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Abstract
Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, 
which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes 
to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights 
the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla 
(T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learn-
ing and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, 
anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide 
a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas 
based on in vivo 7 T MRI data.

Keywords Probabilistic atlas · 7 T MRI · VTA · Midbrain · Subcortex

Introduction

Neuroanatomical atlases can be used to localize functional 
magnetic resonance imaging (fMRI) BOLD signal in uni-
variate (voxel-wise) analyses, or to extract BOLD signal in 
the region of interest analyses (Poldrack 2006). Currently, 
only 7% of the 455 subcortical nuclei are included in the 
available magnetic resonance imaging (MRI) atlases. This 

highlights the general difficulty in mapping smaller subcorti-
cal structures (Alkemade et al. 2013; Forstmann et al. 2017). 
One prominent subcortical nucleus is the ventral tegmental 
area (VTA). The VTA is located in the midbrain and con-
tains dopaminergic neurons, which are crucial in reward-
based learning and motor functions (Schultz 1998, 2015). 
Although some digital VTA atlases are available for neuro-
imaging purposes, there is a lack in availability of anatomi-
cally precise atlases derived from high-resolution 7 Tesla 
(T) MRI data that emphasize taking into account individual 
anatomical variability and precision.

Due to anatomical variability in the subcortex (Keuken 
et al. 2014), creating probabilistic atlases that capture this 
variability is crucial and particularly important for the VTA. 
The VTA is relatively small, with a size of circa 140  mm3, 
has a complex shape (Halliday and Törk 1986), and lacks a 
clear anatomical border with the surrounding nuclei. For all 
these reasons, delineating the VTA on individual MRI scans 
is very challenging. Despite these challenges, some efforts 
have been made to provide digital VTA atlases (Murty et al. 
2014; Pauli et al. 2018). Eapen et al. (2011) and Ballard 
et al. (2011) set remarkable groundwork for segmenting the 
VTA on MRI data and Murty et al. (2014) provided the first 
publicly available probabilistic atlas of the VTA. Recently, 
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Pauli et al. (2018) released another probabilistic atlas of the 
VTA by making use of the large publicly available data the 
field has gathered since. Accordingly, the atlas by Pauli et al. 
(2018) was aimed to emphasize anatomical variability, but 
interestingly the authors also applied a different VTA termi-
nology compared to Murty et al. (2014).

The atlas introduced in this paper adds to the collection 
of probabilistic VTA atlases by providing another atlas that 
emphasizes anatomical precision next to anatomical vari-
ability which was the focus of previous atlases. Importantly, 
we acknowledge previous efforts; however, there are several 
challenges in the construction of VTA atlases that can be 
facilitated today due to developments in the field of ultra-
high-field MRI. For example, given the relatively small size 
and location of the VTA, a scan protocol with a submillim-
eter voxel-size resolution is crucial (Ewert et al. 2018). Also, 
a 7T scan protocol helps to acquire improved signal-to-noise 
ratios (SNR) and contrast-to-noise ratios (CNR) compared 
to lower field strength (van der Zwaag et al. 2015). Fur-
thermore, the optimization of the MR sequences by means 
of tailoring them to subcortical structures such as the VTA 
is required for individual anatomical precision (Trutti et al. 
2019).

Finally, the interindividual anatomical variability of the 
VTA necessitates a large number of manual delineations by 
different raters separately for both hemispheres, respectively, 
to account for anatomical variability as well as the reliability 
of the segmentation.

Of course, all efforts to provide probabilistic VTA atlases 
are limited by some factors and therefore tailored to differ-
ent approaches. In the atlas of Pauli et al. (2018) anatomical 
variability was taken into account before manual segmenta-
tion was carried out by means of computing eight, unilateral 
group templates on which three raters manually segmented 
the VTA. This resulted in eight, unilateral VTA segmenta-
tions for each rater despite the abundance of individual data, 
as the data originated from the Human Connectome Project 
(HCP). Yet, manual segmentations are very time consum-
ing and the authors provided many subcortical nuclei in 
the published atlas. Thus, their efforts were not limited to 
segmenting the VTA. Further, since they worked with HCP 
data, they were also restricted to the available scans. To get 
images that allow segmentation of subcortical nuclei, the 
construction of group templates was required.

In contrast, the atlas from Murty et al. (2014) is based 
on manual segmentation of the VTA on a large number of 
participants. Nonetheless, as the field rapidly develops the 
data quality is not state-of-the-art anymore. The resolution 
(1 mm isotropic) and CNR of the used T1-weighted MRI 
sequence render the incorporation of small anatomical dif-
ferences needed for the segmentation of the VTA very chal-
lenging. These issues can be addressed again today with new 
scan protocols and higher field strengths.

Besides the use of digital atlases, researchers who aim to 
provide anatomical precision in their neuroimaging efforts 
are limited to the use of topological, histological atlases such 
as the Mai, Majtanik, and Paxino’s atlas of the human brain 
(Mai et al. 2016). However, VTA representations in digital 
and topological atlases differ substantially not only due to 
interindividual variability in anatomy but also due to dif-
ferences in VTA terminology (see Trutti et al. 2019 for a 
comprehensive review). Another factor that might influence 
the lack of agreement in terminology, and consequently the 
variability in VTA representations in the aforementioned 
atlases, is the structure’s cytoarchitectonic and neurochemi-
cal heterogeneity. This heterogeneity is not restricted to the 
VTA’s neural populations but is also apparent in its lack of 
a clear anatomical border, which makes it difficult to define 
boundaries in structural and histological studies and explains 
the poverty in available probabilistic VTA atlases.

In this study, we first present an optimized 7T MRI imag-
ing protocol to delineate the VTA based on a well-estab-
lished VTA terminology (Trutti et al. 2019). According to 
Halliday and Törk (1986) as well as Mai et al. (2016), the 
VTA covers a region that includes the parabrachial pig-
mented nucleus (PBP), paranigral nucleus (PN), interfas-
cicular nucleus (IF), the caudal linear nucleus (CLi), and 
the rostral linear nucleus (RLi). Hence, the segmentation 
protocol was built so that the VTA masks could contain the 
different VTA component nuclei rather than to identify the 
individual component nuclei themselves, which is hardly 
possible even at 7T. We then demonstrate the capabilities of 
this optimized protocol to define a probabilistic VTA atlas 
based on 7T in vivo MRI data from 27 healthy participants.

Data, materials and methods

Participants

The probabilistic atlas is based on twenty-seven healthy, 
young, right-handed participants (19 females) with a mean 
age of 24.5 (SD 4.8). All participants had normal or cor-
rected-to-normal vision, and none of them had a history of 
neurological, major medical, or psychiatric disorders. The 
study was approved by the local ethics committee at the 
University of Amsterdam, the Netherlands. All participants 
gave their written informed consent prior to scanning and 
received monetary compensation for participating. This 
study was performed in line with the principles of the Dec-
laration of Helsinki.

Scan parameters

The structural data were acquired using a Philips Achieva 
7T MRI scanner equipped with a Nova Medical 32-channel 
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head array coil. T1-weighted and T2*-weighted images, 
along with other images, were simultaneously obtained 
using a multi-echo magnetization-prepared rapid gradi-
ent echo (MP2RAGE-ME) sequence (Caan et  al. 2018; 
Metere et  al. 2017) with a total acquisition time of 
19.53 min (TI,1 = 670 ms, TI,2 = 3675.4 ms, TR,1 = 6.2 ms, 
TR,2 = 31 ms, TE,1 = 3 ms, TE,2 = [3, 11.5, 19, 28.5 ms], 
TR, MP2RAGE-ME = 6778 ms, flip angle1:  4◦, flip angle2: 
 4◦, bandwidth: 404.9 MHz, acceleration factor SENSE: 
2, FOV = 205 × 205 × 164  mm3, acquired voxel size: 
0.7 × 0.7 × 0.7  mm3, acquisition matrix: 292 × 290, recon-
structed voxel size: 0.64 × 0.64 × 0.70  mm3, turbo factor: 150 
(resulting in 176 shots).

Image processing

Because the T1-weighted and T2*-weighted structural 
images were acquired simultaneously using the MP2RAGE-
ME sequence (Caan et al. 2018; Metere et al. 2017), co-
registration was not necessary. All obtained scans were indi-
vidually checked for sufficient contrast in the VTA region 
to identify sequences that allow VTA delineation. To first 
locate and then manually delineate the VTA even though it 
lacks a clear border, we used its surrounding structures as 

landmarks and virtual borders. These included the fourth 
ventricle, the red nucleus (RN), and the substantia nigra 
(SN). This procedure is in line with histology approaches 
in which VTA delineations are also based on neighbor-
ing structures (Mai et al. 2016), as well as previous MRI-
based delineations (Murty et al. 2014; Ballard et al. 2011). 
To increase contrast in our regions-of-interest (ROIs), we 
performed a few preprocessing steps prior to the manual 
delineation, as the visibility of the VTA and its neighboring 
structures varied across the three different scan contrasts 
(Fig. 1). While the fourth ventricle was best visible in the 
T1-weighted image, images from the second inversion of 
the T2*-weighted scans provided best visibility of both the 
SN and the RN. Since different landmark structures were 
visible in different images, we set up a procedure to include 
all of the landmark structures in the same image. Precisely, 
three images were chosen, across which the visibility of each 
structure varied: the  T1-weighted image and two inversions 
of the  T*

2-weighted scan, namely the 3rd and 4th echo. 
Additionally, for each subject, a midbrain area (with vol-
ume 1.6 × 1.6 × 3.08  cm3) was defined, so that it included the 
VTA as well its neighboring landmarks (i.e., the RN, the SN, 
and the 4th ventricle). The preprocessing steps thus included 
(1) averaging the 3rd and 4th echo of the  T2

*-weighted scan 

T1-weighted image

axial

Average 3rd and 4th
echo of T2*-
weighted scans

Final segmentation 
image

coronalsaggital

Fig. 1  Detail of the midbrain area of one individual participant for 
each of the different scans collected for VTA delineation. The fig-
ure displays VTA (red) for one participant in the sagittal (left col-
umn), coronal (middle column), and axial (right column) plane. The 
first row shows the T1-weighted image of the first inversion of the 
MP2RAGEME sequence. The second row shows the image based on 

the average between the third and fourth echo of the T2*-weighted 
scans. And the third row depicts the final image used for VTA deline-
ation, which was obtained by normalizing the image in the first and 
second row within the midbrain area (see 2.3). A blood vessel pass-
ing through the midbrain is highlighted in yellow, which was avoided 
during segmentation
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to increase the signal-to-noise ratio (SNR); (2) intensity-
normalization over the voxels of the pre-defined midbrain 
area of the previously computed average  T2

*-weighted scan 
and of the  T1-weighted image; (3) summing the normalized, 
T1-, and T2*-weighted midbrain sections. The image result-
ing from step 3 (‘midbrain contrast’) was ultimately used to 
delineate VTA at the subject level.

Registration to standard stereotactic MNI152 2009b 
space

All linear registration steps were done using MIPAV 5.4.4. 
(http://mipav .cit.nih.gov/) with the optimized automated lin-
ear registration algorithm. Whole-brain images were skull-
stripped using the standard FSL BET tool (Smith 2002). The 
registration to atlas space was done by means of non-line-
arly aligning the individual whole-brain images to a group 
average template of the AHEAD database (Alkemade et al. 
2020) which itself was co-registered to the MNI152 2009b 
template with the ANTs algorithm (Avants et al. 2008), 
using conservative deformation parameters as recommended 
for subcortex (Ewert et al. 2018). The individual VTA masks 
and midbrain contrasts were non-linearly transformed into 
MNI152 2009b space using the computed transformations. 
All registration steps were visually checked for misalign-
ments by comparing several landmarks: fourth ventricle, 
pons, corpus callosum, and lateral ventricles. Because the 
AHEAD template is based on the same MP2RAGE-ME 
sequence that provides additional subcortical contrast com-
pared to the MNI152 2009b template, the automated co-
registration of the subcortical regions was satisfactory.

Delineation protocol

Manual delineation was carried out by two independent 
researchers (LF, ACT) using the FSL 3.2.0 viewer (http://fsl.
fmrib .ox.ac.uk/fsl/fslwi ki/). Only voxels rated by both raters 
as belonging to the VTA were included to compute the VTA 
probabilistic atlas. Anatomical landmarks and the segmenta-
tion protocol were based on the work of Halliday and Törk 
(1986), van Domburg and ten Donkelaar (1991), Ballard 
et al. (2011) and Murty et al. (2014). The manual deline-
ation was done as follows: in an initial step, the individual 
T1-weighted image of the MP2RAGE-ME sequence was 
loaded for orientation purposes, as the final image for deline-
ation contained only the midbrain section (‘pre-defined mid-
brain area’ see 2.3). In a second step, the final, previously 
computed midbrain image was loaded and overlaid on the 
whole-brain T1-weighted image, and served as a basis for 
delineation. In a third step, the contrast values in the viewer 
for the delineation image were set to increase the visibility 
of the structural borders. The contrast values were deter-
mined on an individual subject basis and were independently 

set by each rater, but starting with a minimum of − 2 and 
maximum of + 2. For most participants, these initial contrast 
settings were found optimal for manual delineation. The con-
trast values were kept constant between hemispheres. The 
coronal view was picked to start delineating the structure. 
Once the delineation of the structure started, all three views 
were used to segment the structure. The order in which the 
right or left hemisphere was segmented was randomized per 
participant. First step of the manual segmentation involved 
identifying the starting point, the peak curvature of the 
white matter tract that connects the mamillary bodies with 
the midbrain (in sagittal view). In a second step, the voxels 
considered to be part of the VTA were segmented. The main 
body of the VTA lies between the relatively easily identified 
landmarks RN (dorsally), SN (ventro-laterally), the aqueduct 
(medially) and the fourth ventricle (ventro-medially). The 
subthalamic nucleus, if present, represents a much harder 
to identify dorsolateral landmark. Finally, the mask volume 
was computed and the interrater reliability was assessed by 
means of calculating different similarity metrics: the Dice 
coefficient, Hausdorff distance, and dilated Dice coefficient. 
The Dice coefficient represents the degree of spatial overlap 
between raters and is computed based on the size of the 
conjunct mask of the masks by rater 1 and rater 2, respec-
tively, which only includes voxels included by both raters’ 
segmentations (see Fig. 2a for the equation to calculate the 
Dice coefficient). The Hausdorff distance is a metric that 
indicates how far shapes are from being isometric, while 
taking into account both shape and orientation. The dilated 
Dice coefficient, a more suited measure of reliability for 
small structures with complex shapes is similar to the clas-
sical Dice coefficient except that it calculates the degree of 
overlap based on dilating each mask by one voxel. Accord-
ingly, it does not penalize a single-voxel offset to the same 
degree as the classical Dice score, which is an important 
factor for small, complex-shaped structures with a large ratio 
of surface voxels, like blood vessels or the VTA (see Fig. 2; 
Bazin et al. 2016). Interrater agreement is reflected in high 
(dilated) Dice values (1 = full agreement, 0 = no agreement), 
and a small Hausdorff distance. All statistics were derived 
using the Nighres toolbox (Huntenburg et al. 2018; https: 
//nighres.readthedocs.io-/en/latest/index.html) and its ‘seg-
mentation_statistics’ function.

Computation of probability maps and atlasing 
of the VTA

Manual delineations were carried out in individual spaces. 
To compute a probabilistic atlas, individual VTA masks 
were later registered to the group space as reported in “Reg-
istration to standard stereotactic MNI152 2009b space”. 
Consequently, the statistical atlas was generated by averag-
ing each individual segmented VTA mask in standard space.

http://mipav.cit.nih.gov/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Differences to other probability atlases of the VTA

To compare the currently available probabilistic atlases of 
the VTA with the atlas introduced in this manuscript, we 
moved to the standard space. The atlases of Murty et al. 
(2014) and Pauli et al. (2018) were registered to the MNI152 
2009b template using the ‘embedded_antsreg’ (Avants 2008; 
Gorgolewski et al. 2011) and ‘apply_coordinate_mappings’ 
functions and consecutively, overlap statistics were com-
puted using again the ‘segmentation_statistics’ function 
from the Nighres toolbox (Huntenberg et al. 2018).

Results

The individual, manually delineated VTA masks had an 
average size of 137.35  mm3 (SD = 38.27) and 138.80 
 mm3 (SD = 39.33), for the left and for the right hemi-
sphere, respectively. An ANOVA on the effects of rater and 
hemisphere on the volume of the individual delineations 
revealed a statistically significant main effect of rater, F(1, 
104) = 36.57, p < 0.001, but no main effect of hemisphere, 

F(1, 104) = 0.11, p = 0.739, nor an interaction between rater 
and hemisphere, F(1, 104) = 0.68, p = 0.412. Levene’s test 
did indicate heteroscedasticity in the volume measure, but a 
Shapiro–Wilk test on the ANOVA residuals found no indica-
tion that normality is violated.

The unthresholded probabilistic atlas volume was 
2226.375  mm3 for the left and 2368.00  mm3 for the right 
hemisphere. To increase the probability of the atlas voxels 
belonging to the VTA, thresholds can be applied. Each voxel 
has a particular probability of belonging a structure, based 
on the overlap across the 27 individually segmented masks. 
A threshold of 50%, for example, excludes all VTA atlas 
voxels that are not shared across at least 50% of the subjects 
(see Fig. 3 for the volume of the probabilistic atlas across 
different lower thresholds and Fig. 4 for three-dimensional 
reconstructions of the atlas).

Mean center of mass (CoM) of the individual masks 
in MNI152 2009b space was x = −  3.44, y = −  16.47, 
z = − 12.03 mm, respectively, for the left VTA masks and 
x = 3.5, y = − 16.45, z = − 11.99 mm, respectively, for the 
right VTA masks. The average distance to the mean CoM of 
the left VTA masks was < 0.001 mm (SD = 0.77) for the CoM 

Dilated dice score: 1  

Dice score: 0.375   

200 voxels
120 voxels

 A    D(B) +  B    D(A)
 A + B  dDC =

U U

Dilated Dice overlap

Dice overlap

200 voxels
200 voxels

Dice score: 0.75 

Dilated dice score: 0.95  

200 voxels 

Rater 1
Rater 2

Dilated Dice overlap
Rater overlap

For simplicity, masks of
both raters consist of 
80 surface voxels

 2 x A    B 
 A + B  DC  =

U

A Schematic example of the effect one voxel dilation on the
    dice overlap 

Dilated dice coefficient 

150 voxels120 voxels

190 voxels 

VTA mask rater 1
VTA mask rater 2

SN mask rater 1
SN mask rater 2

saggital coronal axial

small differences 
(~1 voxel) have little
impact on the 
overall overlap

small differences
(~1 voxel) have a
major impact on the
overall overlap

Ventral tegmental 
area (VTA)

Substantia nigra (SN)

B  The interaction of volume and minor segmentation differen- 
ces on segmentation overlap, an example on two different 
subcortical nuclei

T1-weighted QSM

Fig. 2  Dice and dilated Dice coefficient. The Dice coefficient is a 
spatial overlap index that by means of manual segmentation in MRI 
serves as a reproducibility validation metric (Zou et  al. 2004). In 
the case of subcortical nuclei, a reduced border contrast often com-
plicates manual segmentation substantially, especially for complex-
shaped and relatively small structures such as the VTA. a If many 
voxels represent border/surface voxel, as in the VTA, a difference 
of one voxel at the border has a huge weight on the overall agree-
ment. The dilated Dice score is a more flexible measure for inter-rater 
agreement and is therefore a more meaningful reproducibility metric 

for complex shapes as compared to the classical Dice score. In the 
equation, the letter A represents the mask of rater 1 and B the mask 
of rater 2. b The more voxels represent surface voxels in relation to 
the number of voxels of that structure in total (the surface/volume 
ratio) the more important exact overlap between raters becomes, as 
the classical Dice score penalizes each non-overlapping voxel. The 
example is shown on QSM images of a single subject with the VTA 
represented in the upper panel and the SN in the bottom panel. For 
orientation purposes a T1-weighted as well as a QSM whole-brain 
image is shown in the bottom right corner
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x-coordinate, < 0.001 mm (SD = 1.42) for the CoM y-coordi-
nate and < 0.001 mm (SD = 2.14) for the CoM z-coordinate 
(Fig. 5). Right VTA masks elicit an average distance to the 
mean x-coordinate of < 0.001 mm (SD = 0.86), < 0.001 mm 
(SD = 1.42) to the mean y-coordinate and < 0.001  mm 
(SD = 2.23) to the mean z-coordinate (see Fig. 5, panel b). 
Analyses in MNI152 2009b space revealed no effects of gen-
der or hemisphere on mask volume (gender: F(1, 50) = 0.298, 
p = 0.588, hemisphere: F(1, 50) = 0.076, p = 0.784; gender × 
hemisphere: F(1, 50) = 0.203, p = 0.654).

The mean Dice coefficient was 0.56 (SD = 0.06) for 
the left VTA and 0.56 (SD = 0.07) for the right VTA, 
while the Hausdorff distance was 7.96 voxels (SD = 1.34) 
[5.57 mm, SD = 0.94] and 8.12 voxels (SD = 1.48) [5.68 mm, 
SD = 1.04], respectively. The dilated Dice coefficient was 
0.80 (SD = 0.07) for both hemispheres (see Fig. 4 for the 
probabilistic atlas).

Table 1 shows the results of the comparison of the pro-
posed atlas with currently available probabilistic atlases of 
the VTA in MNI152 2009b space (see Fig. 6 for illustration).

Discussion

In the present work, we propose a new probabilistic atlas 
of the VTA that, differently from previously proposed 
atlases, not only takes into account individual variability and 

precision but explicitly emphasizes it. This atlas provides 
researchers with a tool to investigate with high anatomical 
precision the cognitive processes underlying VTA activation 
using fMRI. We show that ultra-high field 7T MRI allows 
the identification and delineation of the VTA at the indi-
vidual level, with the help of optimized MR sequences and 
a multimodal imaging approach.

This atlas differs from existing work in multiple respects. 
Although this atlas is based on a fewer number of subjects 
compared to Murty et al. (2014) and Pauli et al. (2018), 
it takes anatomical variability more comprehensively into 
account. First, the tailored MRI contrast elicits more CNR 
compared to a standard T1-weighted scan and an entirely 
landmark-based approach as applied by Murty et al. (2014), 
rendering it more likely to capture true individual anatomi-
cal differences even though Murty et al. (2014) had almost 
double the sample size. Second, Pauli et al. (2018) per-
formed delineations not on individual subjects, but on eight 
groupwise averages of 168 subjects. Such large groupwise 
averages capture very little anatomical variability and are 
biased towards more consistent labeling.

In this study, we used a high-resolution multi-parametric 
quantitative MRI sequence, which may not be available on 
every MRI machine. The key features for successfully imag-
ing the VTA were to combine a T1-weighted image (iden-
tifying ventricle boundaries) with a T2*-weighted image 
(identifying SN and RN). Thus, alternative MRI sequences 
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old of 0.2 as indicated by the bright red outline. In contrast, picking a 
high threshold (blue colored lines) would mostly include voxels in the 
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that combine these two contrasts at high isotropic resolution 
could be used as a basis for VTA delineation, and might be 
achievable at lower field strength and clinically acceptable 
scan times. Yet, our MRI sequence enabled segmentation 
on images with not only increased CNR but also increased 
resolution and SNR. All these factors play a crucial role in 
the identification and delineation of subcortical structures, 
especially structures that lack clear borders and elicit com-
plex shapes, such as the VTA. The influence of the data 
quality on the VTA mask can be seen in Fig. 6 with respect 
to the difference of VTA mask volume of Murty et  al. 
(2014; shown in green) and our VTA mask (shown in red). 
Besides the illustration of the observable volume differences 

between the atlases, Fig. 6 and Table 1 show various differ-
ences across available probabilistic VTA atlases. First, the 
anatomical precision of the Murty atlas appears constrained 
as it overlaps largely with areas that do not represent brain 
tissue but parts of the ventricle system (i.e., fourth ventricle), 
under all three visualized thresholds. Further, it covers a 
large region of the midbrain and, as noticeable for the ana-
tomically-experienced reader, includes structures such as the 
RN or SN. As mentioned above, this affected by data quality 
with respect to resolution, CNR and SNR that fundamentally 
affect anatomical precision, something that we could take 
advantage of compared to Murty et al. (2014) who could 
not benefit from recent technological advances. Yet, the 
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overlap of Murty’s atlas and the new atlas (shown in yellow 
in Fig. 6) is substantially more compared to the overlap with 
the atlas by Pauli et al. (2018; shown in white/blue in Fig. 6). 

One reason for the difference is the applied VTA terminol-
ogy, nevertheless, the Pauli atlas is substantially smaller. 
Hence, second, differences in terminology have strong 
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Table 1  Differences of novel 
probabilistic VTA atlas to 
existing probabilistic atlases of 
VTA

a In  mm3

Reference atlas Side Volume 
 differencea

Dice overlap Dilated 
dice over-
lap

Threshold at 0% Pauli et al. (2018) Left 0.937 0.104 0.170
Right 0.894 0.172 0.249

Murty et al. (2014) Left 0.302 0.576 0.678
Right 0.273 0.592 0.689

Threshold at 25% Pauli et al. (2018) Left 0.879 0.143 0.248
Right 0.866 0.154 0.264

Murty et al. (2014) Left 2.089 0.379 0.507
Right 2.199 0.385 0.513

Threshold at 50% Pauli et al. (2018) Left 0.921 0.108 0.195
Right 0.909 0.110 0.209

Murty et al. (2014) Left 3.021 0.312 0.457
Right 3.142 0.316 0.456
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effects on size, shape and location of the atlases. While we 
explicitly determined our delineating region according to 
the ‘VTA region’ terminology, Pauli et al. (2018) evidently 
delineated a VTA matching a ‘VTA nucleus’ terminology 
and, with the PBP nucleus, essentially segmented two nuclei 
that fall within the ‘VTA region’. Although not discussed in 
the paper, it appears Murty et al. (2014), in line with Ballard 
et al. (2011), opted for the more established ‘VTA region’ 
terminology as well (Trutti et al. 2019). Since the area the 
atlas covers matches previous studies that applied the same 
terminology (Ballard et al. 2011; Eapen et al. 2011; Murty 
et al. 2014), and the individual mask volume (~ 138  mm3) 
practically equals the post-mortem reconstructions of VTA 
volume (Halliday and Törk 1986), in contrast to previously 
published probabilistic VTA atlases (Table 1, Fig. 6), this 
atlas meets the goal of anatomical precision. A third major 

difference across the atlases, observable from Fig. 6 and 
Table 1, is the size of the atlas after thresholding. In prac-
tice, atlases are commonly used with an applied threshold 
of > 30–50% for neuroimaging analyses. The Pauli atlas is 
extremely small with a threshold of 50%; thus, it is question-
able if it represents a utilizable ROI mask in practice.

One shortcoming of the proposed atlas is noticeably that 
two of the inter-rater estimates indicate rather low reliability 
of the delineation. There are multiple sources for the bias in 
volume difference between the two raters. First, technical 
limitations and also anatomical constraints make it difficult 
to precisely capture the anatomy of the VTA, just as for 
any subcortical structure. As discussed earlier, as well as 
in Trutti et al. (2019), the borders of the VTA are very hard 
to identify and the complex shape of the VTA further com-
plicates the identification of the VTA’s borders. All these 
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Fig. 6  Overlap of proposed new probabilistic VTA atlas with existing 
probabilistic VTA atlases. The first row shows the overlap between 
the new probabilistic atlas of the VTA (red), the VTA atlas by Murty 
et  al. (2014; green) and Pauli’s et  al. (2018) VTA atlas (blue). The 
other colours indicate the overlap according to RGB-contrast as 
depicted in the legend at the bottom of the figure. For reasons of clar-
ity, only the right VTA atlas is shown (at MNI Y-coordinate: − 17.0). 

The second and third rows are identical to row one but illustrate 
atlases with a threshold of 0.25 and 0.50, which excludes voxels with 
a probability of belonging to each of the three VTA atlas masks of 
less than 25% or 50%, respectively, to assess general overlap as well 
as finer differences. For all shown images MNI y-coordinate was at 
− 17
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factors make delineation very challenging, as identification 
of the border is a crucial basis for overlap, which is reflected 
in the relatively low Dice scores. Second, the large surface of 
the VTA due to its complex shape leaves much room for dis-
agreement among raters, an effect that we tried to quantify 
with the dilated Dice coefficient and visualized in Fig. 2. The 
dilated Dice score suggests much more overlap (24% more 
overlap compared to the classical Dice score). Additionally, 
the Dice score is influenced by the volume of the region as 
it is computed based on the ratio between the overlap and 
junction of the masks, which generally leads to lower scores 
in smaller regions. Third, a difference in expertise in sub-
cortical anatomy and segmentation of subcortical nuclei was 
present across the raters and likely reflects another source of 
variance. For example, one rater was well experienced with 
the segmentation of subcortical nuclei and has been involved 
in work on the subthalamic nucleus before. As the subtha-
lamic nucleus represents a dorsolateral landmark that is dif-
ficult to identify for the unexperienced rater, the ability to 
correctly identify it as a landmark could be one explanation 
for the volume difference between raters. In fact, the main 
difference in segmented voxels between raters is located in 
the dorsolateral extend of the VTA.

Again, when taking into account a single voxel of uncer-
tainty with the dilated Dice coefficient, only minor dif-
ferences in the overlap between the raters are indicated 
(mean overlap of 80%, Fig. 2). This suggests that differ-
ences between raters are mostly within one voxel, reflecting 
the difficulty to precisely locate the boundary, but that the 
overall location, shape, and size of the VTA is consistently 
estimated by both raters. Thus, for complex-shaped and dif-
ficult identifiable structures such as the VTA, the classical 
Dice coefficient might only poorly reflect the spatial overlap 
between the raters, and, consequently, the dilated Dice coef-
ficient is likely to be the better metric for these structures.

Another point worth discussing is the distribution of 
probability labels in the VTA atlas, with lower probabil-
ity voxels in the dorsomedial and -lateral VTA. Since all 
intra-subject measures were performed in subject space, 
the probability distribution as such cannot be introduced or 
influenced by registration. Hence, the fact that the low prob-
ability voxels are found in the distal ends of the VTA likely 
reflects the increased difficulty in manually segmenting the 
dorsomedial and -lateral extensions of the VTA which, as 
a consequence, affects agreement and spatial overlap. One 
influencing factor is that the VTA elicits less noisy signal 
in the ventromedial VTA compared to the dorsomedial and 
-lateral VTA which, in turn, facilitates manual segmentation 
of that area. More precisely, the ventro-medial landmarks are 
defined based on CSF contrast in the fourth ventricle which 
is sharp and precise on T1-weighted MRI. T2* imaging, 
which served as a basis for identification of the landmarks 
SN and RN, is generally less precise due to non-local and 

orientation-dependent effects, and the SNR is typically lower 
in such iron-rich regions. Thus, although the ventro-medial 
VTA has a much more diverse neural composition, its defin-
ing landmarks are more visible. In addition, the PBP nucleus 
which makes the largest part of the dorsolateral VTA has a 
patchy appearance similar to the SN, which makes defining 
its boundaries more challenging. Another factor likely relat-
ing to the spatial differences in probability is that the medi-
oventral VTA is the VTA region with the largest volume 
on MR images as it covers a region of multiple component 
nuclei, such as the VTA nucleus, the PN, the IF, ventral parts 
of the linear raphe as well as the ventromedial tip of the PBP 
nucleus (Halliday and Törk 1986; Trutti et al. 2019). Agree-
ment in spatial overlap is critically affected by a structure’s 
volume and the extent to which this volume affects agree-
ment scores such as Dice is depicted in Fig. 2. Additionally, 
the ventromedial VTA has a less complex, ‘arborized’ (more 
‘spherical’) shape which hugely facilitates segmentation and 
consequently spatial overlap.

Taken together, these factors make it more likely that the 
individual masks overlap in the ventromedial VTA region. 
Consequently, they overlap less in the extensions of the VTA 
in which segmentation is more difficult due to noise in the 
signal and volume of the region-of-interest in general.

In summary, this probabilistic atlas of the VTA con-
tributes to a large body of work in atlasing the subcortex 
by means of manual segmentation on ultra-high-field 7T 
MRI data. To date, many in vivo studies on the functions 
of the dopaminergic midbrain nuclei neglect the anatomo-
functional differentiation of the VTA and SNc (e.g., Hauser 
et al. 2017; D’Ardenne et al. 2012) which might lead to mis-
leading outcomes. Although there is likely to be functional 
and structural overlap between VTA and SNc, their differen-
tiation has been well established, especially in humans (Fu 
et al. 2016; Murty et al. 2014; Dombug and ten Donkelaar 
1991; Halliday and Törk 1986). Yet, we acknowledge that 
the lack of common nomenclature in combination with data 
quality that does not allow distinction in the ventral tegmen-
tum (Trutti et al. 2019; Fu et al. 2016; van Domburg and ten 
Donkelaar 1991; Morales and Margolis 2017) might have 
hampered the anatomo-functional differentiation reported in 
studies considered here. This lack of agreement in terminol-
ogy and consequently, in the applied atlas, has been our main 
motivation to construct a probabilistic atlas of the VTA, as 
anatomically precise reconstructed ROI has the potential 
to overcome anatomical misconceptions, while at the same 
time making a ROI available that allows comparison of 
research findings (provided the use of the same atlas). The 
fact that the average individual mask volume matches post-
mortem estimations of VTA volume in a study that applied 
the same terminology (Halliday and Törk 1986) represents 
notable support for the anatomical precision of our indi-
vidual segmentations and consequently, probabilistic atlas.
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Limitations

The atlas can be useful for most MRI studies within the 
cognitive neurosciences because it is based on healthy young 
participants and therefore covers a widely studied age group. 
However, given the well-known age-related changes in sub-
cortical gray matter (Han et al. 2018; Keuken et al. 2017; 
Good et al. 2001), users should be cautious with applying 
this atlas to other age groups.

Further, a common trade-off in 7T imaging is that the 
benefit of an increased SNR in 7T often comes at the cost of 
substantially increased artifacts due to long scanning times. 
The MP2RAGE-ME sequence (Caan et al. 2018) chosen for 
this study, is a very time-efficient technique, acquiring the 
images of interest (T1-weighted and T2*-weighted) simulta-
neously, slice-by-slice. In a recent study (Bazin et al. 2016), 
the amount of blurring due to head motion was very limited 
around the fourth ventricle, indicating a better performance 
of the sequence compared to more dorsal regions.

For the research field, common constraints are the lim-
ited availability of 7T MRI scanners, the more challenging 
development of sequences and processing of data make it 
difficult for researchers to work with 7T data, resulting in 
many publications that are based on 3T data. In fact, the 
subcortical nuclei such as the VTA are visible also in (opti-
mised) 3T data, but the anatomical precision remains largely 
inferior to optimised 7T protocols (Isaacs et al. 2020). Pre-
cisely, due to a weaker field strength, 3T (or lower) might 
not succeed to image with enough spatial resolution, signal 
and contrast to capture the local neuroanatomy sufficiently 
well. Accordingly, 3T data certainly allows imaging of the 
midbrain structures but especially in the case of the het-
erogenous neurons that make up the VTA, the anatomical 
precision is considerably impaired. Note that, even with 7T 
the nature of the VTA makes it difficult to reconstruct it 
easily and reliably. Given our access to state-of-the-art data 
and previous efforts and experience with subcortical imag-
ing and segmentations, we were motivated to provide the 
research field an anatomically precise atlas of the VTA that 
can also be applied to other, i.e., 3T, data. This way, the new 
atlas can provide anatomical precision that is hard to achieve 
with lower field-strength MRI.

Future perspectives

Our atlas offers the opportunity for several exciting new 
research directions ranging from preparation to analysis 
stages of (f)MRI studies. For example, at the piloting stage, 
it can be applied as a ROI to compare temporal signal-to-
noise ratio (tSNR) of different functional MRI protocols 
(de Hollander et al. 2017) or SNR and CNR in structural 
MRI protocols. Further, this probabilistic VTA atlas allows 
investigating functions associated with the dopaminergic 

midbrain, such as the debate of clear functional distinction 
between the VTA and SNc in humans (Trutti et al. 2019). 
For instance, similar to Murty et al. (2014), future studies 
could compare functional resting-state networks associated 
with the VTA and SNc, respectively (for more details on 
such an approach, see de Hollander et al. 2017), or localize 
specific signals such as the dopaminergic reward prediction 
error using reward-based tasks in the scanner (Fontanesi 
et al. 2019).

Cytoarchitectural differences in the dopaminergic system 
as seen in rodents and behavioral, motor and/or cognitive 
correlates of such that are also found in humans, are sug-
gested to be driven by, e.g., gender (for a comprehensive 
review see Gillies et al. 2004, 2014a,b; Gillies and McArthur 
2010a, b) and handedness (Barnéoud et al. 1990; Cabib et al. 
1995; Sun and Walsh 2006). Application of the tailored MRI 
midbrain contrast and segmentation protocol suggested by 
this study makes it possible to study the effects of gender and 
handedness on the anatomy of the dopaminergic system and 
its relationship with human behavior. Yet, such studies will 
require larger samples than this study was able to provide 
and equal group sizes to test these effects with statistical 
accuracy.

Further, the application of the segmentation and imag-
ing protocol to middle-aged and elderly subjects represents 
interesting future research as it will allow testing for age-
related effects on, i.e., VTA volume, besides providing data 
for constructing additional age-specific VTA atlases.

Conclusion

Although the VTA is a small midbrain structure with com-
plex neurochemistry, anatomical features and shape, using 
high-field 7T MRI together with optimized MR sequences 
and a multimodal approach it is possible to better identify 
and delineate the VTA. Accordingly, we developed a proba-
bilistic VTA atlas specifically for the most studied age group 
in psychological studies: young-aged subjects between 18 
and 30 years of age. The relatively low inter-rater agree-
ment (see Results) highlights the challenges and limitations 
associated with atlasing the VTA, as discussed in a previ-
ous publication (Trutti et al. 2019). However, another more 
flexible spatial-overlap metric, the dilated Dice coefficient, 
suggests much better overlap and thus, indicates rather suc-
cessful VTA segmentation. Additionally, further efforts in 
scan sequence optimization such as SNR and CNR in the 
subcortex might improve VTA visualization and conse-
quently (manual) delineation in the future.
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