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Range-Preserving Confidence Intervals
and Significance Tests for Scalability
Coefficients in Mokken Scale Analysis

Letty Koopman , Bonne J. H. Zijlstra , and L. Andries van der Ark

1 Introduction

Mokken scale analysis is a popular scaling method used in questionnaires and is
based on nonparametric item response theory models (see, e.g., Mokken, 1971;
Sijtsma & Molenaar, 2002; Sijtsma & Van der Ark, 2017, for an elaborate
introduction). The most popular aspect of Mokken scale analysis is scalability
coefficients, which can be used to construct questionnaires from a larger set of
items or to evaluate questionnaires that have a fixed set of items (Sijtsma &
Van der Ark, 2017). Let I denote the total number of items, indexed by i or j

(i, j = 1, 2, . . . , I ). There are three types of scalability coefficients: item-pair
scalability coefficient Hij is a normed correlation between items i and j , item
scalability coefficient Hi is a normed item–rest correlation that can be considered
a discrimination index, and total-scale coefficient H is the weighted sum of the
His across all items, for which higher values indicate a more accurate ordering of
respondents (e.g., Sijtsma & Molenaar, 2016, p. 309). The standard errors of the
three types of scalability coefficients were derived using the delta method as SEHij

,
SEHi

and SEH , respectively (Kuijpers et al., 2013). Snijders (2001) generalized
the coefficients to two-level scalability coefficients for multi-rater data, in which
multiple raters score the subjects of interest. Two-level scalability coefficients
consist of within-rater and between-rater coefficients, which provide information
on the scalability on the respondent- and the group-level, respectively (see also,
Koopman et al., 2020). Within-rater coefficients have a similar interpretation to
Mokken’s coefficients.

A Mokken scale is defined as a set of items for which
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Hij > 0 for all item-pairs (i, j),

Hi ≥ c > 0 for all items i,
(1)

where c is some positive lower bound for which c = 0.3 is often used (Mokken,
1971, p. 184). All scalability coefficients can take values from −∞ to 1. If the items
are statistically independent, the scalability coefficients equal 0; if the items are
perfectly correlated, the scalability coefficients equal 1. The strength of a scale can
be interpreted as follows:

0.3 ≤ H < 0.4 : weak scale,
0.4 ≤ H < 0.5 : medium scale,
0.5 ≤ H : strong scale.

(2)

For more information on suggested thresholds for two-level scalability coefficients,
see Snijders (2001). The actual minimum of scalability coefficients depends on
the marginal frequencies (Sijtsma & Molenaar, 2002, p. 59). Away from the
boundary, the sampling distribution of scalability coefficients is approximately
normal (Koopman et al., 2020; Mokken, 1971, pp. 166–167), but if a coefficient
is close to the boundary or the SE is large, the sampling distribution is skewed to
the left.

The point estimates of a scalability coefficient and its SE in sample data
can be combined by a normal approximation Wald-based confidence interval or
significance test (Koopman et al., 2020; Kuijpers et al., 2013). Two-sided confidence
intervals are useful to determine the strength of total-scale coefficient H with
confidence (Eq. 2), whereas one-sided significance tests are useful to test the two
criteria of a Mokken scale (Eq. 1; Koopman et al., 2021). If the sampling distribution
of the scalability coefficients is skewed, Wald-based confidence intervals and
significance tests may be biased. This can result in deteriorated coverage of the
confidence interval, inclusion of values larger than 1 in the confidence interval,
and inflated Type I error rates of the significance tests. In this chapter, we propose
a range-preserving confidence interval and significance test using a logarithmic
transformation that can be applied to all scalability coefficients, both in nonclustered
data (i.e., obtained by a simple random sampling design) and clustered data (i.e.,
obtained by a cluster sampling design). We compare the performance of the Wald-
based and range-preserving methods in terms of coverage and Type I error rate
using simulated data. Applications of the range-preserving methods in software are
demonstrated.

2 Sampling Distribution of Scalability Coefficients

The sampling distribution of both Mokken’s and Snijders’ scalability coefficients
are asymptotically normal (Mokken, 1971, pp. 166–167; Koopman et al., 2020,
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Fig. 1 Six empirical distributions of total-scale coefficient H , with Wald-based (dashed line) and
range-preserving (solid line) approximations of the sampling distribution based on the average
̂H and SE2

̂H
across the datasets. The distribution is based on 10,000 simulated datasets with 10

dichotomous items and 100 respondents

respectively). Therefore, it is common practice to use normal-theory approaches
to confidence interval estimation and significance testing. Let ̂H denote the point
estimate of H with standard error SE

̂H . Figure 1 shows six histograms of the
empirical sampling distribution of ̂H for a range of population values for H , created
with 10,000 simulated datasets using 100 respondents and 10 dichotomous items.
For H away from the boundary of 1, the distribution is approximately normal
(as is expected according to asymptotic theory), but as H comes closer to the
boundary, the distribution becomes increasingly skewed. For skewed sampling
distributions, normal-theory approaches may be biased, in which case, range-
preserving approaches are desirable because they only take values on the possible
range of the coefficient and tend to be more accurate and reliable (Efron &
Tibshirani, 1993, Section 13.7).

Confidence interval and significance tests can be applied to the scalability coeffi-
cients by using point estimates of the item-pair coefficients ̂Hij , item coefficients ̂Hi ,
and total-scale coefficient ̂H , along with SE

̂Hij
, SE

̂Hi
, and SE

̂H , respectively. Two-
sided confidence intervals of H are appropriate to estimate whether a scale is weak,
medium, or strong (Eq. 2). One-sided significance tests (or one-sided confidence
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intervals) are appropriate to evaluate the two criteria of a Mokken scale (Eq. 1;
Koopman et al., 2021). For the first criterion, the null hypothesis is Hij = 0 and the
alternative hypothesis is Hij > 0 for each item pair (i, j). For the second criterion,
the null hypothesis is Hi = c and the alternative hypothesis is Hi > c for each item
i.

2.1 Wald-Based Methods

Wald-based methods assume a normal sampling distribution. A two-sided confi-
dence interval contains two confidence limits. Let zα/2 denote the z score pertaining
to significance level α/2. Then, the two-sided (1−α)×100%Wald-based confidence
interval (denoted CI) is computed as

CI = ̂H ± zα/2 × SE
̂H . (3)

Consider a two-sided 95% CI, zα/2 ≈ 1.96. Note that the upper confidence limit
may exceed the boundary of 1, which is the maximum value of H . One-sided CIs
also exist and can be constructed by replacing zα/2 in Eq. 3 with zα and by selecting
the confidence limit of interest, which is the lower limit for Hij and Hi . For a one-
sided 95% CI zα ≈ 1.645.

The Wald-based significance test is a z test to standardize the difference between
̂H and the value of H under the null-hypothesis to a z score. For example, using the
null hypothesis H = c, z is computed as

z = ̂H − c

SE
̂H

. (4)

The corresponding one-sided p value can be found in the standard normal z table.
A problem with the Wald-based method is that the sampling distribution is

skewed for very high values of H or SE, in which case the results cannot be trusted.

2.2 Range-Preserving Methods

A confidence interval is range-preserving if its values are in the possible range of the
parameter of interest. We propose a strategy to compute a range-preserving interval
and to apply a similar strategy to compute a z score, which we collectively refer
to as range-preserving methods. Range-preserving methods also apply asymptotic
normal theory, but rather than using the original estimate ̂H , which is bounded by
1, confidence interval and z scores are computed using a transformation of ̂H and
its SE.
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Let g( ̂H) denote the transformation of ̂H , and let log(x) denote the natural
logarithm of x. Then

g( ̂H) = − log(1 − ̂H). (5)

The range for the transformed scalability coefficient is the real space (−∞,∞).
Let g−1( ̂H) denote inverse of g( ̂H), and let exp(x) denote the exponential of x. It
follows that

g−1(g( ̂H)) = 1 − exp(−g( ̂H)) = ̂H. (6)

Let g′( ̂H) denote the first derivative of g( ̂H) with respect to ̂H . By the chain rule
(Stewart, 2008, p. 197),

g′( ̂H) = d

d ̂H
g( ̂H) = 1

1 − ̂H
. (7)

Using the delta method (Agresti, 2012, pp. 577–594), the SE of g( ̂H), SEg( ̂H), is
then approximated as

SEg( ̂H) ≈
√

[g′( ̂H)]2SE2
̂H

= SE
̂H /(1 − ̂H).

(8)

To obtain the range-preserving confidence interval (denoted CI∗), we first construct
a Wald-based confidence interval using the result of Eqs. 5 and 8,

CIg( ̂H) = g( ̂H) ± zα/2 × SEg( ̂H)

= − log(1 − ̂H) ± zα/2 × SE
̂H /(1 − ̂H).

(9)

Then, this interval is transformed back to the original scale of H , which reflects the
range-preserving confidence interval:

CI∗ = 1 − exp(−CIg( ̂H))

= 1 − exp(log(1 − ̂H) ± zα/2 × SE
̂H /(1 − ̂H)).

(10)

The range-preserving z score (denoted z∗) is computed by transforming both ̂H and
c,

z∗ = g( ̂H) − g(c)

SEg( ̂H)

. (11)
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If ̂H = 1, then the SE is estimated as SE
̂H = 0, resulting in g( ̂H) = ∞ and an

undefined SEg( ̂H), z, and z∗. In that case, we define CI∗ as [1, 1] and evaluate z and
z∗ as significant.

Similarly, confidence intervals and z scores can be computed for item pairs as
CIij and zij , and for items as CIi and zi (superscript ∗ is added for range-preserving
confidence intervals and z scores), by replacing ̂H and SE

̂H in Eqs. 3, 4, 10, and 11
with ̂Hij and SE

̂Hij
or with ̂Hi and SE

̂Hi
respectively.

Multivariate Case. The range-preserving transformation is easily generalized
to the multivariate case, which is useful to, for example, construct a variance–
covariance matrix for a set of transformed item-pair or item coefficients. Let
H = [H(1), H(2), . . . , H(k), . . . , H(K)]T denote a transposed vector containing K

scalability coefficients H(k), (k = 1, 2, . . . , K). The transformation of H is

g(H) = [g(H(1)), g(H(2)), . . . , g(H(k)), . . . , g(H(K))]T . (12)

Let G = ∂g(H)

∂HT be the Jacobian of g(H), that is, the matrix of first-order partial
derivatives with respect to H. Let

⊕

indicate the direct sum. For g(H),

G =
K

⊕

k=1

1/(1 − H(k)). (13)

G is a diagonal matrix with the first derivative of g(H(k)) (Eq. 7) on the kth diagonal
element and zero on the off-diagonal elements. Let VH denote the variance–
covariance of H, V(k) the variance of H(k), and V(k,l) the covariance between H(k)

and H(l). Applying the multivariate delta method, the variance–covariance matrix
of g(H), Vg(H), is approximated by

Vg(H) ≈ GVHG (14)

Vg(H) is a diagonal matrix for which the kth diagonal element equals Vk/(1− Hk)
2

and the off-diagonal element (k, l) equals V (k, l)/[(1 − H(k))(1 − H(l))]. In data
samples, H and VH in Eqs. 12 to 14 are replaced by their estimates ̂H and V

̂H,
respectively, to get estimates g(̂H) and Vg(̂H).

2.3 Approximating the Sampling Distribution

In Fig. 1, the Wald-based and range-preserving approximations of the distribution
are plotted over the distributions. This visualization shows that when H does not
approach the boundary of 1, the approximated distributions are similar (upper
panels), but close to the boundary the range-preserving approximation (solid line)
approaches the distribution more accurately than the Wald-based approximation
(dashed line), especially in the left tail (lower panels). Note that the left tail is
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of interest because the one-sided significance tests evaluate whether Hij or Hi is
significantly larger than some hypothesized value. Hence, the left tail is compared
to the hypothesized value.

3 Simulation Study

We performed a small-scale simulation study to investigate the coverage of the two-
sided confidence interval and Type I error rate of the one-sided significance test for
the Wald-based and range-preserving methods.

Method. We simulated data for 10 dichotomous items using a two-parameter
logistic model (Birnbaum, 1968, p. 458). The difficulty parameter was fixed to
equidistant values between −1 and 1 across the items. We included the following
independent variables:

Item discrimination: The magnitude of the total-scale scalability coefficient was
manipulated by increasing ai in the two-parameter logistic model. The higher the
discrimination, the better the item can distinguish between respondents, which
results in higher scalability of the item, and thus the total scale. There were six levels
in which ai varied across items at equidistant values between 0 and 1: between 0.8
and 2, between 1 and 4, between 2 and 8, between 10 and 25, or between 25 and 75,
resulting in H = 0.07 (unscalable), 0.33 (weak), 0.52 (strong), 0.74 (very strong),
0.94 (extremely strong), and 0.98 (near unity), respectively.

Sample size: The sample size N was 100, 500, or 1,000. Although 100 respondents
is not considered sufficient for a Mokken scale analysis (Straat, Van der Ark &
Sijtsma, 2014), the difference between the methods is expected to be more distinct.

Method: The Wald-based and range-preserving methods were used to compute the
dependent variables.

We evaluated the following dependent variables, for which the population value
H was determined by using the mean of ̂H across all replications within a condition,
assuming it was unbiased.

Coverage: The coverage of the two-sided 95% confidence interval was determined
to be the proportion of times H was included in the 95% CI or CI∗. Its value should
be close to 0.95.

Type I error rate: The Type I error rate of the one-sided significance test was
determined as the proportion of times the p value of z or z∗ was below significance
level 0.05. Its value should be close to the significance level. Statistics z and z∗ were
computed by replacing c by H in Eqs. 4 and 11.

Method was a within-subject variable, whereas item discrimination and
sample size were between-subject variables. There were 4 × 3 = 12 conditions
and for each condition 10,000 datasets were simulated. Data were simulated
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Fig. 2 Coverage rates of the two-sided confidence interval (top panels) and Type I error rates of the
one-sided significance test (bottom panels) for the Wald-based (dashed line) and range-preserving
(solid line) method. The row panels represent the sample sizeN. Each panel displays the population
values H on the horizontal axis

in R (R Development Core Team, 2017) using the function simdata() from
package mirt (Chalmers et al., 2012).1

Results. Figure 2 shows the coverage rates of CI and CI∗ and the Type I error
rates of z and z∗ for all conditions. CI∗ outperformed CI in all conditions—more
substantially for conditions where H approached its upper boundary of 1. Overall,
the coverage rates were poorer in the conditions with 100 respondents compared to
the conditions with more respondents, especially for the highest two H conditions.
In general, for the two highest H conditions, the average undercoverage of CI was
divided in 9.2% on the left side and 1.2% on the right side, indicating that the CI
had mainly undercoverage in the left tail of the distribution, whereas the right tail
was overcovered. The undercoverage of CI∗ was divided more symmetrically, with
5.3% on the left tail and 3.6% on the right tail. When looking only at the 500 and
1,000 respondents conditions, the undercoverage of CI was 5.5% in the left tail and

1Syntax files are available to download from the Open Science Framework: https://osf.io/5m827/.

https://osf.io/5m827/
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1.2% in the right tail, compared to 2.8% in both tails for CI∗. This indicates that the
tails of the sampling distribution are better approximated using the range-preserving
method compared to the Wald-based method.

The Type I error rate of z∗ was close to that of z in most conditions, but for
conditions in which H ≥ 0.74, z∗ outperformed z. For 100 respondents, the Type I
error rate of both z and z∗ was below the nominal value for the lowest H condition,
but improved with increased sample size.

Note that for the condition with 100 respondents andH = 0.98, in approximately
10% of the replications ̂H was (very close to) 1 (i.e., ̂H > 0.999) and SE

̂H was
estimated (very close to) 0 (i.e., the mean of SE

̂H = 0.0002, compared to a mean
of 0.0086 for ̂H < 0.999). Regardless of the method, this estimation issue made it
problematic to construct accurate intervals or to perform accurate tests, resulting in
deteriorated coverage and Type I error rates for both methods.

4 Implementation in Software

The range-preserving methods are implemented in R (R Development Core Team,
2017) in the package mokken (Van der Ark, 2007, 2012). Here we give an overview
of how to get CI∗ and z∗ for Mokken’s scalability coefficients in nonclustered and
clustered data and for Snijders’ two-level scalability coefficients in multi-rater data,
using scores of 639 students nested in 30 schools on 7 items measuring their well-
being with teachers. The first column in the dataset contains a grouping variable,
which we will ignore for nonclustered computations but which we use for clustered
data. Throughout we will use the significance level α = 0.05 and a null hypothesis
for coefficients c = 0.3. Wald-based results can be obtained by replacing "RP"
by "WB" in the R code. Let R> denote the R prompt. The R script and output are
available to download from the Open Science Framework: https://osf.io/5m827/.

R> # Preliminary code:
R> # Load package, get data
R> # Set significance level and value c
R> library(mokken)
R> data(SWMD)
R> X <- SWMD[, -1] # item scores SWMD
R> groups <- SWMD[, 1] # grouping variable
R> alpha <- .05 # Significance level
R> c <- .3 # Null hypothesis value
R> ## Mokken’s scalability coefficients in nonclustered data:
R> # Point estimates, standard errors,
R> # and two-sided range-preserving confidence intervals
R> coefH(X, ci = 1 - alpha, type.ci = "RP")
R> # Range-preserving z-scores using null hypothesis c
R> coefZ(X, lowerbound = c, type.z = "RP")
R> ## Mokken’s scalability coefficients in clustered data:
R> # Point estimates, standard errors,
R> # and two-sided range-preserving confidence intervals

https://osf.io/5m827/


184 L. Koopman et al.

R> coefH(X, ci = 1 - alpha, type.ci = "RP", level.two.var
= groups)

R> # Range-preserving z-scores using null hypothesis c
R> coefZ(X, lowerbound = c, type.z = "RP", level.two.var

= groups)
R> ## Snijders’ two-level scalability coefficients:
R> # Point estimates, standard errors,
R> # and two-sided range-preserving confidence intervals
R> MLcoefH(SWMD, ci = 1 - alpha, type.ci = "RP")
R> # Range-preserving z-scores using null hypothesis c
R> MLcoefZ(SWMD, lowerbound = c, type.z = "RP")

5 Discussion

We proposed a method to compute range-preserving confidence intervals and
significance tests, which we implemented in the R package mokken. Simulation
results showed that for H not close to 1, Wald-based and range-preserving methods
are very similar and both are useful. However, for very strong scales (H > 0.7), the
range-preserving methods return more accurate results and are preferred over the
Wald-based method, especially for the left tail of the sampling distribution (which
is used in the one-sided significance tests). The results were poorer for only 100
respondents, confirming that larger samples are desirable (Straat et al., 2014). Note
that we only investigated range-preserving methods for scalability coefficients in
nonclustered data. Whether the results are similar in clustered data and for two-level
scalability coefficients is a topic for further research.

In our method, we used (−∞, 1] as the range for H . However, the actual
minimum of scalability coefficients depends on the marginal frequencies (Sijtsma &
Molenaar, 2002, p. 59). This minimum has the undesirable property that it must be
estimated and thus varies across finite samples. We explored an alternative and more
complex logistic transformation that takes the estimated minimum into account. The
results were very similar to the results obtained using the logarithmic transformation
presented in this chapter, so we did not investigate this method any further.

A limitation of the logarithmic transformation is that the value 1 can not
be included in the interval (although values very close to 1 can), as this value
corresponds to ∞ on the transformed scale. However, 1 is a possible value for
scalability coefficients, both in the population and in data samples. Alternative
transformations that can include 1 may approximate the sampling distribution more
closely. However, this will not solve the deteriorated coverage and Type I error rates
for very high H entirely because there remain samples where the SE can not be
estimated because ̂H = 1.
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