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Abstract

In crowding, perception of a target deteriorates in the presence of nearby flankers. Tradition-

ally, it is thought that visual crowding obeys Bouma’s law, i.e., all elements within a certain

distance interfere with the target, and that adding more elements always leads to stronger

crowding. Crowding is predominantly studied using sparse displays (a target surrounded by

a few flankers). However, many studies have shown that this approach leads to wrong con-

clusions about human vision. Van der Burg and colleagues proposed a paradigm to mea-

sure crowding in dense displays using genetic algorithms. Displays were selected and

combined over several generations to maximize human performance. In contrast to Bou-

ma’s law, only the target’s nearest neighbours affected performance. Here, we tested vari-

ous models to explain these results. We used the same genetic algorithm, but instead of

selecting displays based on human performance we selected displays based on the model’s

outputs. We found that all models based on the traditional feedforward pooling framework of

vision were unable to reproduce human behaviour. In contrast, all models involving a dedi-

cated grouping stage explained the results successfully. We show how traditional models

can be improved by adding a grouping stage.

Author summary

To understand human vision, psychophysical research usually focuses on simple stimuli.

Vision is often described as a cascade of feed-forward computations in which local feature

detectors pool information along the processing hierarchy to form complex and abstract

features. Crowding can be modelled within this framework by the pooling of information

from one processing stage to the next. This naturally explains Bouma’s law, a hallmark of

crowding according to which only elements within a certain region, often proposed to be

half the target eccentricity, interfere with the target. However, pooling models are strongly

challenged by recent experimental results, because Bouma’s law does not hold for more

complex stimuli. Visual elements far beyond Bouma’s window can increase or alleviate
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crowding. In addition, Van der Burg and colleagues showed that only the nearest neigh-

bours interfere with the target in dense displays. Hence, Bouma’s window can shrink too.

Here, we aimed at modelling the range of crowding in dense displays. From previous

studies, we know that visual crowding cannot be explained without grouping and segmen-

tation. We compared the performance of different models of vision to the human data of

Van der Burg and colleagues. We found that all models based on the traditional pooling

framework of vision failed to reproduce the human data, whereas all models that included

grouping and segmentation processes were successful in this respect. We concluded that

grouping and segmentation processes naturally and consistently explain the difference

between simple and complex displays in vision paradigms.

Introduction

In the classic framework, vision is a feed-forward process that starts with the analysis of basic

features such as oriented edges [1–4]. These basic features are pooled along the visual hierar-

chy to form more complex feature detectors, until neurons respond to objects [5–9]. A

strength of modelling visual perception as such a feedforward process is that it breaks down

the complexity of vision into mathematically tractable sub-problems. However, it has become

clear that this classic framework cannot account for a wide range of experimental results [10–

16].

For example, in a vernier discrimination task, two slightly offset vertical bars are presented

in the periphery of the visual field (Fig 1A). The task is to determine whether the bottom bar is

offset to the left or to the right. The task is easy when the target is displayed in isolation (Fig

1B, red dashed line). Adding a square around the vernier severely impairs performance (i.e.,

visual crowding, Fig 1B, first column).

In the classic framework, such impairments are explained by flankers and target features

being pooled along the visual hierarchy [17–20]. For example, in Fig 1C, the vernier target and

the flankers are pooled, which deteriorates the representation of the vernier. It is often claimed

that: a) only elements within the pooling distance, i.e., inside the so-called Bouma’s window

(equal to half the target eccentricity), affect each other [21–24] and b) adding more flankers

within this window always leads to more crowding because more irrelevant information is

pooled.

However, recent research has shown many effects that cannot be explained in this classic

framework. For example, flankers far from the target (and even far outside Bouma’s window)

can in fact strongly improve performance, depending on the global configuration of the stimu-

lus (uncrowding [10, 11, 25–31]; Fig 1B, second to last columns). As another example, it has

been shown that detailed information within Bouma’s window can survive crowding [32, 33].

Hence, a) interactions are not restricted to Bouma’s window and b) adding flankers does not
always deteriorate information.

Obviously, studies with sparse displays cannot reveal these important effects. Displays that

contain a large number of flankers come with the problem that the number of configurations

increases exponentially with the number of flankers. For example, a relatively simple array of 8

by 8 either vertical or horizontal flankers has more possible configurations than there are sec-

onds since the Big Bang. Hence, it is hard to determine which configurations show interesting

effects that are not captured by the classic framework of vision. How can these configurations

be discovered?
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Recently, Van der Burg et al. [35] proposed a paradigm in which observers had to discrimi-

nate an almost vertical target, slightly tilted to the left or to the right, embedded in different

configurations of vertical and horizontal flankers. First, Bouma’s law was verified using sparse
displays, in which only 4 either vertical or horizontal flankers surrounded the target (Fig 2A).

Then, they presented rectangular arrays of 15x19 bars (284 horizontal or vertical flankers and

1 tilted target; dense displays; Fig 2B, top). Understanding which distractors at what location

interfere with target identification in dense displays is difficult (if not impossible) using a facto-

rial design, as there are 2284 possible display configurations.

To circumvent this problem, Van der Burg et al. [35] used a genetic algorithm (GA [36]; Fig

2B, bottom). In this study, participants performed an orientation discrimination task. For each

participant, the displays that led to the highest accuracy were selected and combined using a

Fig 1. a. Visual crowding in everyday life. When looking at the red fixation dot, the child on the right is more difficult to identify than the same child on the

left, because the nearby signposts lead to crowding (adapted from [34]). b. Manassi et al. [28] presented a vernier in the periphery, surrounded by different

flanker configurations. The y-axis shows the vernier offset threshold for 75% of correct responses (the larger the threshold, the worse the performance). In the

absence of flankers, the threshold is low (red dashed line). When a square is placed around the target, the task is much harder (crowding, 1st column). When

more squares are added, performance recovers almost to the unflanked level (uncrowding, 2nd column). Crowding strength is strongly affected by the whole

flanker configuration (3rd to last columns). c. Classic hierarchical model of crowding. Local information is pooled along the feedforward hierarchy of the

visual system, to form more complex feature detectors. In this example, neurons (circles represent the extent of their receptive fields) detect simple oriented

features in the first layer, simple shapes in the second layer and shape configurations in the last layer. Along the hierarchy, pooled activity dilutes information

related to vernier offset. In this view, adding more flankers can only lead to stronger crowding. Adapted with permission from [16].

https://doi.org/10.1371/journal.pcbi.1009187.g001
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crossover and mutation procedure to generate the next generation of displays. This process

was repeated over six generations to maximize human performance (see Methods for more

details; see [37–39] for a similar methodology to study visual search in complex displays).

Using this procedure, performance increased dramatically over generations (Fig 2C, bottom).

Interestingly, this improvement was predominantly caused by the target’s nearest neighbours

and, to a lesser extent, by other flankers within a radius of 1˚ (Fig 2C, top). It seems as if Bou-

ma’s window has shrunk.

Here, we investigated which models of crowding can explain these results. To do so, we

applied the same GA procedure as in Van der Burg et al. [35], but instead of selecting the dis-

plays based on human performance, we selected them based on model performance. First, we

tested several leading models of crowding that are based on the classic feedforward pooling

framework of vision: a model that artificially reproduced Bouma’s law in dense displays

(Bouma model; see S1 Appendix), a population coding model (Popcode model [40]; see S2

Appendix), a model based on summary statistics (Texture model [41]; see S3 Appendix) and a

feedforward convolutional neural network classifier (CNN classifier [16, 42]; see S4 Appendix).

However, we did not expect the former models to reproduce human behaviour for dense

displays. Indeed, several studies found that a visual grouping stage is necessary to explain

global configuration effects in crowding [15, 16, 43]. For this reason, we also tested several

models of crowding that include grouping and segmentation processes: a model of low-level

Fig 2. a. Top. Example display of the crowding experiment involving sparse displays in Van der Burg et al. [35]. Observers reported whether the target was

tilted to the left or right from vertical while fixating the white dot on the left. The target was surrounded by either four horizontal or vertical flankers. The

dashed circle, which was not visible during the experiment, indicates Bouma’s window. Bottom. Human performance (proportion of correct responses) for

both flanker orientations and different target-flanker distances. Error bars indicate the standard deviations across observers. The shaded area corresponds to

the unflanked condition. The horizontal dashed lines indicate chance level performance. The vertical dashed line indicates Bouma’s window. Less crowding

was observed for horizontal flankers and Bouma’s law was verified. b. Top. Example of a dense display. The task was the same as in the sparse display

experiment. Bottom. GA procedure used in Van der Burg et al. [35]. For every participant, 20 dense displays (whose proportion of vertical flankers was set

to lead to 67% of performance) were chosen as the first generation (N = 1). Then the displays that led to the highest accuracy were selected as the parents of

the next generation (children). This selection process was repeated for 6 generations of displays (N = 2–6). c. Results of the GA procedure in Van der Burg

et al. [35]. Bottom. During the GA procedure, human performance increased over generations. Top. Map depicting which locations in dense displays were

crucial for the performance improvements caused by the GA procedure. For each flanker location, the proportion of vertical or horizontal flankers in

generation 6, over all participants, was compared (two-tailed t-test) to displays coming from a random selection process between generations (neutral

condition). Red/blue slots correspond to locations in which the proportion of horizontal/vertical flankers increased significantly after the evolution process

(p < 0.05, not corrected for multiple comparisons to increase the possibility to find evidence for Bouma’s law). Colour intensity represents effect size, i.e., in

what proportion a vertical or horizontal flanker is selected. White spaces indicate that neither vertical nor horizontal flankers interfered with the target.

https://doi.org/10.1371/journal.pcbi.1009187.g002
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segmentation (Laminart model [44]; see S5 Appendix), a classic convolutional neural network

augmented with recurrent grouping processes (Capsule network [43, 45]; see S6 Appendix)

and a model that combined the population coding and the segmentation models (Popart
model; see S7 Appendix).

We show that only the models that contain a dedicated grouping mechanism explain the

results of Van der Burg et al. [35]. Hence, we propose that grouping is required to explain

which elements within Bouma’s window affect target discrimination performance. Because

grouping is also crucial to understand which elements beyond Bouma’s window impact perfor-

mance [15], we propose that visual grouping (and not Bouma’s law) determines the range of

interactions in crowding and naturally and consistently explains why this range highly

depends on the nature and the configuration of the visual stimulus.

Methods

Ethics statement

Participants gave oral consent before the experiment, which was conducted in accordance

with the Declaration of Helsinki except for the preregistration (World Medical Organization,

2013) and was approved by the local ethics committee (Commission d’éthique du Canton de

Vaud, protocol number: 164/14, title: Aspects fondamentaux de la reconnaissance des objets

protocole général).

The stimuli and the GA procedures were the same as in Van der Burg et al. [35]. We simply

replaced human observers with models. The displays were composed of a target (a bar tilted by

either +5 or -5 degrees from vertical) embedded in a dense array of 284 flanking bars, each of

which was either vertical or horizontal, positioned in a regular and rectangular grid of 15 rows

and 19 columns, spanning 11.25˚ by 14.25˚ (see Fig 2B, top, for an example display). Details

about how spatial units are represented in each model are given in the appendices. The fixation

point (when the tested model used one) was located 0.75˚ to the left of the centre of the left-

most column. The target was always displayed at the same position (8th row, 8th column,

eccentricity = 6˚) and the task of the models was to report the target orientation (tilted to the

left or to the right from vertical). As in the human experiments of Van der Burg et al. [35],

model performance for each display was always computed as the proportion of correct

responses in 12 trials.

For each model, the GA procedure started with 20 dense displays featuring random config-

urations of flankers (first generation). The 4 configurations that led to the best model perfor-

mance were selected as parent configurations. Then, for each model, 12 children

configurations were generated by randomly mixing the parent nodes. Each child node had a

50% chance to come from the first parent display and another 50% chance to come from the

second one. After this crossover procedure, each node had a 4% chance to be randomly

assigned to either a horizontal or a vertical flanker (i.e., a mutation procedure). Those new

configurations constituted the next generation of the GA. The same generative process was

repeated for 6 generations. To reduce noise, the whole GA was run 4 times, like in Van der

Burg et al. [35], where each participant performed 4 sessions.

For each model, we monitored the proportion of vertical and horizontal flankers at each

location of the dense displays in the last generation and compared all of them to the respective

proportions in the last generation of a random selection process, i.e., a neutral condition, as in

Van der Burg et al. [35]. In this neutral condition, the GA parameters were the same as when

running the models, except that the displays were selected randomly between the generations.

The difference between the model behaviour and the random selection behaviour is presented

as a map where a red or a blue slot respectively indicate that the GA procedure selected a
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significantly larger fraction of vertical or horizontal flankers at that location, compared to the

last generation of randomly selected displays (two-tailed t-tests; p< 0.05). Like in Van der

Burg et al. [35], the statistical tests were not corrected for multiple comparisons to maximize

the possibility of finding evidence for Bouma’s law in the results. We call this the selection mea-
sure (see Fig 2C, top, for corresponding human results). In addition, we made sure that the GA

procedure worked, i.e., that model performance increased over generations. We call this the

performance measure (see Fig 2C, bottom, for corresponding human results). In the results sec-

tion, we refer to both the performance and the selection measures as the GA measures.
In the GA procedure of Van der Burg et al. [35], the proportion of vertical flankers in the

first generation of dense displays was set to lead to an initial performance of 67% for each

human observer to avoid floor and ceiling effects. Here, we wanted to make a fair comparison

between different models. If two models would require for example 10% and 90% of vertical

bars, respectively, to have a performance of 67% in the first generation of displays, it would be

easier to see a significant increase of horizontal bars in the subsequent generations for the sec-

ond model than for the first one. For this reason, the initial proportion of vertical flankers was

set to a single value for all models, which corresponds to the mean of what was used in Van

der Burg et al. [35], i.e., 30% of vertical flankers in the first generation. Prior to the GA proce-

dure, we tuned the parameters of each model to obtain a performance of 67% in dense displays

with 30% of vertical flankers. The goal was to find the best parameters for an optimal GA pro-

cedure and to have the fairest comparison between models. The performance of some models

was bounded by a value lower than 67%. Only in these cases, we adapted the target orientation

amplitude so that higher performances than 67% could be reached, thereby allowing the

model parameters to be tuned to the required level of performance.

Moreover, we tried as much as possible to tune the model parameters to reproduce Bouma’s

law in sparse displays. The reason is that our main question was whether the models we tested

could reproduce Bouma’s law in sparse displays while shrinking their pooling range in dense

displays. Hence, we were not interested in models with a small pooling range that could easily

reproduce human behaviour in the selection measures, but not Bouma’s law in sparse displays.

To this end, we measured model performance for the same sparse display experiment as in

Van der Burg et al. [35], in which Bouma’s law was observed. We call this the sparse display
measure (see Fig 2A, bottom, for corresponding human results). Finally, we assessed the differ-

ent models’ behaviour for randomly generated dense displays in which the proportion of verti-

cal flankers varied from 0.0 to 1.0 by increments of 0.2. We call this the proportion measure.

Note that we performed the proportion measure with humans as well, because this experiment

was not conducted by Van der Burg et al. [35] (see S8 Appendix for more details).

The GA measures are reported in the Results section by running each model 10 times, to

simulate 10 different human subjects, as in the GA procedure of Van der Burg et al. [35]. The

reported standard deviations are computed over these 10 runs. The sparse display and propor-

tion measures are not based on statistical testing (i.e., they are not part of the GA procedure)

and are hence reported by running each model 100 times, to obtain clearer results. The code

for the entire procedure is available at https://bitbucket.org/albornet/shrinking_boumas_

window, as well as the code for the different models we tested and instructions to test any

other model with the GA procedure.

Results

Results for all models are summarized in Fig 3. Specific descriptions of the models and details

about the results can be found in the supporting information.
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Pooling models

First, to rule out the possibility that the GA procedure itself produced the shrinking of Bouma’s

window, we repeated what was done in Van der Burg et al. [35] and used a simple linear pool-

ing model whose weights were fitted to produce Bouma’s law (Bouma model). The model qual-

itatively reproduced the human data for the proportion measure and the sparse display

measure but failed to reproduce the human GA measures Fig 3, second row), suggesting that

the GA procedure does not produce the shrinking of Bouma’s window by itself.

Then, we tested more advanced models based on the traditional, feed-forward pooling

framework of vision. First, we used a model based on the population coding idea (Popcode
model [40]). This model provides a physiologically plausible description of feature integration

that accounts for various fundamental features of crowding. Second, we used a model of tex-

ture computation (Texture model [41]), based on low-level summary statistics, which can be

seen as high-dimensional pooling [19]. Texture models may be particularly well suited for

dense displays, because they encode complex natural information in a very efficient manner.

Third, we used a deep convolutional neural network (CNN classifier [42]). Deep neural net-

works can be seen as a chain of nested pooling and convolution operations. They contain mil-

lions of parameters from which unexpected behaviours could arise. The results obtained with

these pooling models are shown in Fig 3 (3rd to 5th rows). Except for the CNN classifier, all

pooling models qualitatively reproduced human results for the sparse display and the propor-

tion measures. However, they all failed to reproduce human data for the GA measures, either

because no specific configuration was found by the GA procedure to steadily increase model

performance (Texture model, CNN classifier) or because too many elements within Bouma’s

window were highlighted by the GA procedure (Popcode model, Bouma model). More details

are in Appendices S1 to S4.

Grouping models

Finally, we tested several models that describe vision as a two-stage process. In such models,

prior to interference such as depicted in the former models, visual elements are parsed into dif-

ferent perceptual groups. Interference only happens after the grouping stage and hence only

occurs within these groups. First, we used a model of segmentation based on the recurrent

integration of low-level contours (Laminart model [44]). The interference stage is the same as

in the Bouma model. Second, we used a Capsule Network, a type of deep neural convolutional

network that includes recurrent processing to implement grouping and segmentation [43, 45].

The results obtained with these models are shown in Fig 3 (6th and 7th rows). Both models

qualitatively reproduced the human results for the sparse display and the proportion measures.

Importantly, both models were also able to qualitatively reproduce the human results for the

Fig 3. Results for all models, for the four measures described in the Methods section. The first row contains the human data. Every column contains a

different measure of the models’ behaviour and can be compared to the corresponding human data. Each measure is described in detail in the Methods

section. For every measure and every model, green/red frames indicate whether a model did/did not qualitatively reproduce the corresponding human

data, respectively. For the performance measure, green corresponds to an improvement of at least 10 points of accuracy during the GA procedure. For the

other measures, green corresponds to a similar shape in the distribution of the model results and the human data. Note that a quantitative measurement of

the similarity between the model results and the human data can be found in S10 Appendix. The vertical dashed lines in the sparse display measure and the

dashed circles in the selection measure indicate the limit of Bouma’s window. The horizontal dashed lines in all measures indicate chance level accuracy. In

general, all models were able to reproduce the sparse display measure and the proportion measure, except for the CNN classifier. Moreover, all models

based on the traditional, feed-forward pooling framework of vision failed to reproduce human results for the GA measures (performance and selection

measures), either because the GA procedure was unable to find flanker configurations that improved model’s performance (Texture model, CNN

classifier) or because too many elements within Bouma’s window were highlighted by the GA procedure (Bouma model, Popcode model). Finally, all

models that contain a grouping stage qualitatively reproduced human results for the GA measures. Note that we included a fine-grained version of the

selection measures in S11 Appendix, i.e., in which the fraction of vertical or horizontal flankers selected by the GA procedure is shown for all locations,

regardless of whether the differences to the random GA selection process are statistically significant or not.

https://doi.org/10.1371/journal.pcbi.1009187.g003
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GA measures: the radius for target-flanker interaction shrank to the nearest neighbour

distance.

Despite their success at explaining the shrinking of Bouma’s window, these two-stage mod-

els face problems of their own. Interference in the Laminart model was fitted to the human

sparse measure data, and the Capsule network is difficult to train properly (see S5 and S6

Appendices for details). Exploiting the strengths of visual grouping and of a sophisticated

interference mechanism, we combined the Laminart and the population coding models, to test

if such a combination would lead to a happy marriage between both families of models (Popart
model). Indeed, this combined model was able to reproduce human behaviour for all measures

(Fig 3, last row; see S7 Appendix for more details).

We also included control simulations in which we tuned the parameters of the pooling

models to reproduce human behaviour in the selection measure (instead of the sparse display

measure) and checked how they behaved in sparse displays (see S9 Appendix). All pooling

models include a parameter that defines their pooling range, which was modified to shrink

interactions to the nearest neighbour distance. We show that tuning these models to shrink

Bouma’s window in dense displays prevents them from reproducing Bouma’s law in sparse

displays. Hence, only the grouping models can produce a small interaction range in dense dis-

plays, while keeping a Bouma-sized range in sparse displays.

Discussion

To understand crowding and vision in general, paradigms with few elements are the choice to

control for complexity and unwanted interactions. For example, based on the traditional

framework of vision, many studies have investigated crowding with a target and only a few

flankers with a focus on local interference [17–20]. However, such simple paradigms may lead

to carved-in-stone principles that are true only in such simple cases but do not apply to realis-

tic situations. As shown here and in many previous publications, this problem seems to mani-

fest in crowding. For example, Bouma’s law holds true only for sparse displays [27, 28, 35, 46].

However, complex displays come with their own problems, which are absent in sparse dis-

plays. For example, with many flankers, the question is not only how visual elements interfere

with the target, which is the main question in almost all crowding studies, but also which ele-

ments interact with each other. In addition, it is difficult to determine which displays to test

out of the virtually infinitely many possible ones. To cope with the latter problem, Van der

Burg et al. [35] proposed to use a GA procedure to study crowding in dense displays. In their

paradigm, among all elements within Bouma’s window, only the target’s nearest neighbours

had an influence on target discrimination performance. Importantly, the shrinking of Bouma’s

window in dense displays cannot be explained by the large flanker array providing a spatial

cue towards the target’s location. Indeed, the target is not in the centre of the flanker array. It is

at the 8th row and 8th column of a 15 rows by 19 columns flanker array.

Here, we applied the GA procedure to many different models of visual crowding, each com-

ing with its specific hypotheses about the visual system. Such an extensive comparison is a

good way to test general principles of vision, because it is possible to identify, among all mod-

els, the common causes for the failure or success to explain the results. We have shown that

none of the tested models that are based on a cascade of feedforward computations and pool-

ing are able to reproduce the findings of Van der Burg et al. [35]. These models produced

results in which either no element or too many elements within Bouma’s window were found

to interfere. In contrast, all models that include a grouping process could reproduce the

human results. It seems that a global grouping and segmentation process is crucial to explain

crowding in dense displays. Importantly, the combination of a global grouping stage,
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implemented by the Laminart model, and a local interference stage, implemented by the Pop-

code model, matched human behaviour in sparse as well as in dense displays (Popart model),

suggesting that a happy marriage is possible between grouping and pooling models.

Of course, many other models could potentially address these results. For example, we

could train a feedforward neural network to only consider the nearest neighbour flankers,

since feedforward networks are universal function approximators [47]. However, such a

model would be scientifically stale, because crowding is better seen as a probe into visual pro-

cessing rather than as an explanatory goal per se. A model that only explains this paradigm is

useless. For example, feedforward models tuned to explain the shrinking of Bouma’s window

in the selection measure do not reproduce Bouma’s law in sparse displays (see S9 Appendix).

The goal is not to overfit on a particular paradigm, but to test how processing characteristics of

different hypotheses generalize to this new particular paradigm (crowding in dense displays).

CNNs reach human level performance on various complex visual tasks and are subject to

crowding. Summary statistics models can explain how humans process complex images with-

out undergoing cognitive overload and capture many characteristics of visual crowding. Seg-

mentation processes are important to solve ill-posed problems of vision and capture the effects

of flankers that lie beyond Bouma’s window in crowding (e.g. uncrowding). Each of these

modelling frameworks has been fruitful in other areas and the goal is to test how they general-
ize to crowding in dense displays, to uncover strengths and weaknesses of each approach.

Along the same lines, Manassi et al. [28] showed that elements beyond Bouma’s window

can have a strong impact on target discrimination, and that the configuration of elements in

the whole visual field determines crowding strength (see also [26, 27]). A similar extensive

comparison of models showed, once again, that only models that could reproduce these results

contained a dedicated grouping stage [15] (see also [16, 43, 48]). Moreover, Van der Burg et al.

[49] showed that crowding in dense displays does not depend on target eccentricity but only

on the configuration of the nearest neighbours. The grouping models that we tested here can

exhibit uncrowding at the same time as the shrinking of Bouma’s window, depending on the

specific configuration of the flankers. In contrast, a model that modulates the window of inte-

gration based on the number of flankers but not their configuration, such as divisive normali-

zation [50], will not be able to explain why faraway elements interact only in certain cases (e.g.

why Manassi and colleagues found very long ranging interactions but Van der Burg and col-

leagues found the opposite). For all these reasons, it becomes clear that grouping, and not Bou-

ma’s window, determines which elements interfere with each other in human vision. In

summary, our results do not prove that grouping and segmentation processes are the only way

to shrink Bouma’s window in dense displays, but rather show that they are the best at explain-

ing crowding overall.

There are many more architectures for feedforward CNNs, such as ResNet and VGG. We

think that these networks face similar problems as the feedforward CNNs tested here because

they are also based on pooling. Because of this pooling, performance always deteriorates when

flankers are added, irrespective of the global configuration of elements (for an in-depth argu-

ment, see Doerig et al. [16]). In support of this claim, neither AlexNet (see S4 Appendix) nor

the capsule networks controls (see S6 Appendix, feedforward and recurrent CNNs) can explain

the shrinking of Bouma’s window. In addition, Geirhos et al. [51] showed that CNNs are

remarkably consistent with one another behaviourally, irrespective of architecture. In sum-

mary, we cannot test all possible models, but have good grounds for proposing that feedfor-

ward CNNs cannot explain the flexible range of Bouma’s window.

It is important to note that, contrary to our previous work [15, 16], we did not pick the sti-

muli to pit models against each other. The GA procedure produced the stimuli in a bottom-up

fashion. As a limitation for pooling models, we cannot rule out that running the procedure for
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more generations may lead to “good” configurations that were not found using only 6 genera-

tions. However, there are principled reasons that explain why pooling models do not repro-

duce human results. Indeed, without grouping and segmentation to “rescue” the target from

the flankers, all elements within Bouma’s window would decrease performance in those mod-

els. Grouping and segmentation seem crucial to explain crowding in general [10, 15, 44, 48].

Moreover, it is known that texture models and other models based on pooling do not repro-

duce human grouping and segmentation [15, 16, 43, 52, 53]. Hence, it seems unlikely that sim-

ply adding generations in the GA algorithm could lead to human-like behaviour. Moreover,

even if these models did find interesting configurations after a thousand generations, they

would not reproduce an important behaviour, namely, rapid convergence of the GA.

How exactly grouping is implemented in humans is an open question. Here, we have used

two different models that include a grouping mechanism. The grouping mechanism in the

Laminart model is the formation of illusory contours between well-aligned edges that favour

the parsing of visual elements into different layers of the network. This model works particu-

larly well for the kind of displays that are used in Van der Burg et al. [35], because vertical and

horizontal elements placed on a regular grid are either perfectly aligned or not aligned at all.

However, this mechanism breaks down for more naturalistic stimuli, in which the complexity

of low-level edges leads to an excess of illusory contours and, therefore, to bad segmentation.

Capsule networks use a fundamentally different mechanism in which grouping is determined

by recurrently maximizing the agreement between how neurons interpret a stimulus [45]. This

mechanism is much more general than the Laminart model and is a promising candidate as a

general framework to understand grouping and segmentation [43]. There are many more pos-

sibilities. For example, Linsley et al. [54] proposed another general recurrent grouping mecha-

nism that is scalable to solve complex visual tasks at a state of the art level.

Future research will pit different models of grouping and segmentation against each other. (Un)

crowding is one testbed in this respect, but there are many others, for example involving texture

segmentation [52, 53], naturalistic image segmentation [54] or spatiotemporal grouping and seg-

mentation [55]. Given the importance of grouping and segmentation, investigating which models

can explain these results is an important step towards a better understanding of human vision.
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11. Herzog MH, Thunell E, Ögmen H. Putting low-level vision into global context: Why vision cannot be

reduced to basic circuits. Vision Res. 2016; 126:9–18. https://doi.org/10.1016/j.visres.2015.09.009

PMID: 26456069

12. Herzog MH, Clarke AM. Why vision is not both hierarchical and feedforward. Front Comput Neurosci.

2014; 8:135. https://doi.org/10.3389/fncom.2014.00135 PMID: 25374535

13. Saarela TP, Westheimer G, Herzog MH. The effect of spacing regularity on visual crowding. J Vis.

2010; 10(10):17–17. https://doi.org/10.1167/10.10.17 PMID: 20884482

14. Herzog MH, Manassi M. Uncorking the bottleneck of crowding: a fresh look at object recognition. Curr

Opin Behav Sci. févr 2015; 1:86–93.
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