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a b s t r a c t

Point cloud datasets provided by LiDAR have become an integral part in many research fields
including archaeology, forestry, and ecology. Facilitated by technological advances, the volume of
these datasets has steadily increased, with modern airborne laser scanning surveys now providing
high-resolution, (super-)national scale, multi-terabyte point clouds. However, their wider scientific
exploitation is hindered by the scarcity of open source software tools capable of handling the
challenges of accessing, processing, and extracting meaningful information from massive datasets, as
well as by the domain-specificity of existing tools. Here we present Laserchicken, a user-extendable,
cross-platform Python tool for extracting statistical properties of flexibly defined subsets of point
cloud data, aimed at enabling efficient, scalable, distributed processing of multi-terabyte datasets. We
demonstrate Laserchicken’s ability to unlock these transformative new resources, e.g. in macroecology
and species distribution modelling, where it is used to characterize the 3D vegetation structure at high
resolution (<10 m) across whole countries or regions. We further discuss its potential as a domain
agnostic, flexible tool that can also facilitate novel applications in other research fields.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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. Motivation and significance

LiDAR, enabling the detailed 3D characterization of an area,
as been transformative in many fields [1–5]. For instance, (land-
surveying, archaeology, forestry, and ecology/biology have ex-
ensively adopted LiDAR systems operating from a variety of
canning platforms, with especially airborne laser scanning (ALS)
eing a flexibly deployable technique capable of covering large
patial extents.
For most scientific domains, the desired information is en-

oded in the properties of ensembles of points (3-dimensionally
ocalized returns from the emitted scanning pulse), either co-
ocated in a predefined spatial extent, or associated with a certain
bject. The exploitation of LiDAR datasets thus requires the def-
nition of suitable metrics, referred to as features, enabling the
xtraction of relevant information from the point cloud. Accord-
ngly, various domains have invested significant effort into iden-
ifying features that enable the estimation of properties such as
iomass and tree diameter (forestry), habitat structures (animal
cology [6,7]), or single trees (urban planning [8]), with the use of
iDAR in any new context potentially requiring new metrics (and
ffort).
Concurrent with these efforts, advances in LiDAR and data-

torage technology, leading to LiDAR’s availability at relatively
ow-cost, have facilitated the generation of massive datasets. For
xample, modern ALS datasets on (super-)national scales encom-
ass hundreds-of-billions of data points and tens-of-terabytes of
ata (e.g. AHN3,1 LiDAR aérien 2015,2 National LiDAR Dataset3).

Providing high spatial resolution data covering geographic ex-
tents of tens to hundreds-of-thousands of square kilometers, such
datasets represent a transformative new resource in research
fields where detailed local environmental information (on scales
of meters) is known to be important, but which simultaneously
span large geographic extents. However, their scientific exploita-
tion, e.g. in macroecology and global change biology, has faced a
number of challenges [9].

Firstly, the data volume represents a major challenge. Ex-
tracting features from point clouds requires performing calcula-
tions over their constituent points. With these numbering in the
hundreds-of-billions, even the simplest calculations pose a chal-
lenge in terms of required CPU time and data access. However,
the calculations for one subset of points are usually independent
of further distant points in the dataset, making feature extrac-
tion amenable to distribution and parallelization, i.e tractable in
principle. An additional problem in scientifically exploiting AL-
S/LiDAR data is the domain-specificity of features. Extendability
and flexibility, i.e. enabling the user to define appropriate features
and subsets of data points in line with their requirements, are
therefore key requirements of any software to be used in this
context. Exactly this aspect, however, is severely limited in non-
open source software packages, which may furthermore cause
interoperability problems in the context of open, accessible, and
reproducible scientific research [10,11].

The current landscape of software for processing LiDAR data
fails to adequately address these combined challenges. For in-
stance, amongst the commonly used software and tools, some are
not open source (e.g. LAStools [12,13] and OPALS [14,15]), some
are aimed at smaller volumes of data (e.g. FUSION4), some are
fully tailored to their field and hence lack flexibility (e.g. lidR5

1 https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-
ederland-ahn3-.
2 http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015.
3 https://environment.data.gov.uk.
4 http://forsys.cfr.washington.edu/fusion/fusion_overview.html.
5 https://github.com/Jean-Romain/lidR.

is focused on forestry and limited to an area-based approach6),
and, crucially, no available free open source software (FOSS)
tools currently support full horizontal scalability via workload
distribution.

Here, we present Laserchicken, an open source, user-
extendable, Python package facilitating the extraction of fea-
tures from point cloud datasets in a simultaneously flexible and
efficient manner, amenable to scaleable distributed processing
of massive data volumes, and employable across a range of
computational environments.

2. Software description

Laserchicken is a Python library comprised of several modules,
each performing a single task (detailed below). In the interest of
cross-platform employability and scaleable distributed processing
the library has been kept light-weight and solely focused on
feature extraction, providing functions optimized for execution in
a single process.

In the following, we highlight Laserchicken’s characteristics,
describe its architecture (Section 2.1) and workflow (Section 2.2),
and briefly discuss its performance (Section 2.3).

In Laserchicken, the LiDAR dataset is referred to as the envi-
ronment point cloud (EPC), and the subsets of points over which
a metric is to be calculated are referred to as neighborhoods.
Each neighborhood is defined by a target volume and a target
point (e.g. a cube of a certain size and its centroid, respectively),
with all points enclosed in the volume constituting the neigh-
borhood (Fig. 1). Four volume definitions are implemented: an
infinite square cell, an infinite cylinder, a cube and a sphere
(Fig. 1). All target points together form the target point cloud
(TPC), exemplified for a regular grid in Fig. 2. The TPC can be
freely defined by the user. Features are calculated over the list
of neighborhoods, with the feature values being associated with
each neighborhood’s defining target point, thus forming the en-
riched target point cloud (eTPC). This novel concept forms the
core of Laserchicken’s flexible and domain agnostic functionality,
for example enabling Laserchicken to be seamlessly employed for
extracting features in a classic area-based approach (see Fig. 2) as
commonly used in a macroecological context [7] and Section 3.1,
as well for characterizing the local geometry of a point cloud
around a given point (e.g. within a sphere) to explore and identify
structures within a dataset at high resolution (see Section 3.2).

2.1. Software architecture

Laserchicken consists of four core modules (load, compute
neighbors, features, export), and two optional modules
(filter, normalize), which provide a processing workflow for
feature extraction (Fig. 3), with file based input (EPC and TPC) and
output (eTPC).

Laserchicken relies on standard Python libraries (numpy,
scipy), with additional usage of laspy, pylas, and plyfile libraries
for input and output, and of the shapely library to support
(geo-)spatial filtering of points.

2.2. Workflow and software functionality

Fig. 3 depicts Laserchicken’s workflow for feature extraction.
The rest of this section provides descriptions of Laserchicken’s
modules accompanied with code examples.

6 See Section 3.1.
2
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Fig. 1. Examples of volume geometries (red) available to define neighborhoods (shown as red points; enclosed): an infinite square cell (a), an infinite cylinder (b),
a cube (c), and a sphere (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.2.1. Module: load
The load module provides functionality to load point cloud

atasets provided in ASPRS LAS/LAZ, or in PLY format, and is
sed for both input point clouds. In conjunction with the PDAL
ibrary [16], this provides access to a comprehensive range of
oint cloud data formats.

1 # Example code for loading data
2 from laserchicken import load
3 point_cloud = load(’AHN3.las’)

2.2.2. Module: Compute Neighbors
The Compute neighbors module constructs the neighbor-

hoods as defined by the TPC and target volume by identifying the
points in the EPC which reside in the specified volume centered
on the target points, returning each as a list of indices to the EPC.
This essential step of computing neighboring points for large sam-
ples of points is computationally expensive. Laserchicken uses the
optimized ckDtree class (kdTrees are a space-partitioning data
structure) provided by the scipy library to organize both the EPC
and TPC in kdTrees in an initial step prior to the computation
of neighbors, subsequently accelerating the process of computing
neighbors by using the indices of the points with respect to the
kDtrees. All volumes are defined using the cylinder volume type

as the base volume class, enabling Laserchicken to make use of
efficient k = 2 dimensional kDtrees.

1 # Example code for computing neighbors
2 from laserchicken import compute_neighborhoods
3 from laserchicken import build_volume
4 targets = point_cloud
5 volume = build_volume(’sphere’, radius=5)
6 neighborhoods = compute_neighborhoods(point_cloud ,

targets, volume)

2.2.3. Module: Features
Feature extraction is performed by the Features module,

which requires the EPC, the TPC, the computed list of neighbor-
hoods, and a list of requested features as input. For each target
point it selects the points of the associated neighborhood and
calculates a vector of the requested features over these. This
feature vector is appended to the target point, thus defining the
eTPC.

1 # Example code for computing features
2 from laserchicken import compute_features
3 compute_features(point_cloud , neighborhoods ,

targets, [’std_z’,’mean_z’,’slope’], volume)
3
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Fig. 2. Illustration of a target point cloud (TPC, green points) representing the
centroids of a regular grid cell, and the neighborhoods (red points) defined by
a square infinite cell target volume (red columns). Features are calculated over
the neighborhood of each target point and then associated with the target point,
thus forming the enriched target point cloud (eTPC). Points that are not included
in the neighborhoods are shown in black. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

1 # Example code for computing parameterized
features

2 from laserchicken import
register_new_feature_extractor

3 from laserchicken.feature_extractor.
band_ratio_feature_extractor import
BandRatioFeatureExtractor

4 register_new_feature_extractor(
BandRatioFeatureExtractor(None, 1, data_key=’
normalized_height’))

5 register_new_feature_extractor(
BandRatioFeatureExtractor(1, 2, data_key=’
normalized_height’))

6 register_new_feature_extractor(
BandRatioFeatureExtractor(2, None, data_key=’
normalized_height’))

7 register_new_feature_extractor(
BandRatioFeatureExtractor(None, 0, data_key=’z
’))

Currently, a number of features are implemented, includ-
ng percentiles of the height distribution and eigenvectors (Ta-
le 1). Computationally expensive calculations requiring multi-
imensional linear algebraic operations (e.g. eigenvectors and
igenvalues) have been vectorized using the einsum function of
he numpy library to optimize performance. Their implementa-
ion can serve as a template for new features requiring similar
perations.

.2.4. Module: Export
The Exportmodule serializes the eTPC in PLY, CSV, or LAS/LAZ

format for further analysis with the user’s choice of software. The
PLY format is preferred, as it is flexibly extendable, and provides
economical memory usage as well as the option of recording
provenance data. Depending on the use case and domain, conver-
sion to another format (e.g. GeoTiff) may be desirable. We note
that the PDAL [16] and GDAL [26] libraries can be interfaced with
Laserchicken’s output for such a purpose.

1 # Example code for exporting data
2 from laserchicken import export
3 export(point_cloud , ’my_output.ply’)

2.2.5. Module: Filter (optional)
Laserchicken provides the option of filtering the EPC prior to

extracting features. Points may be filtered on the value of a single
attribute relative to a specified threshold (e.g. above a certain
normalized height above ground), or on specific values of their
attributes (e.g. LAS standard classification). It is also possible to
filter with (geo-)spatial layers such as polygons (e.g. regions of
interest, land cover types), i.e. selectively including or excluding
points.

1 # Example code for filtering with a polygon in wkt
format

2 from laserchicken.filter import select_polygon
3 polygon = " POLYGON(( " + \
4 " 131963.984125 549718.375000, " + \
5 " 132000.000125 549718.375000, " + \
6 " 132000.000125 549797.063000, " + \
7 " 131963.984125 549797.063000, " + \
8 " 131963.984125 549718.375000)) "
9 point_cloud = select_polygon(point_cloud , polygon)

1 # Example code for attribute filtering
2 from laserchicken.filter import select_above ,

select_below
3 points_below_1m = select_below(point_cloud , ’

normalized_height’, 1)
4 points_above_1m = select_above(point_cloud , ’

normalized_height’, 1)

2.2.6. Module: Normalize (optional)
A number of features (Table 1) require the normalized height

above ground as input. Laserchicken provides the option of inter-
nally constructing a digital terrain model (DTM) and deriving this
quantity.

To this end, the EPC is divided into small cells (e.g. 1m or 2.5m
squared). The lowest point in each cell is taken as the height of
the DTM. Each point in the cell is then assigned a normalized
height with respect to the derived DTM height. This results in
strictly positive heights and smooths variations in elevation on
scales larger than the cell size. The normalized EPC can be used
directly in further analysis, or serialized to disk.

1 # Example code for normalizing height
2 from laserchicken.normalize import normalize
3 normalize(point_cloud)

2.3. Distribution and performance

Laserchicken provides a library of (vectorized) single process
operations on point cloud data sets. As such, although the actual
focus of Laserchicken lies on enabling the processing of massive
data sets as discussed below, we briefly benchmark the perfor-
mance of the library against the widely used FOSS LiDAR prro-
cessing tool lidR.7 We note, however, that unlike Laserchicken,
which allows the user to freely specify any set of targets, lidR
requires (and is optimized for) the extraction of features on
regular grids. The results of using both libraries to extract a set of
3 features (90th percentile normalized height, median normalized
height, entropy normalized height in vertical bins of 0.5m; see

7 https://github.com/Jean-Romain/lidR.
4
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able 1
eatures currently implemented in Laserchicken..
Feature name Formal description Example of use References

Point density N
V where V is the target volume or area Point cloud spatial distribution

Pulse penetration ratio Nground
Ntotal

Tree species classification [17]

Echo ratio 100 ·
N3D
N2D

Roof detection [18]

Skewness 1
σ3 ·

∑ (Zi−Z̄)3

N Vegetation, ground, and roof classification and detection [19]

Kurtosis 1
σ4 ·

∑ (Zi−Z̄)4

N Vegetation, ground, and roof classification and detection [19]

Standard deviation
√∑ (Zi−Z̄)2

N−1 Classification of reed within wetland [20]

Variance
∑ (Zi−Z̄)2

N−1 Classification of reed within wetland [20]

Sigma Z
√∑ (Ri−R̄)2

N−1 where Ri is
the residual after plane fitting

Adapted from [20]

Minimum Z Zmin Simple digital terrain model in wetlands [20]

Maximum Z Zmax Height and structure of forests [21]

Mean Z 1
N ·

∑
Zi Height and structure of forests [21]

Median Z Zmedian Height and structure of forests [21]

Range Z |Zmax − Zmin| Height and structure of forests [21]

Percentiles Z Height of every 10th percentile. Height and structure of forests [21]

Eigenvalues λ1, λ2, λ3 , with |λ1| ≥ |λ2| ≥ |λ3| Classification of urban objects [22]

Normal vector eigen vector v⃗3 Roof detection [23]

Slope tan(arccos(v⃗3 · k⃗)), where k⃗ = [0, 0, 1]T Planar surface detection [24]

Entropy Z −
∑

i Pi · log2Pi , with Pi =
Ni∑
j Nj

and Ni points in bin i
Foliage height diversity [25]

Coefficient variance Z 1
Z̄

·

√∑ (Zi−Z̄)2
N−1 Urban tree species classification [8]

Non-ground density absolute mean 100
Nnon−ground

·
∑

i∈non−ground[Zi > Z̄non−ground] Urban tree species classification [8]

Band ratio
NZi<Z<Zj

Ntot
with Zi and Zj provided by user Height and vertical structure of vegetation

Fig. 3. Laserchicken workflow. A LiDAR dataset and a set of target points – the environment point cloud (EPC) and the target point cloud (TPC), respectively – are
loaded from file, followed by the construction of neighborhoods for each target point. Features are subsequently extracted over each neighborhood and appended
to the associated target points, forming the enriched target point cloud (eTPC), which can be exported in several formats. Optionally, the EPC can be filtered or
normalized prior to further processing.

Table 1) for a regular grid of 200 × 200 cells with 10m × 10m
esolution covering a total spatial extent of 2 km × 2 km with
varying volumes of LiDAR point cloud data are shown in Table 2.
Laserchicken requires between 80% and 50% longer to extract
these features, with the difference decreasing with data volume,
likely as the result of its general purpose target definitions com-
pared to lidR. However, the actual perceivable difference in use
is much smaller, as for the test data of sizes typical of real
applications (≳ 5GB) the process is fully I/O8 dominated, with
comparable data loading times of ≳ 80 s in both libraries making
the difference ∼ 10%.

This I/O dominance and the accompanying memory require-
ments also highlight the major challenges involved in processing
massive LiDAR datasets Laserchicken has been designed to ad-
dress. Even when running a currently available FOSS tool such as

8 Input/Output dominated, i.e. the loading and serializing of data constitutes
he dominant activity in execution time.

lidR with parallel processes enabled, the achievable performance
is limited by the host system’s available memory, as these tools
run on a (single) local system – a system with 32GB will only be
able to support ∼4 processes at a given time. The only solution to
this dilemma is horizontal scalability, i.e. the ability to distribute
the needed computations over many nodes/machines, such as
cloud or cluster infrastructures. To the extent of our knowl-
edge Laserchicken is, at the time of writing, the only FOSS that
inherently supports such arbitrary horizontal scaling, as demon-
strated by the examples of features and workflows provided in
Section 3, providing it with the ability to easily and rapidly out-
scale existing LiDAR processing FOSS tools. Combined with the
freely definable targets and user-definable features this makes
Laserchicken a powerful tool for researchers in any domain to
process LiDAR data – and in particular massive datasets – also
including those making use of features extracted on regular grids.
5
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Fig. 4. An example of a LiDAR feature (Mean Z) calculated from the AHN3 dataset of the Netherlands using a grid with 100 m ×100 m resolution (for visualization
urposes). (a) Mean Z calculated with an area-based approach over an area spanning roughly two thirds of the Netherlands (i.e. reflecting current data availability,
ith empty regions representing the lack of data coverage of the AHN3 until July 2019). (b) A landscape representation of the calculated Mean Z for an area in
he centre of the Netherlands. (c) Representation of the local point cloud within one grid cell showing the pre-classified points (ground, vegetation, water) and the
erived Mean Z.

able 2
ean execution time and standard deviation in seconds (10 samples) for the
xtraction of 90th percentile normalized height, median normalized height, and
ntropy normalized height in vertical bins of 0.5m features on a regular grid of
00×200 10m×10m infinite vertical cells covering a 2 km×2 km spatial extent
ith varying volumes of LiDAR point cloud data executed as a single process
single-threaded) on a MacBook Pro with 2,3 GHz Intel Core i5 processor and
6 GB RAM.
Data volume 163MB 1.4GB 5.1GB 7.4GB

lidR 0.41 s ± 0.01 s 4.4 s ± 0.2 s 14.1 s ± 0.5 s 17.4 s ± 0.6 s
Laserchicken 0.73 s ± 0.08 s 7.63 s ± 0.2 s 21.4 s ± 0.3 s 26.0 s ± 0.8 s

3. Illustrative examples

Below, we showcase the use of Laserchicken for ecological
esearch, highlighting the flexibility of the package in providing a
ool for a broad range of applications to ALS/LiDAR data, as well as
ts ability to support distributed processing of massive datasets.

.1. Local habitat characterization at national scales

Laserchicken is currently employed in the eEcoLiDAR project
9] at the University of Amsterdam in cooperation with the
etherlands eScience Center, with the scientific goal to char-
cterize the vertical and horizontal complexity of vegetation
nd landscapes at high resolution across regional to national/-
ontinental scales on the basis of ALS data. In particular, the
roject uses Laserchicken to calculate features as listed in Table 1
rom the AHN3 dataset9 (currently ∼640 billion points covering
30 000 km2) in 10m × 10m cells covering the whole Nether-

ands, i.e. in a classical area/grid based approach (see Fig. 4). The

9 https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-
ederland-ahn3-.

processing is carried out an a cluster of 6 virtual machines (VM),
each with 6 cores, 32 GB RAM, and 256 GB local HDD.

The AHN3 ALS dataset is first re-gridded to a regular grid of
2 km × 2 km tiles (i.e a full multiple of the desired resolution
of 10m on a side) covering the full geographical extent of the
data using the MassivePotreeConverter [27] tool, with the points
associated with each tile, i.e the EPC, being serialized in LAZ
format. For each tile a LAZ TPC file defining the center points of
the 10m×10m cells it contains is created. These input data (EPC
and associated TPC LAZ files) are subsequently distributed across
the cluster’s virtual machines.

For feature extraction multiple processes of Laserchicken are
executed in parallel across the cluster, with the eTPCs for each
tile being serialized locally in PLY format. Processing the AHN3
dataset at 10m × 10m resolution with 12 parallel processes (2
per VM due to RAM requirements) and extracting the full list of
features specified in Table 1 completes in 96 h of wall time, with
the required time scaling inversely with the number of processes.

The eTPC files are merged and rasterized (using a bespoke
python tool) into (several) multi-band GeoTIFF files for further
processing. An example of the GeoTiff output is shown in Fig. 4.

3.2. Point cloud structure: towards classification and object identifi-
cation

The classification of ALS returns by the specific object/surface
from which they return (e.g. ground, vegetation, structures of
human origin) is non-trivial, in particular for echos not associated
with the earth’s surface. Accordingly, the scientific exploitation
of ALS datasets often requires significant classification efforts or
further preparatory processing, e.g. to quantify local (geometric)
structures in the point cloud data. For example, the identification
of planar surfaces can be very effectively employed in defining an
input point cloud for the detailed characterization of vegetation
6
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Fig. 5. A point cloud colored-coded by the local value (0.5 m radius) of the
lope feature (see Table 1), which can help in a segmentation approach to
dentify planar surfaces. Contiguous planar surfaces with relatively homogenous
lope values are visible, including rooftops (green and sky blue), ground points
dark blue), and the slopes of embankments (blue). In contrast, trees and other
egetation (e.g. left upper part) have diverse slope values. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

tructures (which requires the removal of returns from structures
f human origin as well as ground points), and has been shown
o strongly improve the computational efficiency of LiDAR pro-
essing when identifying linear vegetation elements (e.g. hedges)
n agricultural landscapes [28].

By employing the EPC as the TPC, Laserchicken trivially facil-
tates the calculation of local geometric properties of the point
loud, e.g. normal vectors, eigenvectors, or the local slope, re-
uired as input for such classification schemes. In combination
ith its vectorized calculation of (such) properties, and the ability
o distribute the required processing, Laserchicken thus facilitates
uch computationally intensive (pre-)processing and provides a
ramework to expand the spatial extent over which it can be
pplied.
More precisely, using Laserchicken, the extraction of the local

igenvectors, normal vectors, and slope for a 1m diameter spher-
cal target geometry around each point for a point cloud dataset
ith a density of ∼20 ptsm−2, executed using 6 distributed pro-

cesses on the cluster of virtual machines described in Section 3.1,
requires ca. 13 min for an area of 1 km2 making such processing
f datasets covering tens to hundreds of square kilometers a
ractable proposition, albeit still computationally expensive and
ccordingly constrained in spatial extent in practice. A sub-region
rocessed in this manner is shown in Fig. 5, and highlights the
otential for detection of planar surfaces.

. Impact

.1. Ecology and biogeography

Although LiDAR/ALS technology already represents a key re-
ource in animal-habitat studies at local scales [6], its use at
egional/continental scales still remains limited [7]. With the
vailability and accessibility of high-resolution, nationwide ALS
atasets steadily increasing, the key remaining bottle-neck is the
ack of open source, flexible, user-extendable tools capable of
tilizing modern distributed computing infrastructures to effi-
iently extract information from multi-terabyte LiDAR datasets.

The Laserchicken package presented here provides such a tool,
expanding beyond the capabilities of existing FOSS tools by lever-
aging its horizontal scalability to handle the challenge these data
volumes pose.

Within the eEcoLiDAR project [9], Laserchicken has already
been instrumental in defining new classification methods for
wetland habitats [29]. Laserchicken is currently being used to
extract comprehensive 3D habitat measurements across the en-
tire Netherlands, forming the basis for nationwide studies that
model species distributions of birds and insect pollinators at
high resolution, taking the detailed 3D habitat structure into ac-
count. Furthermore, Laserchicken provides a framework to quan-
titatively investigate the technical challenges for upscaling local
habitat measurements to regional and continental scales, and
for assessing the robustness and transferability of LiDAR metrics
for monitoring habitat structure across space and time. This will
provide unprecedented insights into animal-habitat relationships
and the impact of land use change. It will further provide a
baseline for monitoring habitat changes within and across diverse
types of ecosystems and thus foster the use of LiDAR-derived
indicators in the context of Essential Biodiversity Variables (EBVs)
of habitat structure [30,31].

4.2. Other domains

Although developed in the context of macroecological re-
search, the Laserchicken toolkit is domain agnostic, and can be
used in service of any research objective which requires the
calculation of characteristics for subsets of a (massive) point cloud
dataset. For instance, Laserchicken provides the capabilities to
address problems in archaeology, such as the detection of archae-
ological remnants, and especially standing remains, in vegetated
settings [32–34]. In contrast to constructing a high-resolution
terrain model which often fails to detect these important types
of remnants, a segmentation of the point cloud data on the basis
of the local geometry of the neighborhood of each point has been
shown to constitute a promising approach [33]. However, the
computational load combined with a lack of suitable software
has been identified as significant impediment to adopting such
an approach. Laserchicken provides all the required capabilities,
making it ideally suited for identifying archaeological remnants
following this approach, or any other local structures that require
the calculation of features from point cloud datasets.

5. Conclusions

Laserchicken constitutes a powerful software for extracting
features from point cloud datasets, employable on a wide range
of workflows across a broad spectrum of computing infrastruc-
tures. The concepts of a flexibly definable target point cloud and
target volumes, and the implementation of a standard architec-
ture, facilitating the extension by user-defined features, make
Laserchicken a domain agnostic tool. Crucially, Laserchicken also
facilitates distribution of the computationally expensive opera-
tion of feature extraction from massive, multi-terabyte datasets,
making the scientific exploitation of such increasingly common
resources a feasible proposition and unlocking their potential for
a wide range of scientific domains. Laserchicken is fully func-
tional in its current form as described here. Nevertheless, further
development of its functionality is on-going, and additions from
interested communities, in particular to the set of extractable
features beyond those listed in Table 1, are welcome.
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