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Abstract

In this paper, we combined linguistic complexity and
(dis)fluency features with pretrained language models for the
task of Alzheimer’s disease detection of the 2021 ADReSSo
(Alzheimer’s Dementia Recognition through Spontaneous
Speech) challenge. An accuracy of 83.1% was achieved on
the test set, which amounts to an improvement of 4.23% over
the baseline model. Our best-performing model that integrated
component models using a stacking ensemble technique per-
formed equally well on cross-validation and test data, indicating
that it is robust against overfitting.
Index Terms: Alzheimer’s disease, disfluency, pretrained lan-
guage models, automated Alzheimer’s disease detection, lin-
guistic complexity

1. Introduction
Alzheimer’s disease (AD) is a gradual and progressive neurode-
generative disease caused by neuronal cell death [1]. The num-
ber of people diagnosed with AD is rapidly increasing1. The
high prevalence of the disease and the high costs associated with
traditional approaches to detection make research on automatic
detection of AD critical [2]. A growing body of research has
demonstrated that quantifiable indicators of cognitive decline
associated with AD are detectable in spontaneous speech (see
[3] for a recent review). These indicators encompass acoustic
features, such as vocalisation features (i.e. speech-silence pat-
terns) [4], paralinguistic features, such as fluency features [5]
and speech pause distributions [6], as well as syntactic and lex-
ical features extracted from speech transcripts [7].

This area of research has benefited from recent advances in
natural language processing and machine learning, as well as an
increasing number of interdisciplinary research collaborations.
A prime example of this is the ADReSS(o) (Alzheimer’s De-
mentia Recognition through Spontaneous Speech) Challenge,
aimed at generating systematic evidence for the use of such in-
dicators in automated AD detection systems and towards their
clinical implementation. This challenge has made significant
contributions to research on AD detection by enabling the re-
search community to test their existing methods, develop novel
approaches and to benchmark their AD detection systems on a
shared dataset. The ADReSSo Challenge at INTERSPEECH
2021 [8] is geared towards automatic recognition of AD from
spontaneous speech and involved three subtasks. Here in this
paper, we focus on the AD classification subtask, for which re-
search teams were asked to build a model to predict the label

1https://www.alz.org/alzheimers-dementia/facts-figures

(AD or non-AD) for a short speech session. Participating teams
could use the speech signal directly and extract acoustic features
or automatically convert the speech to text (ASR) and extract
linguistic features from this ASR-generated transcript.

1.1. Related work

In this section, we provide a concise review of research on auto-
matic AD detection through speech, with particular attention to
previous studies conducted as part of the 2020 ADReSS Chal-
lenge. The AD classification approaches in this challenge relied
on a wide range of acoustic, paralinguistic, and linguistic fea-
tures or their combination. Classification accuracy scores of
the proposed models ranged between 68% and 89.6%. While
some approaches either focused on acoustic or linguistic fea-
tures, the best performing contributions in the 2020 challenge
embraced a multi-modal approach combining several types of
features (e.g. [9][10][11]). Furthermore, building on earlier
work reporting on the effectiveness of the use of word embed-
dings in AD detection ([12][13]), several approaches success-
fully employed pretrained language models (e.g. [9][10][11]).
Another important issue addressed in several studies concerned
how to deal with variance in the predictive performance of pre-
trained models resulting from fine-tuning for downstream tasks
with a small data set. In response to this issue, the authors of
the best performing model [9] introduced an ensemble method
to increase the robustness of their approach. In response to this
issue, the best performing paper of the 2020 challenge [9] intro-
duced an ensemble approach to increase the robustness of their
models. Finally, it is important to note that some of the high-
performing models in last year’s challenge – including the best
model described in [9] – used rich manual transcription that in-
cluded pause and disfluency annotation. Such transcripts were
not provided in the 2021 challenge, making it more demanding
compared to last year’s challenge.

1.2. Modeling approach

The modeling approach presented in this paper builds on key
insights reported in the studies reviewed above and extends
on these (1) by integrating linguistic indicators of linguis-
tic complexity and sophistication, features of (dis)fluency and
transformer-based pretrained language models and (2) by utiliz-
ing ensembling methods to combine the information from these
feature groups and to reduce the variance in model predictions.
Specifically, we perform experiments with classification based
on three ensembling techniques: Ensembling by bagging via
majority vote, ensembling by bagging using feature fusion, and
ensembling by stacking.
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2. Data and analysis
2.1. Data

The Alzheimer’s Disease Detection dataset provided by the or-
ganizers of the ADReSSo Challenge 2021 consists of speech
recordings of picture descriptions from the Boston Diagnostic
Aphasia Exam produced by 87 individuals with an AD diag-
nosis and 79 cognitively normal subjects (control group). The
recordings were acoustically enhanced (noise reduction through
spectral subtraction) and normalised. The data were also bal-
anced with respect to age and gender. The organizers also
provided segmentations of the recordings into vocalisation se-
quences with speaker identifiers. No transcripts were provided.

2.2. Speech Recognition

We used AppTek’s Automatic Speech Recognition technology
via a cloud API service2 for automatically transcribing the audio
files. The transcripts were converted from XML into raw text
formats with full stops being added at the end of each utterance
based on the provided segmentations. These files served as the
input for the automated text analysis (see Section 2.4).

2.3. (Dis)fluency

To model the speakers’ articulatory (in particular (dis)fluency-
related) characteristics, we derived several features from the
ASR system that fall into four classes. (1) Silent pauses - The
ASR output contained the start- and end-times as well as con-
fidence scored for each recognized word. Durations of pauses
were calculated from forced alignment and binned by duration
into short pauses (< 2sec) and long pauses (> 2sec). In ad-
dition, we calculated the total pause duration per sentence (in
seconds). (2) Speed of articulation - We enriched the output of
the ASR with syllable counts from the Carnegie Mellon Uni-
versity Pronouncing Dictionary3. Based on this information
we assessed the mean syllable duration as well as syllables per
minute for each utterance in the speech data. (3) Filled pauses
- Next to the number and total duration of silent pauses, we de-
rived frequency counts per sentence for two filled pause type,
uh and um, that had been shown to discriminate between AD
patients and controls in previous studies [9]. (4) Pronunciation
- As the known symptoms of AD patients include mispronunci-
ation [14], we calculated average word level confidence scores
as a proxy of pronunciation quality, which have been employed
for the speech pattern detection in the context of detection of
Alzheimer’s Disease [15]. All measures were calculated at ut-
terance level. An overview of these measures with descriptive
statistics for both groups is presented in Table 1.

2.4. Automated Text Analysis (ATA)

The speech transcripts were automatically analyzed using
CoCoGen (short for: Complexity Contour Generator), a com-
putational tool that implements a sliding window technique to
calculate within-text distributions of scores for a given language
feature (for current applications of the tool in the context of text
classification, see [16, 17, 18]). In this paper, we employed a
total of 293 features derived from interdisciplinary, integrated
approaches to language [19] that fall into four categories: (1)
measures of syntactic complexity, (2) measures of lexical rich-
ness, (3) register-based n-gram frequency measures, and (4)

2https://www.apptek.com/
3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Table 1: Descriptive statistics of (dis)fluency measures
AD patients Control

(Dis)Fluency measure M SD M SD
Speed of articulation
Mean syllable duration 0.28 0.05 0.26 0.03
Syllables per minute 205 45.7 224 35.7
Silent pauses
Pause time per sentence (in sec) 0.92 0.89 0.63 0.49
N long pauses (> 2sec) 1.28 2.22 0.473 0.71
N short pauses (< 2sec) 13.2 9.28 15.4 11.7
Filled pauses
N uh 0.29 0.88 0.24 0.54
N um 0.07 0.37 0.31 0.74
Pronunciation
Mean ASR confidence 0.83 0.09 0.86 0.08

information-theoretic measures. In contrast to the standard ap-
proach implemented in other software for automated text analy-
sis that relies on aggregate scores representing the average value
of a feature in a text, the sliding-window approach employed in
CoCoGen tracks the distribution of the feature scores within a
text. A sliding window can be conceived of as a window of
size ws, which is defined by the number of sentences it con-
tains. The window is moved across a text sentence-by-sentence,
computing one value per window for a given indicator. In the
present study, the ws was set to 1. The series of measurements
generated by CoCoGen captures the progression of language
performance within a text for a given indicator and is referred
here to as a ‘complexity contour’ (see Figure 1 for illustration).
CoCoGen uses the Stanford CoreNLP suite [20] for performing
tokenization, sentence splitting, part-of-speech tagging, lemma-
tization and syntactic parsing (Probabilistic Context Free Gram-
mar Parser [21]).

Figure 1: Schematic representation of ‘complexity contours’ for
two out of 293 complexity measures (CM) investigated: CTTR
(Corrected Type Token Ratio) and Dependent Clauses per TU-
nit). Centering/scaling was applied here only for purposes of
illustration.

2.5. Pretrained Language Models

Since their inception, transformer-based pretrained language
models such as BERT [22] and ERNIE [23] have achieved state-
of-the-art performance in various classification tasks.The re-
sults of previous research demonstrate that the language char-
acteristics of AD too can be captured by pretrained language
models fine-tuned to the task of AD classification (see above).
In this paper, pretrained BERT and ERNIE models were fine-
tuned for the AD classification task and combined with classi-
fiers trained on complexity and (dis)fluency features (see Sec-
tion 3). Each of the 161 speakers in the training data is con-
sidered as a data point. The input of the model consists of all
the text sequences of each speaker obtained by the ASR system,
and the output is the class of the corresponding speaker, 0 for
Control and 1 for AD.
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3. Experimental Setup
In this section we describe the component models used in our
approach and how they were combined. To assess the perfor-
mance of each model, 5-fold cross validation was used.

3.1. CNN Complexity + (Dis)Fluency Models

In order to make optimal use of the complexity and (dis)fluency
features, which are sequential in nature, we built convolutional
neural network (CNN) models. Originally proposed in com-
puter vision, CNNs have been successfully adapted to various
NLP tasks [24] and sentence classification tasks [25][26][27].
The CNN model has the advantage over models that rely on ag-
gregated features, e.g. mean feature values, in that it is capable
of capturing patterns in a feature sequence. We followed the
approach proposed by [26], but replaced the word embedding
with the concatenation of complexity and (dis)fluency features.
Due to the small size of the dataset, we set the size of filters to
be 2 × d, 3 × d, 4 × d where d is the input feature dimension.
Eight filters were used for each of the three filter types.

3.2. Fine-tuned BERT and ERNIE Models

The Huggingface Transformers library [28] was adopted for
fine-tuning pretrained language models. Bert-for-Sequence-
Classification was used and initialized with ‘bert-base-uncased’
and ‘nghuyong/ernie-2.0-en’ as our pretrained BERT and
ERNIE model, respectively. In both cases, the base model was
used rather than the large one, as preliminary experiments re-
vealed no reliable differences in terms of classification accuracy
between the two models on our dataset. Both models consists
of 12 Transformer layers with hidden size 768 and 12 atten-
tion heads. The following hyperparameters were used for fine-
tuning: the learning rate was set to 2 × 10−5 with 50 warmup
steps and l2 regularization set to 0.1. The maximum sequence
length for both models was set to 256. For both models, default
tokenizers were used.

3.3. Use of Ensembling Methods

Previous research on predicting AD using pretrained language
models has demonstrated that their predictions based on fine-
tuning for downstream tasks with a small dataset tend to be
brittle and subject to high variance. To reduce this variance,
we used an adapted version of the ensembling approach pro-
posed in [9]: Each of the models described above was trained
50 times (N = 50). During the prediction phase, each model
instance independently generated a prediction. The final classi-
fication decision was then determined by hard-voting, i.e. each
model contributed its class prediction as a vote and the class that
receives the majority of the votes was returned by the ensemble
model. Besides using ensemble methods so as to reduce the
variance in the prediction of a model, we also employed them
to integrate information from different models. To this end, we
performed experiments with two types of ensemble based meth-
ods, which are referred to here as ensembling by bagging and
ensembling by stacking. Bagging involves fitting several inde-
pendent models and pooling their predictions in order to obtain
a model with a lower variance, while stacking involves combin-
ing the models by training a meta-model to output a prediction
based on the different models predictions (see below). In each
of the combined models, we used the same hyperparameter set-
tings as stated above.

Figure 2: Structure diagram of Model A. During training, we
train each of the k models N times. During inference, jth in-
stance of model i gives prediction ŷij independently. The final
output of the ensembled model Ŷ is the label, which the major-
ity of the k ×N model instances agree upon.

3.3.1. Model A: Ensembling by bagging via majority vote

Ensembling by bagging via majority vote has been shown to
be a simple yet effective method to increase the performance
of classification models [29][30]. The first classification model
(Model A) employed majority voting among 50 CNNs that used
complexity and (dis)fluency features and 50 ERNIE models (see
Figure 2). That is, as specified above, in this approach, each
model was first trained/fine tuned 50 times, meaning that the
final classification was based on 100 model instances. The clas-
sification in the Model A approach was then determined by
counting the votes for each class (AD and controls (CN)) and
choosing the more frequent class as the predicted one.

Figure 3: Structure diagram of Model B.

3.3.2. Model B: Ensembling by bagging using feature fusion

The second model (Model B) combined a CNN and a ERNIE
model, which has previously been shown to perform better than
either model alone [31]. Following the approach of [31], we
built a model in which complexity and (dis)fluency information
was first concatenated at the feature-level and subsequently fed
into a CNN (see Figure 3). The hidden vector coming from
CNN is then concatenated with the pooled output vector for
the [CLS]4 token of Ernie model. The concatenated vector will
serve as the input of a feed forward classifier on top of CNN
and Ernie. To train this model, we first fine-tune ERNIE model.
Then we freeze the parameters of the ERNIE model and jointly
train the CNN model and feedforward classifier.

3.3.3. Model C: Ensembling by stacking

The final model, Model C, used in our experiments employed a
stacking approach to ensemble all models [32], which has been

4[CLS], stands for classification, is a special token added in front of
every input samples of BERT/ERNIE model to represent sample-level
classification [22].
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Table 2: Mean accuracy (with standard deviations), precision, recall and F1 scores over a 5 fold cross-validation
Precision Recall F1

Model Acc CN AD CN AD CN AD
CNN Comp M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
CNN[Comp+DisFl] 0.80 (0.06) 0.79 (0.06) 0.81 (0.08) 0.78 (0.07) 0.83 (0.06) 0.78 (0.05) 0.82 (0.07)
Bert-Base 0.79 (0.06) 0.77 (0.09) 0.84 (0.08) 0.81 (0.11) 0.78 (0.12) 0.78 (0.06) 0.80 (0.07)
Ernie-Base 0.80 (0.04) 0.80 (0.08) 0.81 (0.04) 0.77 (0.07) 0.83 (0.09) 0.78 (0.04) 0.82 (0.05)
Model A: CNN[Comp+DisFl]+[Ernie]
(sep mod, bagging) 0.76 (0.07) 0.61 (0.13) 0.88 (0.05) 0.79 (0.08) 0.74 (0.08) 0.68 (0.10) 0.80 (0.06)

Model B: CNN[Comp+DisFl]+[Ernie]
(fusion, bagging) 0.83 (0.06) 0.75 (0.11) 0.89 (0.04) 0.83 (0.09) 0.82 (0.06) 0.78 (0.09) 0.85 (0.04)

Model C: LR[Comp]+LR[DisFl]+[Ernie]+[Bert]
(stacking) 0.83 (0.07) 0.82 (0.10) 0.85 (0.09) 0.83 (0.10) 0.84 (0.09) 0.82 (0.08) 0.84 (0.07)

Table 3: Performance of the three ensemble models on test set
Precision Recall F1

Model Acc CN AD CN AD CN AD
Model A: CNN[Comp+DisFl]+Ernie(sep mod, bagging) 0.79 0.77 0.81 0.83 0.74 0.80 0.78
Model B: CNN[Comp+DisFl]+Ernie (fusion, bagging) 0.75 0.73 0.77 0.81 0.69 0.76 0.72
Model C: LR[Comp]+LR[DisFl]+Ernie+Bert (stacking) 0.83 0.82 0.85 0.86 0.80 0.84 0.82

shown to effectively increase the accuracy of the ensembled in-
dividual models. Specifically, we employed model stacking to
combine two logistic regression models (LR) using complexity
and (dis)fluency features respectively, and the two pretrained
language models, i.e. BERT and ERNIE. The training proce-
dure consists of two stages (see Figure 4). First, in stage one,
each of the four models is trained/fine-tuned independently us-
ing 5-fold cross-validation (CV). For each sample in the test
fold, we obtain one prediction vector from each of the four mod-
els (Models 1 to 4). These predictions vectors are then concate-
nated and constitute the input data in a subsequent stage (stage
2). The final predictions of Model C are derived from another
logistic regression model trained on the concatenated prediction
vectors from stage 1. To perform inference on the test set, we
take the predictions from all model instances trained in stage 1
and average them by model, which will served as input of stage
2 after concatenation. All hyperparameters for the training/fine-
tuning of each of the ensembled models were selected as above.

Figure 4: Schematic representation of ensembling by stacking.

4. Evaluation
In this section, we present our results on the AD detection task.
The evaluation metrics for detection (accuracy, precision, re-
call, and F1 score) on the cross-validation (CV) set are pre-
sented in Table 2. The results on the evaluation set are shown in
Table 3. As indicated by boldface numbers, the best perform-
ing model in both cross-validation (mean accuracy = 83.16%)
and testing (accuracy = 83.10%) was Model C, i.e. the model
that combined complexity and (dis)fluency features with both
pretrained language models using stacking. Model B, which
combined a CNN trained on utterance-level complexity and
(dis)fluency features with the best performing fine-tuned pre-

trained language model (ERNIE) using late fusion and ensem-
bling by bagging, fell close behind reaching 82.7% accuracy in
CV. Model A, which combined the same features using majority
voting with separate classifiers, performed below the accuracy
levels of its component models, reaching 75.69% accuracy in
CV. On the test set, the accuracy score of 83.1% of the best per-
forming model, Model C, constitutes an improvement by 4.23%
over the baseline model, which was based on fusion of linguis-
tic and acoustic features [8]. Surprisingly, the relative perfor-
mances of Model A and Model B were reversed on the test set,
with Model A matching the performance of the baseline exactly
(accuracy = 78.87%) and Model B falling just short of that (ac-
curacy = 74.65%). The considerable discrepancies between the
CV and test set classification accuracy for these models suggest
that they suffer from overfitting. In contrast, Model C, which
employed the stacking technique, performed equally well on
CV and test data, indicating that it is robust against overfitting.

5. Discussion and Conclusion

The work presented here combined linguistic complexity and
(dis)fluency features with pretrained language models for the
task of Alzheimer’s disease detection. An accuracy of 83.1%
was achieved on the test set, which amounts to an improve-
ment of 4.23% over the baseline model, which was based on
fusion of linguistic and acoustic features. Our best perform-
ing model combined component models using a stacking en-
semble technique. A key finding of this study is that incor-
porating information on linguistic complexity and (dis)fluency
improved the performance of fine-tuned pretrained language
models in AD classification by 3%, suggesting that different
component models encode complementary information regard-
ing the characteristic language patterns of AD. Another impor-
tant aspect of our results is that the ensemble model trained
on ‘complexity contours’, i.e. utterance-level measurements of
human-interpretable complexity and fluency features, was able
to match the performance of both fine-tuned pretrained BERT-
like language models: Using 5-fold cross-validation with en-
sembling of 50 models in each fold, we obtained robust perfor-
mance scores (≈ 80%) for both types of models. This find-
ing has important implications in light of increasing calls for
moving away from black-box models towards white-box (inter-
pretable) models for critical industries such as healthcare, fi-
nances and news industry [33, 34].
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