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A  Single-Judge Solution to Beauty Contests†

By Zhen Huo and Marcelo Pedroni*

We show that the equilibrium policy rule in  beauty contest models 
is equivalent to that of a single agent’s forecast of the economic 
 fundamental. This forecast is conditional on a modified information 
process, which simply discounts the precision of idiosyncratic shocks 
by the degree of strategic complementarity. The result holds for any 
linear Gaussian signal process (static or persistent, stationary or 
 nonstationary, exogenous or endogenous), and also extends to net-
work games. Theoretically, this result provides a sharp characteriza-
tion of the equilibrium and its properties under dynamic information. 
Practically, it provides a straightforward method to solve models 
with complicated information structures. (JEL C72, D82, D83, D84)

It is not a case of choosing those that, to the best of one’s judgment, are 
really the prettiest, nor even those that average opinion genuinely thinks 
the prettiest. We have reached the third degree where we devote our intel-
ligences to anticipating what average opinion expects the average opinion 
to be. And there are some, I believe, who practice the fourth, fifth, and 
higher degrees.

—Keynes, The General Theory of Employment, Interest, and Money

Many economic problems with information frictions can be formalized as a  beauty 
contest problem. The effects of monetary policy (Woodford 2002),  sentiments-driven 
business-cycle fluctuations (Angeletos and La’O 2010; Benhabib, Wang, and Wen 
2015), and the optimal degree of transparency in  central bank  communication (Morris 
and Shin 2002) are some examples. In these  beauty contest models, a common fea-
ture is that agents care about certain  payoff-relevant economic  fundamentals, and 
due to strategic complementarity,1 about other agents’ actions and beliefs, as well.

1 We formulate our argument based on the case with strategic complementarity most of the time, but our results 
extend to the case with strategic substitutability.
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As originally emphasized by Keynes (1936), in these  beauty contest models 
with asymmetric information, the dependence of an agent’s action on the actions, 
and therefore beliefs, of others makes it necessary to infer others’ beliefs about 
others’ beliefs, and so on. These  higher-order beliefs introduce rich dynamics that 
help account for certain salient features of the data, but they are typically  difficult 
to  characterize. In this paper, we show that, in a large class of models, in fact, 
agents’ equilibrium behavior can be equivalently represented by the solution to 
a  single-agent problem. In this alternative problem, agents only need to forecast 
economic  fundamentals but are equipped with less precise private information. 
In Keynes’ language, our results imply that the nature of the optimal strategy, in 
a sense, is still to choose the prettiest based on the best of one’s judgment while 
 downplaying any idiosyncrasies in one’s taste.

The rationale for this equivalence can be understood in a simple static setting. 
Imagine a  single-agent problem of forecasting an economic fundamental having 
received a public and a private signal about it. Bayesian inference implies that the 
relative weights put on the public and private signals should be proportional to 
their precision. In contrast, an agent in a beauty contest, due to strategic comple-
mentarity, also needs to forecast others’ actions. The public signal is more useful 
for that purpose. As a result, the optimal strategy in a beauty contest is to assign 
additional weight to the public signal or discount the private signal. This policy 
rule,  underweighting private signals, turns out to be exactly equivalent to that of a 
 single-agent problem with the precision of the private signal reduced by a fraction 
equal to the degree of strategic complementarity.

Main Result.—In this paper, we formalize this equivalence and generalize it to 
models with dynamic information. We first define an  α -modified signal process, 
where  α  parameterizes the strength of strategic complementarity among agents’ 
actions. In this modified signal process, the precision of all idiosyncratic shocks 
is multiplied by  1 − α , while those of common shocks remain the same. Here, the 
key distinction is between idiosyncratic and common shocks, rather than between 
 private  and public signals.2 We then define an auxiliary  single-agent  problem, 
in which the objective is to simply forecast the economic fundamental using 
the  α - modified  signals while completely disregarding others’ actions.

Our main result (Theorem 1) establishes that the policy rule in the  equilibrium 
of the  beauty contest model is the same as in the corresponding  single-agent 
 problem with  α -modified signals. This result yields a sharp characterization of the 
 equilibrium. It bypasses the complexity of  higher-order expectations and shows that 
the optimal policy rule can be understood via a modified forecast of the exoge-
nous economic fundamental. It also avoids the  fixed point which results from the 
 interaction between rational agents and provides a new window to understand the 
underlying  general-equilibrium (GE) feedback effects. This result does not imply 
that  higher-order beliefs are not important, but it does imply that the computation of 
equilibrium can be greatly simplified.

2 Relative to the previous  two-signal example, a signal can contain multiple common and idiosyncratic shocks in 
general, and the  α -modified signal process determines the exact extent to which agents should discount the signal.
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The very nature of  noncooperative solution concepts in game theory is to trans-
form a collective decision problem into a family of  single-player decision problems. 
What is special about our solution is the simple form it takes and how this form is 
preserved across a class of models. Importantly, the equivalence is proved under 
a general information structure that allows for an arbitrary number of Gaussian 
shocks and any linear signal process: static or persistent, stationary or  nonstationary, 
 exogenous or endogenous. For all different signal processes, the modification 
 necessary to yield the equivalence is always the same: discounting the precision of 
idiosyncratic shocks by a fraction  α . A similar modification also applies to models 
in which agents choose multiple correlated actions each period.

This generality makes our method particularly useful for applied work where the 
fundamental is often persistent and signals are correlated over time. In this case, 
one needs to find a set of sufficient statistics or state variables that can summarize 
the past information. In contrast to  complete-information models in which the right 
state variables are easy to obtain (such as capital and total factor productivity (TFP) 
in  real-business-cycle models), with dispersed information this is usually not the 
case. When signals permit a  state-space representation, the  single-agent solution 
yields a formula for the policy rule that is ready for computation. It also implies 
that, even though recording all  higher-order expectations would require an infinite 
number of state variables, solving for the optimal action only requires a finite num-
ber of state variables.

Another immediate implication of the main result is that the aggregate outcome 
in a  beauty contest model is equivalent to the average forecast in the  single-agent 
 problem. It follows that, in particular, two determinants of the aggregate  outcome 
( the strength of strategic complementarity and the degree of information frictions) 
cannot be separately identified solely by aggregate time series. When lacking evi-
dence on one of them, the fact that the  single-agent model yields more dispersed 
forecast errors and actions can help achieve identification when  cross-sectional 
moments are available. With independent micro-evidence on both, our solution 
method can be used to quantify the role of information frictions.

Applications.—The  single-agent solution provides an alternative perspective to 
understand properties of  beauty contest models, extends existing results to general 
information structures, and expands the type of questions one can explore.

We first revisit two important themes in the dispersed information literature: 
 inertia and GE attenuation. With dynamic information, the aggregate outcome 
 displays additional inertia relative to its complete information counterpart as it 
inherits the persistence of all  higher-order expectations (Woodford 2002; Nimark 
2017; Angeletos and  Huo 2018). Through the lens of the  single-agent solution, 
the aggregate outcome is anchored by past outcomes as forecasts are anchored by 
 priors. We contribute to show that the strength of the linkages to past outcomes is 
pinned down by the Kalman gain matrix associated with the  α -modified signals and 
we provide its exact formula.

The GE feedback underlying  beauty contest models is captured by the strategic 
complementarity, and incomplete information tends to attenuate its effects (Angeletos 
and Lian 2016a). Our  single-agent solution contributes to the literature by providing 
an alternative interpretation and a generalization of existing  comparative statics. 
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With what is known as an  independent-value best response, we show that the GE 
effects are captured by the  first-order expectation of the fundamental with  α -modi-
fied signals. It is then immediate that the GE effects are attenuated when information 
is incomplete, since the expectation of the fundamental moves less than the funda-
mental itself.3 Moreover, a larger degree of complementarity implies a noisier signal 
in the  single-agent solution, and therefore a stronger attenuation effect. These results 
hold for a general class of information processes.4

We also utilize the fact that the  single-agent solution can deal with nonstation-
ary processes to demonstrate that the results on the social value of public infor-
mation in Morris and Shin (2002) can be reversed in transition. In a static setting, 
Morris and Shin (2002) proves that increasing the precision of public information 
can be detrimental to social welfare. We first extend this finding to dynamic infor-
mation when comparing  steady-state welfare. The result is actually strengthened 
in the sense that a more persistent fundamental leads to a wider range of public 
information precision levels for which more precise information can be detrimental. 
However, we also show that comparing steady states can be misleading since wel-
fare can be improved for quite a long time during the transition before decreasing 
toward a lower level in the new steady state.5

Extensions.—We explore two extensions of our results. First, we consider a 
 network game with incomplete information, in which agents have heterogeneous 
payoff structures and information structures. The equilibrium actions turn out to be 
a weighted average of forecasts of fundamentals conditional on different modified 
signals. When information is persistent, our characterization of the equilibrium in 
terms of forecasts of fundamentals remains convenient and intuitive. It allows for 
a recursive representation and avoids the burden of carrying an infinite number of 
signals, which is new to the existing literature.

Second, we consider beauty contest models with intertemporal strategic 
 complementarities. Under a stylized information structure with  forward-looking 
complementarity (Allen, Morris, and  Shin 2006; Angeletos and  Lian 2018; 
Angeletos  and  Huo 2018), we show that our  single-agent solution still works, 
though the  modification to the signal process is more involved. Because of the 
 forward-looking behavior, the required discounting of private signals is not simply 
the degree of strategic complementarity anymore but also hinges on the details of 
the information structure. More generally, when an individual’s payoff depends on 
future and past aggregate actions in an arbitrary way, we show that our  single-agent 
solution may not hold, drawing a limit to the applicability of our results.

3 For a  common-value best response, the attenuation effects imply that the volatility of the aggregate outcome is 
always bounded above by that of the average expectation of fundamental.

4 In Angeletos and Lian (2016b), similar comparative statics are established for a  two-signal static environment. 
Also, differently from Bergemann and Morris (2013) we fix the underlying information structure when varying the 
degree of strategic complementarity. 

5 Amador and Weill (2012) also considers the transition dynamics. In their setting, the fundamental is fixed over 
time and the welfare decreasing is due to that the informativeness of endogenous signal becomes worse, while we 
allow the fundamental to fluctuate over time and we consider only exogenous information as in Morris and Shin 
(2002).
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Related Literature.—Our results complement a large literature on dispersed 
 information and imperfect coordination. The classical papers that explore the 
 general  properties of  beauty contest models include Morris and  Shin (2002), 
Angeletos and  Pavan (2007), Bergemann and  Morris (2013), and Angeletos and 
Lian  (2016b). These papers focus on a static setting. The  single-agent solution 
contributes to this literature by providing a novel equilibrium characterization, 
which  accommodates essentially arbitrary information structures under Gaussian 
shocks. This generality becomes particularly useful for models with dynamic 
information.

In terms of the applications in macroeconomics, our paper is closely related to 
Woodford (2002) and Angeletos and La’O (2010), which study models with dis-
persed and dynamic information. These papers numerically explore the persistence 
of the aggregate outcome under a particular signal structure. We offer an exact for-
mula that characterizes the entire dynamics of the aggregate outcome for general 
information structures. With this formula, the comparative statics results, and the 
 single-agent perspective, our work complements the large literature that studies how 
information frictions shape business cycles and interact with monetary policy.6

Our contribution to the literature on network games with incomplete information 
(de Martí and Zenou 2015; Bergemann, Heumann, and Morris 2017) is to provide 
an equilibrium characterization that extends to environments with dynamic informa-
tion and are not subject to the curse of dimensionality. The extension of our results to 
 forward-looking complementarity is related to Nimark (2017), Huo and Takayama 
(2018), and Angeletos and Huo (2018). These papers, however, do not recast the 
policy rule as a  single-agent solution.

We make two contributions to the literature on computing  dispersed-information 
models: (i) our solution allows one to explore environments with  nonstationary 
 processes, which encompasses models with  time-varying parameters and regime 
switching, for instance; (ii) for models with exogenous information, our method 
delivers the solution without the need to solve a  fixed-point problem—the policy 
rule can be obtained from a straightforward linear forecast. The  guess-and-verify 
approach used in Woodford (2002) and Angeletos and  La’O (2010) is use-
ful for some  relatively  low-dimensional signal processes, while the approach 
in this paper  eliminates the need to guess the solution altogether. The method 
in Huo and Takayama (2018) can solve a larger class of models, but it relies on 
 frequency-domain  techniques that may involve solving for the roots of  high-order 
polynomials. This paper stays within the time domain where easy and robust 
 algorithms such as the Kalman filter can be applied. The  single-agent solution 
method is also useful for  solving  models with endogenous information, which 
complements existing methods (Sargent 1991; Lorenzoni 2009; Nimark 2017) 
with the advantage that our solution requires a smaller number of state variables.

Finally, there is a large literature that emphasizes the importance of 
 higher-order beliefs (e.g., Rubinstein 1989, Carlsson and van Damme 1993, Kajii 
and  Morris 1997, Weinstein and  Yildiz 2007b, and Ely and  Peski 2011). These 

6 See, for instance, Hellwig (2004), Nimark (2008), Lorenzoni (2009), Maćkowiak and Wiederholt (2009), 
Venkateswaran (2014), and Melosi (2017). We refer to Angeletos and Lian (2016b) for a more comprehensive 
review.
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results can be unsettling since it is hard to imagine that one could observe an indi-
vidual’s infinite belief hierarchy, yet it could be that a model’s prediction can change 
if beliefs of arbitrarily high order are modified. Thus, it is relevant to point out 
that the beauty contest models studied in this paper satisfy Weinstein and Yildiz’s 
(2007a) criterion of “global stability under uncertainty” which implies that beliefs 
of sufficiently high order have a vanishing effect on equilibrium outcomes. This 
does not mean, however, that  higher-order beliefs are not important; they can still 
have quantitatively and qualitatively large effects.

The rest of the paper is organized as follows. Section I explains the  single-agent 
solution in a simple static model. Section II sets up the environment and defines 
equilibrium. Section III proves the main result and variations of it. Section IV pro-
vides several applications of the  single-agent solution. Section  V shows how it 
applies to models with endogenous information. Section VI discusses the exten-
sions to network games and to models with dynamic complementarity. Section VII 
concludes.

I. A Motivating Example

To illustrate the basic idea and motivate our general result, we start from the static 
 beauty contest model considered by Morris and Shin (2002). The economy consists 
of a continuum of agents, indexed by  i , with payoff functions given by

  U ( y  i  , y, θ)  = −  (1 − α)   ( y  i   − θ)    2  − α   ( y  i   − y)    2 . 

Agent  i ’s best response,   y  i   , is a weighted average of her forecast of an exogenous 
fundamental,  θ , and the aggregate action,  y . That is,

(1)   y  i   =  (1 − α)  E  i   [ θ ]  + α  E  i   [ y ] , with y = ∫  y  i  . 
The parameter  α , which we assume satisfies  α ∈  (−1, 1)  ,7 determines the degree 
of strategic complementarity ( α > 0 ) or substitutability ( α < 0 ) between 
agents’ actions. The operator   E  i   [ · ]   denotes the expectation conditional on agent  i ’s 
 information set, which consists of a public signal  z  and a private signal   x   i    about the 
exogenous fundamental  θ ,

(2)  z = θ + ε, and  x  i   = θ +  ν i   , 

where  ε ∼   (0,  τ  ε  −1 )  , and   ν i   ∼   (0,  τ  ν  −1 )   stand for public and private noise, 
and   τ ε    and   τ ν    are their respective precisions. We assume that agents have a common 
prior about the fundamental  θ , that is,  θ ∼   (0,  τ  θ  −1 )  .8

7 With  α > 1 , there could be multiple equilibria if the action is bounded. By assuming  α ∈  (−1, 1)  , we 
can guarantee the existence of a unique equilibrium that can be represented by the sum of infinite  higher-order 
 expectations, which satisfies the “global stability under uncertainty” condition provided by Weinstein and Yildiz 
(2007a).

8 Morris and Shin (2002) assumes that agents have an improper prior about  θ . This change is mostly immaterial, 
but connects better to our subsequent dynamic analysis.
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A useful way to understand the logic behind agents’ actions is to examine their 
 higher-order expectations. Define  higher-order expectations recursively in the fol-
lowing way:

    E 
–
     0  [ θ ]  ≡ θ, and   E 

–
     k  [ θ ]  ≡ ∫  E  i   [  E 

–
     k−1  [ θ ] ] . 

By consecutive substitution of the equations in (1), we can write agent  i ’s action as 
a weighted average of her  higher-order expectations,9

   y  i   =  (1 − α)   ∑ 
k=0

  
∞

    α   k   E  i   [  E 
–
     k  [ θ ] ] . 

One can immediately see that an individual agent’s optimal action depends not 
only on her own assessment of the fundamental, but also on her expectation about 
the average assessment of the fundamental, and so on. This is the original idea 
put forward by Keynes about the nature of beauty contests. Under the normality 
assumptions made above, all the  higher-order expectations can be written as linear 
combinations of the signals. It is, then, straightforward to define the  Bayesian-Nash 
equilibrium of this economy.

DEFINITION 1: Given the signal process in (2), a linear  Bayesian-Nash equilib-
rium is a policy rule  h =  {  h  1  ,  h  2  }  ∈  핉   2  , such that

   y  i   =  h  1  z +  h   2    x  i   

satisfies the equations in (1).

The method of undetermined coefficients yields the following equilibrium policy 
rule:

(3)   y  i   =    τ ε   ______________  
 τ θ   +  τ ε   +  (1 − α)   τ ν  

   z +   
 (1 − α)   τ ν    ______________  

 τ θ   +  τ ε   +  (1 − α)   τ ν  
    x   i   . 

This policy rule has the property that agents put relatively more weight on the 
 public signal when the degree of strategic complementarity,  α , is higher. The reason 
is that the public signal is more informative about the aggregate action and has an 
 additional coordination role. A higher  α  implies that agents have a stronger  incentive 
to be closer to the aggregate action, and therefore rely less on private signals. So far, 
this solution and its interpretation is reminiscent of Morris and Shin (2002). Now, 
we offer an alternative perspective.

9 To see this, note that 

   y  i   =  (1 − α)  E   i   [  θ t   ]  + α E   i   [ y ]  =  (1 − α)  E   i   [ θ ]  + α E   i   [∫ (1 − α)  E   j   [ θ ]  + α  E   j   [ y ] ]  

  =  (1 − α)  E  i   [ θ ]  + α (1 − α)  E   i    [  E 
–
     1  [ θ ] ]  +  α   2  E   i    [∫  E   j   [ y ] ]  = ⋯ =  (1 − α)   ∑ 

k=0
  

∞
    α   k   E   i    [  E 

–
     k  [ θ t  ] ] . 
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A  Single-Agent Solution.—For comparison, the forecast about the fundamental 
itself is

(4)   E  i   [ θ ]  =    τ ε   _   τ θ   +  τ ε   +  τ ν     z +    τ ν   _   τ θ   +  τ ε   +  τ ν      x   i   , 

where the weights on the public and private signals are proportional to their relative 
precisions.

The equilibrium policy rule (3) resembles the simple forecast rule (4) of the 
 economic fundamental. They differ only with respect to the precision of the private 
signal noise. Define the following modified private signal

    x ̃   i   = θ +   ν ̃   i   ,   ν ̃   i   ∼   (0,   ( (1 − α)   τ ν  )    −1 ) , 

with the precision of the private signal noise discounted by the degree of strategic 
complementarity  α , while the public signal remains unchanged. Let    E ̃   i   [ · ]   denote the 
expectation conditional on the modified signals.

The coefficients of the equilibrium policy rule,   {  h   1  ,  h   2   }  , can be obtained 
 immediately by solving the problem of forecasting  θ , given the modified signals, 
which leads to

    E ̃   i   [ θ ]  =    τ ε   ______________  
 τ θ   +  τ ε   +  (1 − α)   τ ν  

   z +   
 (1 − α)   τ ν    ______________  

 τ θ   +  τ ε   +  (1 − α)   τ ν  
     x ̃   i   =  h    1   z +  h    2     x ̃   i   . 

Hence, the weights the agents put on signals in equilibrium are exactly the same 
as the weights in a simple forecast of the fundamental with adjusted precision of 
private signals.

To see where the discounting comes from, consider the case where   τ ε   = 0 , so 
that agents disregard the public signal. This specification delivers a particularly 
 simple structure for  higher-order expectations,

(5)    E 
–
     1  [ θ ]  = λθ, and   E 

–
     k  [ θ ]  = λ   E 

–
     k−1  [θ]  ,

where  λ ≡  τ ν   /  ( τ θ   +  τ ν  )  . Then, the aggregate action can be expressed as

(6)  y =  (1 − α)   ∑ 
k=0

  
∞

    α   k    E 
–
     k+1  [ θ ]  =  (1 − α)  λ  ∑ 

k=0
  

∞
     (αλ)    k θ .

Next, consider a variant  representative-agent economy in which all agents receive 
only a noisy public signal. In this economy, agents share the same  first-order expec-
tation,    E 

–
     1   [ θ ]  =  λ ̃  θ , and all agents’ beliefs are common knowledge. That is, infor-

mation is complete but imperfect, and it follows that all  higher-order expectations 
collapse to the  first-order expectation,    E 

–
     k  [ θ ]  =   E 

–
     1   [ θ ]   for all  k . The aggregate action 

is, then, akin to that of a simple forecasting problem. The  higher-order expectation 
representation still applies, so

(7)  y =  (1 − α)   ∑ 
k=0

  
∞

    α   k    E 
–
     k+1  [ θ ]  =  (1 − α)  λ ̃    ∑ 

k=0
  

∞
    α   k θ. 
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In equation (6), the lack of common knowledge leads to the additional discount-
ing    (αλ)    k  , compared with   α   k   in equation (7). Note that by setting   λ ̃    to a lower value 
than  λ  such that

   λ ̃    ∑ 
k=0

  
∞

    α   k  = λ  ∑ 
k=0

  
∞

     (αλ)    k  , 

the aggregate action in these two economies are equivalent. It is easy to verify that 
the precise way to lower   λ ̃    is to discount the private signal’s precision by a fraction 
of  α .10

Several remarks are in order. First, the fact that the equilibrium can be 
expressed by a particular  first-order expectation is not surprising on its own. In 
fact, in  equilibrium, agents’ actions are always a  first-order expectation about  
  (1 − α) θ + αy . What is less obvious about our  single-agent solution is that the 
 equilibrium outcome is the same as the  first-order expectation about the funda-
mental itself, and the required modification of the information structure is simple, 
known ex ante, and independent of the details of the signal process.

To appreciate this point, notice that the proportionality between  higher-order 
expectations in equation (5) is only valid for this very particular information struc-
ture. When information is persistent,  higher-order expectations typically have com-
plex dynamics. For example, consider a dynamic version of the setup above in which 
the fundamental   θ t    follows an AR(1) process,11

(8)   θ t   = ρ  θ t−1   +  η t  ,  η t   ∼   (0,  τ  η  −1 ) . 

Figure  1 shows the impulse responses of  higher-order expectations to the 
 fundamental shock,   η t    . As the order increases, more state variables are required to 
describe the dynamics of  higher-order expectations. In fact, the  k th order  higher-order 
expectation follows an ARMA( k + 1, k − 1 ) process.

A rescaling of the  single-agent forecast with unmodified signal precision 
would allow one to match the initial dampening of the aggregate outcome 
response. However, this modification cannot match the entire impulse response, 
as  higher-order  expectations exhibit less amplitude and more persistence, with the 
peak of the hump happening at later periods. In contrast, a  single-agent forecast with 
appropriately discounted private signal precision matches the entire dynamics of the 
aggregate outcome. To see why this is possible, note that the optimal forecast about 
the fundamental under Bayesian learning is a weighted average of its prior mean 
and the new signal. With a less precise signal, agents lower the weight attached 
to the new signal, and simultaneously increase the weight put on the prior mean. 
The former reduces the amplitude of the direct effect of a shock to   θ t    , and the latter 
increases its persistence.

10 To be explicit, it follows that

   λ ̃     1 _ 
1 − α   = λ   1 _ 

1 − αλ   ⇒  λ ̃   =   
 τ ν   _  τ θ   +  τ ν  

     1 − α _ 
1 − α   

 τ ν   _  τ θ   +  τ ν  
  
   ⇒  λ ̃   =   

 (1 − α)   τ ν  
  ___________  

 τ θ   +  (1 − α)   τ ν  
   . 

11 The exact setup is explained in Example 1. 
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In general, with persistent information, solving and analyzing  beauty contest mod-
els becomes significantly more difficult. In contrast to the static case, the standard 
method of undetermined coefficients is not useful because, in principle, an infinite 
number of coefficients needs to be solved for. This is where our results become most 
useful since the  single-agent solution survives under general information structures.

II. Preliminaries for  Beauty Contest Models

In this section, we introduce a dynamic setting with a much richer information 
structure. In the following section, we prove the equivalence result.

A.  Beauty Contest Model

Best Response.—Denote agent  i ’s action in period  t  by   y  it   . For presentation 
purposes, here we only consider the case in which the action is univariate. In 
Section IIIC, we extend this model to allow for multiple, and possibly correlated, 
actions. The best response function is similar to the one used in Section I,

(9)   y  it   =  (1 − α)   E  it   [  θ t   ]  + α  E  it   [  y  t   ] , with  y  t   = ∫  y  it   . 

Analogously to Section I, agents  i ’s optimal action can be expressed as

(10)   y  it   =  (1 − α)   ∑ 
k=0

  
∞

    α   k   E  it   [  E 
–
    t  k  [  θ t   ] ]  . 

Note that with dynamic information, the  higher-order expectations are also time 
varying. To guarantee the existence and uniqueness of the  equilibrium, we assume 
that the degree of strategic complementarity is less than 1 in absolute value.

Figure 1. Impulse Responses of  Higher-Order Expectations

Note: We set the following parameters:   τ η   = 1 ,  ρ = 0.95 ,   τ ν   = 0.25 , and  α = 0.8 .
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ASSUMPTION 1: The degree of strategic complementarity  α ∈  (−1, 1)  .

This best response can arise in various economic environments. In Section  I, 
we see that it can be the result of a quadratic loss function, as in Morris and Shin 
(2002), Angeletos and Pavan (2007), and Hellwig and Veldkamp (2009), for instance. 
The same type of best response can arise in real business cycle models (Angeletos 
and La’O 2010, 2013; Venkateswaran 2014; Huo and Takayama 2017), and in mon-
etary economies (Woodford 2002; Maćkowiak and  Wiederholt 2009; Drenik and  
Perez forthcoming). We include two detailed examples in the online Appendix for 
illustration.

Though the best response function we consider here is widely used in the 
 literature, there are two limitations. First, it is implicitly assumed that all agents 
are symmetric, which excludes the possibility that agents have heterogeneous 
 payoff or information structures, such as in a network game. Second, the individual 
action can only depend on the current aggregate action. This excludes intertem-
poral  complementarities, in which agents’ payoffs today may depend on future or 
past aggregate actions. In Section VI, we discuss to what extent our results can be 
extended to these environments.

Information Structure.—Next, we specify the stochastic process for the 
 economic  fundamental and the signals agents receive about it. We first con-
sider the exogenous information case, by which we mean that the signals do not 
depend on agents’ actions. This specification allows us to present our results more 
 transparently. However, our  single-agent solution is not limited to the exogenous 
information case. In Section V, we show that our main results also hold if informa-
tion is endogenous, with signals that do depend on agents’ actions.

Throughout, we consider the following signal process with discrete time. In 
period  t , agent  i  observes

(11)   x it   =  M  t   (L)   ε it  , 
where the signal   x it    is an  r × 1  stochastic vector, the shock   ε it    is an  m × 1  stochastic 
vector, and   M  t   ( L )   is an  r × m  polynomial matrix in the lag operator  L , which can 
be time dependent. We make the following assumptions about the signal process.

ASSUMPTION 2: The polynomial matrix   M t   (L)   satisfies

   M  t    (L)  =   ∑ 
τ=0

  
∞

    M  t, τ    L   τ , 

where each element of    { M  t, τ  }   τ=0  ∞    is  square-summable.
The elements of   ε it    are uncorrelated12 Gaussian shocks. The covariance matrix 

of   ε it    is denoted by   Σ   2  , where  Σ = diag  ( σ 1  ,  σ 2  , … ,  σ m  )  . Further,   ε it    can be 
 partitioned into two parts,

   ε it   =  [  
 η  t     ν it   ] , with ∫  ν it   = 0, 

12 The assumption that the shocks are uncorrelated is immaterial since a signal process with correlated shocks 
can be rewritten in terms of one with uncorrelated shocks.
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where the first  u < m  shocks,   η  t   , are common to all agents and the last  m − u  
shocks,   ν it   , are idiosyncratic.

For now, we assume that the fundamental   θ t    is driven only by the  
common shocks   η  t    . A  common-value best response is one that satisfies this 
 condition:  we relax this assumption in Section IIIC. We allow the stochastic  process 
of the  fundamental, as for the signals, to be time dependent.

ASSUMPTION 3: The process of the exogenous fundamental   θ t    is given by

(12)   θ t   =  [  ϕ  t  ′   (L)   0 ]   ε it   =  ϕ  t  ′   (L)   η  t   , 

where   ϕ t   (L)  =  ∑ τ=0  
∞    ϕ t, τ    L   τ   is a  u × 1  vector of polynomials in  L  and each element 

of    { ϕ t, τ  }   τ=0  ∞    is  square-summable.

The superscript  t  denotes the history up to  t , for example  
  x  i  t  ≡  { x it  ,  x it−1  ,  x it−2  , …}  . Agent  i ’s information set in period  t ,    it   , includes the 
 history of observed signals, and also the structure of the stochastic processes,

    it   =  { x  i  t ,  M   t  (L) ,  ϕ   t  (L) } . 

The expectation operator   E  it   [ · ]   stands for  E [ · ∣   it  ]  , where  E [ · ]   denotes the uncon-
ditional expectation. Note that   ϕ t   (L)   and   M t   (L)   can change in a deterministic or 
stochastic way, and that agents only need to know their realizations up to the current 
period,  t .13

The information structure we have specified above is quite general. The following 
examples show that signal processes commonly used in the literature are special 
cases of it.

 (i) Static Case: Suppose that   ϕ t   (L)  = ϕ  and   M t   (L)  = M . In this case, the 
past signals are not informative about the current fundamental. For example, 
consider

  ϕ =  [ 1  0  0  0 ] , M =  [ 1  1  0  0   
1
  

0
  

1
  

1
 ]  ⇒   x  it  

1  =  θ t   +  χ t  ,   
 x  it  2  =  θ t   +  ξ t   +  u  it  ,

  

   where all the shocks,   ε it   =  [ θ t  ,  χ t  ,  ξ t  ,  u  it  ] ′ , follow i.i.d. processes. This 
 structure is similar to the specification in Angeletos and Lian (2016b), and it 
reduces to the case considered in Bergemann and Morris (2013) when setting 
the variance of   ξ  t    to 0.

13 Also notice that the freedom to choose the primitive   ϕ t    in Assumption 3 already implies that the  best-response 
function could depend on the fundamental   θ t    in any period. This is because for   θ t+k   =  ϕ  t  ′   (L)   L   −k   η  t   , with any  k , 
positive or negative, we can always define a new fundamental   ξ t   ≡   [ ϕ  t  ′   (L)   L   −k ]  +    η  t   , so that   E  it   [ θ t+k  ]  =  E  it   [  ξ t   ]  .
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 (ii) Stationary Signal: Suppose that   ϕ t   (L)  = ϕ (L)   and   M  t   (L)  = M (L)  . In this 
case, the signal structure is time independent. For example, consider

  ϕ (L)  =  [   
1 _ 1 −  ρ 1   L

    0  0 ] , 

 M (L)  =  
⎡
 ⎢ 

⎣
 
  1 _ 1 −  ρ 1   L

  
  

  1 _ 1 −  ρ 2   L
  
  

0
   

  1 _ 1 −  ρ 1   L
  
  

0
  

1
 

⎤
 ⎥ 

⎦
  ⇒  

 θ t  

  

=   1 _ 
1 −  ρ 1   L

    η t  ,

    x  it  1   =  θ t   +   1 _ 
1 −  ρ 2   L

    ξ t  ,   

 x  it  2 

  

=  θ t   +   1 _ 
1 −  ρ 3   L

    u  it  ,

  

  with i.i.d. shocks   ε it   =  [  η t  ,  ξ t  ,  u  it   ] ′ . This structure allows a persistent 
 fundamental and a persistent aggregate noise, which can be viewed as 
 variations of the information structure adopted in Huo and Takayama (2017) 
and Angeletos, Collard, and Dellas (2018).

 (iii)  Nonstationary Signal: Since we allow   ϕ t   (L)   and   M t   (L)   to be time dependent, 
the signals can be  nonstationary. For example, consider

   ϕ t   (L)  =  [ 1  0  0 ] ,  M t   (L)  =  [ 
1  0  1  1   σ t  

  0 ]  ⇒  
 x  it  1  =  θ t   +  u  it  ,   
 x  it  2  =  θ t   +  σ t    ξ t  ,

  

  with i.i.d. shocks   ε it   =  [ θ t  ,  ξ t  ,  u  it  ] ′ . The  time-varying parameter   σ t    allows 
the precision of   x  it  2   to change over time. This is similar to Fajgelbaum, 
Schaal, and  Taschereau-Dumouchel (2017) where the endogenous learning 
 effectively generates  time-varying informativeness. Also, Drenik and Perez 
(forthcoming) explores how higher uncertainty about inflation influences 
the effectiveness of monetary policy using a similar device. In general, 
 time-varying variances or other structural parameters can be easily incorpo-
rated into   ϕ t   (L)   and   M  t   (L)  .

Another type of  nonstationary signal process occurs when one of the random vari-
ables has a unit root. For example, suppose that   { θ −1  ,  θ −2  , …}   is publicly known, 
and from  t = 0  on, the fundamental process and signal structure are given by

  Δ  θ t   = ρΔ  θ t−1   +  η t  , and  x  it   =  θ t   +  u  it  . 

In this case,   θ t    itself is not stationary if one looks forward in time, but at any given 
time,   ϕ t   (L)   and   M t   (L)   are still stationary.14 This specification is similar to the one 
in Woodford (2002).

14 With   θ t    known for  t < 0 , it is straightforward to see that   ϕ t   (L)   and   M t   (L)   both represent finite 
 moving-average processes. If   θ t    is unknown for  t < 0 , we would then need to require that the past signals 
before  t < 0  follow  stationary processes. 
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Equilibrium.—As is standard in the dispersed information literature, we employ 
the  Bayesian-Nash equilibrium concept. The following proposition establishes the 
existence, uniqueness, and linearity of the equilibrium.

PROPOSITION 1: Under Assumptions   1–3, there exists a unique  Bayesian-Nash 
equilibrium and the equilibrium is linear in signals,

   y  it   =  h  t  ′   (L)   x it  , 

where   h  t  ′   (L)   is a  time-dependent vector of polynomial functions.15

Heuristically, with exogenous information and with  α ∈  (−1, 1)  , the  right-hand 
side of equation (10) implies that agent  i ’s equilibrium action is well defined and 
unique. Since the fundamental and signals are driven by Gaussian shocks, the 
 optimal forecasts are always linear functions of signals.16

B.  Single-Agent Problem

To define the  single-agent problem corresponding to a  beauty contest model, we 
need to first describe the appropriately modified signal process.

DEFINITION 2: Given the original signal process defined in equation (11) with 
Assumptions 1 and 2 being satisfied, the  α -modified signal process is

    x ̃   it   =  M t   (L)    ε ̃   it  , 

where

    ε ̃   it   ≡ Γ  ε it  , and Γ ≡  
[
 
 I u  

  
0
  

0
    1 _____ 

 √ 
_

 1 − α  
    I m−u  

 
]
 . 

Note that the  α -modified signal process simply reduces the precision of all the 
idiosyncratic shocks   ν  it    by a factor of  1 − α , and leaves the precision of common 
shocks   η   t    unchanged. A public signal is, by definition, one that depends only on 
the common shocks   η  t   , and, therefore, is unaffected by the modification. A private 
signal, on the other hand, must contain some of the idiosyncratic shocks   ν it    and has 
its precision adjusted in the  α -modified signal process.

We let    E ̃   it   [ · ]   denote the expectation operator conditional on the  α -modified signal 
process. The  single-agent problem is to forecast the economic fundamental without 
paying attention to other agents’ actions, that is to solve for    E ̃   it   [  θ t   ]  .

15 The results in this proposition have all been previously established in the literature, we include them here 
for completeness.

16 With endogenous information, the uniqueness is no longer guaranteed. The online Appendix provides 
an example with multiple linear equilibria. Furthermore, with endogenous information, we cannot exclude the 
 possibility of nonlinear equilibria, and we restrict our attention to linear equilibria there.
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III. The  Single-Agent Solution

In this section, we connect the  beauty contest model with the  single-agent prob-
lem. We first lay out the main theoretical result, and then proceed to its several 
variations.

A. Equivalence Result

THEOREM 1: Under Assumptions   1–3, let   h  t   (L)   denote the equilibrium policy 
rule, that is

   y  it   =  h  t  ′   (L)   x it   . 

Then, the same   h t   (L)   is the forecasting rule of the fundamental   θ t    conditional on 
the  α -modified signal process,

    E ̃   it   [ θ t  ]  =  h  t  ′   (L)    x ̃   it  . 

The proofs for the results in this section can be found in the Appendix. Theorem 1 
characterizes the individual’s policy rule concisely. The equilibrium in the  beauty 
contest model involves the following fixed point problem: an agent’s action depends 
on her individual forecast about the aggregate action, but the law of motion of the 
aggregate action is the result of individuals’ forecasts. Theorem 1 shows that this 
fixed point problem can be avoided. The policy rule is exactly the same as the one 
that solves a simple forecasting problem, which can be viewed as a single agent’s 
 first-order expectation. The required transformation of the signal process takes a 
simple form, and this simple form is preserved across a large class of information 
structures.

In  beauty contest models, agents’ actions depend on the forecast of the fundamen-
tal and the forecast of others’ actions. The former is pinned down by a  first-order 
expectation, and the latter by  higher-order expectations. A higher  α  raises the rela-
tive importance of  higher-order expectations and effectively shifts agents’ actions 
towards  higher-order expectations. In the corresponding  single-agent problem, to 
induce the same policy rule, the precision of private signals has to be discounted.

The proof of Theorem  1 follows two steps: (i) we show that the  equivalence 
holds  when the fundamental and the signal processes follow finite MA( q ) 
 processes; and (ii) we show that the equivalence remains true when  q  goes to infin-
ity.17 In step (i) we effectively use the method of undetermined coefficients to solve 
for the  equilibrium policy rule, however, we are not interested in the coefficients 
 themselves but in a property that they satisfy, namely that they are equivalent to a 
forecasting problem with the appropriately modified signal process. This is because 
solving for each coefficient becomes intractable as  q  goes to infinity, which is not 
the case for the  corresponding forecasting problem. In most applications, the signal 
process permits a  state-space representation with a recursive structure. If this is the 

17 This is where the  square-summable property in Assumptions 2 and 3 becomes necessary.
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case, the  following proposition gives an explicit procedure for obtaining the equilib-
rium  policy rule using the standard Kalman filter.

PROPOSITION 2: In addition to Assumptions   1–3, suppose the signal structure 
allows the following  state-space representation:

   ξ it   =  F t    ξ  it−1   +  S t    ε it   , with  ξ  i, −1   = 0, 

together with the observation equation and the law of motion of the fundamental,18

   x it   =  H t    ξ it   , and  θ t   =  G t    ξ  it  . 

Then, the optimal action is given by

   y  it   =  G t    z it   , 

where the evolution of the sufficient statistics,   z it   , follows

   z it   =  (I −  K t    H t  )   F t    z it−1   +  K t    x it   , 

(13)   K t   =  P t    H  t  ′     ( H t    P t    H  t  ′  )    −1 , 

(14)   P t+1   =  F t+1   ( P t   −  K t    H t    P t  )   F  t+1  ′   +  S t+1    Γ   2   S  t+1  ′   ,

where   z i,−1   = 0  and   P 0    is the unconditional variance of   ξ  i, 0    with the  α -modified 
signal process.

This result follows directly from Theorem 1 and the Kalman filter construction 
in Hamilton (1994). It allows for  time-varying parameters and  nonstationary pro-
cesses, and therefore, can be used to study transition dynamics. Readers who are 
familiar with the Kalman filter should recognize that the law of motion for the vec-
tor of sufficient statistics,   z it   , resembles that of the prior mean of   ξ  it   . To convert the 
system into the  α -modified signal process, the variance of the shocks is modified 
by   Γ   2   in equation (14) for the covariance matrix   P t   . This proposition states the 
result with a particular starting point. For a stationary process without  time-varying 
parameters, one could set   P 0    to be the covariance matrix of the  steady-state Kalman 
filter and obtain a  time-invariant policy rule. In quantitative applications, the infor-
mation structure might be complicated, but even for large scale  state-space systems, 
the Kalman filter problem can be solved in a fast and robust way since it involves 

18 It is common to write the state space as 

   ξ  it   =  F t    ξ  it−1   +  S t    ε it  ,

  x it   =  H t    ξ  it   +  R  t    ε it  . 

By redefining the state variable   z it   , one can always include the noise in the observation equation as part of the state 
variable and set   R  t   = 0 .
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simply iterating on equations (13) and (14). The following example shows how to 
apply the  single-agent solution.

Example 1: We return to the case introduced at the end of Section I, where the 
fundamental,   θ t   , is assumed to follow an AR(1) process as in (8). For simplicity, 
suppose that agents only receive a private signal about   θ t    , so that the original signal 
and the corresponding  α -modified signal are given by

   x  it   =  θ t   +  ν it   ,  ν it   ∼   (0,  τ  ν  −1 ) , 

    x ̃   it   =  θ t   +   ν ̃   it   ,   ν ̃   it   ∼   (0,   ( (1 − α)   τ ν  )    −1 ) . 

Instead of worrying about  higher-order expectations, one can simply turn to our 
 single-agent solution. We start by solving the simple forecasting problem for 
the  α -modified signal process, which can be obtained via Proposition 2,

(15)    E ̃   it   [  θ t   ]  =  (1 − ϕ) ρ   E ̃   it−1   [ θ t−1  ]  + ϕ   x ̃   it    .

Thus, the optimal forecast is a weighted average of the prior  ρ   E ̃   it−1   [  θ t−1   ]   and the 
new signal    x ̃   it   , where the weight on the signal is the Kalman gain  ϕ  given by

  ϕ ≡   
 (1 − α)   τ ν    ___________  

κ +  (1 − α)   τ ν  
  , with κ ≡   [ ρ   2    (κ +  (1 − α)   τ ν  )    −1  +  τ  η  −1 ]    

−1

 . 

These two equations are the versions of equations (13) and (14) for the example at 
hand and  κ  is the precision of the prior. Using Theorem 1, we immediately obtain 
the individual policy function and the law of motion of the aggregate action in the 
 beauty contest model from equation (15),19

(16)   y  it   =  (1 − ϕ) ρ  y  it−1   + ϕ  x  it   , and  y  t   =  (1 − ϕ) ρ  y  t−1   + ϕ  θ t  . 

Recall, from Figure 1,  higher-order expectations have significantly more complex 
dynamics than  first-order expectations. In contrast, the  single-agent solution (16) is 
surprisingly simple. This demonstrates the usefulness our method both for compu-
tation and for equilibrium characterization. We explore the dynamic properties of 
 beauty contest models further in Section IVA.

B. Implications for Aggregates

Theorem 1 shows that the policy rule of an individual agent in the equilibrium and 
in the  single-agent problem are the same. The following corollary, shows that the 
aggregate outcome in these two problems are the same since idiosyncratic shocks 
wash out in the aggregate.

19 Woodford (2002) solves this model numerically by a  guess-and-verify approach and Huo and Takayama 
(2018) solves it analytically by a more complicated frequency domain method.
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COROLLARY 1: Under Assumptions  1–3, the aggregate outcome,   y  t   , in equilibrium 
is the same as the average expectation in the  single-agent problem, i.e.,

   y  t   = ∫   E ̃   it   [  θ t   ]  ≡   E ̃   t   [  θ t   ] . 

This result has several direct implications. First, without precise knowledge about 
the strength of the strategic complementarity and about the degree of information 
frictions, Corollary 1 raises an identification issue. For instance, in Example 1, if 
the aggregate outcome can be justified by a particular  α  and   τ ν   , there is a contin-
uum of economies with the same product   (1 − α)   τ ν    that imply the same aggregate 
outcomes. In particular, there is always a  single-agent problem with no strategic 
interaction that yields the same allocation.

In practice, there may exist independent micro-evidence that helps to pin down 
the strength of strategic complementarity. For example, in the monetary and the 
business-cycle models, specified in the online Appendix, the strategic complemen-
tarity is determined by the elasticity of substitution across varieties, the Frisch elas-
ticity, and the degree of risk aversion, which have been estimated based on various 
microdata. In this case, our  single-agent result can be used to infer the required 
degree of information frictions necessary to account for the aggregate allocation.

On the other hand, additional evidence on the degree of information frictions may 
be available. For example, the Survey of Professional Forecasters and the Michigan 
Survey of Consumers contain information about the magnitude and persistence of 
forecast errors, which can be used to discipline information frictions. In this case, 
with knowledge also on information frictions, our equivalence result can help quan-
tify its role in shaping aggregate fluctuations.20

Finally, Corollary 1 does not imply the equivalence between models in terms of 
 cross-sectional allocation. In fact, the individual choices are different,

   y  it   =  h  t  ′   (L)   x it   ≠  h  t  ′   (L)    x ̃   it   =   E ̃   it   [  θ t   ] . 

In particular, to generate the same aggregate allocation, the signals in the 
 single-agent  model are more dispersed, which translates into larger forecast 
errors and action dispersion. This difference can help achieve identification when 
 cross-sectional moments are available.

C. Generalized Best Response

So far, we have considered the classic  beauty contest game where agents’ best 
responses depend only on a common fundamental, and agents only choose a  single 
action each period. In many relevant environments, however, agents’ payoffs depend 
on idiosyncratic factors, and agents choose more than one action at the same time. 
In this section, we show how the  single-agent solution extends to these more general 
 beauty contest models.

20 See, for instance, Huo and Takayama (2017), Drenik and Perez (forthcoming), Melosi (2017), and Angeletos 
and Huo (2018).
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We start by providing a corollary of Theorem 1 that relates  higher-order expecta-
tions with the  first-order expectation in the  single-agent model.

COROLLARY 2: Under Assumptions  2–3, for any  α ∈ ℂ  such that  |α| < 1 , the 
forecasting rule of a geometric sum of infinite  higher-order expectations about   θ t   , is 
the same as that of the  single-agent problem21

   (1 − α)   ∑ 
k=0

  
∞

    α   k   E  it     E 
–
    t  k  [  θ t   ]  =  h  t  ′   (L)   x it   , 

    E ̃   it   [  θ t   ]  =  h  t  ′   (L)    x ̃   it   . 

This corollary follows straightforwardly from Theorem 1 and equation (10). 
This is a result about linear projections with Gaussian signals and can be used 
independently of any equilibrium concept. It says that a geometric sum of infinite 
 higher-order expectations is equivalent to a particular  first-order expectation. As 
already mentioned, expectations of higher order typically become more complicated 
in the sense that more state variables are required to forecast those  higher-order 
expectations. If one wants to compute each of the infinite  higher-order expectations 
independently, then an infinite number of state variables are needed. Corollary 2 
shows that a  first-order expectation with a slightly modified signal process yields the 
same result. This result turns out to be useful in extending our  single-agent solution 
to more general best responses.

 Independent-Value Best Response.—Consider an  independent-value best response,

(17)   y  it   = γ  E  it   [  θ it   ]  + α  E  it   [  y  t   ] , 

where the relevant fundamental   θ it    depends on both aggregate and idiosyncratic 
shocks,   θ it   =  ∑ τ=0  

∞    ψ t, τ    L   τ   ε it    . For this type of best response function, the original 
 single-agent solution does not apply exactly, but a slightly modified version does.

PROPOSITION 3: Suppose that Assumptions  1–3 are satisfied.22 Denote the fore-
cast about the fundamental by

   E  it   [  θ it   ]  ≡  g  t  ′   (L)   x it   ≡  φ t   +  ξ it    ,

where   ξ it    is only driven by idiosyncratic shocks. There exists a unique equilibrium 
policy rule   h t   (L)   such that

   y  it   = γ  E  it    [  θ it   ]  + α  E  it    [  y  t   ]  = γ  ( φ t   +  ξ  it  )  +   αγ _ 
1 − α    h  t  ′   (L)   x it  , 

21 If  α  is a complex number, the modified precisions are complex numbers as well. In this case,    E ̃   it   [ · ]   only 
stands for the operation required to conduct a forecast.

22 More precisely, we need to impose that the process for   θ it   ,    { ψ t, τ  }   τ=0  ∞   , must be  square-summable. 
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and   h t   (L)   is the same as the forecasting rule of   φ t    conditional on the  α -modified 
signal process,

    E ̃   it    [  φ t   ]  =  h  t  ′   (L)    x ̃   it  . 

Multiple Actions.—Next, suppose that agents make multiple choices, each of 
which may depend on multiple choices made by other agents in its own way. For 
example, an employer needs to decide not only how many workers to hire, but 
also the number of working hours and the amount of effort each worker needs to 
exert. A firm may decide simultaneously the level of production and the amount of 
resources to spend on advertising. In these situations, the best response becomes a 
 multivariate system for a vector of actions, and a matrix instead of a number sum-
marizes the primitive motive for strategic interaction among agents. We show that a 
similar, though slightly more complicated,  single-agent solution holds in this type 
of environment.

Consider the environment described in Section II, but with the following more 
general best response function which allows for multiple actions depending on 
 multiple fundamentals:

(18)   y it   =  E  it   [  θ t   ]  + A  E  it   [  y t   ] , with  y t   = ∫  y it   , 

where   θ t   =  [ θ 1t   ,  θ 2t   , … ,  θ nt   ] ′ ,   y it    , and   y t    are  n × 1  vectors, and  A  is an  n × n  matrix. 
We denote the eigenvalues of  A  by  α =   { α j  }   j=1  n    and, in what follows, use the next 
result.

ASSUMPTION 4: The matrix  A  is diagonalizable,

  A = Q diag ( α 1  ,  α 2  , … ,  α n  )   Q   −1 , 

and the absolute value of all of its eigenvalues is less than 1, that is  | α j   | < 1  for 
all  j .

Since there are multiple degrees of strategic complementarity, the policy func-
tion in the equilibrium of the  multivariate  beauty contest model is equivalent, not 
to that of the simple forecasting with one  α -modified signal process, but a partic-
ular linear combination of all   α j   -modified signal processes. We denote the analogs 
of    E ̃   it   [ · ]   and    x ̃   it   , with  α =  α j   , by    E ̃   it   [ · ;  α j   ]   and    x ̃   it   ( α j   )  . The coefficients of this  linear 
combination can be obtained directly from the eigenvectors of  A . The following 
proposition is a natural extension of Theorem 1.

PROPOSITION 4: Suppose Assumptions  2–3 and 4 are satisfied. Let   g jt   (L)   be the 
policy rule to forecast   θ t    conditional on the   α j   -modified signal process,

    E ̃   it   [ θ t  ;  α j  ]  ≡  g  jt  ′   (L)    x ̃   it   ( α j  )  .
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Then, the equilibrium policy rule   h t   (L)   is given by

   h  t  ′   (L)  =   ∑ 
j=1

  
n

    Qe j    e  j  ′    Q   −1    (I − A)    −1   g  jt  ′   (L) , 

where   e j    denotes the  j th column of the  n × n  identity matrix.

Proposition 4 provides a sharp characterization of the equilibrium. Crucially, 
the policy rules for all  n  actions are based on the same set of modified signals. 
The  heterogeneity between these actions is only reflected in the associated weights, 
which are obtained from the eigenvectors of  A . The analysis of the equilibrium can 
be reduced to the model’s primitives: the matrix A and the exogenous  forecasts 
associated with the modified signals, again without the need to solve a fixed 
point problem.

The equivalence in Corollary 2 hinges on a special geometric weighting 
 structure of  higher-order expectations. An implication of Proposition 4 is that this 
equivalence can be generalized to much more flexible weighting structures.

COROLLARY 3: Under Assumptions  2–3 and 4,

(19)    ∑ 
k=0

  
∞

    A   k φ   E 
–
    t  k+1  [  θ t   ]  =   ∑ 

j=1
  

n

    Qe j    e  j  ′    Q   −1    (I − A)    −1  φ   E ̃   t   [  θ t  ;  α j  ] , 

where  φ  is an arbitrary row vector.

On the  left-hand side of equation (19), each row is a weighted sum of 
 higher-order  expectations. Different  A s and φs imply different weighting 
 structures, which can lead to complex combinations of  higher-order expectations. 
Despite this  complexity, they are always equal to a weighted sum of a finite number 
of  first-order expectations.

IV. Applications

In this section, we discuss several applications that utilize our  single-agent solu-
tion to characterize and understand the equilibrium of  beauty contest models with 
persistent information. Some of the applications are simple in the interest of clarity, 
and it should be evident from the exposition above that they, by no means, exhaust 
the environments in which the results are applicable.23

A. Inertia and Sentiments

When information is persistent and dispersed, the aggregate outcome can display 
rich dynamics, which helps match some salient features of the data. For example, 
one empirical regularity is that aggregate variables (such as output and inflation) 
respond to underlying shocks in a sluggish way relative to what perfect information 
models predict. At the same time,  higher-order expectations are more anchored by 

23 We provide an example of how to use the  multi-action solution in the online Appendix.
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common priors and often display inertia. In beauty contest models, the aggregate 
outcome partially inherits properties of  higher-order expectations, and therefore, can 
be more persistent than its perfect information counterpart. Another popular theme 
is that information frictions break the tight connection between the fundamental and 
the allocation, and rationalize fluctuations driven by sentiments or  animal-spirits.24 
As mentioned earlier, though dispersed information is crucial in understanding the 
propagation mechanism of these fluctuations, solving and especially characterizing 
these models is typically difficult. The  single-agent solution allows us to charac-
terize the dynamic properties of the equilibrium outcome under a general class of 
information structures.

Consider a setup with the best response given by equation (9) and signals 
that  follow a stationary process and permit a  state-space representation as in  
Proposition 2,

   ξ  it   = F  ξ  it−1   + S  ε it  , with  x it   = H  ξ  it   and  θ t   = G  ξ  it   . 

We assume, further, that the signal process satisfies

  ∫  x it   = A  θ t   + B (L)   v t   , 

for some matrices  A  and  B (L)  . The assumption that  A  is constant helps isolate 
 nonfundamental driven fluctuations. In the equation above,   v t    represents aggregate 
shocks that are orthogonal to the fundamental   θ t    , but can shift agents’ expectations 
about it. Therefore, they may be interpreted as sentiments or animal spirits. The 
information structure we have specified above includes most signal processes used 
in the literature.

PROPOSITION 5: The aggregate outcome is given by

   y  t   = C (L)  (A  θ t   + B (L)   v t  ) , 

where

  C (L)  ≡   
G adj (I −  (F − KHF) L) K

   __________________  
 ∏ k=1  ℓ    (1 −  λ k   L) 

   , 

 K  is the  steady-state Kalman gain under the  α -modified signal process, and  
   { λ k  }   k=1  ℓ     are the  nonzero eigenvalues of  F − KHF .

The proofs for all remaining results, including this one, can be found in the 
online Appendix. This result sheds light on how information frictions can shape the 
dynamics of aggregate outcomes. In the literature, Woodford (2002) and Angeletos 
and  La’O (2010) use a  guess-and-verify approach to solve their models, with 
 relatively simple signal processes, numerically. In contrast, a direct application of 

24 See Lorenzoni (2009), Barsky and Sims (2012), and Angeletos and La’O (2010) among many others.
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the  single-agent solution provides a formula that characterizes the dynamics for a 
large class of signal and fundamental processes.

Consider first the response to a shock to the fundamental. Relative 
to   θ t    itself, the aggregate outcome exhibits additional dynamics captured by the 
term  C (L)  . Generically, this extra term adds more persistence, since relative to the 
 fundamental,   θ t   , the current outcome,   y  t   , is further anchored by its past  realizations. 
Recall Example 1, where the aggregate outcome in equation (16) depends on   y  t−1    
besides   θ t   , and this connection is intensified with higher  complementarity or more 
information frictions. Proposition  5 formalizes this idea for a general class of 
information processes. The linkage with past outcomes is precisely determined by 
the eigenvalues of  F − KHF .

Next, consider the response to sentiment shocks,   v t   . For simplicity, focus on the 
case in which  B (L)  = B . The sentiment shocks inherit the same dynamic compo-
nent as the fundamental,  C (L)  . Therefore, even when the sentiment shocks are not 
persistent themselves, they can have prolonged effects on the aggregate outcome. 
The persistence of sentiments explored in Angeletos and  La’O (2010) and Huo 
and Takayama (2017) can be viewed as special cases of this proposition.

As a final remark, the additional dynamics of the aggregate outcome relative to 
the fundamental can arise from the interaction between the persistence of the funda-
mental with noise, or from the persistence of noise itself that confounds the learning 
about the fundamental. In an extreme case in which the private noise shocks are 
correlated over time, aggregate outcomes may display persistent fluctuations even 
when all the aggregate shocks are i.i.d.

B. Comparative Statics, Volatility, and GE Effects

In this  subsection, we show that the  single-agent solution also facilitates 
 obtaining  predictions about the volatility of the aggregate outcome and its 
 covariance with fundamental. These results are derived without imposing detailed 
assumptions on the information structure, and are, therefore, robust in the sense used 
by Bergemann and Morris (2013) and Bergemann, Heumann, and Morris (2015).25

We consider two types of best response functions. The first type is the 
 common-value best response (CVBR), as described in equation (9). The second is 
a particular widely used  independent-value best response (IVBR), in which agents 
observe their individual fundamental,   θ it   , perfectly,

(20)   y  it   =  (1 − α)   θ it   + α  E  it   [  y  t   ]  , 

but are unsure about the aggregate fundamental, given by   θ t   ≡ ∫  θ it   .26 The 
 assumption  that   θ it    is perfectly observable is a natural one if agents optimally 

25 Note that the  beauty contest model considered in this paper satisfies the “global stability under uncertainty” 
condition specified in Weinstein and  Yildiz (2007a), so that the maximum change in equilibrium actions, due 
to changes in beliefs at orders higher than  k , is exponentially decreasing in  k . This property makes the robust 
 predictions possible. We thank Muhamet Yildiz and an anonymous referee for pointing this out.

26 Except for   θ it    being perfectly observable, the assumptions about the stochastic processes for signals and 
 fundamentals are the same as in Section II and IIIC. 
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 allocate  their  limited cognitive resources.27 In this economy, the  first-order 
 uncertainty about their own payoff relevant fundamental is muted, but  higher-order 
uncertainty about the aggregate fundamental and outcome remains.

We establish the following comparative statics results.

PROPOSITION 6: Suppose that Assumptions  1–3 are satisfied:

 (i ) For CVBR with  α ∈  (−1, 1)   and IVBR with  α > 0 , the volatility of the 
aggregate outcome and its covariance with the fundamental are decreasing 
in the degree of strategic complementarity,

    
∂ var  ( y  t  )  _ ∂ α   ≤ 0, and   

∂ cov ( y  t  ,  θ t  )  _ ∂ α   ≤ 0. 

 (ii ) For CVBR, if  α > 0  ( α < 0 ) the volatility of the aggregate outcome is 
lower (higher) than the volatility of the average forecast of the fundamental,

  var ( y  t  )  ≤ var (  E 
–
   t   ( θ t  ) ) , if α > 0, and var ( y  t  )  ≥ var (  E 

–
   t   ( θ t  ) ) , if α < 0. 

 (iii) For IVBR if  α > 0  ( α < 0 ) the volatility of the aggregate outcome is lower 
(higher) than the volatility of the fundamental,

  var ( y  t  )  ≤ var ( θ t  ) , if α > 0, and var ( y  t  )  ≥ var ( θ t  ) , if α < 0. 

The results for the CVBR can be understood using the  single-agent solution, 
which implies that   y  t   =   E ̃   t   [  θ t   ]  . With the modified signal process, as  α  increases the 
precision of private signals decreases, and the forecast is less accurate. Therefore, 
the volatility of the average forecast decreases since agents become less responsive 
to signals, and the covariance between the fundamental and its forecast declines 
as well. Part (ii) of the proposition follows directly from part (i) by noticing that  
  y  t   =   E 

–
   t   [  θ t   ]   when  α = 0 .

Next, consider the IVBR case. From Proposition  3, the aggregate outcome is 
given by

(21)   y  t   =  (1 − α)   θ t   + α   E ̃   t   [  θ t   ] . 

The first term   (1 − α)   θ t    is associated with the agents’ response to their own 
 fundamentals, which can be interpreted as partial equilibrium (PE) effects, and 
the second term is the agents’ response to others’ actions which can be interpreted 
as general equilibrium (GE) effects.28 A larger strategic complementarity implies 
 noisier  private signals in the  α -modified signal process, which attenuates the 

27 As in Maćkowiak and Wiederholt (2009), agents rationally choose to pay more attention to their individual 
fundamental shocks than to the aggregate shocks.

28 For a more detailed discussion of this interpretation, see Angeletos and Lian (2016a).
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response of    E ̃   t   [  θ t   ]   to changes in the fundamental. When  α  is positive, an increase 
in  α  also increases the weight of the less responsive GE effects,    E ̃   t   [  θ t   ]  , relative to the 
fundamental,   θ t   , in equation (21). This explains why the variance of the aggregate 
outcome and its covariance with the fundamental decrease with  α .

Part (iii) for  α > 0  follows from the fact that   y  t   =  θ t    when  α = 0  and from the 
result in the part (i). For strategic substitutes,  α < 0 , information frictions amplify 
the volatility of the aggregate outcome. To see why, rearrange equation (21) to obtain

   y  t   =  θ t   − α ( θ t   −   E ̃   t   [  θ t   ] ) . 

Loosely speaking,   θ t    is more responsive than the expectation of   θ t   . With a 
 negative  α , it follows that the aggregate outcome also becomes more responsive 
than the  fundamental itself.29

Bergemann and  Morris (2013) and Bergemann, Heumann, and  Morris (2015) 
characterize comparative statics about the maximum volatility of the aggregate 
 outcome. Exploiting properties of correlated equilibria, their approach can be used 
to identify the boundary of the set of equilibria and how it changes with the degree of 
strategic complementarity. Our results are substantially different from theirs. First, 
in terms of comparative statics, we fix the underlying information structure when 
varying  α  while the information structure that achieves the maximum volatility may 
vary with  α  in those papers. Second, we compare the volatility of the aggregate 
outcome with that of the fundamental and its conditional expectation. Without the 
 single-agent solution, analyzing this type of equilibrium properties would require a 
 case-by-case study for the information structure at hand. Using our result, this task 
boils down to analyzing statistical properties of a simple forecasting problem, which 
allows the general statements made above.

C. Social Value of Public Information in Transition

In this section, we explore the transition dynamics of social welfare following a 
change in the precision of public information. An interesting point made by Morris 
and Shin (2002) is that increasing the precision of public information can reduce 
social welfare. Angeletos and Pavan (2007) discusses the social value of information 
with a more general payoff structure. These studies focus on the static case, while 
here we consider a dynamic fundamental. We first show that the result from Morris 
and Shin (2002) is strengthened when the fundamental is more persistent. However, 
this is based on a comparison between steady states, which can be misleading in 
dynamic settings. To make this point clear, we provide an example in which, even 
though increasing the precision of public information is eventually detrimental to 
welfare, welfare is improved for a long time during transition.

29 For the CVBR, Angeletos and Lian (2016b) proves part (i) of Proposition 6 under a particular static signal 
 structure. We generalize the signal process to allow for a larger class of dynamic information structures. With 
respect to part (ii), Angeletos and Lian (2016b) shows that  var ( y  t  )  ≤ var ( θ t  )  , while we obtain a tighter bound 
by  comparing  var ( y  t  )   with  var (  E 

–
    t   ( θ t  ) )  . In addition, we also explore properties of the IVBR, whereas that paper 

does not.
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Consider a fundamental,   θ t   , that follows an AR(1) process as in (8), and suppose 
that agents observe a public and a private signal about it. Purposely, we allow the 
precision of the public signal to change over time,

   z   t   =  θ t   +  ε t   , and  x   it   =  θ t   +  ν it   , 

where   ε t   ∼   (0,  τ  ε, t  −1 )  , and   ν it   ∼   (0,  τ  ν  −1 )  . Before moving to the transition 
dynamics, we first discuss the properties of the social value of information in the sta-
tionary case, i.e., with   τ ε, t   =  τ ε   . We assume that the agents’ best response is given by 
equation (9), and that the (period) social welfare function is   W  t   ≡ −∫   ( y  it   −  θ t  )    2  , so 
that it is optimal to keep all agents’ actions as close as possible to the  fundamental,   θ t   . 
Using the equivalence result, it follows from Proposition 2 that we can solve for the 
 steady-state welfare analytically.30

To investigate under which conditions increasing the level of public information 
precision can reduce steady-state welfare, let    τ ˆ   ε    be the precision that minimizes 
welfare,31

    τ ˆ   ε   ≡  arg min  
 τ ε  
    W. 

When   τ ε   <   τ ˆ   ε    , increasing   τ ε    tends to reduce welfare. Panel A of Figure 2 shows  
how    τ ˆ   ε    changes with the persistence  ρ . Interestingly, as  ρ  increases, the 
 welfare-reducing region becomes larger.

However, this result can be misleading. When signals are persistent, following a 
change to the precision of public information, the distribution of agents’ priors does 
not change immediately, and the economy can experience a relatively long transi-
tion before it converges to the new steady state. During this process, the dynamics 
of social welfare can reverse the steady-state comparative statics. Panel B shows 
welfare in the steady state for various values of   τ ε   . The  U-shaped curve  indicates 
the existence of a  welfare-reducing region. In our experiment, there is a permanent 
increase of the precision of public signal at time  t = 0 . As depicted in the figure, 
an increase in   τ ε    induces a reduction in  steady-state welfare. However, if we look 
at the transition path toward the new steady state, the message is quite  different. 
Figure 3 shows how welfare changes over time. For many periods  welfare is actu-
ally improved, and the magnitude of the improvement is larger than the  eventual 
reduction.

Social welfare can be decomposed into

   W  t   = −  
(

    v  t   
⏟
    

var ( y  it  ) 
   −    2  c  t   

⏟
   

cov ( y  it  ,  θ t  ) 
   +    ω 

⏟
    

var ( θ t  ) 
  
)

 . 

30 The formula for the  steady-state welfare is given by

  W = −   
 τ η   ( τ ε   +   (1 − α)    2   τ ν  )  +  κ   2 

    ________________________________________________     
 ( τ ε   +  (1 − α)   τ ν  )  ( ( τ ε   +  (1 − α)   τ ν  )  + 2κ)   τ η   +  (1 −  ρ   2 )   τ η    κ   2 

   , 

 with κ =   
 τ η   (κ +  ( τ ε   +  (1 − α)   τ ν  ) ) 

   _____________________   
κ +  ( ρ   2   τ η   +  τ ε   +  (1 − α)   τ ν  ) 

  . 

31 Note that  W  is a continuous function of   τ ε   , with  W (0)   finite and negative and   lim  τ ε  →∞   W ( τ ε  )  = 0 . Therefore,  
 W  is bounded and attains its minimum.
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The variance of   θ t    is invariant,  ω ≡ 1 /  (1 −  ρ   2 )   τ η    , and, using Proposition  2,  
the dynamics of the other components of welfare can be written recursively as

(22)   v  t   =   
 ρ   2   κ  t  2  _______ 

  ( τ t   +  κ t  )    2 
    v  t−1   +   2  ρ   2   τ t    κ t   _______ 

  ( τ t   +  κ t  )    2 
    c  t−1   +   

ω  τ   t  2  +  τ t   − α (1 − α)   τ ν     ________________  
  ( τ t   +  κ t  )    2 

  , 

(23)   c  t   =    ρ   2   κ t   _  τ t   +  κ t      c  t−1   +   ω  τ t   _  τ t   +  κ t     , 

(24)   κ t+1   =   
 τ η   ( κ t   +  τ t+1  )   ____________  

 ρ   2   τ η   +  κ t   +  τ t+1   
  , 

Figure 2. Welfare in Steady State

Note: Parameters in panels A and B,   τ η   = 1 , and  α = 0.85 ; in panel B,   τ ν   = 0.3 , and  ρ = 0.95 .
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with the trigger of the transition coming from the  time-varying precision  
  τ t   ≡  (1 − α)   τ ν   +  τ ε, t    . The system ( 22)–(24) captures the  slow-moving nature of 
the social welfare. Agents’ forecasts rely on their prior precision about the aggregate 
state (24), which is updated gradually due to Bayesian learning. The variance of   y  it    
and its covariance with the fundamental depend on the precision of the prior, and thus 
exhibit persistence as well. The different updating speeds of   v  t    and   c  t    allows welfare 
to increase initially and decrease later on. The takeaway from this example is that 
the results derived from a static setting may not readily extend to a dynamic setting 
since the  slow-moving nature of agents’ behavior can induce  nontrivial dynamics.

V. Endogenous Information

So far, we have assumed that the signals follow exogenous stochastic processes, 
that is, that they are independent of agents’ actions in equilibrium. In this section, 
we show that the  single-agent solution remains valid when the source of information 
is endogenous. To better simplify the exposition, we focus here on stationary signal 
processes.

To include the possibility that agents can learn from endogenous aggregate 
 variables, we consider signal structures with the following form

(25)   x it   = M (L)   ε it   + p (L)   y  t  . 

The first part  M (L)   ε it    captures the information that is exogenously specified, 
and the second part  p (L)   y  t    allows the signal to be a function of the aggregate 
action   y  t   . The informativeness of the signal depends on the process of   y  t   , which 
is determined endogenously in equilibrium.32 A natural requirement is that agents 
can only learn from current and past aggregate actions, that is,  p (L)   is a  one-sided 
 square-summable polynomial vector.

With endogenous signals, the equilibrium imposes an additional consistency 
requirement that the law of motion for the aggregate action in the signals is consis-
tent with that implied by agents’ actions. We define the equilibrium in a way that 
highlights this requirement.

DEFINITION 3: A linear  Bayesian-Nash equilibrium with endogenous information 
is a policy rule  h (L)   for agents and a law of motion   (L)   for the aggregate action, 
such that:

 (i ) The individual action   y  it   = h′ (L)   x it    satisfies the best response (9), and the 
signal is given by the following exogenous process:

(26)   x it   = M (L)   ε it   + p (L) ′ (L)   η  t  . 

 (ii ) The aggregate action is consistent with individual actions:   y  t   = ∫  y  it    .

32 Note that, in our setup, only the aggregate action enters the agents’ information sets and all agents behave 
competitively. As a result, agents do not take into account the effect that their action might have on others’ 
 information sets.



554 THE AMERICAN ECONOMIC REVIEW FEBRUARY 2020

 (iii) The aggregate action is consistent with agents’ signals:   y  t   = ′ (L)   η  t    .

Condition (iii) distinguishes an endogenous from an exogenous information 
equilibrium. It implies, together with condition (i), the  cross-equation restriction

(27)  ′ (L)  = h′ (L)  (M (L)  [   I u    
0
   ]  + p (L) ′ (L) ) , 

which is clearly a fixed point problem for   (L)  . We want to emphasize that given 
any   (L)  , the signal structure of an individual agent is well defined by equation 
(26), and, for conditions (i) and (ii) to be satisfied, it must be an exogenous informa-
tion equilibrium from Definition 1. Therefore, all of our results from Section III still 
apply. If there exists a particular   (L)   that also satisfies condition (iii), then it is an 
endogenous information equilibrium. We formalize this argument in the following 
proposition.

PROPOSITION 7: Under Assumptions  1–3, if  h (L)   and   (L)   are an equilibrium 
from Definition 3, then the policy rule  h (L)   satisfies

    E ̃   it   [  θ t   ]  = h′ (L)    x ̃   it   ,

where    x ̃   it    the  α -modified signal process of   x it   , and the law of motion of the 
 aggregate action   (L)   satisfies

   y  t   = ′ (L)   η  t   =   E ̃   t   [  θ t   ] . 

The proof of this proposition follows from the observation that, if an endogenous 
information equilibrium exists, each individual agent still regards their information 
process as exogenous.33 This is due to the fact that all agents behave competitively 
and do not take into account the effects of their action on the aggregate outcome. 
Hence, the policy rule is still the forecasting rule of the fundamental with modified 
signals.

When computing these types of models, obtaining the signal process requires 
a recursive algorithm that solves an exogenous information equilibrium in each 
iteration. This step can be efficiently implemented via the  single-agent solution. 
By the same logic, our  single-agent solution can also be extended to environments 
with an information acquisition choice (Hellwig and Veldkamp 2009; Maćkowiak 
and Wiederholt 2009). Once all agents have chosen the precision of their signals 
in equilibrium, they effectively receive signals as if the process for the signal is 
 exogenously specified.34

33 Proposition  7 does not establish the existence of an equilibrium, but a property that an equilibrium 
must  satisfy if it exists.

34 We provide an example of how to use Proposition 7 in the online Appendix.
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VI. Extensions

As mentioned in Section  II, the type of best response functions we have 
 considered so far excludes two possibilities: (i) heterogeneity among agents’ payoff 
and  information structures; and (ii) intertemporal strategic complementarity. Though 
our  single-agent solution does not apply exactly to these types of best response 
 functions, we show that the basic insight still works for some relevant applications.

A. Network: Heterogeneous Payoff and Information Structure

An assumption that has been maintained throughout the paper, up to this point, is 
that of  ex ante symmetry between the agents. Though agents may experience differ-
ent private shocks over time, ex ante they have the same information structure and 
best response functions. In this section, we extend our result to asymmetric settings 
where there are agents of different types. These asymmetries lead to a network setup 
where agents depend on each other in different ways, and the information structure 
can also differ from agent to agent.

Suppose that there are  n  different agents in the economy.35 Each agent has its own 
fundamental and the agents’ actions can depend on each of the other agents actions. 
Abusing notation, we denote   E  t   =  [ E  1t   , … ,  E  nt  ] ′ . Then, the best response function 
can be written as36

(28)   y t   =  E  t   [  θ t   ]  +  E  t   [ Wy t   ]  , 

where   θ t   , and   y t    are  n × 1  vectors, and  W  is an  n × n  matrix that summarizes the cross 
dependence of agents’ payoffs on others’ actions, we call this the payoff matrix. The 
heterogeneity in the payoff structure could be interpreted as the network structure in 
a network game. Moreover, one can also relate this framework to macroeconomic 
models in which multiple groups of agents (such as firms and households) with het-
erogeneous information interact with each other, as in Maćkowiak and Wiederholt 
(2015) and Angeletos and Lian (2018).

With perfect information, the equilibrium outcome would be given by

(29)   y t   =   (I − W)    −1   θ t   . 

The matrix    (I − W)    −1   is related to  Katz-Bonacich centrality of the network, which 
appear in the characterizations of equilibrium in de Martí and Zenou (2015) and 
Bergemann, Heumann, and Morris (2017). We are interested in how this formula 
changes when information is incomplete.

35 It can also be interpreted in a way that the economy has  n  group of agents, and there are a large number of 
identical agents in each group.

36 In more detail,

   
[

  
 y  1t  

  ⋮  
 y  nt  

   
]

  =  

⎡
 ⎢ 

⎣
 

 E  1t   [ θ 1t  ] 

  ⋮  
 E  nt   [ θ nt  ] 

  

⎤
 ⎥ 

⎦
  +  

⎡

 ⎢ 

⎣
  

 ∑ j≠1  
     E  1t   [ W  1j    y  jt  ] 

  ⋮  
 ∑ j≠n  

      E  nt   [ W  nj    y  jt  ] 

 

⎤

 ⎥ 

⎦
  . 
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Information.—In period  t , agent  i  observes a vector of signals37

(30)   x it   = M (L)   ε it   , 

where  M (L)   is common to all agents. The heterogeneous information structure is 
captured in the covariance matrix of   ε it   .

ASSUMPTION 5: The elements of   ε it    are uncorrelated normal shocks. The covari-
ance matrix of   ε it    is denoted by   Σ  i  2  , where   Σ  i  2  = diag ( τ  1  −1 , … ,  τ  m−1  −1  ,  γ  i  −1   τ  m  −1 )  , with 
the first  m − 1  shocks being common shocks and only the last one being private.38 
Otherwise,  M (L)   satisfies Assumption 2 and each

   θ it   =  [  ϕ  i  ′   (L)   0 ]  ε it   

satisfies Assumption 3.

The first  m − 1  shocks are common shocks, which could drive fundamentals or 
serve as common noise. The last shock is a private noise, and its variance is agent 
specific. This  ex ante heterogeneity in agents’ information structures is absent  in 
 previous sections. We use the diagonal matrix  ϒ = diag ( γ  1  −1 , … ,  γ  n  −1 )   to summa-
rize this heterogeneity.

In the  multi-action setup from Section IIIA, the relevant modification of the sig-
nal process only depends on the degree of strategic complementarity. With heteroge-
neous payoff and information structures, the required modification is more involved 
and hinges on both  W  and  ϒ .

ASSUMPTION 6: The matrix    (I − W)    −1  ϒ  is diagonalizable with

    (I − W)    −1  ϒ = Qdiag (  γ ̃    1  −1 , … ,   γ ̃    n  −1 )   Q   −1  ,

where    γ ̃    j  −1   is its  j  th eigenvalue and the absolute values of all eigenvalues are less 
than 1.

In a similar way to the  multi-action analysis, we define the  j  th  network-modified 
signal process to be

    x ̃   jt   = M (L)    ε ̃   jt  , 

where the covariance matrix of    ε ̃   jt    is    Σ ̃    j  2  = diag ( τ  1  −1 , … ,  τ  m−1  −1  ,   γ ̃    j  −1   τ  m  −1 )  . The 
 modified precision takes into account both the relative importance of the network 
linkages and the relative precision of agents’ signals. These modified signals turn 
out to be sufficient to establish our  single-agent solution.

37 In the online Appendix, we allow  M (L)   to depend on time  t . 
38 The fact that agents are assumed to have only one private shock is made mostly for presentation purposes, the 

assumption is relaxed in the proof presented in the online Appendix.
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THEOREM 2: The forecast rule conditional on the  j  th network modified signal 
process is defined as

   E ̃   [ θ t   ∣   x ̃    j  t ]  =  g  j  ′   (L)    x ̃   jt   . 

Under Assumptions 5 and 6, the equilibrium policy rule  h (L)   is given by39

  h′ (L)  =   ∑ 
j=1

  
n

    Qe j    e  j  ′    Q   −1    (I − W)    −1   g  j  ′   (L) . 

The solution in Theorem  2 modifies its perfect information counterpart (29) 
in two ways. First, the fundamental   θ t    is replaced by forecasts of the fundamen-
tal;  second, the policy rule is a weighted average of  n  different  Katz-Bonacich 
 centrality measures. This result is, unsurprisingly, more complicated than the case in 
which all agents are symmetric. Instead of forming expectations about the average 
expectations, agents need to keep track of the average of their neighbors’ expec-
tations of the average of their neighbors’ expectations of the fundamental, and so 
on.40 Incidentally, this is why the proof does not follow directly from Corollary 2. 
Regardless, the main properties of the  single-agent solution are maintained. With 
this network structure, solving the equilibrium via the fixed point approach is a 
very demanding task, as one needs to solve for  n  sets of policy rules. In contrast, 
our  single-agent solution remains tractable. Besides, it shows how the payoff and 
 information structures matter for the equilibrium in a transparent way.

In a similar, though static, setting, de Martí and Zenou (2015) and Bergemann, 
Heumann, and  Morris (2017) characterize the equilibrium by  Katz-Bonacich 
 centrality measures weighted by shocks and covariances between fundamentals 
and signals, respectively. Our characterization extends to dynamic information 
 structures. Importantly, when information is persistent, agents naturally want to 
keep track of the entire history of signals, which is an  infinite-dimension object. 
By expressing the policy rule in terms of finite forecasts of the fundamental, one 
can utilize the Kalman filter and derive the policy rule recursively. We think this 
 tractability will be useful for applied work.

We conclude this section  by providing an example to show how the network 
structure interacts with incomplete information.

Example 2:  Consider a ring network. The length of the network or the number of 
agents is  n . Assume that in the network, only agent 1 cares about the fundamental   θ t    
directly and all other agents only care about the previous agent’s action. The best 
response functions are given by

   y  it   =   {   
 (1 − α)   E  1t   [ θ t  ]  + α  E  1t    [  y  nt   ]   

if i = 1
     

 E  it   [  y  i−1,t   ] 
  

if i > 1
    .

39 As a corollary it follows that the equilibrium exists and is unique.
40 By iteration on equation (28), we obtain   y t   =  ∑ k=0  ∞     E 

–
    t  k  [W   E 

–
   t   [ θ t  ] ]   where the  higher-order expectations  

   E 
–
    t  k  [W   E 

–
   t   [ θ t  ] ]   are defined recursively as    E 

–
    t  0  [W   E 

–
   t   [ θ t  ] ]  =   E 

–
   t   [ θ t  ]  , and    E 

–
    t  k  [W   E 

–
   t   [ θ t  ] ]  =   E 

–
   t   [W   E 

–
    t  k−1  [ θ t  ] ]  . 
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The corresponding  W  matrix, which we present next to a diagram of the network 
structure, is given by

  W =  

⎡

 ⎢ 
⎣
 

0

  

0

  

⋯

  

α

   1  0  ⋯  0   ⋮  ⋱  ⋱  ⋮   

0

  

⋯

  

1

  

0

  

⎤

 ⎥ 

⎦
   

3

2

1

θ

n

···

α

1− α
1

1
1

1

Suppose, further, that the fundamental,   θ t   , follows a random walk, and that, every 
period, each agent observes a private signal about the fundamental,

   x  it   =  θ t   +  ν it  ,  ν it   ∼   (0,   ( γ i    τ ν  )    −1 ) . 

Note that the precision is agent specific.
With perfect information, it is easy to verify that agents’ actions are independent 

of their position in the network, and all the responses are simply equal to the funda-
mental itself,   y  it   =  θ t   .

In contrast, the network structure matters a lot when information is incomplete. 
First, consider the case in which   γ i   = 1  for all  i . If  α = 0 , agent 1’s action is equal 
to the  first-order expectation about the fundamental, agent 2’s action is equal to the 
 second-order expectation, and, by induction, agent  n ’s action is equal to the  n  th 
order expectation. Clearly, an agent’s position in the network shapes their reac-
tion. The further away an agent is from agent 1, the deeper the depth of reasoning 
required. When  α ≠ 0 , agent 1 also cares about agent  n ’s expectations, and all 
the  higher-order expectations start to play a role. However, the extent to which a 
particular  higher-order expectation matters depends on the length of the network. 
In particular,

   y  it   =  (1 − α)   E  it   [  E 
–
    t  i−1  [  θ t   ] ]  +  (1 − α)   ∑ 

k=1
  

∞
    α   k   E  it   [  E 

–
    t  nk+i−1  [  θ t   ] ] , for i ∈ 1, … , n. 

Note that, with a larger  n , the weight on  higher-order expectations increases as agents 
have to think through more layers of others’ expectations. Panel A of Figure 4  shows 
the impulse responses to a fundamental shock. Clearly, as the length of the network 
increases from  n = 5  to  n = 50 , the outcome becomes more dampened and more 
persistent. A higher  n  brings the outcome closer to expectations of higher order.

In panel B, we consider another experiment. We fix the length of the  network to 
be  n = 50 . Instead of setting   γ i   = 1  for all agents, we lower the  precision of the  n  th 
agent by setting   γ n   = 0.01  . Even though all other agents still have  relatively accu-
rate forecasts about the fundamental, a strong coordination motive makes them reluc-
tant to respond in order to behave similarly to the  n  th agent, which has the most 
dampened response. Given the large number of agents in the network, it is interesting 
to notice how much the change in precision of only one agent affects the action of all 
other agents. This pattern is similar to the tyranny of the least informed discussed in 
Golub and Morris (2017): here we see its dynamic effects.
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B. Beyond Static  Beauty Contest Model

So far, we have focused on  beauty contest models with static strategic 
 complementarity, where an agent’s action only depends on others’ actions within the 
same period. This is the most extensively studied case in the literature on  dispersed 
information, but there is a growing interest in understanding properties of  beauty 
contest models with intertemporal strategic complementarities. Here, we consider 
the following best response function in which agents also care about the future 
aggregate action,

(31)   y  it   = γ  E  it   [  θ t   ]  + α  E  it   [  y  t   ]  + β  E  it   [  y  t+1   ]  . 

This specification is similar to Allen, Morris, and  Shin (2006); Nimark (2017); 
Rondina and Walker (2018); and Angeletos and Lian (2018). It arises when agents 
need to make intertemporal decisions, such as the consumers’ Euler equation, 
the New Keynesian Phillips curve, or asset pricing equations. Angeletos and Huo 
(2018) obtains the solution to a similar  forward-looking model. Here, we focus on 
its equivalence to a  single-agent problem and provide the appropriate transformation 
to the signal process.

We assume that agents receive a public and a private signal

   z   t   =  θ t   +  ε t   , and  x  it   =  θ t   +  ν it   , 

where   ε t   ∼   (0,  τ  ε  −1 )  , and   ν it   ∼   (0,  τ  ν  −1 )  . Suppose that the fundamental   θ t    
 follows an AR(1) process as in (8) with   η t   ∼   (0, 1)  . The information set of agent  i  
at time  t  is    t   =  {  z   t ,  x  i  t  }  . Also, normalize  γ ≡ 1 − α − ρβ  , such that the perfect 
information solution is simply   y  t   =  θ t   .

Figure 4. Impulse Responses for a Ring Network

Note: Parameters in panels A and B,   τ η   =  τ ν   =  γ i   = 1 , and  α = 0.9 ; in panel B,  n = 50 .
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In the simple forecasting problem, we have that

(32)   E  it   [  θ t   ]  =   λ _ 
ρ (1 − ρλ)      

 τ ε    z   t   +  τ ν    x  it   _ 
1 − λL

   , 

where the weights on the signals are proportional to their precision and  λ  is given by 
a function  Λ  of the precision of the signals, and of the persistence of the fundamental,

  λ ≡ Λ ( τ ε  ,  τ ν  , ρ)  ≡   1 _ 
2
   (   τ ε   +  τ ν   _ ρ   +   1 _ ρ   + ρ −  √ 

_________________

     (   τ ε   +  τ ν   _ ρ   +   1 _ ρ   + ρ)    
2

  − 4  ) . 

PROPOSITION 8: Suppose   |β/(1 − α)|  < 1 . Then, the policy rule in equilibrium 
is given by

(33)   y  it   =    λ ̃   ________ 
ρ (1 − ρ λ ̃  ) 

      τ ε    z   t   +   τ ̃   ν    x  it   ________ 
1 −  λ ̃  L

   . 

The modified precision of the private signal,    τ ̃   ν    , and the persistence,   λ ̃   , are jointly 
determined by the system

    τ ̃   ν   ≡  (1 − α −  λ ̃  β)   τ ν   , and  λ ̃   ≡ Λ ( τ ε   ,   τ ̃   ν   , ρ) . 

Comparing equations (32) and (33), one can see that, in this  forward-looking 
 beauty contest model, the policy rule is still equivalent to a pure forecasting problem 
with a modified signal process that can be interpreted as a  single-agent solution.41 
The key difference is in how the signal is modified. When  β = 0  , the solution 
collapses to the one in our baseline case without  forward-looking behavior, and 
the precision is simply discounted by the degree of static complementarity, that 
is    τ ̃   ν   = (1 − α) τ ν    . When  β ≠ 0  , the modification is more involved as it requires 
solving a nonlinear equation,

    τ ̃   ν   ≡  (1 − α − Λ ( τ ε   ,   τ ̃   ν   , ρ) β)   τ ν  . 

The  higher-order expectations, in this case, involve forecasts that take place across 
different horizons since agents need to forecast how others think about the funda-
mental tomorrow, how others think about how others think about the fundamental 
the day after tomorrow, and so on. The required discounting is, therefore, not just 
the intertemporal complementarity, because an adjustment is necessary to capture 
the effects of the anticipation of learning by other agents in the future as well. In any 
case, the basic insight that the equilibrium policy rule is akin to a pure forecasting 
of the fundamental with a discounted precision of private signals remains true.42

41 See the remark at the end of Appendix A for a discussion of why the proof strategy applied in Theorem 1 
cannot be applied when there are dynamic complementarities. This is why the proof of Proposition 8 is different 
and more involved.

42 Differently from the static  beauty contest model in which the  single-agent solution works for essentially 
all linear signal processes, the type of  single-agent solution in Proposition 8 may not generalize to more arbitrary 
signal processes.
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More generally, the best response function could be written as

   y  it   = γ  E  it   [  θ t   ]  +  E  it   [g (L)   y  t  ] , 

where  g (L)   is a  two-sided polynomial in  L . The best response (9) corresponds 
to  g (L)  = α , and the best response (31) corresponds to  g (L)  = α + β  L   −1  , which 
are two common cases discussed in the literature. Despite the simplicity of our 
 single-agent solution, it is subject to the limitation that it may not work for general  
 g (L)  . Notice that Proposition 8 holds when there are  forward-looking complemen-
tarities and the fundamental follows an AR(1) process. Alternatively, if there are 
 backward-looking complementarities or if the fundamental follows a more compli-
cated process, the result may not hold. We provide an example of this kind in the 
online Appendix.43 This helps draw a limit to our results, though the  single-agent 
solution could still serve as a good approximation for the exact equilibrium dynam-
ics in those cases.

VII. Conclusion

This paper establishes the equivalence between the equilibrium of  beauty contest 
models and the solution to a  single-agent forecasting problem with a modified signal 
process. We have shown that the policy rule in the latter also solves the former. What 
makes our  single-agent solution powerful is the fact that the required modification 
of the signal structure takes a simple form and that it works for a general class of 
information structures. This allows us to explore general properties of  beauty con-
test models and makes it suitable for quantitative applications. We extend this result 
to models with multiple actions and to network games.

We believe the methods developed in this paper can potentially be applied to 
explore many interesting questions. For example, with incomplete information, how 
do the GE attenuation effects change when market concentration increases? How 
does the persistence of inflation change when monetary policy becomes more or less 
aggressive? How does information dispersion affect the propagation mechanism for 
sectoral shocks in an economy with  input-output linkages? The  guess-and-verify 
approach or the numerical approximation methods commonly used in the literature, 
to some extent, limit the understanding and applicability of dispersed information 
models. We hope that our results can help overcome these limitations.

Appendix A: Proof of Theorem 1

The proof is presented as a series of lemmas and propositions. In Section A we 
show that the forecasting problem set up in Section II is equivalent to a limit of a trun-
cated version of it. Section B sets up and solves a static forecasting  problem equiva-
lent to the truncated version. Section C presents and solves the  associated fixed point 
problem that gives the equilibrium of a  beauty contest problem; in it, we also estab-
lish the existence, uniqueness, and linearity of the equilibrium. Section D describes 

43 This example includes  backward-looking complementarity, which can result, for instance, from an 
 environment with endogenous capital accumulation. 
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the  α -modified signal process, and Section E proves the equivalence between the 
policy function of the solution to the static version of the  forecasting problem with 
the  α -modified signal process and the solution to the fixed point problem.

A. Limit of Truncated Forecasting Problem

Fix  t . Section II sets up the problem of forecasting   θ t    given   x  i  t  ≡  { x it  ,  x it−1  , …}  . 
For ease of notation, we define

  ϑ ≡  θ t   =   ∑ 
k=0

  
∞

    ϕ k    η  t−k  , and x ≡  x  i  t  . 

Notice that each element of  ϑ  and  x  can be represented as an MA( ∞ ) process and 
that there is an infinite history of signals.

Consider a truncated version of this problem.44 Let   ϑ q    be the MA(  q  ) truncation 
of  ϑ , that is,

   ϑ q   =   ∑ 
k=0

  
q

    ϕ k    η  t−k  . 

Let   x  p   (N )   ≡  { x p, it   , …,  x p, it−N  }   where   x p, it−k    is the MA(  p ) truncation of   x it−k    . The 
next proposition shows that the limit as  q ,  p , and  N  go to infinity of the forecast 
of   ϑ q    given   𝒙  p   (N )    is equivalent to the forecast of  ϑ  given  𝒙 . Throughout, the concept 
of convergence between random variables is mean square. For example, we can say 
that   lim q→∞   ϑ q   = ϑ , since

    lim  
q→∞   E [  (ϑ −  ϑ q  )    2 ]  =   lim  

q→∞   E [  (ϑ −   ∑ 
k=0

  
q

    ϕ k    η    t−k  )    
2

 ]  

 =   lim  
q→∞     ∑ 

k=q+1
  

∞
     ϕ k   E [ η   t−k  2  ]   ϕ  k  ′   = 0, 

where the last equality is due to the assumption that  ϕ (L)   is square summable and 
that  E [ η   t−k  2  ]   is finite. In the online Appendix, we prove the following proposition.

PROPOSITION 9:  E  [ ϑ ∣ 𝒙 ]  =  lim p, q, N→∞   E [ ϑ q   ∣  𝒙   p   (N  )  ]  .

B. Static Forecasting Problem

We now consider the truncated problem of forecasting   ϑ q    conditional on   𝒙  p   (N )   , 
which can be viewed as a static problem. Again, to ease notation, define

  η ≡  
[

   
 η  t  

  ⋮  
 η  t−T  

  
]
  ,  ν i   ≡  

[
   
 ν it  

  ⋮  
 ν it−T  

  
]
 , and  ε i   ≡  [   

η
   ν i    ] , 

44 Note that in this truncation, we do not assume shocks become public after a certain number of periods, 
 differently from the common assumption made in the literature (e.g., Townsend 1983).
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where  T ≡ max { q, p + N }  . Notice that, there exists a vector  a  with length  
 U ≡ u (T + 1)  , and a matrix  B  with dimensions  r (N + 1)  × M , where  M  
≡ m (T + 1)  , such that the forecasting problem at time  t  becomes that of forecasting

  θ ≡  ϑ q   =  [ a′  0′ ]   ε i   = a′η, given  x i   ≡  
[
  
 x p, it  

  ⋮  
 x p, it−N  

 
]
  = B  ε i   = B [  

η
    ν i  
  ] . 

Let   Ω   2   denote the covariance matrix of   ε i   , let  A ≡  [ a′  0′ ] ′ , and let Λ be the  M × M  
matrix given by

  Λ ≡  [ 
 I U    0  
0
  

0
 ] . 

It follows that

  E [θ ∣  x i  ]  = A′ΩΛΩB′   (B Ω   2 B′)    
−1

   x i   . 

It is convenient for what follows to write the forecast in this way. To obtain this 
 formula we use, in particular, the fact that  A′ = A′Λ  and that  ΛΩ = ΩΛ .

C. Fixed Point Problem

Suppose we also want to forecast  y . We do not know the stochastic process for  y , 
so let h denote the agent’s equilibrium policy function, i.e.,   y  i   = h′  x i   , then

  y = ∫ h′  x  i   = h′ BΛ  ε i   . 

Then, the forecast of  y  is given by

  E [y ∣  x i  ]  = h′ BΩΛΩB′   (B Ω   2 B′)    −1
   x i   . 

In equilibrium, we have that

   y  i   =  (1 − α) E [ θ ∣  x i   ]  + αE [ y ∣  x i   ] , 

and, therefore

  h′  x i   =  [ (1 − α) A′ΩΛΩB′   (B Ω   2 B′)    
−1

  + αh′ BΩΛΩB′   (B Ω   2 B′)    −1
 ]   x i   . 

It follows from the fact that equation above holds for any   x i    that

(A1)  h =  C   −1  d, 

where

(A2)  C ≡ I − α   (B  Ω   2 B′)    
−1

  BΩΛΩB′, 

(A3)  d ≡  (1 − α)    (B  Ω   2 B′)    
−1

  BΩΛΩA. 
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LEMMA A1:  C  is invertible.

PROOF: 
We start by showing that  Y ≡   (B Ω   2 B′)    −1  BΩΛΩB′  has real eigenvalues in   

[ 0, 1]  . First notice that  Y  has real,  nonnegative eigenvalues since it is similar to

    (B  Ω   2 B′)    
1/2

  Y   (B  Ω   2 B′)    
−1/2

  =   (B  Ω   2 B′)    
1/2

    (B  Ω   2 B′)    
−1

  (BΩΛΩB′)    (B  Ω   2 B′)    −1/2
  

  =   (B  Ω   2 B′)    
−1/2

  (BΩΛΩB′)    (B  Ω   2 B′)    
−1/2

  

which is positive semidefinite. On the other hand,

  I − Y =   (B  Ω   2 B′)    
−1

  BΩ (I − Λ) ΩB′, 

which, analogously to  Y , is also similar to a positive semidefinite matrix. If  λ  
is an eigenvalue of  Y , then  1 − λ  is an eigenvalue of  I − Y . Therefore, the fact 
that the eigenvalues of  I − Y  are positive implies that the eigenvalues of Y must 
be less than or equal to  1 , as desired. It follows that  S ≡  ∑ j=0  

∞      (αY)     j   converges,  
and  S (I − αY)  = I . ∎

In particular, it follows from this lemma that there exists a unique equilibrium to 
the  beauty contest model. It also follows that the equilibrium actions of an agent are 
linear functions of their signals.45

D.  α -Modified Signal Process and Prediction Formula

Define  Γ  to be the  M × M  matrix given by

  Γ ≡  
[

  
 I U  

  
0
  

0
    1 _____ 

 √ 
_

 1 − α  
    I M−U    ]

 , 

and suppose that the signals observed by agent  i  are an  α -modified version of   x i    
given by

    x ̃   i   = B   ε ̃   i  , with   ε ̃   i   ≡ Γ  ε i  . 

It follows that

(A4)   E ̃   [ θ ∣   x ̃   i   ]  = A′ΩΛΩB′   (BΩ  Γ   2  ΩB′)    
−1

    x ̃   i   . 

45 In the arguments made above we have implicitly used the well-known result that the optimal forecast for 
Gaussian processes is linear: see Hamilton (1994, Section 4.6) for a formal proof.
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E. Equivalence Result

Proposition 10 establishes that the right-hand side of equation terms in 
 equation  (A1) is to the right-hand side of equation (A4), which completes the 
proof of Theorem 1.

PROPOSITION 10: Using the definitions above, it follows that

   C   −1  d =   (BΩ  Γ   2  ΩB′)    
−1

  BΩΛΩA . 

PROOF: 
From the definition of  C , equation (A2), we obtain

  C = I − α  (B  Ω   2 B′)    
−1

  BΩΛΩB′ 

  =   (B  Ω   2 B′)    −1
  BΩ (I − αΛ) ΩB′. 

Thus, since

  I − αΛ =  (1 − α)   Γ   2  , 

it follows that

  C =  (1 − α)   (B  Ω   2 B′)    
−1

  BΩ  Γ   2  ΩB′. 

Finally, using Lemma A1 and equation (A3),

   C   −1  d =   [ (1 − α)   (B  Ω   2 B′)    
−1

  BΩ Γ   2  ΩB′]    
−1

  (1 − α)   (B  Ω   2 B′)    
−1

  BΩΛΩA 

  =   (BΩ Γ   2 ΩB′)    
−1

  (B Ω   2 B′)   (B  Ω   2 B′)    
−1

  BΩΛΩA 

  =   (BΩ  Γ   2  ΩB′)    
−1

  BΩΛΩA .  ∎

Remark.—It is crucial for the proof to work that the matrix  I − αΛ  be real, 
 symmetric, and positive semidefinite, so that it can be interpreted as a covariance 
matrix. When there are  forward-looking or  backward-looking strategic complemen-
tarities this is in general not the case. This does not mean that a transformation to 
the information structure that yields an equivalence result cannot exist with dynamic 
complementarities, but simply that this particular proof strategy is not suitable in 
those cases. See, for instance, Proposition 8.

Appendix B: Proofs for Generalized Best Response and Multiple Actions

This Appendix contains the proofs for the extensions to generalized best responses 
and multiple actions from Section IIIC.
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A. Proof of Proposition 3

Iterating on the best response function in equation (17) we obtain

   y  it   = γ ( φ t   +  ξ  it  )  + αγ   ∑ 
k=0

  
∞

    α   k   E  it   [  E 
–
    t  k   [  φ t   ] ] . 

By Corollary 2, the infinite sum of  higher-order expectations can be rewritten as a 
 first-order expectation

   y  it   = γ  ( φ t   +  ξ  it  )  +   αγ _ 
1 − α    h  t  ′   (L)   x it   .  ∎

B. Proof of Proposition 4

Iterating on equation (18) leads to

   y it   =   ∑ 
k=0

  
∞

     A   k   E  it   [   E 
–
    t  k  [ θ t  ] ] . 

Then, notice that, letting  Δ ≡ diag ( α 1  ,  α 2   , … ,  α n  )  , for any  k ∈  {0, 1, 2, … }  ,

   A   k  = Q Δ   k   Q   −1  =   ∑ 
j=1

  
n

     Qe j    e  j  ′    Q   −1   α  j  k  . 

Therefore,   y it    can be written as

   y it   =   ∑ 
j=1

  
n

     Qe j    e  j  ′    Q   −1    ∑ 
k=0

  
∞

     α  j  k   E  it   [  E 
–
    t  k  [  θ t   ] ] . 

From Corollary  2 we have that each row of   ∑ k=0  
∞    α  j  k   E  it   [  E 

–
    t  k  [  θ t   ] ]   is equal to the 

 corresponding row of    (1 −  α j  )    −1   g  jt  ′   (L)   x it    and it follows that

   y it   =   ∑ 
j=1

  
n

    Qe j    e  j  ′     (1 −  α j  )    −1   Q   −1   g  jt  ′   (L)   x it   =   ∑ 
j=1

  
n

    Qe j    e  j  ′     (I − Δ)    −1   Q   −1   g  jt  ′   (L)   x it  , 

and the fact that    (I − Δ)    −1   Q   −1  =  Q   −1    (I − A)    −1   concludes the proof. ∎
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