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Parametric cognitive models are increasingly popular tools for analyzing data obtained

from psychological experiments. One of the main goals of such models is to

formalize psychological theories using parameters that represent distinct psychological

processes. We argue that systematic quantitative reviews of parameter estimates

can make an important contribution to robust and cumulative cognitive modeling.

Parameter reviews can benefit model development and model assessment by providing

valuable information about the expected parameter space, and can facilitate the more

efficient design of experiments. Importantly, parameter reviews provide crucial—if not

indispensable—information for the specification of informative prior distributions in

Bayesian cognitive modeling. From the Bayesian perspective, prior distributions are an

integral part of a model, reflecting cumulative theoretical knowledge about plausible

values of the model’s parameters (Lee, 2018). In this paper we illustrate how systematic

parameter reviews can be implemented to generate informed prior distributions for the

Diffusion Decision Model (DDM; Ratcliff and McKoon, 2008), the most widely used

model of speeded decision making. We surveyed the published literature on empirical

applications of the DDM, extracted the reported parameter estimates, and synthesized

this information in the form of prior distributions. Our parameter review establishes

a comprehensive reference resource for plausible DDM parameter values in various

experimental paradigms that can guide future applications of the model. Based on the

challenges we faced during the parameter review, we formulate a set of general and

DDM-specific suggestions aiming to increase reproducibility and the information gained

from the review process.

Keywords: Bayesian inference, cognitive modeling, diffusion decision model, prior distributions, cumulative

science

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.608287
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.608287&domain=pdf&date_stamp=2021-01-21
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:han_tran@eva.mpg.de
https://doi.org/10.3389/fpsyg.2020.608287
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.608287/full


Tran et al. Systematic Parameter Reviews

1. INTRODUCTION

With an expanding recent appreciation of the value of
quantitative theories that make clear and testable predictions
(Lee and Wagenmakers, 2014; Oberauer and Lewandowsky,
2019; Navarro, 2020), cognitive models have become increasingly
popular. As a consequence, open science and reproducibility
reforms have been expanded to include modeling problems. Lee
et al. (2019) proposed a suite of methods for robust modeling
practices largely centred on the pre- and postregistration of
models. In the interest of cumulative science, we believe that
the development and assessment of cognitive models should
also include systematic quantitative reviews of the model
parameters. Several model classes, including multinomial
processing trees (Riefer and Batchelder, 1988), reinforcement
learning models (Busemeyer and Stout, 2002), and evidence-
accumulation models (Donkin and Brown, 2018), have now
been applied widely enough that sufficient information is
available in the literature to arrive at a reliable representation
of the distribution of the parameter estimates. In this paper, we
describe a systematic parameter review focusing on the latter
class of models.

A systematic quantitative characterization of model
parameters provides knowledge of the likely values of the
model parameters and has various benefits. First, it can promote
more precise and realistic simulations that help to optimally
calibrate and design experiments, avoiding unnecessary
experimental costs (Gluth and Jarecki, 2019; Heck and Erdfelder,
2019; Kennedy et al., 2019; Pitt and Myung, 2019; Schad
et al., 2020). Second, knowledge about the parameter space
can be crucial in maximum-likelihood estimation where an
informed guess of the starting point of optimization is often
key to finding the globally best solution (Myung, 2003).
Third,—and most important for the present paper—systematic
quantitative parameter reviews provide crucial information for
the specification of informative prior distributions in Bayesian
cognitive modeling. The prior distribution is a key element
of Bayesian inference; it provides a quantitative summary of
the likely values of the model parameters in the form of a
probability distribution. The prior distribution is combined with
the incoming data through the likelihood function to form the

posterior distribution. The prior distribution is an integral part

of Bayesian models, and should reflect theoretical assumptions
and cumulative knowledge about the relative plausibility of
the different parameter values (Vanpaemel, 2011; Vanpaemel
and Lee, 2012; Lee, 2018). Prior distributions play a role both
in parameter estimation and model selection. By assigning
relatively more weight to plausible regions of the parameter
space, informative prior distributions can improve parameter
estimation, particularly when the data are not sufficiently
informative, for instance due to a small number of observations.
Even as the number of observations grows, informative priors
remain crucial for Bayesian model selection using Bayes
factors (Jeffreys, 1961; Kass and Raftery, 1995). Unfortunately,
the theoretical and practical advantages of the prior have
been undermined by the common use of vague distributions
(Trafimow, 2005; Gill, 2014).

The goal of this paper is to illustrate how a systematic
quantitative parameter review can facilitate the specification of
informative prior distributions. To this end, we first introduce
the Diffusion Decision Model (DDM; Ratcliff, 1978; Ratcliff
and McKoon, 2008), a popular cognitive model for two-choice
response time tasks (see Ratcliff et al., 2016, for a recent review).
Using the DDM as a case study, we will then outline how we used
a systematic literature review in combination with principled
data synthesis and data quantification using distribution
functions to construct informative prior distributions. Lastly,
based on the challenges we faced during the parameter review,
we formulate a set of general and DDM-specific suggestions
about how to report cognitive modeling results, and discuss
the limitations of our methods and future directions to
improve them.

1.1. Case Study: The Diffusion Decision
Model
In experimental psychology, inferences about latent cognitive
processes from two-choice response time (RT) tasks are
traditionally based on separate analyses of mean RT and the
proportion of correct responses. However, these measures are
inherently related to each other in a speed-accuracy trade-off.
That is, individuals can respond faster at the expense of making
more errors. Evidence-accumulation models of choice RT and
accuracy have provided a solution for this conundrum because
they allow for the decomposition of speed-accuracy trade-off
effects into latent variables that underlie performance (Ratcliff
and Rouder, 1998; Donkin et al., 2009a; van Maanen et al.,
2019). These models assume that evidence is first extracted from
the stimuli and then accumulated over time until a decision
boundary is reached and a response initiated. Among the many
evidence-accumulation models, the DDM is the most widely
applied, not only in psychology, but also in economics and
neuroscience, accounting for experiments ranging from decision
making under time-pressure (Voss et al., 2008; Leite et al., 2010;
Dutilh et al., 2011), prospective memory (Horn et al., 2011; Ball
and Aschenbrenner, 2018) to cognitive control (Gomez et al.,
2007; Schmitz and Voss, 2012).

Figure 1 illustrates the DDM. Evidence (i.e., gray line)
fluctuates from moment to moment according to a Gaussian
distribution with standard deviation s, drifting until it reaches
one of two boundaries, initiating an associated response. The
DDM decomposes decision making in terms of four main
parameters corresponding to distinct cognitive processes: (1) the
mean rate of evidence accumulation (drift rate v), representing
subject ability and stimulus difficulty; (2) the separation of the
two response boundaries (a), representing response caution;
(3) the mean starting point of evidence accumulation (z),
representing response bias; and (4) mean non-decision time
(Ter), which is the sum of times for stimulus encoding and
response execution. RT is the sum of non-decision time and the
time to diffuse from the starting point to one of the boundaries.
A higher drift rate leads to faster and more accurate responses.
However, responses can also be faster because a participant
chooses to be less cautious and thus decreases their boundary
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FIGURE 1 | The Diffusion Decision Model (DDM; taken with permission from Matzke and Wagenmakers, 2009). The DDM assumes that noisy information is

accumulated over time from a starting point until it crosses one of the two response boundaries and triggers the corresponding response. The gray line depicts the

noisy decision process. “Response A” or “Response B” is triggered when the corresponding boundary is crossed. The DDM assumes the following main parameters:

drift rate (v), boundary separation (a), mean starting point (z), and mean non-decision time (Ter ). These main parameters can vary from trial to trial: across-trial variability

in drift rate (sv ), across-trial variability in starting point (sz ), and across-trial variability in non-decision time (sTer ). Starting point can be expressed relative to the

boundary in order to quantify bias, where zr =
z
a
= 0.5 indicates unbiased responding. Similarly, across-trial variability in starting point can be expressed relative to the

boundary: szr =
sz
a
.

separation, which will reduce RT but increase errors, causing
the speed-accuracy trade-off. Starting accumulation closer to one
boundary than the other creates a bias toward the corresponding
response. Starting points z is therefore most easily interpreted
in relation to boundary separation a, where the relative starting
point, also known as bias, is given by zr =

z
a . Drift rate can

vary from trial to trial according to a Gaussian distribution with
standard deviation sv. Both non-decision time and starting point
are assumed to be uniformly distributed across trials, with range
sTer and sz , respectively, where sz can be expressed relative to a:
szr =

sz
a . One parameter of the accumulation process needs to

be fixed to establish a scale that makes the other accumulation-
related parameters identifiable (Donkin et al., 2009b). Most
commonly this scaling parameters is the moment-to-moment
variability of drift rate (s), usually with a value fixed to 0.1 or 1.

Fitting the DDM and many other evidence-accumulation

models to experimental data is difficult because of the complexity

of the models and the form of their likelihood resulting
in high correlations among the parameters (i.e., “sloppiness”;
Gutenkunst et al., 2007; Gershman, 2016). Informative prior
distribution can ameliorate some of these problems. The growing

popularity of cognitive modeling has led to extensive application
of the DDM to empirical data (Theisen et al., 2020), providing
us with a large number of parameter estimates to use for
constructing informative prior distributions. In 2009,Matzke and
Wagenmakers presented the first quantitative summary of the
DDMparameters based on a survey of parameter estimates found
in 23 applications. However, their survey is now outdated and
was not as extensive or systematic as the approach taken here.

2. MATERIALS AND METHODS

All analyses were written in R or R Markdown (Allaire et al.,
2018; R Core Team, 2020). The extraced parameter estimates
and the analysis code are available on GitHub (http://github.
com/nhtran93/DDM_priors) and the project’s Open Science
Framework (OSF) site: https://osf.io/9ycu5/.

2.1. Literature Search
The literature search was conducted according to the PRISMA
guidelines (Moher et al., 2009). Every step was recorded and
the inclusion as well as rejection of studies adhered strictly to
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the pre-specified inclusion criteria. Results from different search
engines were exported as BibTex files, maintained with reference
management software and exported into separate Microsoft
Excel spreadsheets.

2.1.1. Search Queries
The literature search was commenced and completed in
December 2017. It consisted of cited reference searches
and independent searches according to pre-specified queries.
Searches in all databases were preformed three times in order to
ensure reproducibility. Four electronic databases were searched
with pre-specified queries: (National Library of Medicine,
2017), PsycInfo (American Psychological Association, 2017),
Web of Science (WoS, 2017), and Scopus (Elsevier, 2017). A
preliminary search of the four databases served to identify
relevant search strings, which were different for each database
(see the Supplementary Materials or https://osf.io/9ycu5/ for
details). The searches began from the publication year of the
seminal paper by Ratcliff (1978). The cited reference searches
were based on Ratcliff and McKoon (2008), Wiecki et al.
(2013), and Palmer et al. (2005), and were performed in
both Scopus and Web of Science. These key DDM papers
were selected to circumvent assessing an unfeasible number
of over 3, 000 cited references to the seminal Ratcliff article,
with a potentially high number of false positives (in terms of
yielding papers that reported parameter estimates), while still
maintaining a wide search covering various areas of psychology
and cognitive neuroscience.

2.1.2. Inclusion and Exclusion Criteria
All duplicated references were excluded. After obviously
irrelevant papers—judged based on title and abstract—were
excluded, the full-texts were acquired to determine the inclusion
or exclusion of the remaining articles. Articles were included
in the literature review if they (i) used the standard DDM
according to Ratcliff (1978) and Ratcliff andMcKoon (2008) with
or without across-trial variability parameters; and (ii) reported
parameter estimates based on empirical data from humans.
Articles were excluded if (i) they reported reviews; and (ii)
the parameter estimates were based on animal or simulation
studies. We also excluded articles that did not report parameter
estimates (neither in tables nor in graphs) and articles that
estimated parameters in the context of a regression model with
continuous predictors that resulted in estimates of intercepts
and regression slopes instead of single values of the model
parameters.

2.1.3. Data Extraction
The data extraction spreadsheet was pilot-tested using six articles
and adjusted accordingly. The following parameter estimates
were extracted: drift rate (v), boundary separation (a), starting
point (z) or bias (zr =

z
a ), non-decision time (Ter), across-trial

variability in drift rate (sv), across-trial range in starting point
(sz) or relative across-trial starting point (szr =

sz
a ), and across-

trial range in non-decision time (sTer ). Parameter estimates were
obtained from tables as well as from graphs using the GraphClick
software (Arizona, 2010). Whenever possible, we extracted

parameter estimates for each individual participant; otherwise we
extracted themean across participants or in Bayesian hierarchical
applications the group-level estimates. When the DDM was fit
multiple times with varying parameterizations to the same data
within one article, we used the estimates corresponding to the
model identified as best by the authors, with a preference for
selections made based on the AIC (Akaike, 1973, 1974), in
order to identify the best trade-off between goodness-of-fit and
parametric complexity (Myung and Pitt, 1997). When the DDM
was applied to the same data across different articles, we extracted
the parameter estimates from the first application; if the first
application did not report parameter estimates, we used the most
recent application that reported parameter estimates. Finally,
articles that obtained estimates using theEZ (Wagenmakers et al.,
2007) or EZ2 (Grasman et al., 2009) methods, or the RWiener
R package (Wabersich and Vandekerckhove, 2014), which all fit
the simple diffusion model estimating only the four main DDM
parameters (Stone, 1960), were excluded due to concerns about
potential distortions caused by ignoring across-trial parameter
variability (Ratcliff, 2008). Note that we did not automatically
exclude all articles without across-trial variability parameters. For
articles that did not use EZ, EZ2, or RWiener, but reported
models without across-trial variability parameters, we assumed
that the author’s choice of fixing these parameters to zero was
motivated by substantive or statistical reasons and not by the
limitations of the estimation software, and hence we included
them in the parameter review.

2.2. Parameter Transformations
Once extracted, parameter estimates had to be transformed in
a way that makes aggregation across articles meaningful. In
this section we report issues that arose with respect to these
transformations and the solutions that we implemented. A
detailed explanation of the transformations can be found in the
Supplementary Materials.

2.2.1. Within-Trial Variability of Drift Rate
In all of the studies we examined, the accumulation-related
parameters were scaled relative to a fixed value of the moment-
to-moment variability in drift rate (typically s = 0.1 or s = 1).
This decision influences the magnitude of all parameter estimates
except those related to non-decision time. Once we determined s
for each article, we re-scaled the affected parameter estimates to
s = 1. Articles that used the DMAT software (Vandekerckhove
and Tuerlinckx, 2008) for parameter estimation were assumed to
use the DMAT default of s = 0.1, and articles that used HDDM
(Wiecki et al., 2013) or fast-DM (Voss and Voss, 2007) were
assumed to use the default setting of 1. Articles (co-) authored
by Roger Ratcliff were assigned s = 0.1.1 We excluded 25
articles because the scaling parameter was not reported and even
if we assumed the scaling parameter to be s, its value could not
be determined.

1Based on personal communication with Roger Ratcliff.
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2.2.2. Measurement (RT) Scale
Although the measurement (i.e., RT) scale influences the
magnitude of the parameter estimates, none of the articles
mentioned explicitly whether the data were fit on the seconds
or milliseconds scale. Moreover, researchers did not necessarily
report all estimates on the same RT scale. For instance, Ter or
sTer were sometimes reported in milliseconds, whereas the other
parameters were reported in seconds. Whenever possible, we
used axis labels, captions and descriptions in figures and tables,
or the default setting of the estimation software to determine the
RT scale. Articles that used the DMAT, HDDM, or fast-DM were
assumed to use the default setting of seconds and we assigned
an RT scale of seconds to papers authored by Roger Ratcliff 2

even if Ter was reported in milliseconds. We also evaluated the
plausibility of the reported estimates with respect to the second or
millisecond scale by computing a rough estimate of the expected
RT for each experimental condition as E(RT) = (a − z)/v. We
then used the following two-step decision rule to determine the
RT scale of each parameter:

1. Determine the RT scale of Ter : If estimated Ter was smaller
than 5, we assumed that Ter was reported in seconds;
otherwise we assumed that Ter was reported in milliseconds.

2. Determine RT scale of remaining parameters: If E(RT) was
smaller than 10, we assumed that the remaining parameters
were reported in seconds; otherwise we assumed that the
remaining parameters were reported in milliseconds.

Once we determined the RT scale for each parameter, we re-
scaled the parameter estimates to the seconds scale. Individual
parameters estimates that were considered implausible after the
transformation (i.e., outside of the parameter bounds, such as
a negative a) were checked manually. In particular, we checked
for (1) inconsistencies in the magnitude across the parameter
estimates within articles (e.g., a value of a indicative of seconds
vs. a value of Ter indicative of milliseconds); (2) reporting
or typographic errors; (3) extraction errors; and (4) errors in
determining the measurement scale, which typically reflected
the use of non-standard experiments or special populations. In
a number of cases we also revisited and whenever necessary
reconsidered the assigned value of s. We removed all parameter
estimates from 13 articles that reported implausible estimates
reflecting ambiguous or inconsistent RT scale descriptions or
clear reporting errors.

2.2.3. Starting Point and Bias
We expressed all starting point z and starting point variability
sz estimates relative to a. As the attributions of the response
options to the two response boundaries is arbitrary, the direction
of the bias (i.e., whether zr is greater or less than 0.5) is
arbitrary. As these attributions cannot be made commensurate
over articles with different response options, values of zr cannot
be meaningfully aggregated over articles. As a consequence, bias,
zr , and its complement, 1 − zr , are exchangeable for the purpose
of our summary. We therefore used both values in order to create
a single “mirrored” distribution. This distribution is necessarily

2Based on personal communication with Roger Ratcliff.

symmetric with a mean of 0.5, but retains information about
variability in bias.3

2.2.4. Drift Rate
There are two ways in which drift rates v can be reported. In the
first, positive drift rates indicate a correct response (e.g., “word”
response to a “word” stimulus and “non-word” response to a
“non-word” stimulus in a lexical decision task) and negative rates
indicate an incorrect response. In the second, positive drift rates
correspond to one response option (e.g., “word” response) and
negative rates to the other option (e.g., “non-word”). Here, we
adopt the former—accuracy coding—method in order to avoid
ambiguity regarding the arbitrary attribution of boundaries to
response options. We do so by taking the absolute values of the
reported drift rates to construct the prior distribution. Readers
who wish to adopt the latter—response coding—method, should
appropriately mirror our accuracy-coded priors around 0.

2.3. Generating Informative Prior
Distributions for the DDM Parameters
After post-processing and transforming the parameter
estimates, we combined each parameter type across articles
and experimental conditions within each study into separate
univariate distributions. We then attempted to characterize these
empirical parameter distributions with theoretical distributions
that provided the best fit to the overall shape of the distributions
of parameter estimates.

2.3.1. Parameter Constraints
Inmany applications of theDDM, researchers impose constraints
on the parameter estimates across experimental manipulations,
conditions, or groups, either based on theoretical grounds
or the results of model-selection procedures. After extracting
all parameters from the best fitting models, we identified
parameters that were constrained across within- and between-
subject manipulations, conditions, or groups within each study.
For the purpose of constructing the prior distributions we only
considered these fixed parameters once and did not repeatedly
include them in the empirical distributions. For instance, a
random dot motion task with three difficulty conditions may
provide only one estimate for a constrained parameter (i.e.,
non-decision time), but three parameters for an unconstrained
parameter (i.e., drift rate).

2.3.2. Synthesis Across Articles
Most studies reported parameter estimates aggregated across
participants, with only eight reporting individual estimates.
Before collapsing them with the aggregated estimates, individual
estimates were averaged across participants in each study.
Parameter estimates were equally weighted when combined
across studies as details necessary for weighting them according
to their precision were typically not available. We will revisit this
decision in the Discussion.

3The bias zr parameters estimated using the HDDM software (Wiecki et al., 2013)

are coded as 1− zr in our parameter review. Note that this has no influence on the

resulting prior distribution as we used both zr and 1− zr to create the prior.
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In the results reported in the main body of this article, we
aggregated the parameter estimates across all research domains
(e.g., neuroscience, psychology, economics), populations
(e.g., low/high socioeconomic status, clinical populations),
and tasks (e.g., lexical decision, random dot motion tasks).
In the Supplementary Materials, we provide examples of
prior distributions derived specifically for two of the most
common tasks in our database (i.e., lexical decision and
random dot motion tasks) and priors restricted to non-
clinical populations. Data and code to generate such task and
population-specific priors are available in the open repository,
so that interested readers can construct priors relevant to their
specific research questions.

2.3.3. Distributions
A full characterization of the distribution of model parameters
takes into account not only the parameters’ average values
and variability but also their correlations across participants
(e.g., people with lower drift rates may have higher thresholds)
and potentially even their correlations across studies or
paradigms using multilevel structures. Although multivariate
prior distributions would be optimal to represent correlations
across participants, they require individual parameter estimates
for the estimation of the covariance matrices. As only eight
studies reported individual parameter estimates, we were
restricted to use univariate distributions.

We attempted to characterize the aggregated results using
a range of univariate distribution functions that respected the
parameter types’ bounds (e.g., non-decision time Ter must
be positive) and provided the best fit to the overall shape
of the empirical distributions. We first considered truncated
normal, lognormal, gamma, Weibull, and truncated Student’s
t distribution functions. However, in some cases the empirical
distributions clearly could not be captured by the univariate
distributions and were contaminated by outliers due to non-
standard tasks, special populations, and possible reporting
errors that we not identified during the post-processing steps.
We therefore also considered characterizing the empirical
distribution using mixture distributions. Mixtures were chosen
from the exponential family of distributions that respected the
theoretical bounds of the parameter estimates. In particular
we used mixtures of two gamma distributions, and truncated
normals mixed with either a gamma, lognormal, or another
truncated normal distribution. Specifically, we focused on
normal mixtures because we assume a finite variance for
the parameters and thus the Gaussian distributions represents
the most conservative probability distribution to assign to
the parameter distributions (for further information see the
principles of maximum entropy; Jaynes, 1988).

The univariate and mixture distributions were fit to the
empirical distributions using maximum-likelihood estimation
(Myung, 2003), with additional constraints on upper and/or
lower bounds. For (mirrored) bias zr and szr , which are bounded
between 0 and 1, we used univariate truncated normal and
truncated t distributions on [0, 1]. A lower bound of zero was
imposed on all other parameters. We then used AIC weights
(wAIC; Wagenmakers and Farrell, 2004) to select the theoretical

distributions that struck the best balance between goodness-
of-fit and simplicity. A table of the AIC and wAIC values for
all fitted univariate and mixture distributions and the code to
reproduce this table, can be found in the open repository on
GitHub or the OSF.

We propose that the wAIC-selected distributions can be used
as informative prior distributions for the Bayesian estimation
of the DDM parameters. For simplicity, for parameters where
a mixture was the best-fitting distribution, we propose as prior
the distribution component that best captures the bulk of the
parameter estimates as indicated by the highest mixture weight.
We will revisit this choice in the Discussion.

3. RESULTS

Figure 2 shows the PRISMA flow diagram corresponding to our
literature search. The total of 196 relevant articles (i.e., “Reported
estimates” in Figure 2) covered a wide range of research areas
from psychology and neuroscience to medicine and economics.
We excluded 38 references because they did not report the scaling
parameters and we were unable to reverse engineer them or
because of inconsistent RT scale descriptions or clear reporting
errors. Thus, we extracted parameter estimates from a total
of 158 references. The most common paradigms were various
perceptual decision-making tasks (e.g., random dot motion
task; 37 references), lexical decision tasks (33), and recognition
memory tasks (17). A total of 29 references included clinical
groups and 26 references used Bayesian estimation methods.

The histograms in Figure 3 show the empirical distributions
of the parameter estimates. The red lines show the best fitting
theoretical distributions or the dominant theoretical distribution
components with the highest mixture weight (i.e., the proposed
informative prior distributions). The black lines show the non-
dominant mixture distribution components. Note that in most
cases the themixture served to inflate the distributions’ tails while
preserving a single mode.

Table 1 gives an overview of the informative prior
distributions, the corresponding upper and lower bounds
(see column “T-LB” and “T-UB”), and whenever appropriate also
the mixture weight of the dominant distribution component. The
table also shows the upper and lower bounds of the parameter
estimates collected from the literature (see column “E-LB”
and “E-UB”); these bounds can be used to further constrain
parameter estimation by providing limits for prior distributions
and bounded optimization methods.

The results of the model comparisons are available at https://
osf.io/9ycu5/. For drift rate v, the selected model was a mixture of
a zero-bounded truncated normal and a lognormal distribution
(wAIC = 0.4), with the mixture weight, and the location and scale
of the dominant truncated normal component shown in the first
row of Table 1.4 For boundary separation a, the selected model
was a mixture of gamma distributions (wAIC = 0.76), with the
shape and scale parameters of the dominant gamma component
shown in the second row of Table 1. For non-decision time Ter

4The location and scale parameters of the truncated normal distribution refer to µ

and σ and not to its expected value and variance.
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FIGURE 2 | PRISMA flow diagram. WoS, Web of Science. RWiener refers to the R package from Wabersich and Vandekerckhove (2014). EZ and EZ2 refer to

estimation methods for the simple DDM developed by Wagenmakers et al. (2007) and Grasman et al. (2009), respectively.

and across-trial variability in non-decision time sTer , the selected
model was a zero-bounded truncated t distribution (wAIC = 1
for both Ter and sTer ). For mirrored bias zr , the selected model
was a truncated t distribution on [0, 1] (wAIC = 1.0). For across-
trial variability in drift rate sv, the selected model was a mixture
of a zero-bounded truncated normal and a gamma distribution
(wAIC = 0.35), where the truncated normal had the highest
mixture weight. Lastly, for szr , the selected model was a truncated
normal distribution on [0, 1] (wAIC = 0.74).

4. DISCUSSION

The increasing popularity of cognitive modeling has led to
extensive applications of models like the Diffusion Decision
Model (DDM) across a range of disciplines. These applications
have the potential to provide substantial information about
the plausible values of the parameters of cognitive models. We
believe that for cognitive models where sufficient information
are available in the literature, a systematic quantitative
characterization of model parameters can be a very useful
addition to existing modeling practices. Parameter reviews can
benefit modeling practices in various ways, from facilitating
parameter estimation to enabling more precise and realistic
simulations to improve study design and calibrate future

experiments (Gluth and Jarecki, 2019; Heck and Erdfelder, 2019;
Pitt and Myung, 2019).

Here, we used the DDM as example case of how a systematic
quantitative parameter review can be incorporated into modeling
practices to provide informative prior distributions for the
model parameters. Our empirical distributions of the parameter
estimates were largely consistent with those of Matzke and
Wagenmakers (2009), but because our sample was much larger
we were better able to capture the tails of the parameter
distributions. Although, for simplicity, here we suggested single-
component distributions as priors, the full mixture distributions
that we selected could also be used. Bayesian DDM software, such
as the Dynamic Models of Choice software (DMC; Heathcote
et al., 2019), can be easily adapted to use any form of univariate
prior, including mixtures. In most cases the mixture served to
inflate the distributions’ tails while preserving a single mode.
However, aggregation over heterogeneous studies naturally
carries with it the possibility of creating multi-modal prior
distributions, as illustrated by the results for sv in Figure 3. If the
data proved sufficiently uninformative that such multi-modality
carried through to the posterior, caution should be exercised in
reporting and interpreting measures of central tendency.

Inferring the parameters of complex cognitive models like
the DDM from experimental data is challenging because
their parameters are often highly correlated. The cumulative
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FIGURE 3 | Prior Distributions for the DDM Parameters. The red lines show the best fitting theoretical distributions or the dominant theoretical distribution

components with the highest mixture weight (i.e., the proposed informative prior distributions). The black lines show the non-dominant distribution components. N,

number of unique estimates.
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TABLE 1 | Informative prior distributions.

DDM parameter N Distribution Weight Location/Shape Scale df T-LB T-UB E-LB E-UB

v 1,893 Truncated normal* & lognormal 0.85 1.76 1.51 0 + Inf 0.01 18.51

a 890 Gamma* & gamma 0.76 11.69 0.12 0 + Inf 0.11 7.47

Mirrored zr 203 Truncated t – 0.5 0.05 1.85 0 1 0.04 0.96

Ter 857 Truncated t – 0.44 0.08 1.32 0 + Inf 0 3.69

sv 317 Truncated normal* & gamma 0.75 1.36 0.69 0 + Inf 0 3.45

szr 278 Truncated normal – 0.33 0.22 0 1 0.01 0.85

sTer 352 Truncated t – 0.17 0.04 0.88 0 + Inf 0 4.75

N, The number of unique estimates; Weight, The mixture weight of the dominant distribution component; df, Degrees of freedom; T-LB, Theoretical lower bound of the prior distribution;

T-UB, Theoretical upper bound of the prior distribution; E-LB, Lower bound of the empirical parameter estimates; E-UB, Upper bound of the empirical parameter estimates; *, Dominant

distribution component.

knowledge distilled into parameter estimates from past research
can practically benefit both traditional optimization-based
methods (e.g., maximum likelihood) and Bayesian estimation.
In the former case, parameter reviews can provide informed
guesses for optimization starting points as well as guidance
for configuring bounded optimization methods. Even when
powerful and robust optimization algorithms (e.g., particle
swarm methods) are used, reasonable initial values and bounds
can increase time efficiency and are often helpful for avoiding
false convergence on sub-optimal solutions. In the latter—
Bayesian case—parameter reviews can facilitate the use of
informative prior distributions, which benefits both Bayesian
model selection and parameter estimation.

Informative priors are essential for Bayesian model selection
using Bayes factors (Jeffreys, 1961; Kass and Raftery, 1995).
Unlike other model-selection methods like the Deviance
Information Criteria (DIC; Spiegelhalter et al., 2014) and Widely
Applicable Information Criterion (WAIC; Vehtari et al., 2017)
that depend only on posterior samples, Bayes factors depend
crucially on the prior distribution even when large amounts of
data are available. This is because the marginal likelihood of the
competingmodels is obtained by taking a weighted average of the
probability of the data across all possible parameter settings with
the weights given by the parameters’ prior density. The workflow
outlined here may therefore facilitate the more principled use
of prior information in Bayesian model selection in the context
of evidence-accumulation models (for recent developments, see
Evans and Annis, 2019; Gronau et al., 2020).

In terms of Bayesian estimation, the extra constraint provided
by informative priors can benefit some parameters more than
others. In the DDM, for example, the across-trial variability
parameters are notoriously difficult to estimate (Boehm et al.,
2018; Dutilh et al., 2019). This has led to calls for these
parameters to be fixed to zero (i.e., use the simple diffusion
model; Stone, 1960) to improve the detection of effects on the
remaining parameters (van Ravenzwaaij et al., 2017). Informative
priors may provide an alternative solution that avoids the
potential systematic distortion caused by ignoring the variability
parameters (Ratcliff and McKoon, 2008) and enables the study
of effects that cannot be accommodated by the simple diffusion
model, such as differences between correct and error RTs

(Damaso et al., submitted). Of course, in extreme cases, the
central tendency of informative prior distributions may provide
guidelines for fixing difficult-to-estimate model parameters to a
constant (e.g., Matzke et al., 2020).

Information about the empirical distribution of parameter
estimates, both in terms of the main body and the tails of
the distributions, can especially benefit design optimization and
parameter estimation in non-standard and difficult to access
populations (e.g., Shankle et al., 2013; Matzke et al., 2017). For
example, in clinical populations long experimental sessions are
often impossible due to exhaustion or attention lapses. Expenses
can also be constraining, such as with studies using costly fMRI
methods. Therefore, data are often scarce, with a total number
of trials as low as 100 reported in some DDM applications (e.g.,
O’Callaghan et al., 2017). In these cases, experimental designs can
be optimized, and parameter estimation improved, with the aid of
informative parameter distributions that put weight on plausible
parts of the parameter space. Moreover, informative priors can
also increase sampling efficiency and speed up the convergence
of MCMC routines.

Ideally, informative prior distributions for cognitive
models should be based on prior information extracted
from experimental paradigms (or classes of paradigms) and
participant populations relevant to the research question at
hand, although care should be exercised in the latter case
where group members fall along a continuum (e.g., age or
the severity of a clinical diagnosis). In reality, constructing
such highly specific priors might not always be feasible, either
because of a paucity of relevant parameter values reported
in the literature, or when new paradigms or populations are
studied. However, we believe that using informative priors based
on a range of broadly similar paradigms and heterogeneous
populations is better than using vague priors, as long as
appropriate caution is exercised in cases when the data are not
sufficiently informative and hence the prior dominates inferences
about the model parameters. Here, we presented informative
prior distributions for parameter estimates aggregated across
paradigms and populations and also provided paradigm-specific
priors for the two most popular tasks in our database (e.g.,
lexical decision and random dot motion task) and priors for
non-clinical populations.
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The variance of the paradigm/population-specific priors
showed a general decreasing tendency. The decrease in variance
was relatively small for the priors based on non-clinical
populations, and was restricted to the main DDM parameters.
For the lexical decision task, the variance of all of the priors
decreased relative to the overall priors. For the random dot
motion task, with the exception of v, all variances decreased,
albeit the decrease was negligible for a. To summarize, for the
tasks and groups we examined here, paradigm and population
heterogeneity appears to introduce additional variability in the
parameter estimates, but the degree of additional variability
strongly depends on the type of parameter. Our open repository
provides the data and code to generate informed prior
distributions for any selection of studies included in the
database so that researchers can construct informative prior
distributions relevant to their own research questions. Naturally,
paradigm/population-specific priors are only sensible when a
sufficiently large number of parameter estimates are available
in the database to fit the theoretical (mixture) distributions, or
when researchers can augment the repository with estimates from
additional studies.

Despite their usefulness, systematic quantitative parameter
reviews are not without their pitfalls. Using available cumulative
knowledge from past literature always has to be viewed in light
of the file drawer problem (Rosenthal, 1979). Many researchers
have not published their non-significant results, therefore the
literature is biased, and thus the parameter estimates retrieved
from the literature might be biased toward specific model settings
that converged or led to significant results. Furthermore, some
cognitive models are too new and have not been widely applied
to empirical data, so past literature might not provide researchers
with a sufficiently reliable representation of the distribution
of the parameter estimates. Therefore, cognitive modelers may
not always be able to incorporate our proposed quantitative
parameter review into their workflow, and should carefully weigh
out the feasibility and benefits of such an endeavor.

4.1. Recommendations for Reporting
Cognitive Modeling Results
Our literature review revealed a wide variety of reporting
practices, both in terms of what researcher report and how they
report their modeling results. The diversity of reporting practices
is likely to reflect differences between disciplines and is in itself
not problematic. However, we believe that the full potential
of cumulative science can only be realized if authors provide
sufficient information for others to interpret and reproduce their
results. We endorse code and data sharing, and—following Lee
et al. (2019)—we strongly urge researchers to provide sufficiently
precise mathematical and statistical descriptions of their models,
and to post-register exploratory model developments. In what
follows, we reflect on the challenges we faced in performing
the systematic parameter review, and formulate a set of
general and DDM-specific suggestions that aim to increase
computational reproducibility and the expected information gain
from parameter reviews. Although our recommendations are
certainly not exhaustive and do not apply to all model classes, we

hope that they provide food for thought for cognitive modelers in
general and RT modelers in particular.

4.1.1. Model Parameterization and Scaling
The following recommendations are aimed at supporting
well-informed choices about which model and which model
parameters to include in a parameter review. Most parametric
cognitive models can be parameterized in various ways. First,
some cognitive models require fixing one (or more) parameters
to make the model identifiable (Donkin et al., 2009b; van
Maanen and Miletić, 2020). In the DDM, modelers typically
fix the moment-to-moment variability of drift rate s to 0.1
or 1 for scaling purposes. Note, however, that the exact value
of the scaling parameter is arbitrary, and—depending on the
application—one may chose to estimate s from the data and
use other parameters for scaling. We stress the importance
of explicitly reporting which parameters are used for scaling
purposes and the value of the scaling parameter(s) because the
chosen setting influences the magnitude of the other parameter
estimates. Another scaling issue relates to the measurement
units of the data. For example, RTs are commonly measured in
both seconds and milliseconds. Although the measurement scale
influences the magnitude of the parameter estimates, none of
the articles included in the present parameter review explicitly
reported the measurement unit of their data. Further, articles did
not consistently report all parameter estimates on the same RT
scale (i.e., all parameter estimates reported in seconds, but Ter

reported in milliseconds). Hence, we urge researchers to make
an explicit statement on this matter and whenever possible stick
to the same measurement unit throughout an article to avoid
any ambiguity.

Second, in cognitive models one parameter is sometimes
expressed as a function of one or more other parameters.
The DDM, for instance, can be parameterized in terms of
absolute starting point z or relative starting point zr =

z
a (i.e., bias). The choice between z and zr depends on
the application but can also reflect default software settings.
Although the two parametrizations are mathematically identical
and have no consequences for the magnitude of the other
parameters, it is clearly important to communicate which
parameterization is used in a given application. Third, in
many applications, researchers impose constraints on the model
parameters across experimental manipulations, conditions,
or groups. Such constraints sometimes reflect practical or
computational considerations, but preferably they are based on
a priori theoretical rationale (e.g., threshold parameters cannot
vary based on stimulus properties that are unknown before a
trial commences; Donkin et al., 2009a) or the results of model-
selection procedures (e.g., Heathcote et al., 2015; Strickland
et al., 2018). Regardless of the specific reasons for parameter
constraints, we urge modelers to clearly communicate which
parameters are hypothesized to reflect the effect(s) of interest, and
so which are fixed and which are free to vary across the design.
Moreover, we recommend researchers to report the competing
models (including the parametrization) that were entertained to
explain the data, and indicate the grounds on which a given
model was chosen as best, such as AIC (Akaike, 1981), BIC
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(Schwarz, 1978), DIC (Spiegelhalter et al., 2002, 2014), WAIC
(Watanabe, 2010), or Bayes factors (Kass and Raftery, 1995).
We note that parameter reviews are also compatible with cases
where there is uncertainty about which is the best model, through
the use of Bayesian model averaging (Hoeting et al., 1999). In
this approach, the parameter estimates used in the review are
averaged across the models in which they occur, weighted by the
posterior probability of the models.

4.1.2. Model Estimation
In the face of the large number of computational tools available
to implement cognitive models and the associated complex
analysis pipelines, researchers have numerous choices on how
to estimate model parameters. For instance, a variety of
DDM software is available, such as fast-DM (Voss and Voss,
2007), HDDM (Wiecki et al., 2013), DMC (Heathcote et al.,
2019), DMAT (Vandekerckhove and Tuerlinckx, 2008), using
a variety of estimation methods, such as maximum likelihood,
Kolmogorov-Smirnov, chi-squared minimization (Voss and
Voss, 2007), quantile maximum probability (Heathcote and
Brown, 2004), or Bayesian Markov chain Monte Carlo (MCMC;
e.g., Turner et al., 2013) techniques. We encourage researchers
to report the software they used, and whenever possible, share
their commented code to enable computational reproducibility
(McDougal et al., 2016; Cohen-Boulakia et al., 2017). Knowledge
about the estimation software can also provide valuable
information about the parametrization and scaling issues
described above.

4.1.3. Parameter Estimates and Uncertainty
We recommend researchers to report all parameter estimates
from their chosen model and not only the ones that are related
to the experimental manipulation or the psychological effect of
interest. In the DDM in particular, this would mean reporting
the across-trial variability parameters, and not only the main
parameters (i.e., drift rate, boundary separation, starting point,
and non-decision time), even if only a subset of parameters is
the focus of the study. Ideally, in the process of aggregation
used to create prior distributions, estimates should be weighted
by their relative uncertainty. The weighing should reflect the
uncertainty of the individual estimates resulting from fitting the
model to finite data and—if average parameters are used, as
was the case here—also sampling error reflecting the sample
size used in each study. Although we had access to the sample
sizes, most studies reported parameter estimates averaged across
participants without accounting for the uncertainty of the
individual estimates. Moreover, the few studies that reported
individual estimates provided only point estimates and failed
to include measures of uncertainty. As a proxy to participant-
level measures of uncertainty one may use the number of
trials that provide information for the estimation of the various
model parameters. However, this approach requires a level of
detail about the experimental design and the corresponding
model specification (including the number of excluded trials
per participant) that was essentially never available in the
surveyed studies.

Given these problems with reporting, we have decided to give
equal weights to all (averaged) parameter estimates regardless of
the sample size. The reason for this decision was that studies
with large sample sizes typically used a small number of trials
and likely resulted in relatively imprecise individual estimates,
whereas studies with small sample sizes typically used a large
number of trials and likely resulted in relatively precise individual
estimates. We reasoned that as a result of this trade-off, the equal
weighting may not be necessarily unreasonable. To remedy this
problem in future parameter reviews, we urge researchers to
either report properly weighted group average estimates or report
individual estimates along with measures of uncertainty, let these
be (analytic or bootstrapped) frequentist standard errors and
confidence intervals (e.g., Visser and Poessé, 2017), or Bayesian
credible intervals and full posterior distributions (Jeffreys, 1961;
Lindley, 1965; Eberly and Casella, 2003).

4.1.4. Individual Parameters and Correlations
Ideally, researchers should report parameter estimates for each
individual participant. In the vast majority of the studies
examined here, only parameters averaged over participants were
available. This means that we were unable to evaluate correlations
among parameter estimates reflecting individual differences.
Such correlations are likely quite marked. For example, in the
DDM a participant with a higher drift rate, which promotes
accuracy, is more likely to be able to afford to set a lower
boundary and still maintain good performance, so a negative
correlation between rates and boundaries might be expected.
Access to individual parameters would allow estimation of these
correlations, and thus enable priors to reflect this potentially
important information. As we discuss below, the failure to report
individual estimates brings with it important limitations on what
can be achieved with the results of systematic parameter reviews.

4.2. Limitations and Future Directions
The approach to parameter reviews taken here—obtaining values
from texts, tables, and graphs from published papers and
performing an aggregation across studies—has the advantage of
sampling estimates that are representative of a wide variety of
laboratories, paradigms, and estimation methods. Indeed, for the
priors presented in Figure 3we included a few studies with much
longer RTs than are typically fit with the DDM (e.g., Lerche
and Voss, 2019). The larger parameter values from these studies
had the effect of broadening the tails of the fitted distributions
so they represent the full variety of estimates reported in
the literature.

However, this approach has a number of limitations beyond
those related to the vagaries of incomplete reporting practices
just discussed. The first limitation is related to the aggregation
of parameter estimates over different designs. The most
straightforward example concerns including parameters from
studies with long RTs. The solution is equally straightforward:
only including studies with RTs that fall in the range of interest
specific to a particular application. A related but more subtle
issue occurs in our DDM application where the meaning of
the magnitude of the response bias (zr) parameter is design
specific, and so it is difficult to form useful aggregates over
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different paradigms. To take a concrete example, a bias toward
“word” responses over “non-word” responses in a lexical-
decision paradigm cannot be made commensurate with a
bias favoring “left” over “right” responses in a random dot
motion paradigm. Our approach—forming an aggregate with
maximum uncertainty by assuming either direction is equally
likely (i.e., mirroring the values)—removes any information
about the average direction while at least providing some
information about variability in bias. Although this approach
likely overestimates the variability of the bias estimates, we
believe that overestimation is preferable to underestimation
which might result in an overly influential prior distribution.
Again, this problem can again be avoided by constructing
priors based on a more specific (in this case task-specific)
aggregation. Our online data repository reports raw starting
point and bias estimates, which combined with the design
descriptions from the original papers could be used to perform
such an aggregation. The priors for the lexical decision task
reported in the Supplementary Materials provide an example
that did not require us to mirror the bias estimates. We
note, however, that we had to exclude a paper where it
was unclear which response was mapped to which DDM
boundary, so we would add a reporting guideline that this
choice be spelled out. We also note that similar problems
with aggregation over different designs are likely to occur for
other parameter types and also beyond the DDM, for instance
in evidence-accumulation models such as the Linear Ballistic
Accumulator (Brown and Heathcote, 2008). For instance, if
one decomposes drift rates in the DDM into the average over
stimuli and “stimulus bias” (i.e., the difference in rates between
the two stimulus classes; White and Poldrack, 2014), then
the same issue applies, but now with respect stimuli rather
than responses.

The second limitation—which is related to incomplete
reporting, but is harder to address within a traditional journal
format—concerns obtaining a full multivariate characterization
of the prior distribution of parameters that takes into account
correlations among parameters as well as their average values
and variability. Because most estimates reported in the literature
are averages over participants, we were restricted to providing
separate univariate characterizations of prior distributions for
each parameter. To the degree that the implicit independence
assumption of this approach is violated5 problems can arise.
Continuing the example of negatively correlated rates and
boundaries, although a higher value of both separately may be
quite probable, both occurring together may be much less likely
that the product of their individual probabilities that would be
implied by independence.

6To be clear, we are not talking about correlations among parameters within a

participant, which are a consequence of the mathematical form of the model’s

likelihood and the particular parameterization adopted for the design. Rather,

we are addressing correlations at the population level, i.e., across participants.

Although the two types of correlations can be related, they are not the same and in

our experience can sometimes differ very markedly.

Problems related to this limitation arise, for example, if in
planning a new experiment one were to produce synthetic data
by drawing parameter combinations independently from the
univariate priors in Figure 3, potentially producing simulated
participants with parameter values that are unlikely in a real
experiment. With Bayesian methods, ignoring the correlations
among parameters can compromise the efficiency of MCMC
samplers and complicate the interpretation of Bayes factors
because the resulting uni-variate priors will assign mass to
implausible regions of the parameter space. Although standard
Bayesian MCMC samplers used for evidence-accumulation
models have not taken account of these population correlations,
a new generation of samplers is appearing that does (Gunawan
et al., 2020). This development underscores the need for future
systematic parameter reviews to move in the direction of
multivariate characterizations. This may be achieved by revisiting
the original data sets, which due to open science practices
are becoming increasingly available, refitting the DDM, and
then using the resulting individual parameter estimates to form
multivariate priors. This future direction will be time consuming
and computationally challenging, and will no doubt bring with it
new methodological problems that we have not addressed here.
Nevertheless, we believe that the long-term gains for cognitive
modeling will make this enterprise worthwhile.
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