFINITION 2.2 (Structural equations). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. We
call the set of equations

xi = fi(x, e)x ∈ X , e ∈ E
for i ∈ I the structural equations of the structural causal model M.

Although it is common to assume the absence of cyclic functional relations (see Defini-
tion 2.9), we make no such assumption here. In particular, we allow for self-cycles, which we
will discuss in more detail in Sections 2.2 and 3.3.

The solutions of an SCM in terms of random variables are defined up to almost sure equal-
ity. Random variables that are almost surely equal are generally considered to be equivalent
to each other for all practical purposes.

DEFINITION 2.3 (Solution). A pair (X,E) of random variables X : � → X , E : � →
E , where � is a probability space, is a solution of the SCM M = 〈I,J ,X ,E,f ,PE〉 if:

1. PE = PE , that is, the distribution of E is equal to PE ,3 and
2. the structural equations are satisfied, that is,

X = f (X,E) a.s.

For convenience, we call a random variable X a solution of M if there exists a random
variable E such that (X,E) forms a solution of M.

Often, the endogenous random variables X can be observed, while the exogenous ran-
dom variables E are treated as latent. Latent exogenous variables are often referred to as
“disturbance terms” or “noise variables.” For a solution X, we call the distribution PX the
observational distribution of M associated to X. In general, there may be multiple different
observational distributions associated to an SCM due to the existence of different solutions
of the structural equations. This is a consequence of the allowance of cycles in SCMs, as the
following simple example illustrates.

EXAMPLE 2.4 (Cyclic SCMs). For brevity, we use throughout this paper the notation
n := {1,2, . . . , n} for n ∈ N. Let M = 〈2,1,R2,R,f ,PR〉 be an SCM4 with f1(x, e) = x2
and f2(x, e) = x1, and PR an arbitrary probability measure on R. Then (X,X) is a solution of
M for any arbitrary random variable X with values in R. Hence, any probability distribution
on {(x, x) : x ∈R} is an observational distribution associated to M. Now consider instead the
same SCM but with f1(x, e) = x2 + 1. This SCM has no solutions at all, and hence induces
no observational distribution.

Due to the fact that the structural equations only need to be satisfied almost surely, there
may exist many different SCMs representing the same set of solutions (see Example D.4).
It therefore seems natural not to differentiate between structural equations that have dif-
ferent solutions on at most a PE -null set of exogenous variables. This leads to an equiv-
alence relation between SCMs. To be able to state the equivalence relation concisely, we
introduce the following notation: For subsets U ⊆ I and V ⊆ J , we write X U := ∏

i∈U Xi

and EV := ∏
j∈V Ej . In particular, X∅ and E∅ are defined by the singleton 1. Moreover, for

3This implies that the components Ej of E are mutually independent, since PE = ∏
j∈J Ej .

4We will abuse notation by using nondisjoint subsets of the natural numbers to index both endogenous and
exogenous variables; these should be understood to be disjoint copies of the natural numbers: if we write I = n

and J = m, we mean instead I = {1,2, . . . , n} and J = {1′,2′, . . . ,m′} where k′ is a copy of k.
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a subset W ⊆ I ∪ J , we use the convention that we write XW and EW instead of XW∩I
and EW∩J , respectively, and we adopt a similar notation for the (random) variables in those
spaces, that is, we write xW and eW instead of xW∩I and eW∩J , respectively. This allows
us to define the following natural equivalence relation for SCMs.5,6

DEFINITION 2.5 (Equivalence). The two SCMs M = 〈I,J ,X ,E,f ,PE〉 and M̃ =
〈I,J ,X ,E, f̃ ,PE〉 are equivalent, denoted by M ≡ M̃, if for all i ∈ I , for PE -almost every
e ∈ E and for all x ∈ X ,

xi = fi(x, e) ⇐⇒ xi = f̃i(x, e).

Thus, two equivalent SCMs can only differ in terms of their causal mechanism. Impor-
tantly, equivalent SCMs have the same solutions and, as we will see in Sections 2.4 and 2.5,
they have the same causal and counterfactual semantics (see Definitions 2.12 and 2.17, re-
spectively). This equivalence relation on the set of all SCMs gives rise to the quotient set of
equivalence classes of SCMs.

2.2. The (augmented) graph. We will now define two types of graphs that can be used
for representing structural properties of the SCM. These graphical representations are related
to Wright’s path diagrams [74]. The structural properties of the functional relations between
variables modeled by an SCM are specified by the causal mechanism of the SCM and can be
encoded in an (augmented) graph. For the graphical notation and standard terminology on di-
rected (mixed) graphs that is used throughout this paper, we refer the reader to Appendix A.1.

We first define the parents of an endogenous variable.

DEFINITION 2.6 (Parent). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. We call k ∈ I ∪J
a parent of i ∈ I if and only if there does not exist a measurable function7 f̃i :X \k × E\k →
Xi such that for PE -almost every e ∈ E and for all x ∈ X ,

xi = fi(x, e) ⇐⇒ xi = f̃i(x\k, e\k).

Exogenous variables have no parents by definition. These parental relations are preserved
under the equivalence relation ≡ on SCMs. They can be represented by a directed graph or a
directed mixed graph.8

5An attempt at coarsening this notion of equivalence by replacing the quantifier “for all x ∈X ” by “for almost

every x ∈ X under the observational distribution PX” will not lead to a well-defined equivalence relation, since
in general the observational distribution PX may be nonunique or even nonexistent. Refining it by replacing the
quantifier “for PE -almost every e ∈ E” by “for all e ∈ E” would make it too fine for our purposes, since we
assume the exogenous distribution to be fixed and we assume as usual that random variables that are almost
surely identical are indistinguishable in practice. Note that the “for PE -almost every e ∈ E” and “for all x ∈ X ”
quantifiers do not commute in general (see Example D.5)

6We may extend this definition to allow J̃ =J and for a larger class of SCMs such that the exogenous distribu-
tion does not factorize. Then, for any M that satisfies Definition 2.1, except for that it may have a nonfactorizing
exogenous distribution, there exists an equivalent SCM with a factorizing exogenous distribution (and a different
J ); the latter can be obtained by partitioning the exogenous components into independent tuples. This moti-
vates why we can restrict ourselves in Definition 2.1 to factorizing exogenous distributions only. For some more
discussion on the representation of latent confounders, see also Example D.6.

7For X = ∏
i∈I Xi , I some index set, I ⊆ I and k ∈ I , we denote X \I = ∏

i∈I\I Xi and X \k = ∏
i∈I\{k}Xi ,

and similarly for their elements.
8A directed mixed graph G = (V,E,B) consists of a set of nodes V , a set of directed edges E and a set of

bidirected edges B (see Definition A.1 for a more precise definition).
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DEFINITION 2.7 (Graph and augmented graph). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM. We define:

1. the augmented graph Ga(M) as the directed graph with nodes I∪J and directed edges
u → v if and only if u ∈ I ∪J is a parent of v ∈ I;

2. the graph G(M) as the directed mixed graph with nodes I , directed edges u → v if
and only if u ∈ I is a parent of v ∈ I and bidirected edges u ↔ v if and only if there exists a
j ∈ J that is a parent of both u ∈ I and v ∈ I .

We call the mappings Ga and G, that map M to Ga(M) and G(M), the augmented graph
mapping and the graph mapping, respectively.

In particular, the augmented graph contains no directed edges pointing toward an exoge-
nous variable, that is, u ∈ I∪J cannot be a parent of v ∈ J , because they are not functionally
related through the causal mechanism. We call a directed edge i → i in Ga(M) and G(M)

(here, i is a parent of itself) a self-cycle at i. By definition, the mappings Ga and G are invari-
ant under the equivalence relation ≡ on SCMs, and hence the equivalence class of an SCM
M is mapped to a unique augmented graph Ga(M) and a unique graph G(M).

EXAMPLE 2.8 (Graphs of an SCM). Let M = 〈5,3,R5,R3,f ,PR3〉 be an SCM with
causal mechanism given by

f1(x, e) = x1 − x2
1 + αe2

1, f3(x, e) = −x4 + e2, f5(x, e) = x4 · e3,

f2(x, e) = x1 + x3 + x4 + e1, f4(x, e) = x2 + e2,

where α = 0 and PR3 is a product of three probability measures PR over R that are nonde-
generate. The augmented graph Ga(M) and the graph G(M) of M are depicted9 in Figure 2
(left and center). Observe that if α had been equal to zero, then the endogenous variable 1
would not have any parents in Ga(M), that is, it would not have a self-cycle and directed
edge from any exogenous variables in Ga(M), and it would not have a self-cycle and bidi-
rected edge from any other variable in G(M). Moreover, if one of the probability measures
PR over R were degenerate, then some of the directed edges from the exogenous variables to
the endogenous variables in the augmented graph Ga(M) and bidirected edges in the graph
G(M) would be missing.

As is illustrated in this example, the augmented graph provides a more detailed represen-
tation than the graph. Therefore, we use the augmented graph as the standard graphical repre-
sentation for SCMs, unless stated otherwise. For an SCM M, we denote the sets paGa(M)(U),
chGa(M)(U), anGa(M)(U), etc., for some subset U ⊆ I ∪ J , by respectively pa(U), ch(U),
an(U), etc., when the notation is clear from the context.

FIG. 2. The augmented graph (left) and the graph (center) of the SCM M of Example 2.8 and the graph of the
intervened SCM Mdo({3},1) of Example 2.16 (right).

9For visualizing an (augmented) graph, we adapt the common convention of using random variables, with the
index set as a subscript, instead of using the index set itself. With a slight abuse of notation, we still use the random
variables notation in the (augmented) graph in the case that the SCM has no solution at all.
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DEFINITION 2.9. We call an SCM M acyclic if Ga(M) is a directed acyclic graph
(DAG). Otherwise, we call M cyclic.

Equivalently, an SCM M is acyclic if G(M) is an acyclic directed mixed graph (ADMG)
[54]. Acyclic SCMs are also known as semi-Markovian SCMs [48, 71]. A commonly con-
sidered class of acyclic SCMs are the Markovian SCMs, which are acyclic SCMs for which
each exogenous variable has at most one child. Several Markov properties were first shown
for these models [32, 48, 71].

2.3. Structurally minimal representations. We have discussed an equivalence relation
between SCMs in Section 2.1. In this subsection, we show that for each SCM there exists a
representative of the equivalence class of that SCM for which each component of the causal
mechanism does not depend on its nonparents (see also [51]).

DEFINITION 2.10 (Structurally minimal SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM. We call M structurally minimal if for all i ∈ I there exists a mapping f̃i : X pa(i) ×
Epa(i) → Xi such that fi(x, e) = f̃i(xpa(i), epa(i)) for all e ∈ E and all x ∈ X .

We already encountered a structurally minimal SCM M in Example 2.8. Taking instead
α = 0 in that example gives an SCM M that is not structurally minimal, since the endogenous
variable 1 is then not a parent of itself, while f1(x, e) depends on x1. However, the equivalent
SCM where we have replaced the causal mechanism of 1 by f1(x, e) = 0 yields a structurally
minimal SCM. In general, there always exists an equivalent structurally minimal SCM.

PROPOSITION 2.11 (Existence of a structurally minimal SCM). For an SCM M =
〈I,J ,X ,E,f ,PE〉, there exists an equivalent SCM M̃ = 〈I,J ,X ,E, f̃ ,PE〉 that is struc-
turally minimal.

For a causal mechanism f :X ×E →X and a subset U ⊆ I , we write f U :X ×E →X U
for the U components10 of f . A structurally minimal representation is compatible with
the (augmented) graph, in the sense that for every U ⊆ I there exists a unique measur-
able mapping f̃ U : X pa(U) × Epa(U) → X U such that f U (x, e) = f̃ U (xpa(U), epa(U)) for all
e ∈ E and all x ∈ X . Moreover, for any U ⊆ I there exists a unique measurable mapping
f̃ an(U) :X an(U) × Ean(U) →X an(U) with f an(U)(x, e) = f̃ U (xan(U), ean(U)) for all e ∈ E and
all x ∈ X .

2.4. Interventions. To define the causal semantics of SCMs, we consider here an ideal-
ized class of interventions introduced by Pearl [48] that we refer to as perfect interventions.
Other types of interventions, like mechanism changes [72], fat-hand interventions [12], ac-
tivity interventions [42] and stochastic versions of all these are at least as relevant, but we do
not consider them here.

DEFINITION 2.12 (Perfect intervention on an SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be
an SCM, I ⊆ I a subset of endogenous variables and ξ I ∈X I a value. The perfect interven-
tion do(I, ξ I ) maps M to the SCM Mdo(I,ξ I )

:= 〈I,J ,X ,E, f̃ ,PE〉, where the intervened

causal mechanism f̃ is given by

f̃i(x, e) =
{
ξi, i ∈ I,

fi(x, e), i ∈ I \ I.

10For U =∅, we always consider the trivial mapping f∅ : X × E →X∅ where X∅ is the singleton 1.
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This operation do(I, ξ I ) preserves the equivalence relation (see Definition 2.5) on the set
of all SCMs, and hence this mapping induces a well-defined mapping on the set of equiva-
lence classes of SCMs. Previous work has considered interventions only on a specific subset
of endogenous variables [2, 3, 62]. Instead, we assume that we can intervene on any subset
of endogenous variables in the model.

We define an analogous operation do(I ) on directed mixed graphs.

DEFINITION 2.13 (Perfect intervention on a directed mixed graph). Let G = (V,E,B)

be a directed mixed graph and I ⊆ V a subset. The perfect intervention do(I ) maps G to
the directed mixed graph do(I )(G) := (V, Ẽ, B̃), where Ẽ = E \ {v → i : v ∈ V, i ∈ I } and
B̃ = B \ {v ↔ i : v ∈ V, i ∈ I}.

This operation simply removes all incoming edges on the nodes in I . The two notions of
intervention are compatible with the (augmented) graph mapping.

PROPOSITION 2.14. Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM, I ⊆ I a subset of en-
dogenous variables and ξ I ∈X I a value. Then (Ga ◦do(I, ξ I ))(M) = (do(I )◦Ga)(M) and
(G ◦ do(I, ξ I ))(M) = (do(I ) ◦ G)(M).

The two notions of perfect intervention satisfy the following elementary properties.

PROPOSITION 2.15. For an SCM and a directed mixed graph, we have the following
properties:

1. perfect interventions on disjoint subsets of variables commute;
2. acyclicity is preserved under perfect intervention.

The following example shows that an SCM with a solution may not have a solution any-
more after performing a perfect intervention on the SCM, and vice versa that an SCM without
a solution may yield an SCM with a solution after intervention.

EXAMPLE 2.16 (Intervened SCM and its graphs). Consider the SCM M of Example 2.8
which has a solution if and only if α ≥ 0. Applying the perfect intervention do({3},1) to M
gives the intervened model Mdo({3},1) with the intervened causal mechanism

f̃1(x, e) = x1 − x2
1 + αe2

1, f̃3(x, e) = 1, f̃5(x, e) = x4 · e3,

f̃2(x, e) = x1 + x3 + x4 + e1, f̃4(x, e) = x2 + e2,

for which the graph G(Mdo({3},1)) is depicted in Figure 2 (right). This is an example where
a perfect intervention leads to an intervened SCM Mdo({3},1) that does not have a solution
anymore. In addition, performing a perfect intervention do({4},1) on Mdo({3},1) yields again
an SCM with a solution for α ≥ 0.

Recall that for each solution X of an SCM M we call the distribution PX the observa-
tional distribution of M associated to X. For cyclic SCMs, the observational distribution is
in general not unique.11 For example, the SCM M of Example 2.8 has two different observa-
tional distributions if α > 0. Similarly, an intervened SCM may induce a distribution that is

11In order to assure the existence of a unique observational distribution it is common to consider only SCMs for
which the structural equations have a unique solution (see, e.g., Definition 7.1.1 in [48]). Although these SCMs
induce a unique observational distribution, they generally do not induce a unique distribution after a perfect
intervention.
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not unique. Whenever the intervened SCM Mdo(I,ξ I )
has a solution X we therefore call the

distribution PX the interventional distribution of M under the perfect intervention do(I, ξ I )

associated to X.12

2.5. Counterfactuals. The causal semantics of an SCM are described by the interven-
tions on the SCM. Adding another layer of complexity, one can describe the counterfactual
semantics of an SCM by the interventions on the so-called twin SCM, an idea introduced in
[1].

DEFINITION 2.17 (Twin SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. The twin
operation maps M to the twin structural causal model (twin SCM)

Mtwin := 〈
I ∪ I ′,J ,X ×X ,E, f̃ ,PE

〉
,

where I ′ = {i′ : i ∈ I} is a copy of I and the causal mechanism f̃ : X ×X × E → X ×X
is the measurable function given by f̃ (x,x′, e) = (f (x, e),f (x′, e)).

The twin operation on SCMs preserves the equivalence relation ≡ on the set of all SCMs.
We define an analogous twin operation twin(I) on directed graphs.

DEFINITION 2.18 (Twin graph). Let G = (V,E) be a directed graph and I ⊆ V a subset
such that J := V \ I is exogenous, that is, paG(J ) = ∅. The twin(I) operation maps G to
the twin graph w.r.t. I defined by twin(I)(G) := (Ṽ, Ẽ), where:

1. Ṽ = V ∪ I ′, where I ′ is a copy of I ,
2. Ẽ = E ∪ E ′, where E ′ is given by

E ′ = {
j → i ′ : j ∈ J , i ∈ I, j → i ∈ E

} ∪ {
ĩ′ → i ′ : ĩ, i ∈ I, ĩ → i ∈ E

}
with i′, ĩ′ ∈ I ′ the respective copies of i, ĩ ∈ I .

Twin operations are compatible with the augmented graph mapping and preserve acyclic-
ity.

PROPOSITION 2.19. Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. Then (Ga ◦ twin)(M) =
(twin(I) ◦ Ga)(M).

PROPOSITION 2.20. For SCMs and directed graphs, we have that acyclicity is preserved
under the twin operation.

The perfect intervention and the twin operation for SCMs and directed graphs commute
with each other in the following way.

PROPOSITION 2.21. Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM and G = (V,E) a di-
rected graph. Then we have that perfect intervention commutes with the twin operation on
both:

1. the SCM M: for a subset I ⊆ I and value ξ I ∈ X I , (do(I ∪ I ′, ξ I∪I ′)) ◦ twin)(M) =
(twin ◦ do(I, ξ I ))(M), and

2. the directed graph G: for subsets I ⊆ I ⊆ V such that J := V \I is exogenous, (do(I ∪
I ′) ◦ twin(I))(G) = (twin(I) ◦ do(I ))(G),

where I ′ is the copy of I in I ′ and ξ I ′ = ξ I .

12In the literature, one often finds the notation p(x) and p(x |do(XI = xI )) for the densities of the observational
and interventional distribution, respectively, in case these are uniquely defined by the SCM (e.g., [48]).
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Whenever the intervened twin SCM (Mtwin)do(Ĩ ,ξ
Ĩ
)
, where Ĩ ⊆ I ∪ I ′ and ξ

Ĩ
∈ X

Ĩ
, has

a solution (X,X′), we call the distribution P(X,X′) the counterfactual distribution of M un-
der the perfect intervention do(Ĩ , ξ

Ĩ
) associated to (X,X′). In Example D.3, we provide an

example of how counterfactuals can be sensibly formulated for a well-known market equilib-
rium model described in terms of a cyclic SCM.

The interpretation of counterfactual statements has received a lot of attention in the litera-
ture [1, 8, 33, 48, 61]. For acyclic graphs, an alternative graphical approach to counterfactuals
is the framework of Single World Intervention Graphs (SWIGs) [60]. One topic of discussion
is that there exist SCMs that induce the same observational and interventional distributions,
but differ in their counterfactual statements [10] (see also Example D.7). This raises the ques-
tion how one can estimate such SCMs from data.

3. Solvability. In this section, we introduce the notions of solvability and unique solv-
ability with respect to a subset of the endogenous variables of an SCM. They describe the
existence and uniqueness of measurable solution functions for the subsystem of structural
equations that correspond with a certain subset of the endogenous variables. These notions
play a central role in formulating sufficient conditions under which several properties of
acyclic SCMs may be extended to the cyclic setting. For example, we show that solvability
of an SCM is a sufficient and necessary condition for the existence of a solution of an SCM.
Further, unique solvability of an SCM implies the uniqueness of the induced observational
distribution.

3.1. Definition of solvability. Intuitively, one can think of the structural equations corre-
sponding to a subset of endogenous variables O ⊆ I as a description of how the subsystem
formed by the variables O interacts with the rest of the system I \ O through the variables
pa(O) \ O. A solution function w.r.t. O assigns each input value (xpa(O)\O, epa(O)) of this
subsystem to a specific output value xO of the subsystem. This is formalized as follows.

DEFINITION 3.1 (Solvability). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. We call M
solvable w.r.t. O ⊆ I if there exists a measurable mapping gO : X pa(O)\O × Epa(O) → XO
such that for PE -almost every e ∈ E and for all x ∈ X ,

xO = gO(xpa(O)\O, epa(O)) =⇒ xO = fO(x, e).

We then call gO a measurable solution function w.r.t. O for M. We call M solvable if it is
solvable w.r.t. I .

By definition, solvability w.r.t. a subset respects the equivalence relation ≡ on SCMs. The
measurable solution functions w.r.t. a certain subset do not always exist, and if they exist,
they are not always uniquely defined. For example, for the SCM M in Example 2.8, the

measurable solution functions w.r.t. {1} are given by g±
1 (e1) = ±

√
αe2

1 if and only if α ≥ 0.
The following theorem states that various possible notions of “solvability” are equivalent.

THEOREM 3.2 (Sufficient and necessary conditions for solvability). For an SCM M =
〈I,J ,X ,E,f ,PE〉, the following are equivalent:

1. M has a solution (see Definition 2.3);
2. for PE -almost every e ∈ E the structural equations x = f (x, e) have a solution x ∈X ;
3. M is solvable (see Definition 3.1).
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While in the acyclic case, the above theorem is almost trivial, in the cyclic case the
measure-theoretic aspects are not that obvious. In particular, to prove the existence of a mea-
surable solution function g : Epa(I) → X in case the structural equations have a solution
for almost every e ∈ E , we make use of a strong measurable selection theorem (see Theo-
rem F.8 or [27]). This theorem implies that if there exists a solution X : � → X , then there
necessarily exists a random variable E : � → E and a mapping g : Epa(I) → X such that
g(Epa(I)) is a solution. However, it does not imply that there necessarily exists a random
variable E : � → E and a mapping g : Epa(I) → X such that X = g(Epa(I)) holds a.s., for
example, if X is a nontrivial mixture of such solutions (see Example D.8).

Solvability w.r.t. a strict subset of I is in general neither sufficient nor necessary for the ex-
istence of a (global) solution of the SCM. Consider, for example, the SCM M in Example 2.8
with α < 0. Even though this SCM is solvable w.r.t. {2,3,4}, it is not (globally) solvable, and
hence does not have any solution. In Proposition B.1, we provide a sufficient condition for
solvability w.r.t. a strict subset of I that is similar to condition (2) in Theorem 3.2 in the
sense that it is formulated in terms of the solutions of (a subset of) the structural equations
without requiring measurability of the solutions. For the class of linear SCMs, we provide in
Proposition C.2 a sufficient and necessary condition for solvability w.r.t. a subset of I .

3.2. Unique solvability. The notion of unique solvability w.r.t. a subset O ⊆ I is similar
to the notion of solvability, but with the additional requirement that the measurable solution
function gO : X pa(O)\O × Epa(O) →XO is unique up to a PE -null set.

DEFINITION 3.3 (Unique solvability). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. We
call M uniquely solvable w.r.t. O ⊆ I if there exists a measurable mapping gO :X pa(O)\O ×
Epa(O) →XO such that for PE -almost every e ∈ E and for all x ∈ X ,

xO = gO(xpa(O)\O, epa(O)) ⇐⇒ xO = fO(x, e).

We call M uniquely solvable if it is uniquely solvable w.r.t. I .

If M ≡ M̃ and M is uniquely solvable w.r.t. O, then M̃ is uniquely solvable w.r.t. O,
too, and the same mapping gO is a measurable solution function w.r.t. O for both M and M̃.

The following result explains why the notions of (unique) solvability do not play an im-
portant role in the theory of acyclic SCMs.

PROPOSITION 3.4. An acyclic SCM M = 〈I,J ,X ,E,f ,PE〉 is uniquely solvable w.r.t.
every subset O ⊆ I .

We now illustrate that also cyclic SCMs can be uniquely solvable w.r.t. every subset.

EXAMPLE 3.5 (Cyclic SCM, uniquely solvable w.r.t. each subset). Consider the SCM
M = 〈4,4,R4,R4,f ,PR4〉 with causal mechanism given by

f1(x, e) = e1, f2(x, e) = e2, f3(x, e) = x1x4 + e3, f4(x, e) = x2x3 + e4

and PR4 the standard-normal distribution on R4. This SCM M is uniquely solvable w.r.t.
every subset and its (augmented) graph includes a cycle (see Figure 3).

FIG. 3. Left: The graphs of the observationally equivalent SCMs M and M̃ of Examples 3.5 and 4.2, respec-
tively. Right: The graphs of the interventionally equivalent SCMs M̄ and M̂ of Example 4.4.
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Theorem 3.2 provides sufficient and necessary conditions for (global) solvability. The next
theorem states that under the additional uniqueness requirement there exists a sufficient and
necessary condition for unique solvability w.r.t. any subset (for solvability w.r.t. a subset
we only have the sufficient condition provided in Proposition B.1), and moreover, that all
solutions of a uniquely solvable SCM induce the same observational distribution.

THEOREM 3.6 (Sufficient and necessary conditions for unique solvability). Let M =
〈I,J ,X ,E,f ,PE〉 be an SCM and O ⊆ I a subset. The following are equivalent:

1. for PE -almost every e ∈ E and for all x\O ∈ X \O the structural equations

xO = fO(x, e)

have a unique solution xO ∈XO;
2. M is uniquely solvable w.r.t. O.

Furthermore, if M is uniquely solvable, then there exists a solution, and all solutions have
the same observational distribution.

It is well known that under acyclicity the observational distribution is unique. Theorem 3.6
generalizes this result to settings with cycles. For linear SCMs, the unique solvability condi-
tion w.r.t. a subset is equivalent to a matrix invertibility condition (see Proposition C.3).

In general, (unique) solvability w.r.t. O ⊆ I does not imply (unique) solvability w.r.t.
a strict superset O � V ⊆ I nor w.r.t. a strict subset W � O (see Example B.2). More-
over, (unique) solvability is in general not preserved under unions and intersections (see Ap-
pendix B.3).

3.3. Self-cycles. One can think of a structural equation of a single endogenous variable
i ∈ I as describing a small subsystem that interacts with the rest of the system. If the output
xi of this subsystem is uniquely determined by the input (x\i , e) from the rest of the system
(up to a PE -null set), then i is not a parent of itself (see Definition 2.6).

PROPOSITION 3.7 (Self-cycles). The SCM M = 〈I,J ,X ,E,f ,PE〉 is uniquely solv-
able w.r.t. {i} for i ∈ I if and only if Ga(M) (or G(M)) has no self-cycle i → i at i ∈ I .

A self-cycle at an endogenous variable denotes that that variable is not uniquely deter-
mined by its parents, up to a PE -null set. This implies that an SCM with a self-cycle at an
endogenous variable in its graph can be either solvable, or not solvable, w.r.t. that variable. For
the SCM M of Example 2.8, we have indeed that it is solvable w.r.t. {1} for α > 0, while for
α < 0 it is not. For linear SCMs with structural equations Xi = ∑

j∈I BijXj + ∑
k∈J �ikEk ,

the endogenous variable i ∈ I has a self-cycle if and only if Bii = 1 (see also Appendix C).

3.4. Interventions. The property of (unique) solvability is in general not preserved un-
der perfect intervention. For example, a (uniquely) solvable SCM can lead to a nonuniquely
solvable SCM after intervention, which either has no solution or has solutions with multiple
induced distributions (see, e.g., Examples 2.16 and D.9). A sufficient condition for the inter-
vened SCM to be (uniquely) solvable is that the original SCM has to be (uniquely) solvable
w.r.t. the subset of nonintervened endogenous variables.

PROPOSITION 3.8. Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM that is (uniquely) solvable
w.r.t. O ⊆ I . Then, for any set I such that pa(O) \ O ⊆ I ⊆ I \ O and value ξ I ∈ X I the
intervened SCM Mdo(I,ξ I )

is (uniquely) solvable w.r.t. O ∪ I .
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Proposition 3.4 shows that acyclic SCMs are uniquely solvable w.r.t. every subset and
hence are uniquely solvable after every perfect intervention. This also directly follows from
the fact that acyclicity is preserved under perfect intervention (see Proposition 2.15). More-
over, since acyclicity is preserved under the twin operation (see Proposition 2.20), an acyclic
SCM induces unique observational, interventional and counterfactual distributions.

3.5. Ancestral (unique) solvability. We saw that, in general, solvability w.r.t. O ⊆ I does
not imply solvability w.r.t. a strict subset of O. Here we show that it does imply solvability
w.r.t. the ancestral subsets in G(M)O, that is, in the induced subgraph of the graph G(M)

on O. A subset A ⊆ O is called an ancestral subset in G(M)O if A = anG(M)O(A), where
anG(M)O(A) are the ancestors of A according to the induced subgraph13 G(M)O .

DEFINITION 3.9 (Ancestral (unique) solvability). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM. We call M ancestrally (uniquely) solvable w.r.t. O ⊆ I if M is (uniquely) solvable
w.r.t. every ancestral subset in G(M)O. We call M ancestrally (uniquely) solvable if it is
ancestrally (uniquely) solvable w.r.t. I .

PROPOSITION 3.10 (Solvability is equivalent to ancestral solvability). The SCM M =
〈I,J ,X ,E,f ,PE〉 is solvable w.r.t. the subset O ⊆ I if and only if M is ancestrally solv-
able w.r.t. O.

A similar result does not hold for unique solvability. Although ancestral unique solvability
w.r.t. O ⊆ I implies unique solvability w.r.t. O, the converse does not hold in general, as the
following example illustrates.

EXAMPLE 3.11 (Unique solvability w.r.t. O does not imply ancestral unique solvability
w.r.t. O). Consider the SCM M = 〈4,1,R4,R,f ,PR〉 with causal mechanism given by

f1(x, e) = e, f2(x, e) = x2 · (
1 − 1{0}(x1 − x3)

) + 1,

f3(x, e) = x3, f4(x, e) = x3

and PR the standard-normal measure on R. This SCM is uniquely solvable w.r.t. the set
{2,3}, and thus solvable w.r.t. this set. Although it is solvable w.r.t., the ancestral subset {3}
in G(M){2,3}, depicted in Figure 4 (left), it is not uniquely solvable w.r.t. this subset, because
the structural equation x3 = x3 holds for any x3 ∈ R. Hence, it is not ancestrally uniquely
solvable w.r.t. {2,3}.

However, for the class of linear SCMs we have that unique solvability w.r.t. O always
implies ancestral unique solvability w.r.t. O (see Proposition C.4).

FIG. 4. The graphs of the SCM M (left) of Example 3.11 and the marginal SCM Mmarg({2,3}) (right) of Exam-
ple 5.10.

13Here, one can also use the augmented graph Ga(M) on O since anG(M)O (A) = anGa(M)O (A) for every
subset A ⊆ O ⊆ I .
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Although in general unique solvability is not preserved under unions, in Proposition B.4
we show that if an SCM is uniquely solvable w.r.t. two ancestral subsets and w.r.t. their
intersection, then it is uniquely solvable w.r.t. their union. In general, the property of ancestral
unique solvability is not preserved under perfect intervention, as can be seen in Example D.9.
The notion of ancestral unique solvability will appear in various results in Sections 5 and 6.

4. Equivalences. In Section 2, we already encountered an equivalence relation on the
class of SCMs (see Definition 2.5). The (augmented) graph of an SCM, its solutions and
its induced observational, interventional and counterfactual distributions are preserved under
this equivalence relation. In this section, we give several coarser equivalence relations on the
class of SCMs: observational, interventional and counterfactual equivalence.

4.1. Observational equivalence. Observational equivalence is the property that two
SCMs are indistinguishable on the basis of their observational distributions.

DEFINITION 4.1 (Observational equivalence). Two SCMs M = 〈I,J ,X ,E,f ,PE〉
and M̃ = 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉 are observationally equivalent w.r.t. O ⊆ I ∩ Ĩ , denoted by
M ≡obs(O) M̃, if XO = X̃O and for all solutions X of M there exists a solution X̃ of M̃
such that PXO = PX̃O and for all solutions X̃ of M̃ there exists a solution X of M such that
PXO = PX̃O . M and M̃ are called observationally equivalent if they are observationally
equivalent w.r.t. I = Ĩ .

Equivalent SCMs have the same solutions, and hence they are observationally equivalent
w.r.t. every subset O ⊆ I . However, observational equivalence does not imply equivalence.

EXAMPLE 4.2 (Observational equivalence does not imply equivalence). Consider the
SCM M̃ that is the same as M of Example 3.5 but with the causal mechanism f̃ given by

f̃1(x, e) := e1, f̃2(x, e) := e2, f̃3(x, e) := x1e4 + e3

1 − x1x2
, f̃4(x, e) := x2e3 + e4

1 − x1x2
.

This SCM M̃ is observationally equivalent to the SCM M. Because both SCMs have a
different (augmented) graph they are not equivalent to each other (see Figure 3).

This example shows that if two SCMs M and M̃ are observationally equivalent, then their
associated augmented graphs Ga(M) and Ga(M̃) are not necessarily equal to each other.

4.2. Interventional equivalence. We consider two SCMs to be interventionally equiva-
lent if they induce the same interventional distributions under all perfect interventions.

DEFINITION 4.3 (Interventional equivalence). Two SCMs M = 〈I,J ,X ,E,f ,PE〉
and M̃ = 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉 are interventionally equivalent w.r.t. O ⊆ I ∩ Ĩ , denoted by
M ≡int(O) M̃, if XO = X̃O and for every I ⊆ O and every value ξ I ∈ X I their intervened
models Mdo(I,ξ I )

and M̃do(I,ξ I )
are observationally equivalent with respect to O. M and M̃

are called interventionally equivalent if they are interventionally equivalent w.r.t. I = Ĩ .

Equivalent SCMs have the same solutions under every perfect intervention, and hence
they are interventionally equivalent w.r.t. every subset O ⊆ I . SCMs that are interventionally
equivalent w.r.t. a subset O ⊆ I are interventionally equivalent w.r.t. every strict subset W �

O. But in general, they are not interventionally equivalent w.r.t. a strict superset O � V ⊆ I ,



FOUNDATIONS OF STRUCTURAL CAUSAL MODELS 2901

as can be seen in Example 4.2, where the SCMs M and M̃ are interventionally equivalent
w.r.t. {1,2} but are not interventionally equivalent. Interventional equivalence w.r.t. O ⊆ I
implies observational equivalence w.r.t. O, since the empty perfect intervention (I = ∅) is a
special case of a perfect intervention. However, observational equivalence w.r.t. O ⊆ I does
not imply interventional equivalence w.r.t. O in general, as can be seen in Example 4.2, where
the SCMs M and M̃ are observationally equivalent but not interventionally equivalent.

Although interventional equivalence is a finer notion than observational equivalence, we
have that if two SCMs M and M̃ are interventionally equivalent, then their associated aug-
mented graphs Ga(M) and Ga(M̃) are not necessarily equal to each other.

EXAMPLE 4.4 (Interventionally equivalent SCMs with different graphs). Consider the
SCM M̄ = 〈2,2, {−1,1}2, {−1,1}2, f̄ ,PE〉 and the SCM M̂ that is the same as M̄ except
for its causal mechanism f̂ , where the causal mechanisms are given by

f̄1(x, e) = e1, f̄2(x, e) = x1e2, f̂1(x, e) = e1, f̂2(x, e) = e2,

and PE = PE with E1,E2 ∼ U({−1,1}) uniformly distributed and E1 ⊥⊥E2. Then M̄ and
M̂ are interventionally equivalent although G(M̄) is not equal to G(M̂) (see Figure 3).

Example D.6 showcases an SCM with two endogenous and three exogenous variables, for
which there is no interventionally equivalent SCM (satisfying smoothness constraints) with
one exogenous variable taking values in R2 whose first and second components enter in the
first and second structural equation, respectively. In this sense, representing confounders with
dependent exogenous variables can be nontrivial in nonlinear models.

4.3. Counterfactual equivalence. We consider two SCMs to be counterfactually equiv-
alent if their twin SCMs induce the same counterfactual distributions under every perfect
intervention.

DEFINITION 4.5 (Counterfactual equivalence). Two SCMs M = 〈I,J ,X ,E,f ,PE〉
and M̃ = 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉 are counterfactually equivalent with respect to O ⊆ I ∩ Ĩ ,
denoted by M ≡cf(O) M̃, if Mtwin and M̃twin are interventionally equivalent with respect to
O ∪O′, where O′ corresponds to the copy of O in I ′ ∩ Ĩ ′. M and M̃ are called counterfac-
tually equivalent if they are counterfactually equivalent with respect to I = Ĩ .

The notion of counterfactual equivalence is coarser than equivalence and finer than inter-
ventional equivalence.

PROPOSITION 4.6. For SCMs, we have that equivalence implies counterfactual equiva-
lence w.r.t. O, which in turn implies interventional equivalence w.r.t. O, for any O ⊆ I .

Interventionally equivalent SCMs that have the same causal mechanism (that differ only in
their exogenous distribution) may not be counterfactually equivalent (see, e.g., Example D.7).
Although the notion of counterfactual equivalence is finer than the notion of observational and
interventional equivalence, the (augmented) graphs for counterfactually equivalent SCMs are
in general not equal to each other (see Example D.10).
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4.4. Relations between equivalences. The definitions of observational, interventional
and counterfactual equivalence provide equivalence relations on the set of all SCMs. For two
SCMs to be observationally, interventionally or counterfactually equivalent w.r.t. O ⊆ I ∩ Ĩ ,
the domains of their endogenous variables O have to be equal, that is, XO = X̃O . Apart from
that, the index sets of the endogenous and the exogenous variables, the spaces of the other
endogenous and exogenous variables, the causal mechanism and the exogenous probabil-
ity measure may all differ. The observational, interventional and counterfactual equivalence
classes w.r.t. O ⊆ I ∩ Ĩ are related in the following way (see Proposition 4.6):

M and M̃ are equivalent =⇒ M and M̃ are counterfactually equivalent w.r.t. O

=⇒ M and M̃ are interventionally equivalent w.r.t. O

=⇒ M and M̃ are observationally equivalent w.r.t. O.

This hierarchy allows us to compare SCMs at different levels of abstraction and formally
establishes the “ladder” of causation (last two implications) [48, 50, 64].

5. Marginalizations. In this section, we show how, and under which condition, one can
marginalize an SCM over a subset L ⊆ I of endogenous variables (thereby “hiding” the
variables L), to another SCM on the margin I \ L that is observationally, interventionally
and even counterfactually equivalent with respect to I \ L. In other words, we provide a
formal notion of marginalization and show that this preserves the probabilistic, causal and
counterfactual semantics on the margin.

The problem of marginalization of directed graphical models has been addressed for
acyclic graph structures, for example, ADMGs and mDAGs (see [14, 15, 54, 56, 73], a.o.),
and more recently in [17] for certain graph structures (“HEDGes”) that may include cycles.
Although in the acyclic setting it has been shown that the marginalization for some of these
graph structures preserves the probabilistic and causal semantics, in the cyclic setting this has
only been shown for modular SCMs [17]. We show that without the additional structure of a
compatible system of solution functions (see Appendix A.3) one can still define a marginal-
ization for SCMs under certain local unique solvability conditions. Intuitively, the idea is that
if the state of a subsystem of endogenous variables is uniquely determined by the parents
outside of this subsystem, then one can ignore the internals of this subsystem by treating it as
a “black box” that can be described by certain measurable solution functions (see Figure 4).
One can marginalize over this subsystem by substituting these measurable solution functions
into the rest of the model, thereby removing the functional dependencies on the variables of
the subsystem from the rest of the system, while preserving the probabilistic, causal and the
counterfactual semantics of the rest of the system. We show that in general this marginal-
ization operation defined on SCMs does not respect the latent projection on its associated
(augmented) graph, where the latent projection is a similar marginalization operation defined
on directed mixed graphs [14, 71, 73]. We show that under certain stronger local ancestral
unique solvability conditions the marginalization does respect the latent projection.

5.1. Marginalization of a structural causal model. Before we show how one can
marginalize an SCM w.r.t. a subset of endogenous variables, we first point out that in general
it is not always possible to find an SCM on the margin that preserves the causal semantics, as
the following example illustrates.

EXAMPLE 5.1 (No SCM on the margin preserves the causal semantics). Consider the
SCM M = 〈3,∅,R3,1,f ,P1〉 with causal mechanism f1(x) = x1 + x2 + x3, f2(x) = x2,
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f3(x) = 0. Then there exists no SCM M̃ on the endogenous variables {2,3} that is interven-
tionally equivalent to M w.r.t. {2,3}. To see this, suppose there exists such an SCM M̃, then
for every (ξ2, ξ3) ∈ X {2,3} such that ξ2 + ξ3 = 0 the intervened model M̃do({2,3},(ξ2,ξ3)) has a
solution but Mdo({2,3},(ξ2,ξ3)) does not.

More generally, for an SCM M that is not solvable w.r.t. a subset L ⊆ I there is no SCM
M̃ on the endogenous variables I \L that is interventionally equivalent w.r.t. I \L.

The following example illustrates that for an SCM that is uniquely solvable w.r.t. a subset
there exists an SCM on the margin that preserves the causal semantics.

EXAMPLE 5.2 (SCM on the margin that preserves the causal semantics). Consider the
SCM M of Example 3.11 that is uniquely solvable w.r.t. the subset L = {2,3} (depicted by
the gray box in Figure 4). Substituting the measurable solution functions gL into the causal
mechanism components f1 and f4 for the remaining endogenous variables {1,4} gives a
“marginal” causal mechanism f̃1(x, e) := e and f̃4(x, e) := x1. This defines an SCM M̃ on
the margin I \L= {1,4} that is interventionally equivalent w.r.t. I \L to M.

In general, for an SCM M and a given subset L ⊆ I of endogenous variables and
its complement O = I \ L, we can consider the “subsystem” of structural equations
xL = f L(xL,xO, e). If M is uniquely solvable w.r.t. L with measurable solution function
gL : X pa(L)\L × Epa(L) → XL, then for each input (xpa(L)\L, epa(L)) ∈ X pa(L)\L × Epa(L)

of the subsystem, there exists an output xL ∈ XL, which is unique for PEpa(L)
-almost every

epa(L) ∈ Epa(L) and for all xpa(L)\L ∈ X pa(L)\L. We can remove this subsystem of endogenous
variables from the model by substitution. This leads to a marginal SCM that is observation-
ally, interventionally and counterfactually equivalent to the original SCM w.r.t. the margin,
as we prove in Theorem 5.6.

DEFINITION 5.3 (Marginalization of an SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM that is uniquely solvable w.r.t. a subset L ⊆ I and let O = I \L. For gL : X pa(L)\L ×
Epa(L) →L, any measurable solution function of M w.r.t. L, we call the SCM Mmarg(L) :=
〈O,J ,XO,E, f̃ ,PE〉 with the marginal causal mechanism f̃ :XO × E →XO given by

f̃ (xO, e) = fO
(
gL(xpa(L)\L, epa(L)),xO, e

)
,

a marginalization of M w.r.t. L. We denote by marg(L)(M) the equivalence class of the
marginalizations of M w.r.t. L.

The marginalization of M w.r.t. L is defined up to the equivalence ≡ on SCMs, since the
measurable solution functions gL are uniquely defined up to PE -null sets. With this definition
at hand, we can always construct a marginal SCM over a subset of the endogenous variables
of an acyclic SCM by mere substitution (see also Proposition 3.4). Moreover, this definition
extends that notion to SCMs that are uniquely solvable w.r.t. a certain subset. For linear SCMs
this condition translates into a matrix invertibility condition, and since substitution preserves
linearity, marginalization yields a linear marginal SCM (see Proposition C.5).

In general, marginalization is not always defined for all subsets. For instance, the SCM of
Example 3.11 cannot be marginalized over the variable 3 (due to the self-cycle at 3), but can
be marginalized over the variables 2 and 3 together. It follows from Proposition 3.7 that we
can only marginalize over a single variable if that variable has no self-cycle. Note that we
may introduce new self-cycles if we marginalize over a subset of variables, as can be seen,
for example, from the SCM M in Example 2.8. This SCM has only one self-cycle; however,
marginalizing w.r.t. {2} gives a marginal SCM with another self-cycle at variable 4.
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The definition of marginalization satisfies an intuitive property: if we can marginalize over
two disjoint subsets after each other, then we can also marginalize over the union of those
subsets at once, and the respective results agree.

PROPOSITION 5.4. Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM that is uniquely solvable
w.r.t. a subset L1 ⊆ I and let L2 ⊆ I be a subset disjoint from L1. Then Mmarg(L1) is uniquely
solvable w.r.t. L2 if and only if M is uniquely solvable w.r.t. L1 ∪L2, Moreover, marg(L2) ◦
marg(L1)(M) = marg(L1 ∪L2)(M).

In this proposition, L1 and L2 have to be disjoint, since marginalizing first over L1 gives
a marginal SCM Mmarg(L1) with endogenous variables I \L1.

Next, we show that the distributions of a marginal SCM are identical to the marginal
distributions induced by the original SCM. A simple proof of this result proceeds by showing
that both the intervention and the twin operation commute with marginalization.

PROPOSITION 5.5. Let M be an SCM that is uniquely solvable w.r.t. a subset L ⊆ I .
Then the marginalization marg(L) commutes with both:

1. the perfect intervention do(I, ξ I ) for a subset I ⊆ I \ L and a value ξ I ∈ X I , that is,
(marg(L) ◦ do(I, ξ I ))(M) = (do(I, ξ) ◦ marg(L))(M), and

2. the twin operation twin, that is, (marg(L∪L′) ◦ twin)(M) = (twin ◦ marg(L))(M),

where L′ is the copy of L in I ′.

With Proposition 5.5 at hand, we can prove the main result of this subsection.

THEOREM 5.6 (Marginalization of an SCM preserves the observational, causal and coun-
terfactual semantics). Let M be an SCM that is uniquely solvable w.r.t. a subset L ⊆ I .
Then M and marg(L)(M) are observationally, interventionally and counterfactually equiv-
alent w.r.t. I \L.

This shows that our definition of marginalization (Definition 5.3) preserves the probabilis-
tic, causal and counterfactual semantics, under a certain local unique solvability condition.
Moreover, this allows us to marginalize SCMs w.r.t. a certain subset that do not satisfy the ad-
ditional assumptions imposed by modular SCMs, for example, the SCM M of Example 3.11
does not have any additional structure of a compatible system of solution functions, but M
can be marginalized w.r.t. the subset {2,3} (see Appendix A.3).

In general, interventional equivalence does not imply counterfactual equivalence (see, e.g.,
Example D.7). However, for our definition of marginalization we arrive at a marginal SCM
that is not only interventionally equivalent, but also counterfactually equivalent w.r.t. the
margin.

For an SCM M, unique solvability w.r.t. a certain subset L ⊆ I is a sufficient, but not a
necessary condition for the existence of an SCM M̃ on the margin I \ L such that M and
M̃ are counterfactually equivalent w.r.t. I \ L (see, e.g., Example D.11). Hence, in certain
cases it may be possible to relax the uniqueness condition.

5.2. Marginalization of a graph. We now turn to a marginalization operation for directed
mixed graphs, which we call the latent projection. This name is inspired from a similar con-
struction on directed mixed graphs in [73]. In [73], the authors concentrate on a mapping be-
tween directed mixed graphs and show that it preserves conditional independence properties
(see also [71]). In this subsection, we provide a sufficient condition for the marginalization
of an SCM to respect the latent projection, that is, that the augmented graph of the marginal
SCM is a subgraph of the latent projection of the augmented graph of the original SCM.
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DEFINITION 5.7 (Marginalization/latent projection of a directed mixed graph). Let G =
(V,E,B) be a directed mixed graph and L ⊆ V a subset. The marginalization of G w.r.t. L or
the latent projection of G onto V \L maps G to the marginal graph marg(L)(G) := (Ṽ, Ẽ, B̃),
where:

1. Ṽ = V \L,
2. for i, j ∈ Ṽ : i → j ∈ Ẽ if and only if there exists a directed path i → �1 → ·· · → �n → j

in G with n ≥ 0 and �1, . . . , �n ∈ L,
3. for i = j ∈ Ṽ : i ↔ j ∈ B̃ if and only if:

(a) there exist n,m ≥ 0, �1, . . . , �n ∈ L, �̃1, . . . , �̃m ∈ L such that i ← l1 ← l2 ←
·· · ← �n ↔ �̃m → �̃m−1 → ·· · → �̃1 → j in G, or

(b) there exist n,m ≥ 1, �1, . . . , �n ∈ L, �̃1, . . . , �̃m ∈ L such that i ← l1 ← l2 ←
·· · ← �n and �̃m → �̃m−1 → ·· · → �̃1 → j in G and �n = �̃m.

Note that this gives G(M) = marg(J )(Ga(M)) for any SCM M. Further, for a subgraph
H ⊆ G we have marg(L)(H) ⊆ marg(L)(G) for any subset of nodes L. It does not matter in
which order we project out the nodes or if we perform several projections at once.

PROPOSITION 5.8. Let G = (V,E,B) be a directed mixed graph and L1,L2 ⊆ V two
disjoint subsets. Then (marg(L1)◦marg(L2))(G) = (marg(L2)◦marg(L1))(G) = marg(L1 ∪
L2)(G).

Similar to the definition of marginalization for SCMs, this definition of the latent projec-
tion commutes with both the (graphical) perfect intervention and the twin operation.

PROPOSITION 5.9. Let G = (V,E,B) be a directed mixed graph and L,I, I ⊆ V sub-
sets. Then the marginalization marg(L) commutes with both:

1. perfect intervention do(I ) if I is disjoint from L, that is, (marg(L) ◦ do(I ))(G) =
(do(I ) ◦ marg(L))(G), and

2. the twin operation twin(I) if B = ∅, J := V \ I is exogenous (i.e., paG(J ) = ∅) and
L ⊆ I , that is, (marg(L∪L′) ◦ twin(I))(G) = (twin(I \L) ◦ marg(L))(G),

where L′ is the copy of L in I ′.

An example of an SCM for which a marginalization respects the latent projection is the
SCM M of Example 2.8. Marginalizing M w.r.t. L = {2} gives a marginal SCM Mmarg(L)

with a graph that is a subgraph of the latent projection of the graph of the SCM M onto
I \L. In general, not all marginalizations respect the latent projection, as is illustrated in the
following example.

EXAMPLE 5.10 (Marginalization does not respect the latent projection). Consider the
SCM M of Example 3.11. Although M and its marginalization Mmarg(L) with L = {2,3}
are interventionally equivalent w.r.t. I \L = {1,4}, the graph G(Mmarg(L)) is not a subgraph
of the latent projection of G(M) onto I \ L, as can be verified from the graphs depicted in
Figure 4.

Under the local ancestral unique solvability condition, which is a stronger condition than
the local unique solvability condition (i.e., ancestral unique solvability w.r.t. a subset im-
plies unique solvability w.r.t. that subset), one can prove that the marginalization of an SCM
respects the latent projection.
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PROPOSITION 5.11. Let M be an SCM that is ancestrally uniquely solvable w.r.t. a
subset L ⊆ I . Then (Ga ◦ marg(L))(M) ⊆ (marg(L) ◦ Ga)(M) and (G ◦ marg(L))(M) ⊆
(marg(L) ◦ G)(M).

The (augmented) graph of a marginalized SCM can be a strict subgraph of the correspond-
ing latent projection if, for example, certain paths cancel each other out after the substitution
of the measurable solution function(s) into the causal mechanism(s) on the margin (see Ex-
ample D.12). For acyclic SCMs, we recover with Proposition 5.11 the known result that this
class is closed under marginalization (see Proposition 3.4) [14]. For linear SCMs, we have
that unique solvability w.r.t. a subset L holds if and only if ancestral unique solvability w.r.t.
L holds (see Proposition C.4), and hence, a marginalization of a linear SCM always respects
the latent projection.

6. Markov properties. In this section, we give a short overview of Markov properties
for SCMs with cycles. We make use of the Markov properties that were recently developed by
Forré and Mooij [17] for HEDGes, a graphical representation that is similar to the augmented
graph of SCMs. We briefly summarize some of their main results and apply them to the class
of SCMs. In Appendix A.2, we provide a more thorough introduction and give an intuitive
derivation, which can act as an entry point for the reader into the more extensive discussion
of Markov properties provided in [17].

Markov properties associate a set of conditional independence relations to a graph. The
directed global Markov property for directed acyclic graphs (see Definitions A.4 and A.6),
also known as the d-separation criterion [47], is one of the most widely used. It directly
extends to a similar property for acyclic directed mixed graphs (ADMGs) [54]. It does not
hold in general for cyclic SCMs, however, as was already observed earlier [66, 67].

EXAMPLE 6.1 (Directed global Markov property does not hold for cyclic SCM). One
can check that for every solution X of the SCM M of Example 3.5, X1 is not independent
of X2 given {X3,X4}. However, the variables X1 and X2 are d-separated given {X3,X4} in
G(M) (see Figure 3). Hence the global directed Markov property does not hold here.

Although some progress has been made in the case of discrete [17, 46, 49] and linear mod-
els [17, 24, 28, 59, 65–67], only recently a general directed global Markov property has been
introduced for more general cyclic models [17], that is based on σ -separation (see Defini-
tions A.16 and A.20), an extension of d-separation. This notion of σ -separation was derived
from the notion of d-separation in the acyclification of the graph [17] (see Definition A.13).
The acyclification of a graph generalizes the idea of the collapsed graph developed by Spirtes
[66] and can, in particular, be applied to the graphs of SCMs. The main idea of the acycli-
fication is that under the condition that the SCM is uniquely solvable w.r.t. each strongly
connected component, we can replace the causal mechanisms of these strongly connected
components by their measurable solution functions, which results in an acyclic SCM. This
acyclified SCM (see Definition A.11) is observationally equivalent to the original SCM (see
Proposition A.12).

EXAMPLE 6.2 (Construction of an observationally equivalent acyclic SCM). The SCM
M of Example 3.5 is uniquely solvable w.r.t. all its strongly connected components, that is,
the subsets {1}, {2} and {3,4}. Replacing the causal mechanisms of these strongly connected
components by their measurable solution functions gives the observationally equivalent SCM
M̃ of Example 4.2. Because M̃ is acyclic (see Figure 3) we can apply the directed global
Markov property to M̃. The fact that X1 and X2 are not d-separated given {X3,X4} in G(M̃)

is in line with X1 being dependent of X2 given {X3,X4} for every solution X of M̃ (and
hence of M).



FOUNDATIONS OF STRUCTURAL CAUSAL MODELS 2907

This acyclification preserves solutions, and d-separation in the acyclification can directly
be translated into σ -separation on the original graph (see Proposition A.19). This leads to
the general directed global Markov property. The following theorem summarizes the main
results of [17] applied to SCMs.

THEOREM 6.3 (Global Markov properties for SCMs [17]). Let M be a uniquely solv-
able SCM. Then its observational distribution PX exists, is unique and the following two
statements hold:

1. PX satisfies the directed global Markov property (“d-separation criterion”) relative to
G(M) (see Definition A.6) if M satisfies at least one of the following conditions:

(a) M is acyclic;
(b) all endogenous spaces Xi are discrete and M is ancestrally uniquely solvable;
(c) M is linear (see Definition C.1), each of its causal mechanisms {fi}i∈I has a

nontrivial dependence on at least one exogenous variable, and PE has a density w.r.t.
the Lebesgue measure on RJ .

2. PX satisfies the general directed global Markov property (“σ -separation criterion”) rela-
tive to G(M) (see Definition A.20) if M is uniquely solvable w.r.t. each strongly connected
component of G(M).14

The general directed global Markov property is generally weaker than the directed global
Markov property, since σ -separation implies d-separation. The acyclic case is well known
and was first shown in the context of linear-Gaussian structural equation models [29, 70].
The discrete case fixes the erroneous theorem by Pearl and Dechter [49], for which a coun-
terexample was found by Neal [46], by adding the ancestral unique solvability condition, and
extends it to allow for bidirected edges in the graph. The linear case is an extension of ex-
isting results for the linear-Gaussian setting without bidirected edges [28, 66, 67] to a linear
(possibly non-Gaussian) setting with bidirected edges in the graph.

In constraint-based approaches to causal discovery, one usually assumes the converse of
the (general) directed global Markov property to hold [48, 68], which is called σ -faithfulness
respectively d-faithfulness (see Definitions A.9 and A.23). Meek [38] showed that for multi-
nomial and linear-Gaussian DAG (i.e., acyclic and causally sufficient SCMs) models, d-
faithfulness holds for all parameter values up to a measure zero set. Up to our knowledge
no such results have been shown in more general parametric or nonparametric settings (nei-
ther for d-faitfhulness in acyclic or cyclic settings, nor for σ -faithfulness).

7. Causal interpretation of the graph of SCMs. In Example 4.4, we already saw that
sometimes no information in the observational, interventional and even the counterfactual
distributions suffices to decide whether a directed path or bidirected edge is present in the
graph, or not. Here, we do not attempt to provide a complete characterization of the conditions
under which the presence or absence of a directed path or bidirected edge in the graph can be

14Since [17] also provides results under the weaker condition that an SCM is solvable (not necessarily uniquely)
w.r.t. each strongly connected component of G(M), one might believe that Theorem 6.3.(2) could be generalized
to stating that in that case, any of its observational distributions satisfies the general directed global Markov
property. However, that is not true: consider, for example, the SCM M = 〈2,∅,R2,1,f ,P1〉 with f1(x) = x1
and f2(x) = x2. Then M is solvable w.r.t. each of its strongly connected components {1} and {2}. The solution
with X1 = X2, where X2 has a nondegenerate distribution, shows a dependence between X1 and X2, and thus
X1 ⊥⊥X2 does not hold. In general, all strongly connected components that admit multiple solutions may be
dependent on any other variable(s) in the model.
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identified from the observational and interventional distributions. Instead, we give sufficient
conditions to detect a directed path and bidirected edge in the graph.

In general, cyclic SCMs may have none, one or multiple induced observational distribu-
tions, and this may change after intervening in the system. Here, we restrict ourselves to
graphs of SCMs where the induced (marginal) observational and interventional distributions
are uniquely defined.

7.1. Directed paths and edges. For cyclic SCMs, the causal interpretation of the SCM
is not always consistent with its graph. This can be illustrated with the SCM M of Ex-
ample 5.10. Here, one sees a difference in the marginal distribution PMdo({1},ξ1)

on X4 for
different values of ξ1, although variable 1 is not an ancestor of variable 4 and each marginal
distribution PMdo({1},ξ1)

on X4 is uniquely defined. This counterintuitive behavior that an in-
tervention on a nonancestor of a variable can change the distribution of that variable was
already observed by Neal [46]. However, under a specific unique solvability condition, we
obtain a direct causal interpretation for the absence of a directed edge or directed path in the
graph of an SCM.

PROPOSITION 7.1 (Sufficient condition for detecting a directed edge in the latent pro-
jection of the graph of an SCM). Consider an SCM M = 〈I,J ,X ,E,f ,PE〉, a subset
O ⊆ I and i, j ∈ O such that i = j . Let ξ I ∈ X I , where I := O \ {i, j}, such that Mdo(I,ξ I )

is uniquely solvable w.r.t. anG(Mdo(I,ξI ))\i (j ). If there exist values ξi = ξ̃i ∈ Xi such that both
(Mdo(I,ξ I )

)do({i},ξi ) and (Mdo(I,ξ I )
)do({i},ξ̃i )

induce unique marginal distributions on Xj , and
these two induced distributions do not coincide, that is, there exists a measurable set Bj ⊆ Xj

such that

P(Mdo(I,ξI ))do({i},ξi ) (Xj ∈ Bj ) = P(Mdo(I,ξI ))do({i},ξ̃i )
(Xj ∈ Bj ),

the directed edge i → j is present in the latent projection marg(I \ O)(G(M)) of G(M)

on O.

Two cases are of special interest: O = I , which corresponds with a directed edge i → j in
G(M), and O = {i, j}, which corresponds with a directed path i → ·· · → j in G(M).

The condition in Proposition 7.1 is a sufficient condition for determining whether a di-
rected edge or path is present in the graph. In general, not all directed edges and paths can
be identified from the interventional distributions with this sufficient condition. For example,
no interventional distribution satisfies the condition of Proposition 7.1 for the SCM M̄ in
Example 4.4, although there is a directed edge 1 → 2 in the graph G(M̄).

7.2. Bidirected edges. It is well known that there exists a similar sufficient condition
for detecting bidirected edges in the graph of an acyclic SCM also known as the common-
cause principle (see, e.g., [48]). In the two variables case, this criterion informally states that
there exists a bidirected edge between the variables i and j in the graph of the SCM, if the
marginal interventional distribution of Xj under the intervention do({i}, xi) differs from the
conditional distribution of Xj given Xi = xi (see Example D.13). The following proposition
provides a generalization of this sufficient condition for detecting bidirected edges in graphs
of SCMs that may include cycles.

PROPOSITION 7.2 (Sufficient condition for detecting a bidirected edge in the latent pro-
jection of the graph of an SCM). Consider an SCM M = 〈I,J ,X ,E,f ,PE〉, a sub-
set O ⊆ I and i, j ∈ O such that i = j . Let ξ I ∈ X I , where I := O \ {i, j}, such that
Mdo(I,ξ I )

is uniquely solvable w.r.t. both anG(Mdo(I,ξI ))(i) and anG(Mdo(I,ξI ))\i (j ). Assume
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that for every ξi ∈ Xi both Mdo(I,ξ I )
and (Mdo(I,ξ I )

)do({i},ξi ) induce a unique marginal
distribution on Xj × Xi and Xj , respectively. If j /∈ anG(Mdo(I,ξI ))(i) and there exists a
measurable set Bj ⊆ Xj such that for every version of the regular conditional probability
PMdo(I,ξI )

(Xj ∈ Bj |Xi = ξi), there exists a value ξi ∈ Xi such that

P(Mdo(I,ξI ))do({i},ξi ) (Xj ∈ Bj ) = PMdo(I,ξI )
(Xj ∈ Bj |Xi = ξi),

then there exists a bidirected edge i ↔ j in the latent projection marg(I \ O)(G(M)) of
G(M) on O.

This proposition gives a sufficient condition for determining that a bidirected edge is
present in the graph. In general, not all bidirected edges in the graph can be identified from
the observational, interventional and even the counterfactual distributions, as we saw in Ex-
ample D.10. In this example, there exists a bidirected edge 1 ↔ 2 ∈ G(M) while the density
p(x2 |do(X1 = x1)) = p(x2 |X1 = x1) for all x1 ∈ X1. For the acyclic setting, the above crite-
rion is generally considered as a universal way to detect a confounder (note that then one can
also deal with the case j ∈ anG(Mdo(I,ξI ))(i) by swapping the roles of i and j ). If i and j are
part of a cycle, the above sufficient condition cannot be applied, and in that case, to the best
of our knowledge, no simple sufficient conditions for detecting the presence of a bidirected
edge are known.

8. Simple SCMs. In this section, we introduce the well-behaved class of simple SCMs.
Simple SCMs satisfy all the local unique solvability conditions to ensure that this class
is closed under both perfect intervention and marginalization. They extend the subclass of
acyclic SCMs to the cyclic setting, while preserving many of their convenient properties.

DEFINITION 8.1 (Simple SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be an SCM. We call M
simple if it is uniquely solvable w.r.t. every subset O ⊆ I .

Loosely speaking, an SCM is simple if any subset of its structural equations can be solved
uniquely for its associated variables in terms of the other variables that appear in these equa-
tions. An example of a simple SCM is given in Example D.1.

On simple SCMs one can perform any number of marginalizations (see Definition 5.3) in
any order (see Proposition 5.4). All these marginalizations respect the latent projection (see
Proposition 5.11) and each resulting marginal SCM is again simple. Moreover, we show that
this class is closed under intervention and the twin operation.

PROPOSITION 8.2. The class of simple SCMs is closed under marginalization, perfect
intervention and the twin operation.

The class of simple SCMs contains the acyclic SCMs as a subclass (see Proposition 3.4). In
particular, a simple SCM has no self-cycles (see Proposition 3.7), since a self-cycle denotes
that that variable cannot be uniquely (up to a PE -null set) determined by its parents.

From Proposition 8.2, it follows that the results summarized in Theorem 6.3 also apply to
all the observational, interventional and counterfactual distributions of simple SCMs.

COROLLARY 8.3 (Global Markov properties for simple SCMs). Let M be a simple
SCM. Then the:

1. observational distribution,
2. interventional distribution after perfect intervention on I ⊂ I ,
3. counterfactual distribution after perfect intervention on Ĩ ⊆ I ∪ I ′,
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all exist, are unique and satisfy the general directed global Markov property relative to
G(M), do(I )(G(M)) and do(Ĩ )(twin(G(M))), respectively. Moreover, if M satisfies at least
one of the three conditions (1a), (1b), (1c) of Theorem 6.3, then they also obey the directed
global Markov property relative to G(M), do(I )(G(M)) and do(Ĩ )(twin(G(M))), respec-
tively.

Many of these properties are also shown to hold for the class of modular SCMs [17], which
contains, in particular, the class of simple SCMs (see Appendix A.3 for more details).

Moreover, simple SCMs satisfy the unique solvability conditions of Propositions 7.1 and
7.2, which allows us to define the causal relationships for simple SCMs in terms of its graph.

DEFINITION 8.4 (Causal relationships for simple SCMs). Let M be a simple SCM.

1. If there exists a directed edge i → j ∈ G(M), that is, i ∈ pa(j), then we call i a direct
cause of j according to M;

2. If there exists a directed path i → ·· · → j in G(M), that is, i ∈ an(j), then we call i a
cause of j according to M;

3. If there exists a bidirected edge i ↔ j ∈ G(M), then we call i and j (latently) con-
founded according to M.

In summary, we have the following sufficient conditions for determining the different
causal and confoundedness relationships according to a specific simple SCM M.

COROLLARY 8.5 (Sufficient conditions for the presence of causal and confoundedness
relationships for simple SCMs). Let M be a simple SCM and i, j ∈ I such that i = j and
I := I \ {i, j}. Then:

1. If there exist values ξ I ∈ X I and ξi = ξ̃i ∈ Xi and a measurable set Bj ⊆ Xj such that

P(Mdo(I,ξI ))do({i},ξi ) (Xj ∈ Bj ) = P(Mdo(I,ξI ))do({i},ξ̃i )
(Xj ∈ Bj ),

then i is a direct cause of j according to M, that is, i → j ∈ G(M);
2. If there exist values ξi = ξ̃i ∈ Xi and a measurable set Bj ⊆Xj such that

PMdo({i},ξi ) (Xj ∈ Bj ) = PMdo({i},ξ̃i )
(Xj ∈ Bj ),

then i is a cause of j according to M, that is, i → ·· · → j in G(M);
3. If j /∈ anG(Mdo(I,ξI ))(i) and there exist a value ξ I ∈ X I and a measurable set Bj ⊆ Xj

such that for every version of the regular conditional probability PMdo(I,ξI )
(Xj ∈ Bj |Xi = ξi)

there exists a value ξi ∈Xi such that

P(Mdo(I,ξI ))do({i},ξi ) (Xj ∈ Bj ) = PMdo(I,ξI )
(Xj ∈ Bj |Xi = ξi),

then i and j are confounded according to M, that is, i ↔ j ∈ G(M).

For simple SCMs, it is in general not possible to identify all the causal and confoundedness
relationships in the graph from the observational, interventional or even the counterfactual
distributions. Examples 4.4 and D.10 show that this is already impossible for acyclic SCMs
without further assumptions.

Finally, there is a connection between SCMs and potential outcomes [63] that generalizes
to the cyclic setting. One of the consequences of Proposition 8.2 is that all counterfactuals are
defined for a simple SCM (even if it is cyclic). This allows us to define potential outcomes in
terms of a simple SCM in the following way.
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DEFINITION 8.6 (Potential outcome). Let M = 〈I,J ,X ,E,f ,PE〉 be a simple SCM,
I ⊆ I a subset, ξ I ∈ X I a value and E a random variable such that PE = PE . The potential
outcome under the perfect intervention do(I, ξ I ) is defined as Xξ I

:= gMdo(I,ξI )
(Epa(I)),

where gMdo(I,ξI )
: Epa(I) →X is a measurable solution function for Mdo(I,ξ I )

.

9. Discussion. In this paper, we studied the basic properties of SCMs in the presence of
cycles and latent variables without restricting to linear functional relationships between the
variables. We saw that cyclic SCMs behave differently in many aspects than acyclic SCMs.
Indeed, in the presence of cycles, many of the convenient properties of acyclic SCMs do
not hold in general: SCMs do not always have a solution; they do not always induce unique
observational, interventional and counterfactual distributions; a marginalization does not al-
ways exist, and if it exists the marginal model does not always respect the latent projection;
they do not always satisfy a Markov property and their graphs are not always consistent with
their causal semantics.

We introduced various notions of (unique) solvability and showed that under appropriate
(unique) solvability conditions, many of the operations and results for the acyclic setting can
be extended to SCMs with cycles. For example, we introduced several equivalence relations
between SCMs to compare SCMs at different levels of abstraction, we showed how to define
marginal SCMs on a subset of the variables that are (in various ways) equivalent to the origi-
nal SCM, we discussed under which conditions the distributions satisfy the (general) directed
global Markov property relative to their graphs and we showed under which conditions the
graph of an SCM can be interpreted causally. Most of these results are shown under sufficient
conditions that are not necessary (e.g., for the marginalization operation this was shown in
Example D.11). It may therefore be possible to further relax some of the conditions.

These insights led us to introduce the more well-behaved class of simple SCMs, which
forms an extension of the class of acyclic SCMs to the cyclic setting that preserves many of
its convenient properties: simple SCMs induce unique observational, interventional and coun-
terfactual distributions; the class of simple SCMs is closed under both perfect intervention
and marginalization; the marginalization respects the latent projection; the induced distribu-
tions obey the general directed global Markov property and obey the directed global Markov
property in the acyclic, discrete and linear case. This class does not contain SCMs that have
self-cycles and graphs of simple SCMs have a direct and intuitive causal interpretation.

One key property of simple SCMs is that the solutions always satisfy the conditional in-
dependencies implied by σ -separation. By simply replacing d-separation with σ -separation,
it turns out that one can directly extend results and algorithms for acyclic SCMs to the more
general class of simple SCMs. For example, adjustment criteria (including the back-door cri-
terion), Pearl’s do-calculus and Tian’s ID algorithm for the identification of causal effects
have been extended recently to the class of modular SCMs, which contains the class of sim-
ple SCMs [19]. Several causal discovery algorithms have already been proposed that work
with simple SCMs, for example, the first constraint-based causal discovery algorithm that can
deal with cycles and nonlinear functional relationships [18]. Also, Local Causal Discovery
(LCD) [9], Y-structures [35] and the Joint Causal Inference framework (JCI) all apply to sim-
ple SCMs [44] even though they were originally developed for acyclic SCMs only. Recently,
it has been shown that even the well-known Fast Causal Inference (FCI) algorithm [69, 75]
is directly applicable to simple SCMs [41] and provides a consistent estimate of the Markov
equivalence class (under the faithfulness assumption). Moreover, a method for constructing
nonlinear simple SCMs using neural networks and sampling from them has been proposed
[18]. This illustrates that the class of simple SCMs forms a convenient and practical extension
of the class of acyclic SCMs that can be used for the purposes of causal modeling, reasoning,
discovery and prediction.
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We hope that this work will provide the foundations for a general theory of statistical
causal modeling with SCMs. Future work might consist of reparametrizing and reducing the
space of the exogenous variables of an SCM while preserving the causal and counterfactual
semantics; extending and generalizing the identifiability results for (direct) causes and con-
founders; extending the graphs of SCMs to represent selection bias; proving completeness
results for some Markov properties for a subclass of SCMs that contains cycles.
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