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1  |   INTRODUCTION

Diamond Green G (CI 42 040, Basic Green 1), also known 
as Brilliant Green, is a synthetic organic dye belonging to 
the class of triarylmethanes. The similar dye Diamond Green 
B (CI 42000, Basic Green 4), alternatively named Malachite 
Green, differs from the G form in the nature of the N,N’- alkyl 
substituents (ethyl groups for G and methyl groups for B).

Diamond Green was independently produced by 
Otto Fischer and Adolf von Baeyer in 1877.1 The origi-
nal and still used synthetic strategy for both forms is 
based on the condensation of benzaldehyde with N,N-
diethylaniline/N,N-dimethylaniline in sulphuric acid or hy-
drochloric acid. The following step entails the oxidation 
of the leuco compound in hydrochloric acid solution with 

lead dioxide or manganese dioxide.2 Diamond Green B is 
commercially sold as its sulphate salt. Alternatively, ace-
tic acid can be used and the resulting leuco base oxidised 
catalytically with atmospheric oxygen in the presence of 
(dihydrodibenzotetraaza [14]-annulene)iron and chloranil.3 
The introduction of Diamond Green on the market deter-
mined an important change in the dyeing world. In the past, 
green textiles were obtained by a double dyebath: one for 
a blue base (vat dyeing with indigo or woad) and the other 
for yellow (mordant dyeing with weld, old fustic or other 
vegetal sources).4 With the advent of synthetic colourants, 
true green dyes, such as Diamond Green, became avail-
able, enabling one-bath dyeing of textiles.5 Where dyeing 
with natural dyes can take days or even weeks,6,7 Diamond 
Green dyeing can be performed in just a matter of hours, 
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Abstract
Diamond Green G (CI 42040, Basic Green 1) is a triarylmethane dye mostly em-
ployed in the industrial dyeing of miscellaneous natural and artificial textile fibres, 
in the production of printing inks and as an anti-fungal agent for aquaculture prod-
ucts. Diamond Green (DG) tends to fade under light irradiation, similar to several 
other dyes and pigments belonging to the triarylmethane family. In this paper, an 
in-solution degradation study was carried out to shed light on DG photostability. The 
experiments were performed by artificially irradiating DG in water and dimethyl 
sulphoxide, and analysing aliquots sampled at different time intervals by ultra-high 
performance liquid chromatography coupled with diode array detector quadrupole 
and time of flight tandem mass spectrometry. The degradation products formed were 
characterised and the product-ion spectra discussed and interpreted. On the basis of 
the structure of the identified compounds and their kinetic trend in relation to the ac-
celerated ageing time, degradation mechanisms were proposed for DG, taking into 
account the role played by the solvent. Finally, the dyeing formulation of an histori-
cal textile sample, collected from a stage costume worn in a Zeffirelli lyric opera, 
was determined utilising the information collected from the analysis of irradiated 
DG solutions.
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which was obviously a big advantage. It was thus defined 
“the first direct dyeing green of real value”.8 Even if the 
same green shade as Diamond Green may also be obtained 
combining synthetic pigments such as blue copper phthalo-
cyanine and yellow monoazo, the resulting hue has a lower 
tinctorial strength.9

The dyeing of a wide variety of industrial materials, in-
cluding cotton, leather, paper, silk, wool and polyacrylo-
nitrile fibres, is the main application of Diamond Green.10 
Moreover, it is used with oil binders in paint tubes and print-
ing inks9 as a biological stain for bacterial endospores,11 or 
even added to lipid-rich structures prior to embedding in 
resin and observation by transmission electron microscopy.12 
Being a low-cost, widely available and efficient fungicide, 
Diamond Green is also used for controlling fungal and proto-
zoan infections in fish cultures,13 even though it is potentially 
harmful to human health.14 Due to the toxicity of Diamond 
Green, several ultra-sensitive methods based on liquid chro-
matography coupled with mass spectrometry (LC-MS) were 
developed for the qualitative confirmation and quantification 
of Diamond Green and its metabolites within aquaculture 
products.14-17 Moreover, considering the issues related to the 
presence of hazardous synthetic dyes in industrial wastewa-
ter, many studies concerning Diamond Green are dedicated 
to fine-tuning approaches for its removal, as absorption on 
activated carbon prepared from biomasses18-20 or degrada-
tion induced by microwave irradiation,21 glow discharge,22 
electro-oxidation23 or sonolysis.24

Investigating the photostability of triarylmethane dyes is 
fundamental for testing their performance on different kinds 
of textile fibres, but also if we are interested in dating ball-
point inks in documents or in defining the original composi-
tion and state of conservation of a formulation employed in 
artworks. Thus, the photo-fading processes of triarylmethane 
dyes such as Methyl Violet, Ethyl Violet, Crystal Violet and 
Fuchsine have been investigated in water and ethanol solu-
tion to simulate the natural ageing process occurring in dif-
ferent matrices.25-29 Several degradation products have been 
characterised and plausible degradation processes proposed 
thanks to the use of surface-enhanced Raman spectroscopy,30 
matrix-assisted laser desorption/ionisation coupled with 
MS,28,29 and LC coupled with diode array detector and tan-
dem MS (LC-DAD and LC-MS/MS).25-27 The evidence was 
consistent with the results collected from mock-ups,25,27-29 
and from historical samples such as van Gogh's drawings25 
and Japanese woodblock prints.30

To the best of our knowledge, this paper is the first tack-
ling in-solution degradation of Diamond Green G (herein-
after called DG). The degradation phenomenon was studied 
in aqueous and dimethyl sulphoxide (DMSO) solutions to 
avoid possible interactions with complex and heterogeneous 
matrices (such as paintings or textiles) and to simplify the 
evaluation of the process. DG aqueous and DMSO solutions 

were artificially irradiated, sampled at different time inter-
vals and analysed by ultra-high performance LC coupled 
with DAD and electrospray ionisation-quadrupole-time of 
flight (UHPLC-DAD-ESI-Q-ToF) to identify the several 
degradation products formed. A plausible degradation path-
way was formulated taking into consideration the kinetic 
trend of the ageing products formed in relation to the accel-
erated ageing times. The differences in the DG degradation 
process occurring in the two solvents are discussed and com-
pared with evidence collected during our previous study, in 
which a similar irradiation in-solution approach was used 
for another synthetic dye.27 Finally, a textile sample col-
lected from a bluish-greenish degraded area of a stage cos-
tume from a Zeffirelli lyric opera (1961), designed by Peter 
Hall,31 was analysed to validate the reliability of the ageing 
pathway proposed for DG.

2  |   MATERIALS AND METHODS

2.1  |  Chemicals

Diamond Green G powder was provided from the reference 
collection of the Cultural Heritage Agency of the Netherlands 
(RCE; reference number 3231, originally obtained from 
CIBA).

The solvents and reagents used for preparing the standard 
solutions and for sample treatment were DMSO (JT Baker) 
and water (LC-MS grade; Sigma-Aldrich). The eluents for 
the chromatographic systems were water and acetonitrile, 
both LC-MS grade (Sigma-Aldrich). For the UHPLC-
DAD-ESI-Q-ToF set-up, triethylamine (TEA; ≥98% purity; 
Sigma-Aldrich) was deployed as a mobile phase modifier, 
while for the HPLC-ESI-Q-ToF system, formic acid 0.1% 
v/v (98% purity; JT Baker) was used. For the historical sam-
ple pretreatment, the following solvents were used: acetone 
(Sigma-Aldrich), methanol (Sigma-Aldrich) and oxalic acid 
dehydrate (99.8% purity; Carlo Erba).

2.2  |  Photo-ageing in-solution experiment

The study was performed on 60 ppm DG solutions in water and 
in DMSO, which were artificially aged using a Spectrolinker 
XL-1500 ultraviolet (UV) crosslinker equipped with an Hg 
lamp (254  nm, ca. 1-3  μW/cm2, Spectronics Corporation). 
Selecting a more energetic UV lamp enabled us to poten-
tially induce more severe degradation of DG in aqueous and 
DMSO solutions.

Although the vials (Waters Corporation) only transmitted 
a very limited amount of light at 254  nm, this experimen-
tal set-up has already proven its potential for appropriately 
studying the degradation process of other organic dyes.27
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An aliquot of 100 µL was sampled from each solution 
(total volume of 2 mL) at different time intervals (5, 10, 20, 
30, 40, 60, 80, 90, 110, 240, 407 and 500 minutes) for a total 
exposure time of 1000  minutes. Before each sampling the 
vials were vortexed for 5 seconds.

2.3  |  Historical sample

A sample, collected from a bluish-greenish stage costume 
made of viscose and belonging to the main female character 
of the lyric opera I Puritani, was analysed. This opera was 
directed by Franco Zeffirelli, a renowned Italian director, in 
1961. The costume was designed by Peter Hall and manu-
factured by the Teatro Massimo tailoring shop in Palermo 
(Sartoria del Teatro Massimo di Palermo) and today it belongs 
to the Foundation Teatro Massimo of Palermo (Fondazione 
Teatro Massimo di Palermo). The sample was kindly pro-
vided by the restorer Claudia Cirrincione, who collected it 
during her thesis project in Conservation and Restoration of 
Cultural Heritage (University of Palermo).31

The sample pretreatment chosen was particularly suitable 
for extracting triarylmethane dyes from the fibres, and it was 
based on oxalic acid extraction32; the viscose yarns were 
added with 150 µL of an oxalic acid 0.5 mol/L oxalic acid/
methanol/acetone/water solution (1:30:30:40 v/v/v/v) then 
sonicated in an ultrasonic Sonorex Supra 10P bath (Bandelin 
Electronics) for 30 minutes at 60°C. The yarns were then re-
moved from the extraction solvent and subjected to extraction 
with 150 μL of DMSO by sonication for 10 minutes at 60°C. 
The oxalic extraction mixture was dried under nitrogen steam 
and added to 150 µL of DMSO. The two DMSO extracts 
were filtered with polytetrafluoroethylene filters (0.45 µm di-
ameter), mixed and injected in the HPLC-ESI-Q-ToF system.

2.4  |  Apparatus

The aliquots collected during the irradiation in-solution were 
analysed by UHPLC-DAD-ESI-Q-ToF. Both the chroma-
tographic and mass spectrometric methods have previously 
been optimised, as reported in the literature.33 The appara-
tus comprised an Agilent 1100 Quaternary pump (G1311A), 
a 1260 Infinity degasser (G1322A), a 1100 autosampler 
(G1313A), and a 1290 Infinity DAD (G4212A) containing 
a max-light cartridge cell (G4212-6008, V0 = 1.0 µL) cou-
pled with a Bruker Micro Q-TOF by an ESI interface. The 
DAD operated with spectra acquisition in the range of 160-
640 nm with 2 nm resolution. Nitrogen was the drying and 
sheath gas used for mass spectrometric detection. The ESI 
conditions were: drying gas temperature of 250°C, a flow 
rate of 10 L/min, a capillary voltage of 4.4 kV, nebuliser gas 
pressure of 200 kPa, and a sheath gas temperature of 250°C. 

The MS and MS/MS acquisition range was set from 50 to 
1200 m/z in positive mode and the MS/MS experiments were 
performed in AutoMS/MS acquisition mode, using 50 V in 
the collision cell. The UHPLC conditions consisted of an 
Agilent ZORBAX Eclipse Plus C18 rapid resolution high-
throughput column (50 × 4.6 mm; 1.8 µm particle size), an 
injection volume of 5 µL and a flow rate of 1.85 mL/min. 
The separation was achieved using a gradient of 95% water, 
5% acetonitrile and a TEA buffer adjusted at pH = 3 (eluent 
A), and 5% water and 95% acetonitrile and a TEA buffer ad-
justed at pH = 3 (eluent B). The elution programme consisted 
of 100% A for 2.5 minutes, followed by a linear gradient to 
0% A in 6 minutes, which was then maintained for 2 min-
utes. The re-equilibration time for each analysis was 1.5 min-
utes. The UHPLC-DAD data were elaborated using Agilent 
OpenLAB CDS Chemstation edition (REV. C.01.04) soft-
ware while MS data were elaborated using Bruker Daltonics 
Data Analysis software (version 4.0 SP4 build 281).

The historical textile sample was analysed by HPLC-ESI-
Q-ToF. The apparatus consisted of a 1200 Infinity HPLC cou-
pled with a Q-ToF tandem mass spectrometer 6530 Infinity 
detector by a Jet Stream ESI interface (Agilent Technologies). 
The ESI conditions were: drying gas temperature of 350°C, 
flow rate of 10 L/min, capillary voltage of 4.5 kV, nebuliser 
gas pressure of 241 kPa, sheath gas temperature of 375°C 
and flow rate of 11 L/min. The high-resolution MS and MS/
MS acquisition range was set from 100 to 1000 m/z in posi-
tive mode. The acquisition rate was 1.04 spectra/second for 
both MS and MS/MS. MS/MS experiments were performed 
in AutoMS/MS acquisition mode, using 50 V in the collision 
cell. The full width half maximum of quadrupole mass band-
pass used during MS/MS precursor isolation was 4 m/z. The 
mass spectrometric and chromatographic parameters have al-
ready been optimised for the analysis of other triarylmethane 
dyes, as presented in our previous publication.34 The chro-
matographic conditions used for the analysis of the historical 
costume are reported in the literature.34,35

3  |   RESULTS AND DISCUSSION

3.1  |  In-solution study: qualitative analysis

The irradiation in-solution of DG was carried out both in 
water and in DMSO to evaluate possible differences in the 
degradation process. In particular, because an extraction 
procedure based on the use of DMSO revealed its potential 
both in terms of its efficiency and speed for the analysis 
of synthetic dyes and pigments,35-37 the photochemical be-
haviour of DG in this solvent was of great interest. The 
UHPLC-DAD chromatograms (corresponding to absorp-
tion at 600 and 254 nm) of the aliquots sampled from both 
solutions are presented in Figures  1A,B and 2A,B. The 
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chromatograms are reported at 600  nm to highlight the 
trends of DG and of other triarylmethine compounds, and 
at 254 nm to evidence the presence of non-coloured age-
ing products, characterised by strong absorbance in the UV 
range. The identification of several labelled peaks was car-
ried out on the basis of the exact mass values and interpre-
tation of the product-ion spectra collected, as reported in 
Table 1.

The reference material used for preparing the solution 
already contained two synthesis by-products at time zero 
(t0): DG with one methyl group instead of an ethyl group as 
N- substituent (MeDG) (m/z = 371.248) and DG without an 
ethyl group as N- substituent (DG-1Et) (m/z = 357.233). This 
prevented the absolute quantitation of DG at different ageing 
times. A further impurity, 2MeDG, was detected. The posi-
tion of the substituents cannot be easily determined based on 
the mass spectrum, and co-elution cannot be excluded.

The UHPLC-DAD chromatograms of the aliquots of DG 
in water and DMSO collected over time show new peaks as-
cribable to degradation compounds, although the intensity of 
DG only slightly decreases, and the change in colour of the 
aliquots is not visible to the naked eye. The products iden-
tified due to HPLC-ESI-Q-ToF analysis were two isomers 
of DG without two ethyl groups (DG-2Et2 and DG-2Et1) 

(m/z  =  329.200), DG without three ethyl groups (DG-3Et) 
(m/z = 301.109) and DG without four ethyl groups (DG-4Et) 
(m/z  =  273.137). DG-3Et and DG-4Et are missing in the 
water extracts.

The UV-visible (vis) spectra of the de-ethylated com-
pounds (Figure 3A) exhibit a hypsochromic or blue shift of 
the absorbance maximum from DG to DG-4Et,5 in accor-
dance to what was already observed in the literature for tri-
arylmethanes and xanthenes incurring in the N-dealkylation 
process.25,26,28,35 The loss of electron-donating groups re-
duces the π electron density delocalised on the triarylmeth-
ane structure, thus increasing the energy for the electronic 
transition responsible for the hypsochromic shift.38 The N-
methyl forms show a less regular trend in the variation of the 
absorbance maxima, but the typical shape of triarylmethane 
spectra is unequivocally present (Figure  3B). The solution 
irradiated for 1000 min is still coloured green thanks to the 
relatively high amount of the original dye still present in the 
irradiated solution, and also because the main degradation 
products identified are absorbed in the same wavelength 
range.

The product-ion spectra of all the products identified are 
reported in Table 1 and in Figures S1A-F and S2A,B, while 
the fragmentation pattern is summarised in Table S1.

F I G U R E  1   Ultra-high performance liquid chromatography coupled with diode array detector chromatograms of Diamond Green G (DG) 
aqueous solution irradiated at 254 nm, sampled at different times (from t0 to 1000 min). Detection wavelengths: (A) 600 nm and (B) 254 nm. All 
chromatograms are presented in the same scale, and are stacked for purposes of clarity
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DG, DG impurities and degradation products all show a 
similar fragmentation pattern, entailing the consecutive homo-
lytic cleavage of methyl and ethyl groups (as radical or as eth-
ylene neutral loss, depending on the structure of the produced 
ion), in accordance with the literature on triarylmethine com-
pounds.39 The loss of a diethylamino group also occurs. DG-
4Et, due to its chemical structure, cannot undergo the described 
pattern. Several m/z, corresponding to the base peak or to other 
intense fragments (Table S1), can generally be considered as 
triarylmethane markers; fragments with m/z values of 152.062, 
possibly corresponding to the biphenylene cation; fragments 
with m/z values of of 165.107, assigned to the benzotropylium 
cation; and fragments with m/z values of 180.081, assigned to 
the amino-benzotropylium ion, were identified.

During ageing, the new products prove that DG incurs 
in the so-called oxidative dealkylation of amines on the 
dye backbone (N-dealkylation): the ethyl groups of the dye 
are subsequently replaced by hydrogen upon exposure to 
light. This phenomenon has already been observed with the 
photo-irradiation of triarylmethanes such as Crystal Violet 
formulations25,28,29 and xanthenes such as Rhodamine B.35 

The process is depicted in Figure 4. Note that some of the 
N-dealkylated products are barely visible in the UHPLC-
DAD chromatograms in water and DMSO (Figures 1 and 2) 
although their presence was confirmed by LC-MS/MS.

The UHPLC-DAD chromatograms of the water extracts 
acquired at 254 nm (Figure 1) highlight several minor UV-
absorbing peaks, some already present at t0 whose intensities 
do not readily change in time, while others start increasing 
as ageing progresses. More interesting results were obtained 
for two coloured compounds whose amounts increased with 
time, labelled in the figures as Unk and Carb. While Unk is 
only detected in low amounts, Carb is the most intense peak 
in the aqueous solutions irradiated for 500 and 1000 minutes 
(Figure  1B). Unk has absorbance maxima at 220, 285 and 
480 nm (Figure S3A) and is characterised by a base peak at 
m/z = 297.168, but it was not identified because the response 
was too low to perform MS/MS analysis. The detection of 
Unk in the aqueous solution only indicates that it is related to 
DG carbinol form.

Carb, already present in small amounts in the starting 
water and DMSO solution, was identified as (4-aminophenyl)

F I G U R E  2   Ultra-high performance liquid chromatography coupled with diode array detector chromatograms of Diamond Green G (DG) 
solution in dimethyl sulphoxide (DMSO) irradiated at 254 nm, sampled at different times (from t0 to 1000 min). Detection wavelengths: (A) 
600 nm and (B) 254 nm. All chromatograms are presented in the same scale, and are stacked for purposes of clarity. Peaks labelled with * are due 
to solvent
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T A B L E  1   Compounds identified in the ultra-high performance liquid chromatography with electrospray ionisation-quadrupole-time of 
flight detector (UHPLC-ESI-Q-ToF) chromatograms of Diamond Green G (DG) in aqueous solution and dimethyl sulphoxide (DMSO) analysed 
in positive acquisition mode (the precursor and product ions of all the compounds are obtained as [M]+, except for Carb, which is detected as 
[M + H]+). The most intense product ions are highlighted in bold

Name

Molecules MS1 MS/MS

Assigned structure
Retention 
time [min] λ abs max [nm]

Molecular 
formula

Precursor 
ion Product ions

DG-4Et NH
2

+H
2
N 3.3 300,

410,
582

C19H17N2
+ 273.137 269.121; 191.192; 

180.077; 152.061

DG-3Et H
+

NH
2
N CH

3

3.7 315,
415,
596

C21H21N2
+ 301.169 269.101; 256.110; 

240.071; 191.081; 
180.081; 165.071; 
152.061; 126.045

DG-2Et1
N

+H
2
N CH

3

CH
3 4.0 312,
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596

C23H25N2
+ 329.200 299.151; 285.139; 

270.121; 256.111; 
239.087; 207.094; 
193.087; 180.081; 
165.069; 152.060

DG-2Et2 H+

N
H
N CH

3
H

3
C 4.2 315,

415,
596

C23H25N2
+ 329.200 299.151; 285.139; 

270.121; 256.111; 
243.103; 228.092; 
215.084; 202.078; 
193.087; 180.081; 
165.069; 152.060

MeDG-
1Et N+

H
N

H
3
C

CH
3

CH
3 4.3 320,

415,
612

C24H27N2
+ 343.216 299.137; 284.115; 

269.115; 256.115; 
241.108; 221.102; 
207.095; 194.096; 
179.102; 165.073; 
152.065

2MeDG
N+N

RI

RIIIRII

RIV

RI = RII = CH
3

RIII = RIV=CH
2
CH

3

RI = RIII= CH3

RII = RIV= CH2CH3

4.5 280,
315,
422,
608

C25H29N2
+ 357.233 327.185; 313.171; 

299.163; 284.138; 
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208.111; 193.088; 
180.080; 165.070; 
152.062

DG-1Et
N+

H
N CH3H

3
C

CH
3 4.6 220,
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612

C25H29N2
+ 357.233 313.165; 299.161; 

284.138; 270.115; 
256.107; 241.106; 
208.117; 193.091; 
180.080; 165.069; 
152.062

MeDG
N

+N CH
3

H
3
C

CH
3

CH
3 4.7 245,

320,
430,
624

C26H31N2
+ 371.248 341.201; 327.187; 

311.153; 297.140; 
284.142; 269.119; 
241.102; 222.127; 
207.104; 192.082; 
165.070

(Continues)
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diphenylmethanol (m/z = 276.137), based on the molecular 
formula, exact mass value and shape of the UV-vis spectrum 
reported in Figure S3B.

In order to justify the formation of this product, which is 
the main peak in the chromatogram of water extracts acquired 
at 254 nm (Figure 1B), the hydrolysis reaction of DG or gen-
erally that of triarylmethanes has to be taken into consideration 
(Figure 4). Carbinol is more sensitive to fading than the corre-
sponding electrostatically stabilised cationic dye,38,40 thus we 
expect this form to incur in the dealkylation process relatively 

faster than the corresponding triarylmethine, leading to Carb 
as the main degradation product in water. The maximum ab-
sorbance of Carb is at 360 nm in the near UV; the absorption 
band stretches into the blue region of the visible spectrum (ie, 
380 nm and longer wavelengths), giving rise to yellow color-
ation, thus accounting for the colour shift of the aged solution 
towards green shades (Figure S3B). No other carbinol-type spe-
cies were detected in the solutions analysed.

The UHPLC-DAD chromatograms of DG in DMSO solu-
tion (Figure 1A,B), collected after 240 minutes of irradiation, 

Name

Molecules MS1 MS/MS

Assigned structure
Retention 
time [min] λ abs max [nm]

Molecular 
formula

Precursor 
ion Product ions

DG
N+N CH

3
H

3
C

H
3
C CH

3 4.9 320,
425,
627

C27H33N2
+ 385.264 355.219; 341.204; 

327.198; 311.156; 
297.142; 283.137; 
269.121; 241.103; 
221.121; 192.083; 
165.071

Unk ? 5.2 220,
285,
480

297.168 n.d.

Carb NH2

OH
5.4 248,

362
C19H17NO 276.136 n.d.

n.d., the intensity of the precursor ion was too low for the MS/MS experiment to be performed.

T A B L E  1   (Continued)

F I G U R E  3   Ultraviolet-visible spectra 
of (A) DG and DG de-ethylated compounds 
and (B) DG demethylated compounds
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show formation of the same products as described for the 
water solution, but with different relative intensities, dis-
cussed thoroughly below in section 3.2.

The presence of Carb can be explained by the presence 
of trace water in DMSO, allowing equilibrium between the 
triarylmethine form and the respective carbinol to occur, even 
if at lower rates.

Two further compounds, characterised by the triaryl-
methine structure and not present in aqueous solution, were 
detected: DG with two methyl groups instead of two ethyl 
groups as N- substituents (2MeDG) (m/z  =  357.233) and 

DG without two ethyl N-substituents and with one methyl 
group instead of an ethyl group as N- substituent (MeDG-
1Et) (m/z = 343.216). The formation of the demethylated 
compounds can be explained by considering that DMSO is 
capable of interacting with a hydroxyl radical (OH•), gen-
erated by the irradiation of trace water present in DMSO, 
to generate a methyl radical (CH3

•).41 These radicals may 
react with DG-2Et, leading to the formation of 2MeDG or 
MeDG-1Et. The latter was detected in the solution aged 
for 1000 minutes, thus it can be considered a final product 
under the selected ageing conditions and analysis time. No 

F I G U R E  4   Hypothesised degradation pathways of Diamond Green G (DG): N-dealkylation on the right and hydrolysis reaction leading to 
carbinol formation38 on the left
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F I G U R E  5   Peak areas (integrated in the ultra-high performance liquid chromatography coupled with diode array detector [UHPLC-DAD] 
chromatograms at 600 or 254 nm; Figures 1 and 2) vs accelerated ageing time of Diamond Green G (DG) and its impurities and degradation 
products formed in (A) water (H2O) and (B) dimethyl sulphoxide (DMSO). The area of the peak due to Carb, integrated at 254 nm, is reported on 
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compounds containing sulphur (from DMSO) were pro-
duced, contrary to what was observed for the in-solution 
DMSO:ACN (1:1) study of eosin.27 This was expected due 
to the lack of an electrophilic group, such as carboxyl or 
carbonyl, on DG.

3.2  |  In-solution study: semi-
quantitative analysis

The degradation processes occurring in water and DMSO 
were compared by plotting the areas of the peaks detected 
in the DAD chromatograms of the main compounds de-
picted in Figure  4 (integrated at 600  nm; except for at 
254 nm for Carb) versus the irradiation time (Figure 5A,B). 
The data for the demethylated compounds (discussed in the 
text above) are not displayed, to ease the readability of the 
graphs.

In both solvents, DG decreases relatively slowly, but while 
in DMSO its peak area approaches zero at the end of the ex-
periment (the final amount is 5% of the original dye amount), 
in water after 1000 hours of irradiation the amount of DG 
is only halved. The number of degradation products is also 
much higher in DMSO than in water. In DMSO, the follow-
ing degradation products increase abruptly and then decrease: 
Carb (maximum at t = 120 minutes), DG-1Et/DG-2Et1/DG-
2Et2 (maximum at t = 500 minutes) and DG-3Et (maximum 
at t = 667 minutes). The two isomers DG-2Et1 and DG-2Et2 
display the same trend, decreasing more gradually than DG-
1Et (their summed areas are reported in the graph for the ease 

of the reader). Based on their kinetics, these species can thus 
be considered intermediates in the ageing process. We expect 
the Carb form because of the amount of water dissolved in 
DMSO, and then it degrades completely to non-coloured spe-
cies. DG-4Et and MeDG-1Et (not included in Figure 5B but 
included in Figure 2A) are present at t = 1000 minutes only, 
thus they can be considered final products in DMSO under 
the settled conditions and monitoring time. In water, the deg-
radation processes are clearly still ongoing and it is possible 
that further final products will be produced. Notably, Unk is 
already produced in small amounts at very early irradiation 
times and it slowly increases (maximum at t = 667 minutes). 
Carb is produced very quickly and reaches a possible steady 
state around 500  minutes. Based on these results, not only 
were different kinetics of degradation in water or DMSO ob-
served, but the two solvents also revealed a different degrada-
tion mechanism. The lack of appropriate analytical standards 
does not allow for an absolute quantitation of the different 
compounds.

3.3  |  Analysis of an historical textile sample

A microsample was collected from a bluish-greenish viscose 
dress worn by the main female character of a Zeffirelli lyric 
opera and was analysed with HPLC-ESI-Q-ToF. Because of 
the characterisation of the composition of the reference DG 
formulation by tandem MS, the peaks evidenced in the ex-
tract ion chromatograms (Figure 6) were ascribed to DG and 
DG-1Et and to the two isomers DG-2Et1 and DG-2Et2. The 

F I G U R E  6   Ultra-high performance liquid chromatography and electrospray ionisation-quadrupole-time of flight (UHPLC-ESI-Q-ToF) 
extracted ion chromatograms (EICs) of C27H33N2

+ (DG), C25H29N2
+ (DG-1Et) and C23H25N2

+ (DG-2Et) for the textile sample extract in positive 
acquisition mode
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use of a DG formulation is consistent with the dating of this 
costume, as the lyric opera was performed in 1961.

No traces of Carb or any other carbinol species were de-
tected in the sample extract. Thus, neither the environmental 
humidity that the sample was subjected to during its lifetime, 
nor the water present in the extraction solvents, allowed the 
formation of relevant amounts of carbinol forms.

4  |   CONCLUSIONS

The current in-solution study enabled us to identify and un-
ambiguously characterise DG synthesis by-products and 
degradation compounds, providing the UV-vis and product-
ion spectra. The main degradation pathways are depicted 
in Figure  4. On one hand, DG mainly incurs in the N-
dealkylation process, consistently with observations of other 
triarylmethanes in different matrices. On the other hand, 
the degradation processes were different depending on the 
solvent in which the irradiation experiment was performed. 
Different final products can be identified for the two sol-
vents, mainly due to the presence of carbinol forms in water, 
leading to the production of Carb as one of the main degrada-
tion compounds (and possibly of an unknown species, whose 
UV-vis spectrum is reported in Figure S3). In DMSO, radical 
dealkylation reactions entailing the loss of methyl groups are 
the main process competing with the main N-de-ethylation 
process.

The comparison between the kinetic trends of the com-
ponents in the different environments allowed us to conclude 
that DG degrades faster in DMSO than in water, although 
for short times of irradiation the dye concentration is not af-
fected by the chosen solvent (after 10 minutes, DG depletion 
is only 3% in DMSO and 2% in water). This finding proves 
that extracting unknown samples in DMSO at room tempera-
ture would not significantly affect the dye recovery, or the 
profile of its degradation products. The effect of temperature 
or ultrasound (even if applied for a short time) has still to 
be investigated, as do the use of oxalic acid and other sam-
ple treatment chemicals. Interestingly, analysis of a sample 
from an historical object showed that in addition to the main 
component, a few degradation products were found due to 
de-ethylation. In the solvent degradation experiments, many 
more components were detected, which could be due to the 
higher concentration of the starting material. From an eth-
ical perspective, taking larger samples from an historical 
object is unacceptable, and future work should be devoted 
to ageing experiments on model samples (ie, dyed textiles 
for comparison). However, within this paper we showed that 
in-solution degradation is a rapid method with which to ob-
tain fundamental knowledge about degradation mechanisms 
(as depicted in Figure 4), and relative behaviour in different 
solvents.
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