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1.  INTRODUCTION

The dynamics of marine fish populations are typi-
cally categorized as regulated primarily by top-down
processes (i.e. predation) or by bottom-up processes
(i.e. resource production) (Wollrab et al. 2012, Heath
et al. 2014, Vinueza et al. 2014). For example, fish
population dynamics in the North Sea were long
thought to be driven by bottom-up processes (Lynam
et al. 2017). In bottom-up regulated systems, the
lowest-level driver is formed by abiotic factors (e.g.
temperature, salinity, etc.) and their influence on

plankton biomass. The available plankton biomass in
turn leads to cascades upwards through the food web
(Gregory et al. 2009, Kirby & Beaugrand 2009, Olsen
et al. 2011). Top-down interactions, represented by
predation pressure from predators and fisheries ex -
ploitation, have also been shown to have a large
impact on the dynamics of several North Sea fish
populations (Fauchald et al. 2011, Engelhard et al.
2014). Furthermore, the interaction between top-
down and bottom-up processes in the North Sea eco-
system can give rise to highly complex and non-
linear dynamics in fish populations (Lynam et al.
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2017). To attain a better understanding of the com-
plexity emerging from such interactions, it is impor-
tant to have a complete overview of the bottom-up
and top-down processes acting upon fish populations
in the North Sea.

One potentially important bottom-up process that
is often overlooked in regulating fish populations is
seabed morphology. Physically distinct areas of sea -
bed, also called seascapes, can act as a bottom-up
controlling mechanism by shaping abiotic conditions,
leading to the formation of different types of benthic
habitat and associated species assemblages (Harris &
Baker 2012). Due to the strong link between seabed
morphology and community structure of benthic in -
vertebrates (Beaman et al. 2005, Kaskela et al. 2017),
seascapes are often used as a proxy for mapping
marine benthic habitats (Kostylev et al. 2001, Brown
& Collier 2008). Yet, we know little about the extent
to which seascapes affect the dynamics of fish popu-
lations, despite the fact that the few case studies
available show it could help explain the spatial dis-
tribution of fish resources (Pittman & Brown 2011,
Getsiv-Clemons et al. 2012). Recent research revealed
that the central and lower part of the North Sea com-
prises 8 distinct seascapes excluding the coastal zone
(van der Reĳden et al. 2018), and that these were
selectively targeted by commercial fishing vessels.
Although this preferential selection provides some
indirect link to the availability and distribution of fish
resources, a more complete study exploring the rela-
tionship between seascapes and the population
trends of North Sea fish is missing. If seascapes are
important, this changes the commonly held perspec-
tive on the types of bottom-up processes affecting
North Sea fish populations.

To understand the relationship between seascapes
and the population trends of North Sea fish, we in -
vestigated the temporal interdependencies in fish
biomass density between seascapes. We hypothesized
that if seascapes are not related to trends in fish pop-
ulations in the North Sea, biomass densities in sepa-
rate seascapes will be directly dependent on each
other. Ecologically, this result could be interpreted as
the ‘borders’ between separate seascapes being dif-
fuse, i.e. not relevant, to the processes determining
the amount of fish biomass observed. In contrast, if
seascapes define distinct abiotic environments that
are important for the distribution of fish populations,
we expect biomass densities in different seascapes
to be unrelated to each other, although they can
still be related across longer time lags. Ecologically,
this result could be interpreted as the separation in
conditions between seascapes representing relevant

barriers to the processes determining the amount of
fish biomass observed.

To examine the temporal interdependencies in
fish biomass density between seascapes, we used a
re cently developed causal association network ap -
proach (Runge et al. 2019a). The advantage of this
data-driven method is that it learns causal associa-
tions at various time lags directly from aggregated
sets of time series, rather than establishing causality
through computer simulation experiments on correl-
ative relationships found in observational data (Runge
et al. 2019b). As such, our study also tests a new ap -
proach to examine intraspecific dependencies in the
biomass trends of North Sea fish.

2.  MATERIALS AND METHODS

2.1.  Study area

The North Sea is a semi-enclosed shelf extending
from 4° W and 62° N (Fig. 1a) (Daan et al. 2005). In
this study, we focussed on the region that includes
International Council for the Exploration of the Sea
(ICES) statistical rectangles 4a, b and c. We excluded
the Norwegian trench, the Skagerrak and the waters
south of the English Channel, as their distinctiveness
is well recognized (Bergstad 1990, ICES 2018). Ex -
tending the method of van der Reĳden et al. (2018),
we derived 10 separate seascapes (Fig. 1b). These
seascapes were identified based on the weighted
sum of 5 bathymetry positioning indices (BPIs), which
express the depth of a pixel relative to the depth of its
surroundings. The specific weighted-sum BPI used
(Eq. 1) highlights large-scale patterns in seabed mor-
phology and is strongly linked to benthic communities
(Reiss et al. 2010). A full description of the weighted
BPI can be found in van der Reĳden et al. (2018).

BPI 75 km + (0.9 × BPI 50 km) + (0.8 × BPI 30 km) 
+ (0.7 × BPI 10 km) + (0.6 × BPI 5 km)

(1)

2.2.  Data preparation

We extracted data on the catch per unit effort
(CPUE) of 9 species of fish collected in the North Sea
International Bottom Trawl Survey (NS-IBTS) from
1978 to 2019 (ICES 2019) (Table 1). We chose 1978 as
the starting year of the time series as all seascapes
were systematically sampled within the NS-IBTS
from this year onward. The 9 selected species cov-
ered a variety of different life history strategies and
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had sufficient positive catch data available in all sea-
scapes across selected years. To minimize bias from
potential variability in sampling gear and timing, we
only included observations that had been sampled in
the same quarter of the year and using the GOV
trawl. Next, we determined in which seascape each
haul was performed based on the shoot longitude
and latitude. We estimated the biomass in kg for a
given species for each haul by multiplying the num-
ber of individuals of a given length class by their
length−weight relationship, as derived from FishBase
(Froese & Pauly 2019), and summing over all length

classes present in the haul. We then aggregated the
data to a single time series per seascape and species,
representing the average biomass in kg haul−1 yr−1.
We refer to this metric as biomass density.

2.3.  Data analysis

2.3.1.  Causal association network

We define temporal interdependencies in popu-
lation trends as the existence of time-lagged causal
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Fig. 1. Greater North Sea Ecoregion (black coastline) (a) divided into ICES statistical rectangles 4a, 4b and 4c (boundaries are
indicated by the grey dashed lines), and (b) its division into 10 seascapes based on seabed morphology, following the method
of van der Reĳden et al. (2018). BPI: bathymetry positioning index, which expresses the depth of a pixel relative to the depth 

of its surroundings

Species                         Scientific name Filtered hauls Non-zero hauls L−W relationship             n

Common dab               Limanda limanda 13 430 11 847 0:0068(L)3.14                19
Whiting                        Merlangius merlangus 13 760 13 364 0:0063(L)3.06                33
Atlantic herring          Clupea harengus 13 746 12 085 0:0060(L)3.08              114
Atlantic cod                 Gadus morhua 13 743 11 197 0:0071(L)3.08                42
European sprat            Sprattus sprattus 13 747 8135 0:0056(L)3.09                36
Dragonet                      Callionymus lyra 13 682 3825 0:0214(L)2.59                12
European plaice          Pleuronectes platessa 13 615 9216 0:0089(L)3.04                14
Grey gurnard              Eutrigla gurnardus 13 624 8607 0:0079(L)3.02                15
Starry ray                     Amblyraja radiata 13 658 4308 0:0105(L)2.94                  6

Table 1. Fish species, records and length to weight conversion used in the study. All length−weight (L−W) relationships were
taken directly from FishBase (Froese & Pauly 2019). Slight differences in the number of filtered (unique) hauls between spe-
cies originate from small differences in the raw North Sea International Bottom Trawl Survey CPUE-length-per-hour datasets
pulled from the ICES/DATRAS online database (ICES 2019) for each species (mean ± SD:13 667.2 ± 104.9 filtered hauls, range 

13 430−13 760 filtered hauls)
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dependencies in fish biomass density between sea-
scapes. If seascapes are not related to fish popula-
tions in the North Sea, we expect that the time series
in fish biomass densities between separate seascapes
are causally related to each other at the time interval
of zero. Contrarily, if seascapes are related to fish
populations in the North Sea, we expect that the time
series in fish biomass densities in separate seascapes
are independent of each other at the time interval of
zero, although they can be causally dependent across
longer time scales.

We applied a causal association network approach
recently developed by Runge et al. (2019a), to evalu-
ate the underlying causal dependency structure be -
tween the fish biomass density time series from dif-
ferent seascapes (Fig. 2). The linear and non-linear
time-lagged dependencies between sets of time
series can cause inflated or spurious associations to
be included when analysing their interdependence
(Pearl 2009). These need to be accounted for in order
to arrive at an approximation of the ‘true’ underlying
dependency structure. The causal association net-
work utilizes the PCMCI algorithm, as implemented
in the package ‘TIGRAMITE’ in Python (Runge 2019),
that arrives at a solution of the underlying depend-
ency structure through iterative conditional inde-
pendence testing. Internally, the PCMCI algorithm
takes 2 processing steps. First, given a set of time se-
ries, the PC1 algorithm constructs a graphical model
in which all time series and their time-lagged compo-
nents form separate nodes. For each of these nodes or
time series variables, the PC1 algorithm then identi-
fies all relevant conditions or ‘preliminary parents’

in the set , through iterative con-
ditional independence testing. This conditional de-
pendence can be interpreted as the relation between
time series variables 1 and 2, after accounting for the

relations existing between all time series variables
within the set. The time series variables with signifi-
cant relations to the focal time series after accounting
for all relationships in the set form the preliminary
parents of that focal time series. This first step
reduces dimensionality, i.e. it identifies all relevant
connections in the graph for a given time series vari-
able and a first estimation of their strength, and will
thereby increase the detection power for underlying
causal relations. In the second step, the MCI algo-
rithm addresses the false positives, i.e. spurious or
 inflated links found between the time series variables.
It does so by repeating the iterative conditional inde-
pendence tests, but now conditioning on both the
preliminary parents of and the time-shifted
parents of (Runge et al. 2019b). Thus the graphi-
cal model contains the focal time series variable, its
preliminary parents and their preliminary parents.
This second step is therefore well suited to identifying
spurious or in flated relationships originating from
common drivers. Those time series variables with sig-
nificant relations to the focal time series variable after
this second iterative testing phase are included in the
final causal association network. The final causal
 association network thus represents the algorithm’s
approximation of the underlying causal dependency
structure existing between the set of time series.

Our time series covered 42 yr, which is extensive in
ecology, but relatively limited in data science. We
therefore used the linear partial correlation test, a
maximum time lag of 2 yr, and let the PC1 algorithm
choose the optimal α level for condition selection. As
the linear partial correlation test is sensitive to out-
liers, we applied a 95% winsorization to the data
prior to analysis (Reifman & Keyton 2010). Confi-
dence intervals were generated using bootstrapping,
and inferences on the conditional dependence be -

,...,1X X Xt
j

t t
N{ }εP̂ Xt

j( )
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Fig. 2. (a) Each of the 10 seascapes (green circles) has (b) an associated time series of fish biomass density, e.g. S1−S4, of which
we estimate the underlying causal dependency structure in (c) a causal association network. Common drivers and in direct ef-
fects can yield spurious associations that are accounted for in our approach. The dots in panel b represent observed biomass
density values, the blue line is a fitted trend with 95% confidence bounds indicated in gray shading. Figure adapted from 

Runge et al. (2019a)
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tween time series were made using a shuffle test
with 3000 trials. We further corrected the results for
the total number of pairwise tests performed by ap -
plying the false discovery rate procedure of Benja -
mini & Hochberg (1995). The final causal association
network included those links between time series
significant at an α level of 0.05. If links occurred
between 2 time series at multiple lags, the strongest
link was included in the network. Rather than print-
ing the full causal association network found for each
species, which would result in a cluttered and un -
clear overview, we report the results as follows: (1)
For each species, we report the number of seascapes
with biomass density trends independent of their
adjacent seascapes at time lag zero. This provides a
link back to our initial hypothesis that the contrasting
conditions in seascapes are reflected in contrasting
biomass density trends. (2) We produce a species-
specific map where relationships at time lag zero are
indicated by the borders between adjacent seascapes,
and relationships over longer time lags between all
seascapes are indicated by arrows.

2.3.2.  Post-hoc test to link life histories to 
causal relationships

We conducted a post-hoc test to better understand
the variables driving the observed dependencies in
biomass density between seascapes at different time
lags. More specifically, we used a random forest clas-
sifier (RFC) model to predict the presence of causal
relationships between seascapes based on a set of 17
variables pertaining to life history, the biomass den-
sity of different life stages and environmental condi-
tions (see Table S1 in the Supplement at www. int-
res. com/ articles/ suppl/ m677 p129 _ supp .pdf).

2.3.3.  Variable collection

We extracted 9 features related to life-history strate-
gies from the marine fish trait database of Beukhof et
al. (2019). Next, for every year and seascape combi-
nation, we calculated the absolute dif ference in bio-
mass density of small and large size classes in the
juvenile and adult life stages. To do this, we first
determined the length at maturation to split the IBTS
data between adult and juvenile biomass density.
Next, for each of these groups, we made an equal
split between the 50% largest and 50% smallest
individuals in terms of length. We then aggregated
the data into a single data frame listing the biomass

density of the 4 groups (small juveniles, large juve-
niles, small adults, large adults) in each haul. Next,
we computed the mean biomass density of each
group per haul per year. Finally, we calculated the
difference in mean biomass density per haul per year
between different seascapes for each group. This
dataframe was combined with the life-history trait
dataframe to produce the final feature dataset for
training. As there was a class imbalance in the label
data between the number of samples with and with-
out causal lag, we used a cost-sensitive learning ap -
proach and weighted the classes according to their
representation in the dataset (Weiss et al. 2007).

2.3.4.  Model training and performance

We further optimised hyperparameters of the RFC
through a grid search on the maximum depth, mini-
mum samples per split, minimum samples per leaf
and the number of trees. The final RFC model with
causal lag zero as the label feature included 300
trees, with a maximum depth of 40 splits, a minimum
10 samples per leaf and split. The final RFC model
with causal lag 1−2 as the label feature consisted of
500 trees, with a maximum depth of 40 splits and a
minimum of 10 samples per leaf and 15 per split.
Before training, we split 50% of the data into a vali-
dation set, and, during training, we used stratified K-
fold cross validation with 5 splits (Refaeilzadeh et al.
2009). We used the area under the receiver operating
characteristic curve (AUC) values and a confusion
matrix, from which we could calculate recall and pre-
cision, to evaluate model performance. The model
was run twice, once with causal lag zero as the label
feature, and once with causal lag 1−2 as the label
feature. The model performed well on the validation
set in both runs, with an AUC of 98.0 and 98.2%, a
recall of 95.2 and 97.1% and precision of 93.0 and
91.6%, respectively. This is further illustrated in the
confusion matrixes in Fig. S1.

2.3.5.  Variable importance

We calculated the importance of each of the 17
variables in predicting the presence of a causal de -
 pendency between seascapes at various time lags
using the ‘TreeExplainer’ function in the ‘SHAP’ pack-
age (Lundberg et al. 2020). ‘TreeExplainer’ is based
on game theory and approximates Shapley values to
compute the contribution of a target variable to the
predicted output of tree-based machine learning
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models (Shapley 1953, Lundberg & Lee 2017). It does
so by re-running model predictions on the test data-
set using all different combinations between vari-
ables excluding the target variable, and then repeats
this process, now including the target variable. The
algorithm then computes the contribution of the tar-
get variable based on the average difference in pre-
dicted outcomes (Molnar 2020).

3.  RESULTS

3.1.  Causal associations

The final causal association networks of all 9 spe-
cies indicated the existence of independent trends in
fish biomass between adjacent seascapes at a time
lag of 0 yr. The mean number of seascapes with bio-
mass density trends that were independent of adja-
cent seascapes at a time lag of zero was 4.7 ± 2.4 SD.
This level of independence in biomass density trends
at a time lag of zero was highest for Atlantic cod
Gadus morhua (8 out of 10 seascapes), European
plaice Pleuronectes platessa (7 out of 10 seascapes)
and Atlantic herring Clupea harengus (7 out of 10 sea -
scapes). It was lowest for starry ray Amblyraja radi-
ata (1 out of 10 seascapes) and dragonet Callionymus
lyra (2 out of 10 seascapes). This result was inter-
preted as the separation between seascapes repre-
senting relevant barriers to the processes determin-
ing the observed biomass density of Atlantic cod,
European plaice and Atlantic herring, but not to those
of the starry ray and dragonet. In the remaining 4
species, independence in fish biomass density trends
be tween adjacent sites at a time lag of zero ranged
be tween 3 and 6 out of 10 seascapes. In these cases,
only certain seascapes represented relevant borders
to the processes determining the ob -
served biomass density, whereas the
biomass density trends were directly
dependent on each other in the re -
maining ad jacent seascapes. An addi-
tional type of relationship observed
was a temporal dependency at a time
lag of zero be tween non-adjacent sea-
scapes (Table 2).

Species could be further subdivided
based on the level of causal depend-
encies in biomass density trends be -
tween seascapes at longer time lags of
1−2 yr, and the directional gradient in
these dynamics. Atlantic cod, European
plaice, whiting Merlangius merlangus

and starry ray were characterized by time-lagged
causal dependencies be tween distant seascapes in
both directions along the North−South gradient
(Fig. 3). In grey gurnard Eu trigla gurnardus and At -
lantic herring, exchanges were predominantly uni-
directional from South to North (Fig. 4a,b). In drag-
onet, ex changes occurred from East to West and from
North to South (Fig. 4c). Finally, there was only a sin-
gle time-lagged ex change in European sprat Sprat-
tus sprattus (Fig. 5a), and no time-lagged ex changes
in common dab Limanda limanda (Fig. 5b).

3.2.  Post-hoc test

The RFC found that species with a non-fusiform
body type, that are strictly demersal, with low to inter-
mediate fecundity and maximum age, were most im -
portant in predicting the presence of a causal relation-
ship between seascapes at a time lag of 0 yr (Fig. 6a).
This is opposite to those variables best explaining
longer-term causal dependencies at time lags of 1−
2 yr (Fig. 6b). In that case, long-lived, benthopelagic
species of large maximum size best predict the pres-
ence of causal relationships between seascapes. Fur-
thermore, the probability of long-term causal depend-
encies between seascapes was positively impacted
by small differences in juvenile biomass density and
negatively impacted by large differences.

4.  DISCUSSION

We found evidence for relationships between the
spatial organisation of the seabed structure, i.e. sea-
scapes, and population trends of several fish species
in the North Sea. The relationship was expressed as
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 P, E A L, Cl P L, M Cl G, A, L
S2 E G, L S P
S3 A, Cl E S, Cl

S4 E P, S L G
S5
S6 L L, A, Cl E, A, Cl

S7 M, Cl

S8
S9
S10

Table 2. Time-lag zero links between non-adjacent seascapes (labelled S1− S10)
indicative of spatial population synchronization. L: Limanda limanda; A: Am  bly -
raja radiata; Cl: Callionymus lyra; E: Eutrigla gurnardu; G: Gadus morhua; 

M: Mer lan gius merlangus; P: Pleuronectes platessa; S: Sprattus sprattus
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the absence of a causal dependency between fish
biomass density trends in adjacent seascapes at a
time lag of zero. This finding provides the insight

that seascapes can function as a bottom-up driver of
North Sea fish population dynamics. However, a con-
siderable level of caution is warranted in interpreting
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Fig. 3. Causal relationships in mean fish biomass density (kg haul−1 yr−1) between different seascapes for (a) Atlantic cod, (b)
whiting, (c) starry ray and (d) European plaice. In all 4 species, time-lagged exchanges occur predominantly in both directions
between more northern and southern seascapes. Arrow colour and width represent the type and strength of the relationship
(red = positive, blue = negative, thin = weak, thick = strong) between different areas. The associated time-lag is listed on the 

arrow, and if a contemporaneous relationship was present, the border between the areas was removed
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the results, as the relative standard error in estimated
biomass density over time frequently exceeded 30%
for species and seascape combinations (Table S2).

We further found both positive and negative causal
dependencies between seascapes at time lags of
1−2 yr in most species. Species such as Atlantic
cod, European plaice, whiting and starry ray dis-
played clear directional gradients in these longer-

term dependencies along a North−South gradient.
Positive long-term dependencies can potentially be
explained by both movement of adult biomass to,
and recruitment of juvenile biomass in, the depend-
ent seascapes. Negative long-term dependencies
cannot be explained by the process of recruitment.
However, they can still be explained by movement of
biomass away from a dependent seascape to sur-
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Fig. 4. Causal relationships in mean fish biomass density (kg
haul−1 yr−1) between different seascapes. In (a) grey gurnard
and (b) Atlantic herring, a few time-lagged exchanges occur
from southern to northern seascapes, whereas in (c) drago -
net, exchanges went from northern to southern and eastern 

to western seascapes. Other details as in Fig. 3
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rounding areas following accumulation of biomass in
the driving seascape. The dependent seascape could
in this case be considered suboptimal, and the driv-
ing seascape more optimal. This would be the in -
verse process of that described by the basin model
theory (McCall 1990), in which there is adult move-
ment away from optimal basins, or seascapes in this
case, to suboptimal surrounding basins following the
buildup of biomass in the former (Bertrand et al. 2008,
Hintzen et al. 2014).

Our post-hoc test provided a deeper understanding
of the ecological meaning of the observed depend-
encies at different time lags. We found that non-
fusiform morphology and demersal habitat prefer-
ences best explained short-term causal dependencies.
This combination is particular to the flatfish and ray
included in the present study. This might be due to
multiple factors. Flatfish such as European plaice ex -
hibit more restricted movement patterns and stronger
selection of small-scale variations in sediment type
compared to benthopelagic species such as Atlantic
cod (Gibson & Robb 2000, Hinz et al. 2006, Griffiths
et al. 2018). Therefore, smaller-scale processes than
those delineated by the seascapes might be more
important in these species at the 0 yr time lag. Long-
term causal dependencies in biomass density be -
tween seascapes were best explained by the adults

of large, long-lived, benthopelagic species. In these
species, the recruitment of juveniles is unlikely to
drive the observed dynamics because differences in
juvenile biomass negatively affected the probability
of long-term causal dependencies.

In this study, we also addressed a missing link be -
tween seascape-specific fisheries activities in the
North Sea (van der Reĳden et al. 2018) and the bio-
mass of harvested stocks. van der Reĳden et al. (2018,
their Fig. 3) showed fishing intensity with a beam
trawl to target plaice was highest in seascapes 10 and
7, and the northern part of seascape 6, while otter-
mix fishing was highest in the centre of seascape 9
and along the northern and southern borders of sea-
scape 8. If these fishing activities affect the distribu-
tion of fish biomass, we might have expected to see
some effect of this in the post-hoc test. An example
would be that short-term ex changes in (adult) bio-
mass between intensively and less intensively fished
adjacent seascapes are important in explaining the
observed causal dependencies. However, no specific
combination of seascape pairs was found to be im -
portant in explaining the ob served dependencies.
Although it might be tentative to place an explicit
link between seascape-specific fisheries activities
and exchanges in fish biomass, separate quantitative
analysis, including North Sea-wide fishing intensity,
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Fig. 5. Causal relationships in mean fish biomass density (kg haul−1 yr−1) between different seascapes. (a) In European sprat,
there is a single time-lagged exchange and (b) in common dab, there is no time-lagged exchange; both species therefore lack 

a clear gradient of exchange. Other details as in Fig. 3
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would be required to provide more conclusive evi-
dence. The study of van der Reĳden et al. (2018) was
based on Dutch fishing fleet data. Consequently, sea-

scapes that are assumed to be free
from high fishing pressure, based on
Dutch data, might turn out to be
intensively used by the fleets of other
nations.

The methodological novelty of our
study lies in the application of a
causal association network for hypo -
thesis testing using ecological time
series. These types of data are typical
of long-term monitoring programmes,
and causal association networks there-
fore have a potentially wide applica-
bility in ecology. The advantage of
this specific causality-based approach
is that it explicitly accounts for in -
flated or spurious correlations be -
tween time series (Pearl 2009). Using
a method that accounts for this con-
founding effect differentiates our work
from other, recent research examin-
ing dependencies between time series
of fish populations and the environ-
ment. For example, Milligan et al.
(2020) examined time-lagged depend-
encies between resource productiv-
ity and abundances in deep-sea fish
using additive models in combination
with cross-correlation analysis. Addi-
tive models are a popular tool in ecol-
ogy because they can include the
effects of categorical and continuous
covariates in fitting statistical trends
to population time series (Zuur et al.
2017, Pedersen et al. 2019). Cross-
correlating such fitted statistical trends
to extract time-lagged dependencies
increases the risk of finding spurious
relationships inherent to time series
analysis (Yule 1926, Olden & Neff
2001, Runge et al. 2014). Although
causal association networks explicitly
account for this confounding effect,
they are not able to include both cat-
egorical and continuous covariates
a priori. Additional insights can be
gained indirectly through post-hoc
testing as was done in the present

study. However, this approach does not
provide the explanatory power on the

effects of environmental covariates that additive
modelling provides. Therefore, a decision on which
combination of methods to apply in future ecological
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Fig. 6. Ordered variable importance plots for random forest classifier models
predicting the presence of a causal relationship between seascapes at a time-
lag of (a) 0 yr or (b) 1−2 yr. Each dot represents an individual sample from the
validation dataset. Dot colour indicates the value of the variable. The position
on the x-axis indicates the impact on the predicted probability of a causal lag
existing between seascapes. SHAP: SHapley Additive exPlanations; Diff UQL
Juv: difference in biomass density of large juveniles (individuals in the upper
50% body length quantile); Diff LQL Juv: difference in biomass density of 

small juveniles (individuals in the lower 50% body length quantile)
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studies will depend on both (1) the types of environ-
mental effects a researcher wants to include in ex -
amining trends and (2) the need to explicitly model
time-lagged dependencies.

In conclusion, our study provides an indication that
seascapes can function as a bottom-up driver of
North Sea fish population dynamics. The presence of
causal dependencies between seascapes was best
explained by different types of life history traits at
different time lags. In a qualitative comparison with
previous research, we did not find a clear link be -
tween seascape-specific fishery activities and bio-
mass trends. Finally, the suitability of using causal
association networks to model spatial time series in
ecology will depend both on the types of effects a
researcher wants to include and the need to model
time-lagged dependencies.
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