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Abstract

The focus of this article is to compare twenty normative and open-access neuroimaging

databases based on quantitative measures of image quality, namely, signal-to-noise (SNR)

and contrast-to-noise ratios (CNR). We further the analysis through discussing to what

extent these databases can be used for the visualization of deeper regions of the brain,

such as the subcortex, as well as provide an overview of the types of inferences that can be

drawn. A quantitative comparison of contrasts including T1-weighted (T1w) and T2-

weighted (T2w) images are summarized, providing evidence for the benefit of ultra-high

field MRI. Our analysis suggests a decline in SNR in the caudate nuclei with increasing age,

in T1w, T2w, qT1 and qT2* contrasts, potentially indicative of complex structural age-

dependent changes. A similar decline was found in the corpus callosum of the T1w, qT1 and

qT2* contrasts, though this relationship is not as extensive as within the caudate nuclei.

These declines were accompanied by a declining CNR over age in all image contrasts. A

positive correlation was found between scan time and the estimated SNR as well as a nega-

tive correlation between scan time and spatial resolution. Image quality as well as the num-

ber and types of contrasts acquired by these databases are important factors to take into

account when selecting structural data for reuse. This article highlights the opportunities

and pitfalls associated with sampling existing databases, and provides a quantitative back-

ing for their usage.

Introduction

The purpose of this article is to summarize and compare some of the most prominent existing

normative open-access structural magnetic resonance imaging (MRI) databases from a variety

of research institutions, including our own Amsterdam ultra-high field adult lifespan

(AHEAD) database [1]. The need for and benefit of open-access imaging databases has been

emphasized in a number of recent reviews [2–4]. The community-wide movement towards

open-access data sharing in the last decade is expected to massively advance the neuroimaging

field and share the wealth of available data between researchers and institutions. Some of these
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benefits are obvious, such as the financial advantage of data sharing and the reuse of data

between institutions. The re-analysis of acquired MR images also serves to aid reproducible

research and provide multi-party levels of quality control. On top of this, the ability of new

processing pipeline tools and analyses methods benefit greatly from the larger sum of data that

the software can be trained on. It is important to acknowledge that large-scale data-sharing

comes with its own disadvantages. Analyses based on post-hoc hypotheses and ‘data-mining’

can lead to spurious false positive findings [5]. Due to the sheer number of possible analyses in

larger databases this problem grows increasingly likely. Data acquired within a specific frame-

work and collected with a specific purpose may affect the extent to which this data can be used

for separate analyses [6]. The questions investigated by the numerous neuroimaging databases

described in this paper are diverse, with some attempting to bridge the gap between genetic

influences and brain structure and others looking at the impact of the environment on the

development of the human brain [7–9]. To this end, there are already a multitude of findings

and publications arising from the data made accessible through these databases [10–22].

To our knowledge, a systematic comparison of these data, in terms of image quality, has not

yet been published. This information is invaluable for the users of such databases to determine

what conclusions they can reliably draw from the wealth of information provided. Through

this analysis, we aim to aid in the accurate and valid use of the vast imaging data researchers

have at their fingertips. Additionally, though many of these databases contain functional (f)

MRI data (both resting state and task-specific), we will focus instead on brain anatomy and the

inferences that can be made from structural imaging techniques. For comparisons, we will use

quantitative measures of image quality, namely the signal-to-noise ratios (SNRs) and contrast-

to-noise ratios (CNRs) associated with the MR images provided by each database. In short, the

SNR infers the propensity of an MR image to delineate brain structures and detect pathology

[23]. By providing these estimates for each database, we are giving a quantitative measure of

two dimensions; image quality (SNR) and contrast (CNR). An increase in these quantitative

measures improve the qualitative ability of e.g., manual or automatic parcellation. The CNR

gives a valuable inference on the ability to spatially resolve detail in an image. Therefore, using

different databases with varying CNRs may result in different outcomes depending on the rea-

son they are being used (e.g., segmentation, volumetric measurements, delineation of cortical

folding). SNR inherently provides an estimate of the noise level in a structure or image and

higher image quality is both quantitively and qualitatively useful. Of course, the SNR is often

used as a trade-off parameter to gain improvements in another aspect of the imaging method

such as resolution, scan time, field of view (FOV) and indirectly, sample size. For example, a

database with a low CNR and a large sample size may not be pragmatic to use for the parcella-

tion of subcortical nuclei but would provide accurate volumetric whole brain estimates of a

population. Conversely, a database with a high CNR and small sample size may not be able to

provide reliable information at a population level but may deliver an insight into the substruc-

ture of a single region. Thus, larger databases with vast and multimodal data of each individual

have already provided population-level information on cortical arrangement as well as the

impact of genetics and the environment on the human brain [20, 24–28] which would not be

possible in smaller databases.

There are currently at least 71 whole-body 7T MRI scanners worldwide [29]. Given the

number of articles now specifically comparing 3T and 7T imaging of neurological disease, it is

evident that higher field strengths are beneficial to answer questions in both the cognitive and

clinical neurosciences [30–34]. The signal-to-noise ratio (SNR) increases in an almost linear

fashion with field strength [35, 36] giving the potential for both greater spatial resolution and a

higher CNR. Some of the databases described here have taken advantage of this, but the cost of

use of these higher field strengths and their limited availability make it challenging for many
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large-scale studies or institutions without access. Thus, the trade-off between the quantity and

quality of acquired MR data arises.

The gains from ultra-high field MRI (UHF MRI) are especially important when investigat-

ing deeper regions of the brain (e.g., subcortex). UHF MRI can provide reduced partial volume

effects due to increased spatial resolution, allowing for the visualization of finer anatomical

detail [37, 38]. Historically, the lack of signal and contrast within the deep brain is the reason

for the only recent development of subcortical maps in vivo [39, 40]. UHF MRI and its accom-

panying increase in SNR and contrast capacity will aid in the understanding of the structure of

these deeper structures. Around 93% of the grey matter nuclei within the subcortex, making

up almost a quarter of the total human brain volume, are currently not represented in standard

MRI atlases [41, 42]. Some subcortical structures can be delineated through the use of these

atlases, such as parts of the striatum, but most are too small to be manually or automatically

parcellated [43]. Iron-rich structures including regions constituting the basal ganglia are diffi-

cult to delineate on standard T1w scans [44, 45], but specialised sequences can take advantage

of the larger T2� contrast differences at higher field strengths [46]. For example, the abundance

of iron in the substantia nigra (SN) and subthalamic nucleus (STN) make it an ideal target for

T2� and SWI contrasts which can take advantage of these differences [47–50]. The delineation

of these structures is made even harder by the limited SNR, due to the larger distance from the

head coils [51].

Methods to improve image quality in MRI are not only limited to increasing the field

strength of the scanner. The gradient strength, radiofrequency coils and use of optimized

sequences also have a marked effect on acquisition efficiency. One such example is the Con-

nectome scanner, of which there are currently only three in the world, which benefits from

gradient strengths 3–8 times that found in standard 3T scanners. As with field strength, this

factor facilitates both an increase in spatial resolution and a reduction scan time. Though pre-

vious studies have indicated the advantage of non-standard sequences (e.g., T2�, QSM, SWI),

owing to their capacity to increase the number of observable structures and to observe smaller

brain regions (e.g., fibre tracks, nuclei) in deeper areas of the brain [48, 52]. The vast majority

of databases focus on more standard T1w and T2w images, which are essential for volumetric

calculations and distinguishing between grey and white matter regions but do not have the

ability to quantify or delineate smaller and adjacently located nuclei [53, 54].

Methods

The purpose of this article was not to present and analyse an exhaustive list of all currently

available open-access neuroimaging databases, but to provide quantitative measures and

accessing instructions for some of the most notable ones that meet our criteria. Most of the

databases were identified using a structural MRI database list kindly provided from a cited

paper which can be accessed here: https://github.com/cMadan/openMorph [4]. Two of the

databases were identified as they were associated with the authors of this article [1, 55] and a

further two databases were identified from the literature [56, 57]. All data was freely accessed

in November 2018 and downloaded using the accessing instructions in S1 Table.

The selection criteria of the databases presented in this article were based on three charac-

teristics. Firstly, the databases had to be normative, that is, made up of individuals that were

reported as healthy at the time of scanning with no clinical presentation of neurological, psy-

chiatric, neurodegenerative or peripheral disease. Secondly, the databases had to be a collec-

tion of curated images, uni- or multi-modal, that were acquired to be of similar composition

(based on sequences and/or sites) to that of other images in the database. The reason for this

criterion is that we assess five subjects randomly from each database and therefore must be
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sure that their quality reflects that of the rest of the database accurately. Thirdly, these data-

bases are open-access to the extent that they are accessible to the worldwide scientific commu-

nity completely free of charge and without access barriers. Such access barriers include, for

example, memberships, a specific institutional position (e.g., professorship) or the requirement

of some type of institutional infrastructure (e.g., Federalwide Assurance).

The quality of the images acquired through the use of MRI are characterized by three main

components: the acquired spatial resolution, the signal-to-noise ratio (SNR) and the contrast-

to-noise ratio (CNR). These three aspects are in turn governed by the specific acquisition

parameters used when obtaining the MR images. In the analysis presented here, the SNR was

calculated by measuring the mean signal at the most posterior part of the corpus callosum

(CC) and dividing it by its standard deviation. We also calculated the SNR of a grey matter

region, namely the caudate nuclei (CN). To provide a measurement of CNR for each image,

we computed the ratio of the difference in signal to the difference in noise of the CC and left

and right caudate nuclei (LCN and RCN, respectively). These regions were chosen as we opted

to compare the signal between a white matter area (CC) and a grey matter area (CN) of deeply

situated brain regions. The SNR was calculated in both the left and right CN as a quality con-

trol step, under the assumption that these would yield similar SNR estimates. To test this, we

used the programming language R and the ‘BayesFactor’ package to compute both frequentist

and Bayesian t tests, respectively [58, 59]. The latter allows us to provide evidence for the null

hypothesis (that there is no difference in signal between the left and right caudate nucleus). In

order to have a singular SNR measure for both CN, we used the summation of the signal from

27 voxels from both regions and divided it by the standard deviation of the overall 54 voxels.

This results in an SNR that is different than simply taking the mean of both SNR measure-

ments for each CN. Eq 1 shows the calculation for which CNR values were computed. μCC
indicates the mean signal of the CC, μCN indicates the mean signal of both CN. σCC specifies

the standard deviation of the CC and σCN specifies the standard deviation of both CN.

CNR ¼
ðmCC � mCNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sCC

2 þ sCN
2

p ð1Þ

As many of the databases described here do not report SNR estimates, we decided to download

a sample of the available data from each database and compute these indices to be able to make

accurate comparisons between them. Importantly, even when SNR estimations were calculated

by the databases, we performed a re-estimation to ensure that all SNRs presented here were

estimated using the same protocol. The SNRs can be estimated using different structures and

therefore derive values that are not always comparable between different procedures. To do

this, five subjects from each database were selected at random and their available images

downloaded. The SNRs and CNRs were calculated for each available contrast within each data-

base. Databases that include large age ranges were split into age groups of young (18–28), mid-

dle-aged (34–53) or elderly (63–86). For these databases, five participants were taken from

each age group so that we could compare SNR and CNR estimations across age-ranges.

Although the proportion of each database used for the analysis may differ, they are statistically

comparable as the same number of participants were selected randomly from the sample of

each database.

For comparisons between databases the analysis focuses on the SNR of the CC (SNRCC), for

simplicity, unless otherwise stated. Sequences incorporating multiple echo times (e.g.,

MP2RAGEME) technically provide multiple contrasts in one sequence and were therefore all

included in the estimates. For example, a sequence with four TEs (e.g., MP2RAGEME) would

give four contrasts per participant. We chose five subjects to ensure feasibility of the manual
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measures while accounting for potential variations in quality within a database. The CC and

CN may not be the optimal structures for SNR comparisons for all of the contrasts for each

database, but using these structures allows comparability over the entire analysis.

To calculate the SNR of the CC, LCN and RCN, one expert rater manually delineated the

regions using the MIPAV imaging software (Medical Image Processing, Analysis and Visuali-

zation; [60]). Once the centre of the regions of interest were accurately delineated, a 3 x 3 x 3

cube of voxels was taken around one midpoint voxel to calculate the SNR using the mean and

standard deviation of 27 contiguous voxels in the structure (Fig 1). A second method to calcu-

late the SNR of these structures was also explored. Instead of taking 27 contiguous voxels, we

took the voxel volumes of each image into account and measured the signal of 27 voxels from

the same volumetric space. This involves simply normalizing the size of the cube of voxels

measured by the images with the largest voxel size, so to measure from approximately the

same area of each structure. The results were in line with what is reported here, and therefore

we only report the measurements acquired from the first method.

To analyze the relationship between scan time and spatial resolution and scan time and

SNRCC, two linear regression models were setup. Both models used scan time as a predictor

variable and either spatial resolution or SNRCC as the independent variable. This would allow

us to observe a linear relationship between either of the two parameters. To correct for multi-

ple comparisons, a Bonferroni adjustment was employed to maintain a 95% confidence in the

analysis, giving a new significance threshold of 0.025.

We also present comparisons between slab images (small FOV) and whole brain images

from databases that offer both, in order to demonstrate differences in SNR and CNR at higher

resolutions. Both frequentist and Bayesian t tests were employed in R to compare these.

To compare age differences across multiple contrasts, linear mixed effect models from the

‘lme4’ R package were used [61]. Model 1 (null model) included the respective databases as a

random intercept without adding any effect of age on SNR/CNR. Model 2 (full model)

Fig 1. Sagittal (left), axial (middle), and coronal (right) views indicating the structures from which SNR measurements

were taken. These T1w images were taken from one subject in the MPI-CBS database. CC, corpus callosum; RCN,

right caudate nucleus; LCN, left caudate nucleus.

https://doi.org/10.1371/journal.pone.0248341.g001
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included both the database as a random intercept and age as a fixed effect. The likelihood esti-

mations of each model were then compared by a likelihood ratio test though the use of an

Analysis of Variance (ANOVA). A Bayesian linear modelling technique was also used, where

the resultant Bayes factors were compared between model 1 and model 2. We opted to include

the SNR and CNR data from all of the databases, even those without large age ranges, so to use

as much of the wealth of information as possible for our statistical tests. This results in a larger

centre of mass on the younger age group than the middle-aged and elderly groups, and

although this does not result in an increase in power, it provides a more accurate estimate of

the effect of age on SNR and CNR. For the model comparisons, age was used as a continuous

predictor and therefore categorical ages were not used within the statistical analysis, these were

only used for visualization.

To address the issue of reliability when taking a small subpopulation from large samples, we

re-ran some of the SNR and CNR analysis with a different sample from the databases. 5 or 15

(if they included large age-ranges) additional samples were taken from each database that

allowed it (dependent on the original sample size) and SNR measurements were calculated

again from their T1w images for comparison against the original sample. Of the 20 databases

included in this article, 17 had a sample size large enough for us to take additional measure-

ments. SNR measurements were taken from the left caudate nucleus, right caudate nucleus

and corpus callosum of 164 separate T1w images.

Results

Based on our search, 41 databases were initially identified. After the first screening, 5 were

excluded on the basis of access requirements. Of the remaining 36 databases, 20 were included

in this article for description and comparison (see Fig 2 for Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses; PRISMA flow diagram). Below we discuss these 20 data-

bases that follow the three criteria including 250 [62], a completed Germany-based database

which highlights its potential use for building an in vivo MR brain atlas due to its ultrahigh res-

olution whole brain images of one subject; Age-ility [63], a completed Australia-based database

investigating the relationship between cognitive control and adaptive/maladaptive behaviours

across the adult lifespan; the AHEAD database [1], an ongoing Netherlands-based database

aiming to acquire high-resolution images of the human subcortex and map so-called terra
incognita; the Atlasing of the Basal Ganglia (ATAG) project [55], a completed Netherlands/

Germany-based database whose aim was to acquire high-resolution data to observe anatomical

differences over the adult lifespan; the Brain Genomics Superstruct Project (GSP; [9]), a com-

pleted US-based database looking to solidify and find links between brain function, behaviour

and genetic variation; the Cambridge Centre for Aging and Neuroscience (Cam-Can; [64,

65]), an ongoing UK-based database aiming to characterize age-related changes in cognition

and brain structure and function, and to uncover the neurocognitive mechanisms that support

healthy aging; the Dallas Lifespan Brain Study (DLBS; http://fcon_1000.projects.nitrc.org/indi/

retro/dlbs.html), an ongoing US-based database designed to accelerate our understanding of

both the preservation and decline of cognitive functioning across the adult lifespan; the

Human Connectome Project Young Adult (HCP-YA; [8, 66, 67]), an ongoing US-based data-

base aiming to generate a complete and accurate description of the connections amongst grey

matter locations in the human brain at the millimeter scale. Information eXtraction from

Images (IXI; http://www.brain-development.org), a completed UK-based database from three

London Hospitals aimed to aid in decision support in healthcare and the analysis of images

obtained in drug discovery; Kirby 21 [68], a completed US-based database aiming to assess the

scan-rescan reproducibility of a 60 minute scanning session, wanting to establish a baseline for
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Fig 2. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0248341.g002

PLOS ONE Normative open-access neuroimaging databases

PLOS ONE | https://doi.org/10.1371/journal.pone.0248341 March 11, 2021 7 / 30

https://doi.org/10.1371/journal.pone.0248341.g002
https://doi.org/10.1371/journal.pone.0248341


developing multi-parametric imaging protocols; Maastricht [69], a completed Netherlands-

based database with the aim of facilitating the development of segmentation algorithms on the

challenging nature of 7T MR data; Multiple Acquisitions for Standardization of Structural

Imaging Validation and Evaluation (MASSIVE; [70]), a completed Netherlands-based single-

subject dataset aiming to serve as a representative testbed for diffusion-MRI correction strate-

gies, image processing techniques and microstructural modelling approaches; the Midnight

Scan Club (MSC; [71]), a completed US-based database of scientific volunteers wanting to

increase our understanding of brain function on the individual level, as opposed to just the

central tendencies of populations; the Max Planck Institute–Human Brain and Cognitive Sci-

ences repository (MPI-CBS; [57]), a completed Germany-based database wanting to stimulate

the development of imaging processing tools for high resolution and quantitative imaging,

that have been mainly designed for lower quality images; Max Planck Institute–Leipzig Mind

Brain Body (MPI-LMBB; [72]), another completed Germany-based databases which aimed to

explore individuals variance across cognitive and emotional phenotypes in relation to the

brain; Nathan Kline Institute–Rockland Sample (NKI-RS; [7]), an ongoing US-based database

aiming to provide normative trajectories of brain development so to facilitate the identity of

pathological markers; Pediatric Template of Brain Perfusion (PTBP; [73]), a completed US-

based database focusing on increasing our understanding of adolescent brain development

with multi-model MR imaging and its relationship with both environmental and cognitive

measures; RAIDERS [56], a completed US-based database focusing on functional imaging dur-

ing segments of full-length feature film “Raiders of the Lost Ark”; the Southwest University

Adult Lifespan Dataset (SALD; [74]), a completed China-based database aiming to observe

how the normative brain changes structurally and functionally over the adult lifespan; and

StudyForrest [75, 76], an ongoing German-based database aiming to provide data in a more

complex setting, as opposed to the simplified experimental designs normally used, to therefore

provide a more ecologically valid insight into brain function.

Table 1 presents an overview of these databases including information on field strength,

sequences and the number of participants. Example T1-weighted (T1w) images taken from

each database are presented in Fig 3. Further information, including the website address and

accessing instructions of each database can be found in S1 Table. Detailed descriptions of the

individual databases can be found on their website address or descriptor papers.

We would like to acknowledge the importance of other neuroimaging databases that do not

meet our selection criteria, such as the Open Access Series of Imaging Studies (OASIS; [77,

78]), 1000 Functional Connectome Project (FCP; [79]), Alzheimer’s Disease Neuroimaging

Initiative (ADNI; [80, 81]), Autism Brain Imaging Data Exchange (ABIDE; [82]), Brain Images

of Normal Subjects (BRAINS; [83]), Australian Imaging Biomarkers and Lifestyle Study of

Aging (AIBL; [84]), Pediatric Imaging, Neurocognition, and Genetics (PING; [85]), Adoles-

cent Brain Cognitive Development (ABCD) study [86], Attention Deficit Hyperactivity Disor-

der (ADHD) 200 [87], Child Mind Institute Healthy Brain Network (CMI-HBN; [88]), Center

for Biomedical Research Excellence (COBRE; http://fcon_1000.projects.nitrc.org/indi/retro/

cobre.html), Consortium for Reliability and Reproducibility (CoRR; [89]), Function Biomedi-

cal Informatics Research Network (fBIRN; [90]), Minimal Interval Resonance Imaging in Alz-

heimer’s Disease (MIRIAD; [91]), National Alzheimer’s Coordinating Center (NACC; [92]),

National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA; [93]),

Philadelphia Neurodevelopmental Cohort (PNC; [94]), Mindboggle-101 [95], SchizConnect

[96], OpenNeuro [97] and the UK Biobank [98]. These databases, such as the ABCD database,

and the PING database are also of great interest, but they are not openly available to research-

ers outside of NIH institutions, and thus do not meet our criteria for inclusion in this study

(see S2 Table for an overview of the inclusion criterion these databases did not meet).
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Additionally, we would like to recognize that many clinical databases also contain images of

healthy individuals. The reuse of databases consisting of only healthy individuals is more con-

venient, creating an even lower threshold for the reuse of data. We would like to emphasize

that the exclusion of normative data from clinical databases, databases containing non-harmo-

nious data or databases that have institutional and/or positional requirements is in no way a

comment on their data quality or usefulness.

Because of the large age-ranges, fifteen participants were used for the following subset of

databases (AHEAD, ATAG, CAMCAN, DLBS, IXI, MPI-LMBB, NKI-RS, SALD). Ten data-

bases therefore present a mean SNR value of five participants, eight databases present a mean

SNR value of fifteen participants and two databases (MASSIVE and 250) were comprised of

only one subject. For this case, five scanning sessions were taken, and the mean SNR calcu-

lated. 670 images were analysed in total for the main analysis, and a further 164 to test the reli-

ability of the initial sample.

Described below are the results of the SNR and CNR analysis. To comply with the Health

Insurance Portability and Accountability Act (HIPAA, https://www.hhs.gov/hipaa/index.html)

Fig 3. Mid-sagittal T1w images from each neuroimage database. One participant was selected at random from each of the databases to serve as an

example of the image quality expected.

https://doi.org/10.1371/journal.pone.0248341.g003
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and the European equivalent General Data Protection Regulation (GDPR, https://eugdpr.org/),

it is agreed upon by the scientific community that high resolution MRI images give the means

for identifiability and facial reconstruction and must therefore be subject to precautionary mea-

sures to ensure privacy [99]. Therefore, the images provided here by the cited databases are cou-

pled with a defacing mask to protect against identifiability, with the exception of the IXI and

MSC databases. Other than this essential step, all included databases offer unprocessed images

or both unprocessed and pre-processed images, with the exception of the MPI-CBS database.

When available, all calculations regarding SNR and CNR used the unprocessed MR images.

Due to the inherent trade-off between SNR and spatial resolution, we opted to normalize

the SNR and CNR by dividing the original ratio values by the voxel dimensions of the acquired

images. This gives a more accurate depiction of the image quality of each database. Therefore,

unless otherwise specified, or in the case of quantitative images, we show normalized SNR val-

ues, not raw SNR values. A graphical comparison of the raw SNR and the normalized SNR for

the T1w images of each database is shown in S1 Fig.

Comparing T1w images

As all the databases presented here contained a T1w image for each participant, these were

used as the main sample to be compared. A frequentist and Bayesian paired t-test were used to

compare the values of the two caudate nuclei within each database, concluding that there were

indeed no significant differences between the calculated SNR, as there is substantial evidence

for the null hypothesis (p = 0.630, t = 0.492, DF = 14, BF = 0.292; [100]). The SNR of each

nuclei, averaged by database, are visualized in Fig 4.

Fig 5 visualizes the relationship between sample size and SNR. This indirect tradeoff

between the two is perhaps anticipated, simply due to the costs associated with both an

increased number of participants and superior acquisition methods (e.g., higher field strengths

and increased scan time). Of course, both sides of the spectrum are accompanied with their

own advantages and disadvantages. Larger sample sizes can reduce the susceptibility to spuri-

ous findings and deliver greater statistical power, but may have to sacrifice some features of

the imaging data (e.g., voxel resolution, SNR or number of modalities). For example, databases

with large sample sizes and large voxel sizes may not be suitable for studying morphometric

changes that occur in small subcortical nuclei but can provide accurate estimations of cortical

thickness with a high statistical power.

Fig 6 displays the normalized SNRCC and CNR values of the T1w images from each data-

base. The results are present as ascending from bottom to top, based on their SNR estimation,

ranging from 15.8 (GSP) to 292.3 (250 database). Their numerical values are presented in

Table 2.

To investigate the similarity of the first sample of measurements to the second sample, a

Bayesian ANOVA was used to provide evidence for or against the null hypothesis (that these

samples were taken from the same distribution). The Bayes Factors (BF) resulting from this

analysis for each structure are as follows: corpus callosum SNR BF = 0.139, caudate nuclei SNR

BF = 0.129, and the CNR BF = 0.224. Based on [100] this provides substantial evidence for the

null hypothesis, that both samples from each database come from the same distribution. This

shows that our sample-based method is reproducible across samples of the databases.

Although it would ideally be best to manually segment the CC and CN in each subject, the sim-

plified approach we take here provides a good trade-off between accuracy and manageability

given the large of amount of manual delineation that had to be done in the original (665) and

the second (164) sample.
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Comparing T2w images

Fig 7 presents an overview of the estimated SNRCC and CNR of the six databases containing

T2w images. The results are ordered as ascending from bottom to top, based on the SNRCC

estimation, ranging from 11.8 (Cam-Can) to 51.6 (StudyForrest). Their numerical values can

be found in Table 3.

Relationships with scan time

We then turned to analyze the relationships between scan time and SNRCC as well as scan time

and the acquired spatial resolution. Fig 8A shows the relationship between scan time and the

normalized SNR for both 3T and 7T scanners separately. It can be seen that there is a signifi-

cant positive correlation within the 3T data, and the 7T data displays the same trend but does

not show significance. This relationship is expected, since longer scan times are associated

with better image quality. In addition to scan time predicting image quality in terms of

SNRCC, a negative relationship between scan time and the acquired voxel volume was found

(Fig 8B). Longer scan times in the presented databases are therefore indicative of better T1w

images both in terms of SNR and spatial resolution.

Quantitative T1 and FOV

Four databases provide quantitative T1 maps (qT1) in addition to T1w images. Two of these

databases also provide both whole-brain images as well as slabs with higher resolution and a

Fig 4. SNR estimations for the left and right caudate nucleus. Data averaged over the individuals of each database. Error bars indicate standard error of the mean.

https://doi.org/10.1371/journal.pone.0248341.g004
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smaller FOV. A comparison of the normalized SNRCC associated with the qT1 and T1w

images of the same databases are shown in Fig 9.

Table 4 displays the SNRCC and CNR associated with the whole-brain and slab images of

the same contrasts acquired by these two databases (ATAG and AHEAD). A frequentist and

Bayesian paired t-test indicates that the slab images have a significantly larger SNRCC than the

whole brain images, demonstrating the benefits of high resolution (p = 0.0017, t = 6.06,

DF = 5, BF = 25.81). Though, this does not appear to translate to a higher CNR (p = 0.074,

t = 2.3, DF = 5, BF = 1.57).

Age-related differences

Figs 10 and 11 display the differences in the SNR and CNR across the age groups of young

(age: 18–28), middle-aged (age: 34–53) and elderly subjects (age: 63–86) in both T1w and T2w

images. 165 T1w images and 50 T2w images were used for model comparison. For the SNRCC

on the T1w images, the full model comprising age as a predictor was a significantly better fit

than the null model (p = 0.011). This relationship was also found for the T1w CNR results

(p = 0.00037). In addition to age-related differences in the SNR of white matter areas (SNRCC)

and the CNR of T1w images, we also tested the relationship between age and the SNR of a grey

matter region (SNRCN). A significant effect of age was found, indicating a loss of signal in the

CN over age (p = 0.0062). We then turned to analyze the effect of age on the MR signal of T2w

images. Again, we were interested in age differences in the SNRCC the SNRCN and the contrast

Fig 5. The relationship between sample size and SNRCC. Error bars indicate standard error of the mean. Both the SNR values and the standard errors are presented on

the log scale. Circular symbols indicate 3T data, triangular symbols indicate 7T data.

https://doi.org/10.1371/journal.pone.0248341.g005
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difference between the grey and white matter regions (CNR). Similarly to the T1w images, an

age-related decline in SNRCN and CNR was observed in the T2w images (p = 0.0019,

p = 0.000022, respectively) even though the model comparison indicated that the age-related

differences in SNRCC were non-significant in the T2w images (p = 0.24).

To gain a greater insight into the relationship between age and the acquired signal from

these white and grey matter structures, we used a Bayesian linear modelling technique. The

resulting BFs from this method indicated a less conclusive relationship than its frequentist

counterpart in some respects. In terms of an age-related reduction in signal within the T1w

images, moderate evidence was found for this hypothesis in the CN (BF = 5.52), followed by

further moderate evidence within the CC (BF = 4.29), and very strong evidence for this

hypothesis was found for the CNR (BF = 61.90). Turning to the T2w images, no evidence in

either direction was found for an age-related reduction in signal from the CC (BF = 1.89),

strong evidence was found for this hypothesis in the CN (BF = 14.51), and across the age

groups, the CNR appeared to show extreme evidence for a relationship (BF = 504.22). Taken

together, these results suggest the presence of an age-related deterioration in signal in the cau-

date nuclei, inferred by both the T1w and T2w images.

As a further assessment of age-related differences, we also compared the SNR and CNR val-

ues across qT1 and qT2� images. We again compared linear mixed effect models including age

as a fixed effect and the database as a random intercept to a null model without an effect of

Fig 6. Overview of ratios for databases containing a T1w image. SNRCC values are shown in black, CNR values in grey. Each value has been normalized by the voxel

dimensions specific to the image it describes. Error bars indicate standard error of the mean. Databases marked with an apostrophe (‘) indicate 7T data. The dotted vertical

lines indicate the mean of the SNRCC (black) and CNR (grey).

https://doi.org/10.1371/journal.pone.0248341.g006
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age. One database, MPILMBB, provides age ranges of five years for each of their participants

as opposed to a single age value, presumably for privacy purposes. In order to derive reliable

estimates when comparing these mixed effect models, we randomly sampled ages for partici-

pants in this database from a uniform distribution of the age range reported. We then iterated

over this a total of 1000 times and calculated results from the frequentist and Bayesian model

comparisons for each sampled age, below we report the mean results for these iterations. Simi-

larly to the T1w and T2w comparisons, both qT1 and qT2� maps showed a significant change

in CNR across the adult lifespan (p = 0.00032, BF = 73.25; p = 0.035, BF = 1.12). The SNRCN

significantly declined in both the qT1 and qT2� images (p = 0.0015, BF = 19.68; p = 0.00019,

BF = 247.99, respectively). A similar decline was found for the SNRCC in the qT2� images

(p = 0.00063, BF = 34.83). Although, only a negligible decline in signal was found for the CC in

the qT1 images (p = 0.020, BF = 2.49).

Discussion

We present the first quantitative comparison exploring the image quality offered by twenty

open-access databases of structural MRI freely available to researchers world-wide. To this

end, SNRs were calculated from both the corpus callosum and caudate nuclei. From these cal-

culations, CNRs were derived, which in this case can indicate the extent to which these images

can distinguish between grey and white matter. An additional analysis assessed differences in

T1w and T2w SNR values across the adult lifespan, taking advantage of larger imaging data-

bases with accompanying demographic information and large age ranges. Due to the wealth of

data provided by these databases, clear relationships between the scan time and both acquired

voxel dimensions and acquired SNRs could also be found, indicating the efficiency of specific

Table 2. Summary table describing the SNRCC, SNRCN and CNR of the T1w images of each database.

Database Sequence Contrast SNRCC SNRCN CNR n
250 MPRAGE T1w 292.3 ± 15.0 198.3 ± 14.6 93.5 ± 6.7 1

AHEAD MP2RAGEME T1w 83.4 ± 6.5 39.5 ± 1.3 28.5 ± 1.3 15

Age-ility MPRAGE T1w 31.4 ± 2.0 20.4 ± 2.0 5.8 ± 0.9 5

ATAG MP2RAGE T1w 118.6 ± 7.5 29.6 ± 1.4 19.6 ± 0.7 15

Cam-Can MPRAGE T1w 32.8 ± 3.0 24.1 ± 1.2 6.1 ± 0.5 15

GSP MEMPRAGE T1w 15.8 ± 0.8 8.8 ± 0.7 3.6 ± 0.2 5

DLBS MPRAGE T1w 38.3 ± 4.2 19.4 ± 2.7 4.8 ± 0.7 15

HCP-YA MPRAGE T1w 54.7 ± 5.6 40.4 ± 1.8 9.1 ± 1.3 5

IXI - T1w 58.0 ± 4.1 33.7 ± 1.8 4.2 ± 0.4 15

Kirby 21 MPRAGE T1w 34.2 ± 1.8 16.7 ± 1.1 6.9 ± 0.6 5

MAASTRICHT MPRAGE T1w 96.9 ± 2.2 36.6 ± 3.3 18.5 ± 2.1 5

MASSIVE 3DTFE T1w 17.2 ± 1.2 10.6 ± 0.3 6.4 ± 0.3 1

MSC - T1w 40.0 ± 2.0 26.6 ± 1.3 9.3 ± 0.2 5

MPI-CBS MP2RAGE T1w 271.3 ± 31.8 93.1 ± 15.9 42.4 ± 5.4 5

MPI-LMBB MP2RAGE T1w 26.6 ± 1.6 12.7 ± 0.3 6.4 ± 0.3 15

NKI-RS MPRAGE T1w 44.5 ± 2.5 28.1 ± 1.0 7.8 ± 0.4 15

PTBP MPRAGE T1w 43.6 ± 3.6 28.2 ± 1.8 9.2 ± 0.7 5

RAIDERS MPRAGE T1w 28.9 ± 3.8 16.9 ± 1.6 8.8 ± 0.9 5

SALD MPRAGE T1w 35.1 ± 2.1 23.9 ± 0.8 6.0 ± 0.2 15

StudyForrest 3DTFE T1w 75.2 ± 7.5 43.5 ± 4.1 18.5 ± 1.1 5

Each ratio value is shown as the mean of all the subjects ± the standard error of the mean. n indicates the number of subjects used for the calculations.

https://doi.org/10.1371/journal.pone.0248341.t002
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scanning protocols. As only a subset of the databases offered multiple contrasts, direct inter-

database comparisons between all contrast types could not be provided. Within this subset,

intra-database comparisons between contrasts are possible. SNR and CNR estimations for the

contrasts offered by each database are displayed in the S3 Table.

The results of the SNR and CNR calculations show a clear benefit of using UHF MRI, with

the five 7T databases (250, AHEAD, ATAG, MAASTRICHT and MPI-CBS) obtaining the

largest values in the CC. Moreover, the MPI-CBS and 250 databases showed much higher

image quality compared to the other databases. It should be noted, however, that the images

offered from the MPI-CBS database include image post-processing pipelines that are not

Fig 7. Overview of the ratios for databases containing a T2w image. SNRCC values are shown in black, CNR values in grey. Error bars indicate standard error of the

mean. The dotted vertical lines indicate the mean of the SNRCC (black) and CNR (grey).

https://doi.org/10.1371/journal.pone.0248341.g007

Table 3. Summary table describing the SNRCC, SNRCN and CNR of the T2w images of each database.

Database Sequence Contrast SNRCC SNRCN CNR n
Cam-Can SPACE T2w 11.8 ± 1.4 14.3 ± 0.7 2.7 ± 0.2 15

HCP-YA SPACE T2w 26.7 ± 2.6 37.7 ± 3 11.5 ± 0.3 5

IXI - T2w 15.5 ± 1.4 17.7 ± 1 4.0 ± 0.2 15

MASSIVE 3DTSE T2w 21.9 ± 2.0 13.8 ± 1.8 2.2 ± 0.4 1

MSC - T2w 16.0 ± 1.5 23 ± 2.3 5.2 ± 0.7 5

Forrest 3DTSE T2w 51.6 ± 7.8 66.0 ± 3.0 10.2 ± 1.0 5

Each ratio value is shown as the mean of all the subjects ± the standard error of the mean. n indicates the number of subjects used for the calculations.

https://doi.org/10.1371/journal.pone.0248341.t003
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Fig 8. The relationship between the SNRCC and voxel dimensions of T1w images with scanning time in 18 databases. A) Graphical representation of SNRCC and scan

time. Error bars indicate standard error of the mean. B) Graphical representation of voxel dimensions and scan time. Both legends contain information relating to the

adjusted R-squared value, intercept, slope, F statistic, degrees of freedom and p-value. Circular symbols indicate 3T data, triangular symbols indicate 7T data.

https://doi.org/10.1371/journal.pone.0248341.g008
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applied in any of the other databases. Such processing pipelines can increase image quality

substantially, and are another benefit of openly accessible imaging data and protocols.

Fig 9. Graphical representation of difference in normalized SNRCC values for quantitative T1 maps and T1-weighted images. Databases marked with an apostrophe

(‘) indicate 7T data. qT1, quantitative T1 map; T1w, T1-weighted; wb, whole-brain; sb, slab. Error bars indicate standard error of the mean.

https://doi.org/10.1371/journal.pone.0248341.g009

Table 4. Normalized SNRCC, SNRCN and CNR values for the databases that presented slabs as well as whole brain data.

Database Sequence Contrast Type SNRCC SNRCN CNR
AHEAD MP2RAGEME qT1 WB 84.4 ± 8.3 68.4 ± 4.8 20.9 ± 2.1

AHEAD MP2RAGEME qT1 SB 123.3 ± 5.8 115.0 ± 6.4 34.7 ± 1.3

AHEAD MP2RAGEME T1w WB 83.4 ± 6.1 39.5 ± 1.5 28.5 ± 1.3

AHEAD MP2RAGEME T1w SB 157.1 ± 7.5 103.1 ± 5.9 37.4 ± 1.3

AHEAD MP2RAGEME PDw WB 97.5 ± 6.2 29.5 ± 2.4 1.5 ± 0.5

AHEAD MP2RAGEME PDw SB 147.8 ± 8.2 79.5 ± 6.4 8.3 ± 2.5

AHEAD MP2RAGEME qT2� WB 37.0 ± 2.1 22.1 ± 2.2 3.0 ± 0.4

AHEAD MP2RAGEME qT2� SB 63.8 ± 2.7 49.8 ± 4.4 6.4 ± 1.9

ATAG MP2RAGE qT1 WB 69.0 ± 2.7 51.8 ± 2.4 18.0 ± 0.6

ATAG MP2RAGE qT1 SB 110 ± 5.2 90.7 ± 3.9 22.6 ± 1.2

ATAG MP2RAGE T1w WB 118.6 ± 6.5 29.6 ± 1.4 19.6 ± 0.7

ATAG MP2RAGE T1w SB 146.2 ± 9.1 47.9 ± 2.1 23.3 ± 1.3

15 subjects were used for all contrast types in these databases. Standard errors of the mean are given for normalized SNRCC and CNR values. qT1, quantitative T1 map;

T1w, T1 weighted; PDw, proton density weighted; qT2�, quantitative T2� map; WB, whole brain; SB, slab.

https://doi.org/10.1371/journal.pone.0248341.t004
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Through the availability of this data, exciting new data pipelines and tools can be developed

and shared. In S3 Table, you can find the SNRCC, SNRCN and CNRs for all the images analyzed

for each database. Note that this includes two databases (HCPYA and 250), which provide

both processed and unprocessed images. A clear benefit of post-acquisition processing pipe-

lines can be seen when comparing these ratios within-database. The processed T1w images

provided by the 250 database increase the SNRCC from 292.3 ± 15.0 to 570.4 ± 123.5, a similar

increase can be seen in the SNRCN, increasing from 198.3 ± 14.6 to 368.0 ± 53.5, though this

did not benefit the CNR (93.5 ± 6.7 and 93.7 ± 14.6 for the unprocessed and processed images,

respectively). Within the HCPYA database, increases in the SNRs and CNRs of both the T1w

and T2w images are also apparent. Taken together, this suggests that optimizing post-acquisi-

tion processing methods can provide additional increases in image quality that are not trivial.

While the analysis presented here quantifies an important aspect of the databases, they are

not the only factor to take into account when selecting imaging data for further research pur-

poses. At an overview, our results indicate a strong advocation for the MPI-CBS and 250 data-

bases, owing to their SNR and CNR far above the rest. However, there are also other factors to

consider, for example, sample size, age-range and the number of contrasts included are just

some of a long list of criteria many research questions need to consider. As such, the small

sample size, limited age-range and limited contrasts make the MPI-CBS and 250 databases less

attractive for many lines of research.

Fig 10. Comparison of ratios for T1w images across age groups. A) SNRCC. B) SNRCN. C) CNR. Error bars indicate

standard error of the mean. Each bar singular represents five participants. Databases marked with an apostrophe (‘)

indicate 7T data.

https://doi.org/10.1371/journal.pone.0248341.g010

Fig 11. Comparison of ratios for T2w images across age groups. A) SNRCC. B) SNRCN. C) CNR. Error bars indicate standard error of the mean. Each bar singular

represents five participants.

https://doi.org/10.1371/journal.pone.0248341.g011
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Although the relationships of SNR and voxel dimensions with scan time presented here

are obvious and reflect basic MRI physics, it is nonetheless interesting to see the efficiency

of separate MRI protocols. These relationships are particularly informing when aspects of

image quality largely deviate from linearity. Optimized MR sequences or contrasts that

allow for high spatial resolution or high SNRs with short scan times offer preferable perfor-

mance. These comparisons also indicate further favourability for 7T imaging, with most of

the resultant 7T database images residing on the efficient side of the linear trends displayed

with scan time.

We present here age-related differences across four MRI contrasts; T1w, T2w, qT1, and

qT2�. Our SNR-CN analyses suggest a consistent age-related decline in all image types. Age-

related changes in relaxation values in the human brain have been long-known [101]. There is

also evidence that T2� values reflect iron concentration in neural tissues [102]. During healthy

aging, iron-deposition appears to increase in some brain structures (e.g., parts of the basal gan-

glia) [103–106]. The decline of qT2� measures in the CN therefore likely reflects this increase

in iron deposition. The lowering in effective T2 found here is also in line with previous work

[107, 108]. Volume loss in this region is another known process observed in the healthy aging

brain [109, 110], which would be accompanied by a declining proton density, lowering the sig-

nal derived from T1 recovery and T2 relaxation. Taken together, these declines in signal would

suggest an age-related structural change of the caudate nuclei.

A more complicated picture is painted for the SNRCC measurements. A SNR decline in the

CC was found in T1w, qT1 and qT2� images, though this decline is not as apparent as in the

CN. Post mortem histological analyses of white matter regions have shown that the myelination

of nerve fibres decreases with age [111]. This process of demyelination is associated with an

increase in SNR in qT1 and T1w images [108], in opposition to what was found here. It should

be noted, however, that there appears to be an increase in image noise in the elderly population

(measured as the standard deviation of the 27 voxels measured per image). This increase in

noise was not accompanied by a decrease in mean signal of the region, and therefore likely

drives the small decline in SNR found. For the other relationships, this increase in noise as a

function of age is also apparent. However, since this increase is also accompanied by a decrease

in mean signal, it most likely reflects an underlying structural change. We note that age-related

structural changes are heterogeneous across different regions of the brain. The processes

underlying these changes are similarly heterogeneous and a combination of a multitude of fac-

tors, including changes in the small vessels supplying the regions, regional brain atrophy, loss

of myelination and impaired white matter [111–114]. These changes, in addition to increased

subject motion during scanning could all impact the increase level of noise found in the elderly

population. It has been suggested that head motion increases as a function of age [115],

although some findings have suggested a more non-linear relationship between the two [116].

Even subtle forms of motion artefacts have been shown to affect interpretability of imaging

analysis results (e.g., cortical thickness estimates; [117]). Image noise introduced through head

motion also lowers SNR estimates and degrades image quality [118]. This highlights the need

for motion correction in structural MRI. Due to our limited snapshot of the data available, we

can only show results that hint at these intricate relationships.

For the CNR measurements, there consistently appears to be an age-related decline across

the adult lifespan, as indicated by the analysis of all four contrasts. Such CNR differences are

also found when comparing adult and infant brains [119]. This decrease in CNR over the adult

lifespan is a by-product of the physical changes to the contrasted regions (CC and CN). The

observed decrease in SNR in these two regions leads to this decrease in CNR. The analyses of

age-related differences presented here illustrates just one of the many interesting ways these

open-access databases can be used for in the future.
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It should be stressed that there are a variety of methods to calculate both the SNR and CNR

of structural MR images, note that most of these methods are not applicable to all situations.

For SNR estimation, there are two other prominent methods used in the field. The first

involves measuring the SNR of the region of interest (ROI) within the brain and dividing it by

the SNR of the background of the image outside of the brain. The second involves measuring

only the mean signal of the ROI inside the brain and dividing it by the standard deviation of a

region outside of the brain. A commonality in both of these methods is that they assume that

measuring an area outside of the brain captures only the noise induced by the MR scanner

itself. One reason we opted for the method used here is that due to inhomogeneities in the

magnetic field of each scanner and differences in the spatial distribution of noise [120, 121],

the area of the background image chosen for the measurement of noise could differ signifi-

cantly between sites and sequences. Of course, our method does not remove the problem of

bias, but as this bias is the same across all of the images measured here, we believe the compari-

son is fair. Regardless of the method used for the measurement of the SNR, the most important

requirement for an objective comparison is that the method used is consistent across all data.

To signify that this method was indeed reliable within the databases, we ran the validation

study on the separate T1w images. The reproducibility of the estimates that we took indicate

that the methods holds as a consistent measurement of SNR.

As spatial resolution increases, sensitivity to both voluntary or involuntary motion and

physiological noise will also increase, and therefore continue to be a ceiling on image quality at

all field strengths. Methods to overcome such movement artefacts include both retrospective

and prospective motion correction [122, 123]. Both approaches have displayed their ability to

increase image quality at 3T and 7T, providing a way around subject motion at high resolution

[38, 124–126]. Removing this confound completely while scanning healthy individuals is infea-

sible, but post mortem MRI can benefit from the lack of movement artefacts, allowing for scan

times inconceivable in live subjects. These scan times can facilitate the visualization of a much

larger number of smaller brain structures [127]. For the purpose of creating probabilistic

atlases of the human brain, such a technique when used in concurrence with histological meth-

ods can provide greater detail than in vivo MRI alone [29].

We acknowledge that for many of the databases discussed here, we have only analyzed a

snapshot of the data and have not taken advantage of all of the data we have access to. This lim-

itation was necessary to keep our analysis level feasible, as the range in sizes of these databases

make using all participants problematic. For the future, we would hope that a standardized

SNR protocol will become a feature that all new databases will use and present with their data.

Ideally, this would include manually segmented masks of the same anatomical areas, from

unprocessed images in their native spaces. We also hope that open-access databases continue

to become the norm across the scientific field.

Conclusion

The current study provides a quantitative comparison between some of the most fruitful

open-access neuroimaging databases available, which can aid researchers in selecting which

databases to use. The results presented here give an indication of the large variation in

image quality provided by these databases. The estimations (SNR and CNR), as well as the

number of contracts provided by each database (as these give visual information to specific

tissue types), can aid in the selection process. The benefit of large-scale imaging databases

for creating general maps of cortical organization and providing both phenotypic and

genetic comparisons across populations is clear. However, large-scale databases often come

at the cost of lower image resolution due to the financial implications of using large sample
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sizes, ultra-high field MRI and extensive scan times. In particular for the human subcortex,

image resolution is critical and standard structural 3T MRI data does not provide the

required resolution and SNR for small nuclei. The higher quality of 7T databases provides a

clear advantage, but high cost and limited access are still preventing the collection of larger

cohorts. Each database presented here has assisted an important neuroscientific movement

towards open-access imaging data. With the number of subjects ranging from one to over

1500 and the number of sessions from one to 18, the objectives and characteristics of these

databases are diverse. We hope that our current efforts will help researchers to choose the

appropriate database for their research question and highlight their usefulness to the scien-

tific field in the study of normative human brain structure.
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