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Abstract
Using flexible Poisson regressions, we analyse a huge 
micro-level lifetime dataset from a Dutch pension fund, 
including categorical, continuous and spatial risk factors 
collected on participants in the fund. The availability of 
granular lifetime data allows us to quantify the longevity 
gap between the national population and the fund on the 
one hand, and between participants within the fund on the 
other hand. We identify the most important risk factors 
using statistical criteria that measure the in- and out-of-
sample performance of the regression models. We evaluate 
the financial performance of the models by introducing a 
novel type of backtest, which selects the risk factors that 
contribute most to an accurate prediction of future pension 
liabilities. For this portfolio, the most relevant risk factors 
(next to age and gender) are the salary, the time spent in 
disability and working at irregular hours. The resulting 
personalized mortality risk profiles show substantial dif-
ferences between the remaining life expectancies for the 
most-favourable and least-favourable risk profiles. Our 
method to estimate these longevity gaps will help policy-
makers to assess wanted and unwanted consequences of 
longevity risk sharing in pension schemes.
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1 |  INTRODUCTION

The study of factors influencing mortality has been the subject of many contributions in economics, 
medicine and actuarial science. For example, Brown and McDaid (2003) perform a qualitative lit-
erature review of 45 research papers that consider a variety of risk factors to explain differences in 
mortality after retirement. Relevant factors are (besides age and gender) education, income, tobacco 
and alcohol consumption, and marital status. Elo and Preston (1996) study adult US mortality in the 
period 1975–1985 with a logistic regression model for 5qx, the probability of dying within a 5-year 
period for an x-year-old. For individuals with more than 16 years of education this probability is about 
40% lower than for individuals with no or less than 8 years of education, even after correcting for fac-
tors such as income and race. Chetty et al. (2016) reveal a gap in the remaining period life expectancy 
at age 40 between the 1% richest and 1% poorest individuals in the US of about 14.6 years for males 
and 10.1 years for females, based on observations over the period 2001–2014.

Datasets that are collected by insurance companies and pension funds create an excellent opportu-
nity to study such ‘longevity gaps’. The future random lifetime of a participant plays a crucial role in 
the design of pension plans as well as the valuation of pension fund liabilities. The distribution of the 
future lifetime is summarized in life tables with entries qx, the 1-year probability of dying (or: mortal-
ity rate) for an x-year-old. In most developed countries governmental bodies as well as professional as-
sociations of actuaries regularly publish age- and gender-specific population-wide mortality rates. For 
example, since the 1970s the Royal Dutch Actuarial Association publishes population-wide period 
life tables. Moreover, since 2007 the association also publishes mortality forecasts which are currently 
updated biennially (Antonio et al., 2017). Pension funds must value their liabilities with mortality 
rates suitable for the participants in the fund or portfolio, and can not simply use the published rates. 
Typically, participants in a fund experience mortality rates that are different from those applicable to 
the population due to differences in socioeconomic characteristics, life styles and professions. In view 
of the design of future-proof, sustainable pension systems, the micro-level lifetime data collected by 
pension fund managers are of utmost importance. In the era of big data and data analytics, careful 
analysis of the granular data collected on the lifetimes of individual participants, as well as their char-
acteristics or risk factors, allows to quantify the longevity gap between the national population and the 
fund on the one hand, and among participants within the fund on the other hand. Pension funds are 
now able to incorporate the insights derived from such data when valuing their liabilities, for example, 
by distinguishing different risk profiles. In this paper we develop a statistical framework to construct 
such profiles and to assess their impact on death count predictions on the one hand and pension liabil-
ity calculations on the other hand.

Historically, actuarial practice quantified portfolio-specific mortality using crude methods such as 
age shifting, which replaces the probability qx applicable to the national population by qx+s where s can 
be either positive or negative (Pitacco et al., 2009). Such approaches are easy to implement, but poten-
tially highly inaccurate. Moreover, observed mortality in the portfolio is often expressed in terms of 
the value of accrued rights. Mortality is then characterized by the fraction of the total value of accrued 
rights that has been released in a year, see for example, Plat (2009). Using this alternative definition, 
the mortality rates (also referred to as insured amount weighted mortality rates when applied in insur-
ance companies instead of pension funds) can be very volatile over the years due to the presence of 
individual mortality risk.1 By using this alternative definition, more weight is given to members with 
high accrued rights when explaining historical portfolio mortality. Since the liabilities of a pension 

 1Individual mortality risk is the uncertainty associated with the binary outcome of survival given a fixed mortality rate.
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fund are a function of accrued rights, this approach may lead to more accurate predictions than when 
the accrued rights are neglected. In this paper, we analyse the influence of accrued rights on the mor-
tality rates of fund participants in a more explicit way by including these rights (or some related risk 
factor) directly in a regression model.

Gschlössl et  al. (2011) and Richards et  al. (2013) present first attempts to include risk factors 
in mortality models designed for lifetime data collected on individuals registered in an insurance 
portfolio or pension fund. Holford (1980) and Laird and Olivier (1981) (in statistical literature) and 
Brouhns et al. (2002) (in actuarial literature) demonstrate that the survival likelihood with piece-wise 
constant force of mortality (or hazard rate) is equivalent to a Poisson regression model for the number 
of deaths. Hence, Gschlössl et al. (2011) use such a Poisson regression model for the observed death 
counts in a German life insurance portfolio. Their dataset contains risk factors such as product type, 
policy duration and insured amount. First, they estimate a static baseline mortality rate in the portfolio, 
and then they explain remaining heterogeneity in the portfolio using categorical risk factors in a gen-
eralized linear model. Richards et al. (2013) explain the heterogeneity in mortality among participants 
of a German multi-employer pension scheme using a Makeham–Beard law for the force of mortality 
of an x-year-old. They let the parameters in this mortality law depend on risk factors such as scheme 
size and the health status of members. Whereas Gschlössl et al. (2011) and Richards et al. (2013) 
discretize the continuous risk factors available, Denuit and Legrand (2018) use generalized additive 
models (GAMs) (Hastie & Tibshirani, 1986; Wood, 2017) and directly include continuous covariates 
in the construction of mortality profiles.

Individual lifetime data observed in continuous time are often modelled using a Cox proportional 
hazard model (Cox-PH) in which a baseline hazard rate is shared by all individuals in the study (Cox, 
1972). Covariates or risk factors are included in a multiplicative way and quantify differences between 
the survival functions of individuals. Czado and Rudolph (2002) use such Cox-PH models to analyse 
individual time-to-event data, possibly subject to right censoring, in the presence of time-fixed and 
time-varying risk factors. Our main goal is the estimation of mortality rates in the presence of multiple 
types of risk factors (including categorical, continuous and spatial), instead of the survival function 
in continuous time. Therefore, we focus on the modelling strategy in Denuit and Legrand (2018) and 
extend their framework to very large datasets, in the presence of multiple types of risk factors.

A different stream of literature investigates pension fund mortality with multiple population mor-
tality models. Villegas and Haberman (2014) use multi-population extensions of the Lee and Carter 
(1992) model to predict mortality for five socioeconomic classes in England. These socioeconomic 
classes are based on characteristics such as income and education. Cairns et al. (2019) analyse mor-
tality of Danish males for 10 socioeconomic groups constructed using an affluence index based on 
wealth and reported income. They use an extension of the gravity model from Dowd et al. (2011) to 
model mortality in the different affluence groups. However, both approaches are based on datasets 
that contain over 20 years of observations, and they consider separate time dynamics for each group. 
Such methods are no longer feasible if the dataset has only a few years of data available. Moreover, 
these papers consider the socioeconomic classes as exogenously given, while our contribution investi-
gates the construction of such classes or risk profiles directly from micro-level lifetime data.

We work on a unique dataset from a large Dutch pension fund covering the period 2006–2011. In 
this dataset individuals in the fund are followed over time, and their risk factors such as age, gender, 
salary, disability status and postal code are recorded on a yearly basis. As a first contribution this paper 
shows how to construct mortality forecasts for individual risk profiles using this dataset. We first 
estimate a multiple population mortality model (Koninklijk Actuarieel Genootschap, 2014) which 
provides an appropriate baseline mortality level and at the same time allows to construct mortality 
forecasts for the Dutch population. Using the baseline, we explain remaining heterogeneity in the 
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portfolio using Poisson regression, as suggested by Gschlössl et al. (2011) and Denuit and Legrand 
(2018). We consider a wide variety of possible risk factors (including continuous and spatial vari-
ables) in a GAM framework to ensure that all information in these variables is adequately captured in 
our model.

As a second contribution, we provide a complete framework to determine which risk factors should 
be used to explain historical portfolio mortality data. We use the conditional Akaike information cri-
terion (cAIC) for variable and model selection (Wood et al., 2016). However, a drawback of informa-
tion criteria is that they focus solely on how well risk factors are able to explain in-sample variation. 
Therefore, we also use cross-validation checks and proper scoring rules to investigate the predictive 
power of the estimated regression models. Furthermore, we investigate the robustness of the estimated 
effects across cross-validated datasets, by comparing the recalibrated effects to the initial effect fitted 
on the complete dataset.

Our final contribution is the design of a novel type of backtest to evaluate the performance of 
mortality models. Whereas we model observed death counts, risk managers in a pension fund are 
especially interested in an accurate prediction of the value of the liabilities. Therefore, we estimate the 
different models on all data excluding the most recent year. Using the estimated effects, we determine 
individual risk profiles and use these to construct prediction intervals for the liabilities needed at the 
end of this year. We compare these prediction intervals with the actual liabilities needed for surviving 
members. We also calculate the mean squared prediction error (MSPE) for the predicted liabilities. 
This enables us to select the risk factors that contribute most to an accurate prediction of the liabilities, 
which is of more importance for the risk management strategy of a fund than the predictive accuracy 
in terms of individual death counts.

The remainder of this paper is organized as follows. We discuss the dataset used in this paper in 
Section 2. In Section 3 we introduce the GAMs that we will use to explain observed portfolio mortal-
ity, and we discuss how we assess in-sample and out-of-sample performance. We present estimation 
and backtesting results in Section 4 and we conclude in Section 5.

2 |  DATA

We use a large dataset from a Dutch pension fund which follows participants during the period 2006 
to 2011. Each participant in the dataset is assigned a unique identifier which allows us to follow indi-
vidual participants over time. At the end of each year it is recorded whether a participant is still alive 
and the observable risk factors of the participant are updated. In our analysis we include information 
from active participants2, pensioners, and people who are fully or partially disabled. For some indi-
viduals, however, one or multiple risk factors are missing in one or several years. In this section we 
first discuss the observations and risk factors that are available in the dataset, and then we discuss the 
presence of, and causes for, missing data in the dataset.

2.1 | Mortality observations and risk factors

Table 1 lists the variables constructed from the dataset and Figure 1 shows the distribution of these vari-
ables in our dataset. We include the ages 20 to 90; we exclude lower ages because they are not relevant 

 2Inactive participants no longer work at a company linked to the pension fund, and these members therefore no longer pay 
premium and no longer accrue new pension rights, but retain their existing rights.
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for the liabilities of the pension fund, and higher ages are excluded because their exposure turned out to 
be negligible in our dataset (less than 0.1% of the total exposure). The dataset contains 11,321,861 indi-
vidual observations on 2,162,619 unique individuals resulting in a total of 11,300,883 years lived, and 
during the observed period 41,611 deaths were recorded. The risk factor Age changes when participants 
celebrate their birthday, so we split the individual observations into observations before and after the 
birthday of the participants. This results in 22,625,142 observations with constant risk factors.

As discussed in the introduction, we expect that salary influences the level of mortality. There are 
several variables available in the dataset that can be used to capture this effect: salary earned during 
a year, the fraction of the year the participant worked (hereafter: parttime factor), and the amount of 
salary earned from working at irregular hours. We define full time equivalent (FTE) salary as 

 Salaries tend to increase with age and as a result of inflation. Therefore, salaries at different ages and in 
different years cannot be compared directly, and we believe the FTE salary should not directly be used as 
a risk factor. Instead, we construct the variable Sal which is a normalized version of the logarithm of the 
last observed FTE salary. For each participant, we subtract the mean from the logarithm of the FTE salary 
and divide the result by its standard deviation, where mean and variance of the log transformed FTE salary 
are determined per year, age and gender. For most pensioners salary information is not available, but when 
it is, this corresponds to the last salary earned as an active participant.

Participants with irregular working hours are more likely to have an irregular sleeping pattern, so 
participants who earn a larger fraction of their total salary through an irregularity allowance may have 
a higher mortality rate, see Costa (1996). We define the variable IA to include this effect, and it is 
computed as the irregularity allowance divided by FTE salary. We divide by FTE salary because we 

FTE salary=
parttime salary earned in a year

parttime factor
+ irregularity allowance.

T A B L E  1  A description of the mortality observations and risk factors. The percentage on the right shows for 
which fraction of the observations the information is available

Mortality information

D 1 if the participant died at the current age, 0 if the participant survived (100.0%)

E The fraction of the year lived by the participant at the current age (100.0%)

Risk factors

Year Year of the observation (100.0%)

Age Age of the participant (100.0%)

Gender Gender of the participant (100.0%)

Sal Logarithm of last observed FTE salary on annual basis, normalized per year, age 
and gender (if applicable: including an allowance for working at irregular hours)

(88.8%)

IA The percentage of the last observed FTE salary earned through an allowance for 
working at irregular hours

(88.8%)

DisTime The cumulative disability spell of the participant, adjusted for partial disability (96.0%)

DisPerc The time spent in disability as a percentage of total service years registered (96.0%)

AFPP The age at which the participant received his first pension payment (11.6%)

(Long, Lat) The longitude and latitude that correspond to the centre of the four-digit postal code 
of the participant

(100.0%)

Edu Average education level at the postal code where the participant resides (obtained 
from Statistics Netherlands)

(95.4%)
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believe someone who works only 1 day a week at irregular hours should be treated differently from 
someone who works 5 days a week at irregular hours. This variable is positive for participants with 
an irregularity allowance (43.1% of the exposure), zero for participants who do not work at irregular 
hours (45.6%), and it is missing for other participants (11.3%).

The dataset also contains information on disability. In the Netherlands, people can be classified as 
being partially disabled. Someone who has been partially disabled at 40% for 3 years will have a cumula-
tive disability spell of 1.2 years, and the years of service at the company will have increased by 1.8 years. 
The variable DisTime represents the cumulative disability spell for a participant, and DisPerc rep-
resents the fraction of working years spent in disability. The latter is defined as the cumulative disability 
spell divided by the sum of the number of service years and the cumulative disability spell.

Both the number of service years and the cumulative disability spell relate only to the active period 
at the pension fund; if a participant was active at another pension fund before joining the pension fund 
under consideration, that information is not available in this dataset. For the active participants and the 
fully or partially disabled participants, disability information is nearly always available but for retired 
members information on disability is often missing. In the dataset, 8.8% of the exposure has a positive 
disability spell, 87.2% has a disability spell equal to zero, and for 4.0% disability information is missing.

F I G U R E  1  Empirical distribution of the variables in the dataset. Missing records are excluded, and for 
DisTime and DisPer we also do not show observations equal to zero. [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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The official retirement age in the Netherlands during the observed period was 65 years, but many 
participants received pension payments before the age of 65. To stimulate the inflow of younger work-
ers, many older workers close to the retirement age have had the opportunity to retire early (either fully 
or partially). We define the variable AFPP as the age at which the first pension payment was received, 
and we use this variable to investigate whether early retirement affects mortality. This variable is miss-
ing for participants who were not yet retired.

In the Netherlands an address is completely specified by a six-digit postal code and a number that 
specifies the house. Our dataset contains for nearly all participants a four-digit postal code (PC), which 
corresponds to a district in a city. Using the longitude (Long) and latitude (Lat) of the centre of the 
four-digit postal code we can estimate spatial heterogeneity in mortality rates.

Many studies have shown a link between education and mortality. Our dataset does not contain 
information on the education level of the participant, but we enrich our data with public data from the 
website of Statistics Netherlands on the level of education.3 This dataset shows, per four-digit postal 
code, the fraction (ic) of residents that has obtained education level c, where c ∈ {Low, Medium, 
High}. From this we construct the variable Edu = −1 ⋅ iLow + 0 ⋅ iMedium + 1 ⋅ iHigh, which is a weighted 
average of the education attained by the residents in a postal code. The variable ranges from −1 (if 
every resident is classified as having Low education) to +1 (if every resident is classified as having 
High education). The information on education is not provided in full for all postal codes, and this 
variable is therefore not available for all postal codes.

2.2 | Missing data

Our dataset contains missing data due to a number of different causes. With information collected on 
active, disabled and retired participants, the risk factors are often completely observed for active and 
disabled participants. However, for retired participants information regarding salary or disabled status 
is no longer recorded once pension payments start. For participants who retire during the observed 
period, we carry forward the salary and disability information from their last active period, since we 
believe this provides reliable information regarding their risk profile. This method of dealing with a 
missing observation is referred to as last value carried forward (LVCF) which is a single imputation 
method, see Bennett (2001). The occurrence of missing values is often dependent on Age, since for 
older participants variables are missing more often. Missing values for Edu are present since the edu-
cation information is not available for all postal codes in the external dataset. In Section 3.1 we specifi-
cally discuss how we deal with missing variables in our model estimation procedure.

3 |  A FRAMEWORK FOR STATISTICAL MODELLING OF 
PORTFOLIO MORTALITY

We analyse individual mortality data to investigate to what extent various risk factors can explain 
differences in observed mortality relative to some time-dependent population mortality rate, see also 
Denuit and Legrand (2018). By combining the estimated effects of multiple risk factors, we construct 
flexible participant-specific factors as opposed to portfolio-specific factors that depend on age and 
gender only. These participant-specific factors represent the relative difference in mortality between 
the participant and the general population.

 3https://www.cbs.nl/-/media/imported/documents/2013/49/131203-opleiding-regelingen-verdachten-pc4-mw.xls
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For notational convenience, we describe the framework for statistical modelling of portfolio mor-
tality under the assumption that all participants celebrate their birthday on 1 January. In the online 
Supplementary Material we describe how the data definitions and model (assessment) formulas 
change if we take into account that birthdays occur throughout the year.

3.1 | Distributional assumptions and model estimation

We assume all participants celebrate their birthday on 1 January such that they have exact age x at the 
beginning of calendar year t with x and t integer. We have observations for participants j = 1, …, Jt 
where Jt equals the number of participants in year t. For each participant j, we define � t,j,x as the frac-
tion of the year lived in year t at age x and define the corresponding indicator variable �t,j,x which 
equals 1 if the participant died in year t at age x and 0 otherwise.

3.1.1 | Model likelihood

We define the force of mortality for participant j at time t and age x by �tjx = �pop

tjx
⋅ �tjx. We assume 

that the baseline population force of mortality �pop

tjx
 is given for participant j aged x during calendar 

year t. The factor �tjx represents the ratio between the population force of mortality and the force of 
mortality for participant j, and this factor must be estimated from the data.

In line with other literature (Cairns et al., 2009; Pitacco et al., 2009), we assume for integers t and 
x a constant force of mortality �tjx on the interval [t, t + 1) × [x, x + 1). The individual survival likeli-
hood for participant j is then given by 

 if he survives, and 

 if he dies. Substituting �tjx = �pop

tjx
⋅ �tjx and aggregating over all participants, the likelihood for all indi-

vidual survival observations is given by: 

 This likelihood is similar to the case where �tjx is a realization of a Poisson distributed random variable 
with parameter � tjx�

pop

tjx
�tjx where �pop

tjx
 is assumed known as described above, and �tjx is to be estimated. 

We use this result to justify that we can use Poisson regression to estimate the unknown �tjx, but we do not 
need to assume our observations to follow a Poisson distribution.

3.1.2 | Estimation of the model

In practice, the population force of mortality �pop

tjx
 is unknown. For population mortality estimation and 

forecasting we apply the model published by the Royal Dutch Actuarial Society which is documented 

(1a)ptjx = exp [−�tjx]

(1b)� tjxptjx ⋅�t+� tjx, x+� tjx
= exp [−� tjx�tjx]�tjx

(2)L(�tjx) =

2011
∏

t= 2006

Jt
∏

j= 1

exp [−� tjx�
pop

tjx
�tjx](�pop

tjx
�tjx)�tjx .
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in Koninklijk Actuarieel Genootschap (2014) (hereafter referred to as the AG model). The AG model 
is a variant of the Li and Lee (2005) model, which we use to estimate �̂AG

t,x,g
 on population mortal-

ity data from 1970–2011, where the starting year (1970) of the calibration period is the same as in 
Koninklijk Actuarieel Genootschap (2014) and the end year (2011) is the endpoint of our dataset. 
Details of calibration of the AG model are available in the online Supplementary Material. When 
optimizing the likelihood in Equation (2), we use the fitted force of mortality from the AG model ̂�AG

t,x,g
 

for the unknown �pop

tjx
 with g = ������j. This way, our portfolio-specific mortality model uses an ap-

propriate baseline mortality level.
The factor �tjx is estimated using GAMs, introduced by Hastie and Tibshirani (1986) and popular-

ized by Wood (2017). We include p categorical variables xd
ik

 such as gender (k = 1, …, p)4, q smooth 
functions fl( ⋅ ) of one-dimensional continuous variables xc

il
 such as age or salary (l = 1, …, q), and a 

smooth function g(·, ·) of the two-dimensional variable (xlong

i
, xlat

i
) for the longitude and latitude coor-

dinates of the centre of the postal code. If we use the subscript i to represent a combination (t, j, x), the 
model is specified as Di ∼ Poisson(�i = � i�

pop

i
�i) for which the additive predictor is given by: 

 We define ln L(�) as the corresponding log likelihood, where β represents the vector of the unknown 
parameters for the categorical variables and for the smooth functions of the continuous variables. We 
use thin plate regression splines to estimate the smooth functions f and g. This means that a function f(x) 
is represented as 

∑M

m=1
�mbm(x) and a function g(x, y) as 

∑N

n=1
�n b̃n(x, y), for fixed M and N and known 

basis functions bm(x) and b̃n(x, y). Through this representation the model is reduced to a generalized lin-
ear model (GLM). To avoid overfitting a wiggliness penalty is added to the log likelihood, resulting in a 
penalized log likelihood. The wiggliness penalty is the product of the wiggliness of a function f or g and 
a corresponding smoothing parameter λ: 

 The unknown parameters β are estimated by optimizing the penalized log likelihood in (4). The gener-
alized cross-validation (GCV) and the Akaike information criterion (AIC) are often used to select the 
smoothing parameters �l and �g. However, these methods are sensitive to misspecification of the correla-
tion structure in the error terms which may result in over- or underfitting of the data, see for example, 
Krivobokova and Kauermann (2007) and Reiss and Ogden (2009). An alternative approach is to treat the 
smooth functions with a random effects specification, which means that the �l and �g can be estimated 
by marginal likelihood or restricted maximum likelihood (REML), see Wood (2011). We explored both 
methods and found that REML results in more robust parameter estimates. Therefore, we use REML to 
select the smoothing parameters. We use the mgcv package in R for all model estimations, see Wood 
(2017). The bam function in this package is specifically designed for estimation of GAMs on large dataset 
such as ours, see Wood et al. (2017) for details.

 4We use the superscript d to emphasize that we use dummy coding of the categorical variables.

(3)ln(�(Di))− ln(� i�
pop

i
) = ln�i = �0+

p
∑

k= 1

�kxd
ik
+

q
∑

l= 1

fl(x
c
il
) + g(x

long

i
, xlat

i
).

(4)
lnLPen. = lnL(�)+

q
∑

l= 1

�l ∫ [f��
l

(x)]2dx

+�g ∫ ∫
[

(

�2g

(�xlong)2

)2

+2

(

�2g

�xlong�xlat

)2

+

(

�2g

(�xlat)2

)2
]

dxlongdxlat.
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Identification problems exist for risk factors that are available for all participants. The smooth 
function for such a risk factor can be shifted by a constant c and the intercept can be shifted by −c 
without affecting the model fit. Therefore, risk factors that are available for all participants are mod-
elled with smooth functions centred around zero.

For the categorical variables we quantify the uncertainty in the estimates by constructing confi-
dence intervals based on assumed large sample normality. For the smooth components of the GAM we 
construct component-wise Bayesian confidence intervals, including the uncertainty in the intercept 
(Marra & Wood, 2012).

3.1.3 | Treatment of missing variables in GAM estimation

Our estimation of a Poisson GAM is complicated by the presence of missing observations as dis-
cussed in Section 2. If a variable has missing records, we use the indicator method (Bennett, 2001) and 
multiply the smooth effect for that variable with a dummy variable that indicates whether the variable 
is available or not. For example, a model with Age and Sal is specified as 

with I[���i is available] = 1 if salary is known for observation i and 0 otherwise. Smooth effects for vari-
ables with missing values are not applicable to all observations, and therefore these smooth effects cannot 
be shifted by a constant c with a counteracting shift of −c in the intercept. Identification problems are 
therefore not present for smooth effects that are multiplied by a numerical value, and these are therefore 
not centred around zero.

Alternative imputation methods turned out to be infeasible for our dataset. If one can determine a 
good approximation for the joint distribution of all covariates with missing variables, likelihoods can 
be calculated by integrating over this joint distribution. In a recent paper, Ungolo et al. (2019) use this 
method for an actuarial application similar to ours, for a dataset which contains missing data on two 
risk factors with a small number of outcomes. This approach is not feasible for our dataset due to the 
presence of multiple continuous risk factors with missing observations.

Other imputation strategies such as predictive mean matching (van Buuren & Groothuis-
Oudshoorn, 2011)) or random forests (Stekhoven & Bühlmann, 2012) impute missing values with a 
predictive model which incorporates random variation. These methods turned out to be infeasible for 
our dataset using current standard implementations. Alternative multiple imputation strategies such as 
Bayesian linear regression (van Buuren, 2018) may result in implausible imputed datasets: the struc-
ture of the data is not guaranteed to be preserved (e.g. imputed values can become negative where only 
non-negative values are allowed).

3.2 | Mortality predictions

Combining the estimated effects for the risk factors included in the regression model, we obtain 
participant-specific factors �tjx which represent the relative difference in mortality between the gen-
eral population and the participant. These participant-specific factors may change over time due to 
the presence of covariates or risk factors that change over time. Age is the most obvious example of 
a risk factor that changes over time, but other risk factors such as postal code or salary may have also 
changed during the observed period.

ln (�(Di)) = ln (Ẽi) + �0+ fAge(���i) + I[���i is available] ⋅ fSal(���i),
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When predicting the future mortality rate of a participant, we let the age change over time, but keep all 
other risk factors fixed. As such, we estimate the participant-specific factors �tjx by combining the estimated 
effects for the predicted risk factors for future t. Then, participant-specific forecasts of �tjx are obtained by 
multiplying a population-wide mortality forecasts �pop

tjx
 with the predicted participant-specific factors �tjx

. An assumption underlying this approach is that the general population and the participants within the 
portfolio follow the same mortality trend (i.e. there is no basis risk as defined in Haberman et al. , 2015). 
Our primary aim is to improve best estimate predictions/valuation, and basis risk is therefore not the focus 
in this article. The limited number of years of data available makes it less suitable for long-term predictions.

3.3 | Model assessment

First, we introduce several statistical measures to determine the added value of the inclusion of a risk 
factor when explaining observed mortality. However, for a pension fund it is more relevant to accu-
rately predict the value of its future liabilities than to predict the future numbers of deaths. Therefore, 
we also introduce a novel backtest that targets an accurate prediction of these liabilities. This has, to 
the best of our knowledge, not been used before when testing models for portfolio-specific mortality.

3.3.1 | In-sample model fit

We investigate how well-different models are able to explain the observations. When models are es-
timated on the complete dataset, we compute the log likelihood (lnL) on individual observations, that 
is, the natural logarithm of (2).

The penalized log likelihood in (4) uses penalty parameters �l and �g to control the wiggliness of 
the functions fl and g. If these parameters are zero, the choices for these functions are unrestricted, 
with M and N degrees of freedom respectively. But as the penalty parameters increase towards infin-
ity, the optimal functions converge to straight lines, which have only two degrees of freedom. This 
illustrates that when we use an information criterion which penalizes extra parameters, we should not 
include the number of parameters M and N but what is known as the effective degrees of freedom, 
which takes the wiggliness penalty into account. Our estimates for these are found using the approach 
of Wood et al. (2016). With these values we can then calculate the cAIC) which is defined as 

with n the number of observations included in the likelihood function (i.e. n = 22,632,277) and k the 
 effective degrees of freedom. In a similar way we define the Bayesian information criterion (BIC) as 

3.3.2 | Cross-validation statistics and robustness analysis

Czado et al. (2009) discuss proper scoring rules to evaluate out-of-sample performance of models for 
count data. We focus on the log score which can be interpreted as an out-of-sample log likelihood 
statistic. Denote by F−t all observations in the dataset excluding observations from year t. For each 
t ∈ � = {2006, …, 2011} we estimate the model using F−t which yields an estimate �̂−t

j,x
 for participant 

j in year t at age x. Pension funds and insurance companies typically update their assumptions once a 

(5)cAIC=−2ln L+2k,

(6)BIC=−2ln L+klnn.
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year when new data become available. Therefore, we have chosen to split the dataset into a training 
dataset and a test dataset based on the calendar year, since this corresponds to their annual update 
process.

Similar to (1a) and (1b), we define Ltj as the likelihood of observed death or survival for participant 
j = 1, …, Lt in calendar year t given the predictive distribution that follows from F−t. If � tjx represents 
the fraction of year t that participant j was alive at age x (assuming he was alive at the start of that 
year), Ltj is given by: 

   ℓ

and the log score for year t is then defined by: 

with 
∑2011

t=2006
Lt = 11, 325, 511. Finally, we aggregate this over the different years into the time-averaged 

value lnS =
1

6

∑2011

t=2006
ln St.

We also investigate the robustness of estimated effects. For risk factor l, define f̂
−t

l
(xl) as the effect 

estimated using F−t. We compare the estimated effects f̂
−t

l
(xl) with the 80% confidence interval for 

f̂l(xl) estimated on the complete dataset. If the estimated effect is robust (i.e. consistent through time), 
the estimates f̂

−t

l
(xl) are close to (and show a similar pattern as) f̂l(xl).

3.3.3 | Predicted life expectancies

We further investigate the impact of including risk factors in the mortality model on remaining 
life expectancies of participants in the fund. We compute remaining life expectancies for different 
ages and for males and females separately. We consider a risk profile as a combination of all risk 
factors except age and gender, represented by profile r instead of i.5 We define the remaining 
cohort life expectancy for risk profile r with age x at the beginning of calendar year t and for 
gender g as 

 with cumulative survival probabilities 

3.3.4 | Financial backtest

For this backtest, we assume that the management of the pension fund at the beginning of the year 
2011 wants to predict the value of the liabilities at the end of the year. For simplicity we ignore any 

(7)Ltj = exp [−� tjx�
pop

tjx
�̂−t

j,x
]
(

� tjx�
pop

tjx
�̂−t

j,x

)�tjx

,

(8)lnSt = −
1

Lt

Lt
∑

j= 1

lnLtj,

 5The difference between risk profile i and risk profile k is that the risk factors Age and Gender are fixed.

(9)LEg(r, t, x)≈
1

2
+

∞
∑

y= x+ 1

Sg(r, t, x, y)

(10)Sg(r, t, x, y) = exp

[

−

y− x+ 1
∑

s= 0

�̂AG,g(r)

t+s,x(r)+s
⋅ �̂r

]

.

ℓ
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cash flows during the year 2011, but this will not materially affect the results since the liabilities are 
mostly determined by cash flows further in the future. We use data from the years 2006–2010 as the 
training sample, and data from 2011 as the test sample. On 1 January 2011, we use all information 
available up to that point to approximate for each participant separately the value of the liabilities on 
31 December 2011. Using the risk profile of individuals and the estimated effects from the training 
sample, we predict the probability that a participant survives the year 2011. The observations in the 
test sample tell us which participants died in the year 2011 and who survived until 31 December 2011. 
Using the test set we know the liabilities at the end of the year, and we can compare how well-different 
model specifications are able to predict the liabilities required for the surviving participants in the test 
sample. This helps to determine the added value of a risk factor when predicting the value of liabili-
ties. Below we outline the highlights or our proposed financial backtest, more details are available in 
the online Supplementary Material.

For participant j we denote the yearly benefit by bj which is paid in year t if x(j, t) ≥ xr, with x(j, t) 
the age of participant j at the beginning of year t and xr = 65 the retirement age in the Netherlands in 
2011. We define an annuity aj that represents the present value of a cash flow of 1 if participant j is 
still alive at that time t and x(j, t) ≥ xr, such that the present value of the liabilities for participant j is 
given by bjaj.

Define �̂−2011

j,x
 as the fitted factor for participant j aged x during the year 2011, which is esti-

mated using the training sample. We model the uncertainty of participant j surviving the year 
2011 using a Bernoulli distributed random variable Y2011,j, with P(Y2011,j = 1) = p2011,j which 
are independent for different j’s. Under the assumption of a constant force of mortality �tx on 
the interval [t,  t + 1) ×  [x, x + 1), the 1-year survival probability for participant j is given by 
p2011,j = exp

[

−�̂AG,g

2011,x
⋅ �̂−2011

j,x

]

. The stochastic value of the liabilities Γ on 31 December 2011 is 
then given by 

with J2011 the number of members alive at the beginning of the year 2011. The fund faces a liability with 
present value bjaj at the end of 2011 for those participants who survive, whereas this liability is released 
for participants who die during 2011. J2011 is larger than two million, and based on a simulation study we 
have verified that Γ behaves like a normally distributed random variable. However, the skewness of Γ is 
close to but not equal to zero. We use a parametric approximation to construct prediction intervals for Γ, 
and we allow for the non-zero skewness by using the skew-normal distribution for this approximation, see 
for example Vernic (2006).

We define the indicator variable I2011,j that is 1 if participant j was still alive at 31 December 2011 
and zero otherwise. The actual liabilities per 31 December 2011 are then calculated as: 

 If a model is able to accurately predict the evolution in the liabilities over a 1-year horizon, the actual 
liabilities Γ̃ will often lie within the prediction interval for Γ.

Within a predictive distribution for the liabilities, underestimated values and overestimated values 
may cancel out. Therefore, we also calculate the MSPE as: 

(11)Γ =

J2011
∑

j= 1

(

Y2011,j ⋅bjaj + (1−Y2011,j) ⋅0
)

,

(12)Γ̃ =

J2011
∑

j= 1

I2011,j ⋅bjaj.
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 Through this definition of the MSPE, the prediction error in a participant’s survival is weighted by the 
value of the liabilities needed for that participant. This way we ensure that participants who contribute 
more to the liabilities of a pension fund are given more weight in this statistic.

4 |  RESULTS

We estimate portfolio factors using the procedure described in Section 3.1, and we define two refer-
ence specifications:

1. Portfolio mortality equals population mortality (�i = 1 for all i);
2. The relative difference with population mortality is the same for all participants, that is, the regres-

sion model in Equation (3) only includes the constant �0 (�i = exp(�0) for all i).

These two reference models allow us to quantify the relative importance of including different risk 
factors when explaining historical portfolio mortality. Besides these reference models, we consider all 
single variable specifications and a selection of multiple variable specifications.

The variables that we include as explanatory variables are Gender, Age, DisTime, DisPerc, 
Sal, IA, AFPP, Edu and (Long, Lat). The variable Year is not included, because the dataset 
covers only a few years. We consider only main effects, but the analysis can easily be extended to 
include interactions between risk factors such as gender-specific salary effects. Interactions between 
continuous variables are also possible, but this greatly increases the number of possible specifications 
and increases the computational cost.

4.1 | Estimation results

Table 2 shows the model fit (the log likelihood, effective degrees of freedom, conditional AIC and 
BIC) and cross-validation statistics (the time-averaged log score) for a selection of single and multiple 
variable specifications.

4.1.1 | Variable selection, model fit and estimated factors

The two reference specifications are shown in the top 2 rows of Table 2, and the model fit improves 
considerably if we allow for differences between mortality in the population and the portfolio. The 
cAIC and BIC almost always improve if we add a single variable on top of the constant, but the BIC 
does not improve if we add Gender or PC. It is no surprise that Gender has little additional explana-
tory power, since gender is already included in the baseline mortality level �pop,g

t,x . The smooth effect 

(13)

MSPE=

J2011
∑

j= 1

(I2011,j ⋅bjaj−p2011,j ⋅bjaj)
2∕

J2011
∑

j= 1

(bjaj)
2

=

J2011
∑

j= 1

(bjaj)
2

⏟⏟⏟
’weights’

(I2011,j−p2011,j

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
’errors’
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j= 1

(bjaj)
2
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normalizingconstant
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for PC requires a large number of effective degrees of freedom, and the trade-off between improve-
ment in fit and complexity does not result in improved BIC statistics. The results for cAIC and BIC 
are similar, but as is to be expected, there are some cases in which the information criteria suggest 
different model specifications.

Large improvements in model fit come from adding DisTime, DisPerc or Sal. With Salary 
and DisPerc included in the model (e.g. row 15 in Table 2), the information criteria and log score 
statistic improve considerably compared to the first two rows. If we keep adding variables, the 

T A B L E  2  Estimation results for a selection of models. For lnL larger is better, for the other statistics smaller is 
better. The horizontal lines separate models with the same number of risk factors. Note that all regression models (row 
2 and below) include a constant

Model ln L EDF cAIC BIC  ln  S (× 10−3)

1. No model −222,719 0.0 445,437 445,437 19.66964

2. Constant −222,036 1.0 444,073 444,088 19.61136

3. Gender −222,029 2.0 444,062 444,092 19.61081

4. Age −221,940 2.5 443,885 443,922 19.60350

5. DisTime −220,430 6.6 440,873 440,973 19.47026

6. DisPerc −220,442 8.8 440,902 441,034 19.47168

7. Sal −221,069 5.2 442,149 442,226 19.52643

8. IA −221,733 4.3 443,475 443,539 19.58459

9. AFPP −221,916 6.0 443,844 443,934 19.60153

10. Edu −221,962 6.7 443,938 444,039 19.60533

11. PC −221,946 35.9 443,964 444,500 19.60729

12. DisPerc-DisTime −220,414 13.9 440,855 441,062 19.46984

13. DisPerc-Gender −220,417 9.9 440,854 441,001 19.46952

14. DisPerc-Age −220,383 13.4 440,793 440,994 19.46750

15. DisPerc-Sal −219,861 11.9 439,746 439,923 19.42094

16. DisPerc-IA −220,393 12.1 440,811 440,991 19.46754

17. DisPerc-AFPP −220,357 10.6 440,736 440,894 19.46439

18. DisPerc-Edu −220,385 14.1 440,797 441,007 19.46701

19. DisPerc-PC −220,378 32.9 440,822 441,314 19.46869

20. DisPerc-Sal-Gender −219,843 12.9 439,712 439,904 19.41943

21. DisPerc-Sal-Age −219,807 16.5 439,647 439,894 19.41727

22. DisPerc-Sal-IA −219,793 14.5 439,614 439,830 19.41511

23. DisPerc-Sal-AFPP −219,784 14.0 439,596 439,805 19.41439

24. DisPerc-Sal-Edu −219,823 16.9 439,679 439,931 19.41790

25. DisPerc-Sal-PC −219,808 33.0 439,682 440,174 19.41854

26. DisPerc-Sal-IA-AFPP −219,717 16.6 439,467 439,714 19.40868

27. DisPerc-Sal-IA-Edu −219,755 19.5 439,550 439,840 19.41217

28. DisPerc-Sal-IA-PC −219,742 34.6 439,553 440,070 19.41280

29. DisPerc-Sal-IA-AFPP-Edu-PC −219,641 36.8 439,356 439,905 19.40397
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statistics improve further, but the improvements are much smaller than those from adding Salary 
and DisPerc.

The model with the risk factors DisPerc, Sal, IA, AFPP, Edu and PC performs well for the 
model assessment criteria introduced in Section 3.3 (see row 29 in Table 2 for those results). Figure 
2 shows the estimated effects for this model. The grey area in the graphs represents the 80% confi-
dence interval based on the calibration using the complete dataset. The coloured lines represent the 
estimated effect if a single year is left out of the dataset. Models with Salary and DisTime perform 
similarly to models with Salary and DisPerc, but we prefer to use DisPerc over DisTime 
since DisPerc is more uniformly spread, see Figure 1. Moreover, exploratory marginal model 
fits revealed a widening confidence interval for larger values of DisTime, while for all values of 
DisPerc the confidence interval width did not change.

In Figure 2 we observe that the effects of Sal and IA are in line with intuition: higher salary leads 
to lower mortality, and more hours worked at irregular times leads to higher mortality, and the esti-
mated effects for these risk factors are strong. The maximal relative difference in the force of mortality 
for participants with high and low salary is about  exp [0.4 − (−0.4)] ≈ 2.2, and the effect of IA is 
only slightly lower.

The estimated effect of AFPP in Figure 2 indicates that early retirement increases the level of mor-
tality compared to retiring at the regular retirement age. Participants may have different motivations 
for retiring early. Wealthy participants may have chosen to retire early because they no longer need to 
work, whereas participants with bad health may have retired early because they can no longer work. 
For the first group we expect lower mortality and for the second group we expect higher mortality. 
In a marginal model (not shown), AFPP attempts to capture both combined effects, while in a model 
that also includes the risk factors Sal and DisPerc, AFPP only captures the remaining effect. The 
most common values are AFPP = 60 and AFPP = 65, and retiring at the age of 60 (early retirement) 
increases the force of mortality by about 5% compared to retiring at 65 (the official retirement age). 
Note, however, that retired participants experience lower mortality than participants who are not yet 
retired, ceteris paribus.

In preliminary analysis (not shown) we investigated the use of ��� ∈ {�������, �������} in the 
regression models. Participants with a disability spell equal to zero (��� = 0) are included in the ref-
erence group, for participants with missing disability information (Dis is missing) we include a 
dummy variable, and for participants with a non-zero disability spell (��� > 0) a smooth effect is in-
cluded.6 Consequently, in a model that only includes the variable Dis, the factor �i is thus represented 
as: 

 In model specifications that include other variables, the variable Dis is included in the factor �i 
accordingly.

The estimated effect for DisPerc in the final model shown in Figure 2 is not monotone. In 2005 
the Dutch government introduced new legislation regarding income protection provided by the state. 
Under this new legislation people can be classified as being partially disabled, and for this group a 
suitable replacement job is searched. Three main classes are distinguished: less than 35% disabled, be-
tween 35% and 80% disabled, and above 80% disabled, and the state pension depends on the disability 
class. DisPerc is a variable aggregated over time and can thus not be directly linked to the disability 

 6If a participant has a cumulative disability spell equal to zero, then both DisTime and DisPerc are zero. The same 
principle holds for participants with missing disability information or with a positive disability spell.

ln𝜂i = 𝛽0 + I[��� is missing] ⋅𝛽1+ I[���>0] ⋅ fDis(���i).
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classes distinguished in the legislation. The different treatment of these three disability classes proba-
bly causes the curvature in the estimated effect for DisPerc.

The third column in Figure 2 shows the estimated spatial effect based on longitude and latitude in-
formation. The map clearly highlights regions with higher mortality and regions with lower mortality.

The results shown in Table 2 are obtained by optimizing the likelihood as specified in Equation 
(2) using Poisson regression. We challenged the assumption of equidispersion underlying the Poisson 
regression by investigating the presence of overdispersion in our data. However, we did not find any 
evidence for this, see the online Supplementary Material.

4.1.2 | Cross-validation

The last column in Table 2 shows the cross-validation statistics (smaller  ln  S is better). The scoring 
rule does not include a penalty for adding parameters. Therefore, if a variable captures an effect that 
is consistent through time, including that variable will lead to a more accurate predictive distribution 
and thus to improved results for the scoring rule, while including variables that represent uninforma-
tive noise or which are not consistent over time may deteriorate those results. Results for the scoring 
rule improve if we add variables, so the variables capture effects that are consistent through time. 

F I G U R E  2  Estimated effects for the model with DisPerc, Sal, IA, AFPP, Edu and PC included (row 29 
in Table 2). The first two columns show the estimated smooth effects for DisPerc, Sal, IA, AFPP and Edu; the 
grey area bounded by the black lines represents the 80% confidence interval for the effects estimated on the complete 
dataset, and the coloured lines represent the estimated effects if a single observation year is excluded. The third 
column shows the estimated spatial effect. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Furthermore, from Figure 2 we observe that the coloured lines show a similar pattern as the grey areas, 
which means that the estimated effects for the risk factors are stable over time.

4.2 | Predicted cohort life expectancies

The model with the risk factors DisPerc, Sal, IA, AFPP, Edu and PC performs well both in-sam-
ple and out-of-sample, and the estimated effects for this model are robust. Using the estimated effects 
from this model (see Figure 2), we compute remaining cohort life expectancies (LE) as in Equation (9) 
for a set of risk profiles which are shown in Table 3. This allows us to quantify the impact of different 
variables on LE, and to compare our results with existing literature. We do not distinguish between 
different levels of PC, AFPP and Edu because doing so would complicate a clear presentation of the 
results. Therefore, for the variables AFPP and Edu we assume these are missing, and for PC we as-
sume a postal code that has a limited estimated effect, when calculating the remaining life expectan-
cies. The most-favourable group in this table is defined by (IA = No, DisPerc = “No”, Sal = 0.90) 
and the least-favourable group by (IA = 10%, DisPerc = 5%, Sal = 0.10).

The results are striking. For the remaining life expectancy at age 25, the difference between low 
and high salary risk profiles is between 5 and 6 years, and the difference is of similar size for being/
having been disabled or not. Chetty et al. (2016) found a difference of 14.6 years between the 1% 
richest and 1% poorest on a dataset that is not restricted to people in a particular pension fund. Instead, 
their data covers all individuals with positive household earnings in the USA. The USA is a more het-
erogeneous group than the participants within the Dutch pension fund, and we use different quantiles 
for salary, so the different scale in the longevity gaps is not surprising. Furthermore, even the effect 
of postal code on life expectancy is not negligible since it amounts to approximately 1 year, and this 
result is in line with figure 5 from Chetty et al. (2016).

T A B L E  3  Predicted remaining cohort life expectancies for different risk profiles. The model used for estimating 
factors includes the variables DisPerc, Sal, IA, AFPP, Edu and PC_Group, and remaining life expectancies are 
computed in the year 2012 for males (M) and females (F) at the age of 25 and 65. To limit the dimensions of the risk 
profiles, we have assumed AFPP and Edu missing in all risk profiles, and we have chosen a postal code where the 
estimated effect is nil

IA DisPerc Sal LE
M

(25) LE
F

(25) LE
M

(65) LE
F

(65)

No No 0.90 68.4 70.5 26.7 29.2

0.50 65.9 68.1 24.1 26.8

0.10 62.6 65.1 20.9 23.9

5% 0.90 62.1 64.6 20.4 23.4

0.50 59.4 62.1 18.0 21.1

0.10 55.8 58.7 15.2 18.3

10% No 0.90 67.4 69.5 25.7 28.2

0.50 64.9 67.2 23.1 25.9

0.10 61.6 64.1 19.9 23.0

5% 0.90 61.0 63.6 19.4 22.5

0.50 58.3 61.0 17.1 20.2

0.10 54.6 57.5 14.3 17.5

Baseline (general population) 62.5 65.1 19.6 22.7
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Cairns et al. (2019) compute the partial period life expectancy from age 55 to 90 for different afflu-
ence groups. These affluence groups are defined using a combination of reported wealth and income. 
In their work the difference in partial period life expectancy between the lowest and highest affluence 
groups is about 6.5 years, which is also in line with our results. Furthermore, RIVM (2014) reports 
differences up to 6 years in period life expectancy at birth between low and highly educated people. 
This range is similar to what we observe for low and high salaries.

Our approach allows us not only to study main effects, but also favourable and unfavourable combi-
nations. The difference in remaining life expectancy for x = 25 between the most-favourable group in 
Table 3 and the least-favourable group is 13.8 and 13.0 years for males and females respectively. These 
differences persist over time: at age 65 the differences are 12.4 and 11.7 years for males and females 
respectively. This means that if participants were to retire at age 65, males in the most-favourable group 
benefit 26.7 years from their pension which is almost twice as long as males in the least-favourable group, 
who benefit 14.3 years on average. We have not taken into account the effect from all risk factors that can 
be included in the model, so for more specific risk profiles the differences may be even larger.

In these calculations we have assumed that the variables Sal, DisPerc and IA remain constant 
throughout the entire lifetime of a participant. Although this is a strong assumption, it is the best as-
sumption we can make based on the available data.

4.3 | Financial backtest

Figure 3 shows the results of the financial backtest. For each model we computed the mean, variance 
and skewness of the value of the liabilities (predicted at 1 January 2011). The mean is represented 
by the large dot, the horizontal lines represent the 90% prediction intervals under the assumption of 
skewed normality for the value of the liabilities. The vertical dashed line indicates the actual value 
observed at the end of the year (i.e. the target for our predictions at the beginning of the year). The 
MSPE as defined in Equation (13) is shown on the right-hand side of the figure.

If we use participant factors equal to one (i.e. mortality for each participant is the same as population 
mortality), we underestimate the liabilities; the actual liabilities are far outside the prediction interval. 
Predictions improve if we take participant mortality into account, so this clearly shows the usefulness 
of adjustments to population mortality rates. However, the liabilities are still underestimated. It is 
surprising that for models with only a single variable Age, Gender, DisTime, DisPerc, AFPP, 
PC or IA included, the predicted liabilities are very similar to the predicted liabilities when only an 
intercept, and thus a fixed correction to population mortality, is included. Obviously, the liabilities 
predicted at the level of individual participants differ when moving from a model with only an inter-
cept to a model incorporating one of these risk factors.

However, if we include Sal as an explanatory variable the prediction of the liabilities improves 
significantly. Since accrued benefits are correlated with salary, this was to be expected. This is also 
the reason why practitioners in insurance companies tend to work with mortality rates weighted by 
insured amounts, as explained in Plat (2009).

The model estimation results in Table 2 suggest to use a model which includes Sal and either 
DisTime or DisPerc, and possibly IA, Edu and PC as additional explanatory variables. However, 
in Figure 3 we see that including information on disability when Sal is already taken into account 
decreases the predicted value of liabilities and the backtesting results worsen (compared to the model 
where only Sal is included). This is further investigated in Figure 4 where we show the predicted 
value of liabilities for specifications with DisPerc and/or Sal included, but we distinguish between 
participants with known and unknown disability and/or salary information:
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1. If only DisPerc is included, liabilities are underestimated for participants without a pos-
itive disability spell, because the correlation between mortality and accrued rights is not 
taken into account. The actual liabilities fall within the prediction interval for participants 
with a positive disability spell;

2. If only Sal is included, predicted liabilities increase for participants with known salary infor-
mation compared to the predicted liabilities for the other single factor regression models. For 
participants without positive disability spell the liabilities are underestimated, and for participants 
with positive disability spell the liabilities are overestimated. The actual liabilities fall outside the 
prediction interval for all groups;

3. If both DisPerc and Sal are included, the predicted liabilities are closer to the actual liabilities 
for nearly all groups compared to the liabilities predicted using the single factor regression models. 
For people with known salary the prediction is very close to the actual liabilities.

This example shows that focusing on a single backtest at an aggregate level may lead to subop-
timal decisions regarding the selection of risk factors. For one risk profile we may underestimate 
the liabilities while for another risk profile the liabilities may be overestimated. Therefore, we also 
calculated the MSPE and include the results on the right-hand side of Figure 3. We calculated the 

F I G U R E  3  Results for the financial backtest. For each model we show the expected value and 90% confidence 
interval for the predicted liabilities needed on 31 December 2011 (predicted at January 1st 2011). The vertical dotted 
line represents the liabilities for the participants who were still actually alive on 31 December 2011. The mean 
squared prediction error is shown for each model on the right-hand side of the figure. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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MSPE using liabilities predicted at individual level, so within the MSPE under- and overestimation 
cannot cancel each other out. The MSPE for the model with only Sal included is worse than the one 
obtained when only DisPerc is included. Furthermore, if we include both DisPerc and Sal the 
MSPE improves substantially. When both Sal and DisPerc have been included, the MSPE im-
proves only marginally when other risk factors are added. Based on Figures 3 and 4 we conclude that 
the MSPE yields useful information regarding which models provide accurate liability predictions 
on an individual level. However, the prediction intervals provide additional insights for subgroups 
of the portfolio and reveal for which groups the liabilities are under- or overestimated. Therefore, we 
recommend to use both tools to obtain a complete view on how different models perform relative to 
each other.

5 |  CONCLUSION

This paper shows how to estimate mortality rates for individual risk profiles using a large dataset of 
individual records registered over time. The scale of our empirical analysis strengthens our conclusion 
that salary, disability and working at irregular hours all have a particularly strong impact on the level 
of mortality. We quantified significant longevity gaps between the most-favourable and least-favour-
able risk profiles in the fund: a difference between remaining life expectancies of about 13 years at 
age 25 and 12 years at age 65.

To identify relevant risk factors we did not only rely on statistical measures (evaluated in- and 
out-of-sample), but we also designed a financial backtest that targets the (monetary) accuracy of the 
predictions. For our data, information on salary and time spent in disability of participants turns out 
to be particularly relevant for accurate prediction of the pension liabilities.

This paper illustrates the importance of intensive and careful data collection and storage. The 
sophistication of modern statistical methods allows us to improve mortality estimates by including 
explanatory variables beyond the traditional age-gender setting. As such, we are able to quantify the 

F I G U R E  4  The financial backtest split between participants with and without disability and/or salary 
information. There are no participants with known salary information but unknown disability information. Notes: see 
Figure 3. [Colour figure can be viewed at wileyonlinelibrary.com]
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longevity gap between the national population and a subgroup on the one hand, and among partici-
pants within that group on the other hand. Pension funds can incorporate these insights when valuing 
their liabilities. Moreover, having access to similar data collected at the level of the national popula-
tion, the strategy outlined in this paper will support policymakers involved in the design of pension 
reforms, for example by quantifying the longevity gaps between different categories of professions.
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