
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Reasoning about Quantum Actions: A Logician’s Perspective

Smets, S.
DOI
10.1007/978-94-007-5845-2_11
Publication date
2013
Document Version
Author accepted manuscript
Published in
New Challenges to Philosophy of Science

Link to publication

Citation for published version (APA):
Smets, S. (2013). Reasoning about Quantum Actions: A Logician’s Perspective. In H.
Andersen, D. Dieks, W. J. Gonzalez, T. Uebel, & G. Wheeler (Eds.), New Challenges to
Philosophy of Science (pp. 125-134). (The Philosophy of Science in a European Perspective;
Vol. 4). Springer. https://doi.org/10.1007/978-94-007-5845-2_11

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1007/978-94-007-5845-2_11
https://dare.uva.nl/personal/pure/en/publications/reasoning-about-quantum-actions-a-logicians-perspective(f2274db6-d721-46d0-ae69-cdefa2411b83).html
https://doi.org/10.1007/978-94-007-5845-2_11


Reasoning about Quantum Actions: A

Logician’s Perspective

Sonja Smets

Abstract

In this paper I give an overview of how the work on quantum dy-

namic logic for single systems (as developed in [2] ) builds on the con-
cepts of (dynamic) modal logic and incorporates the methodology of
logical dynamics and action based reasoning into its setting. I show in
particular how one can start by modeling quantum actions (i.e. mea-
surements and unitary evolutions) in a dynamic logic framework and
obtain a setting that improves on the known theorems in traditional
quantum logic (stated in the context of orthomodular lattices).

1 Introduction

The traditional methods of “static” propositional (and first-order) logic dat-
ing back to the first part of the last century are limited with respect to
their ability to handle physical systems, especially if we focus on their dy-
namic, spatial and temporal properties, aspects of uncertainty or probabilis-
tic features. In the meantime several new logical methods have been devel-
oped, such as modal logics, in particular propositional dynamic logic (PDL)
and temporal logic, dynamic epistemic logics, resource-sensitive logics, game-
logics and (in)dependence friendly logics to name just a few. In this paper I
follow the dynamic modal logic tradition, which ties in nicely with the work
on action logics used in computer science. My aim is to show explicitly how
a dynamic modal logic approach can provide the adequate tools to deal with
quantum physical systems and moreover, I will point out how this setting
provides us with a new methodology to talk about quantum behavior. The
methodology fits in line with the dynamic view on logic (as it’s practiced
by the “Amsterdam school in logic”, see e.g. [7, 8] ) by focusing, not so
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much on the ‘static’ features such as propositions, theories or properties,
but on dynamic ones such as: theory change, evaluations, processes, actions,
interactions, knowledge updates, communication and observations.

From a more general point of view, the approach adopted in this paper
brings together two lines of work: 1) the traditional work on operational
quantum logic and 2) a specific information theoretic perspective on quan-
tum systems. As with respect to the first direction, the work on operational
quantum logic within the Geneva School on quantum logic originated with
[27, 18, 19, 20, 29, 28, 25]. In this work one interprets the logical structure
of quantum (and classical) propositions of a physical system by relating it
directly to experimental situations. Quantum logic is here not conceived as
a “merely” abstract theory (as in [21]) but is provided with an operational
dimension which explicitly incorporates features belonging to the realm of
“actions and physical dynamics”. The second direction refers to the infor-
mation theoretic part which lines up with the older tradition in computer
science of thinking about information systems in a dynamic manner. In this
view, a “state” of a system is being identified with the actions that can be
(successfully) performed on that state. In theoretical computer science this
has given rise to the study of various semantic (classical) notions of “process”
(such as e.g. labeled transition systems, automata and coalgebras). Bringing
these two lines of work together, I show in the following sections how one can
proceed by analogy with the work on labeled transition systems and present
a quantum variant of it.

I start in the next section by introducing the necessary background knowl-
edge on labelled transition systems, which is the standard method used in
modal logic and in the applications of computer science to represent pro-
cesses. To reason about these processes in section 3, I go over the standard
setting of PDL. In section 4, I give a quantum interpretation to the lan-
guage of PDL and show how the setting of quantum transition systems can
improve on the known theorems in traditional quantum logic. Note that in
this paper no new technical results are being introduced, this paper serves
the purpose of highlighting how the classical techniques of modal logics and
labeled transitions systems can be adapted and applied to obtain a quantum
setting.
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2 Labeled Transition Systems

Similar as in [16], I take a process to refer to “some object or system whose
state changes in time”. Note that the logicians’ use of process does not nec-
essarily fit in line with the so-called school on process philosophy. Broadly
viewed, process philosophy relates to the works of Leibniz and Whitehead
and is mainly concerned with the ontological nature of processes in the study
of metaphysics. One might of course subscribe to the supremacy of processes
over other ontological entities, but this is typically not a logician’s first con-
cern. Our concern is to reason about processes, in the sense of modeling their
behavior.

In modal logic and its applications in computer science, there is a tra-
dition to represent processes by means of Labeled Transition Systems (LTS
for short), also known as multi-modal Kripke models. A LTS is a structure
(S, {

a
→}a∈A, V ) consisting of a set of states or possible worlds S, a family

of binary relations labeled by letters from a given set a ∈ A and a valua-
tion V assigning truth values to atomic sentences (see e.g. [7]). The set A
standardly refers to actions, although other interpretations are possible. In
a given LTS, defined over a set of actions, the relation s

a
→ t indicates that

the process can evolve from input state s to output state t by the execution
of action a. As an example, consider the process of getting some money from
an ATM modeled as a LTS with basic actions such as “enter your card”;
“enter your pin code”; “withdraw 10 euro”, etc. Other standard examples
of LTS’s are e.g. those that encode the process of getting a coffee out of a
vending machine, making a zerox-copy or performing a specific calculation
on a pocket calculator. In the latter case the arrows are labeled by input-
actions such as “c,+,−,×,=, 0, ...9” and states will satisfy strings of input
symbols (see e.g. [13]).

It is customary to think of actions as simple, “basic” programs having an
input state and an output state. These input and output states represent
the internal states of the process. Note that external observers (who push
buttons on a pocket calculator) might have no access at all to the internal
states that are not visible from the outset. The best picture here is that of
a “black box” of which we (the observers/users) only experience its behavior
in response to our available actions (see [17, 26]). As explained in [26], the
black box picture encodes the difference between an LTS and a finite state
automaton. In a finite state automaton one first has to provide an input list
and then one lets the automaton run to decide if it accepts or rejects the
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input. Contrary to an LTS, in an automaton one does not see immediately
whether each action (that provides an input-item) is rejected or not, one has
to wait until the automaton eventually stops running. Further, LTS’s can
have an infinite amount of states and hence they differ in an obvious way
from finite state automata.

Several types of processes can be represented by the formalism of LTS.
Nondeterministic processes can be captured by using branching relations
to represent “arbitrary choice”. Similarly, the LTS-formalism can capture
the concatenation and iteration of processes by using the composition of
transition relations.

Stochastic processes are essentially probabilistic and can be represented
by probabilistic versions of labeled transition systems. In the case of a dis-
crete state space, the study of probabilistic transition systems was initiated
by Larsen and Skou in [23]. They define a probabilistic transition system
(S, {µs,a}) as a structure consisting of a set of states S and a family of prob-
ability distributions µs,a, one for each action a ∈ A and each input-state
s ∈ S. Here, µs,a : S 7→ [0, 1] gives the possible next states (and their proba-
bilities) after action a is performed on input-state s. Informally, µs,a(s

′) = x

says that action a can be performed in state s and with probability x reaches
the state s′ afterwards [23]. Note that the probabilities have to add up:
∑

s′ µs,a(s
′) = 1.

Larsen and Skou’s investigation was first extended to the case of contin-
uous state spaces in [10]. As explained in [11], this means that “we can-
not ask for the transition probability [from an input-state] to any [specific
output-state, or some arbitrary] set of states - we need to restrict ourselves
to measurable sets”. In such a setting, one can model the complex continu-
ous real-time stochastic systems such as the flight management system of an
aircraft or the Brownian motion of some molecules [12].

I briefly note here the existence of a general abstract mathematical frame-
work encompassing and unifying all the above-mentioned types of processes
and many others: the theory of coalgebras (see e.g. [17, 22]). Coalgebra is
a rather new domain of research, drawing mainly upon the mathematical
language of Category Theory. A coalgebra, in its most rudimentary form,
consists of a state space S endowed with a transition map S → F (S), where
F is a functor. By varying the functor, one can accommodate many possi-
ble notions of processes: transition systems, deterministic systems, discrete
probabilistic systems, continuous stochastic systems etc. For the purpose of
this paper, I will not go further into the general framework of coalgebras,
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restricting myself to the simplest example above (non-probabilistic labeled
transition systems). But it is important to stress that, from a general coal-
gebraic perspective, the above discussion can be extended to other types of
processes.

3 Propositional Dynamic Logic

One of the logical systems that provides an axiomatic proof theory to reason
about the actions in a LTS is Propositional Dynamic Logic (PDL). PDL
and its fragment the Hoare Logic (see e.g. [15]) have been mainly used in the
context of program verification in computer science, i.e. when verifying that
a given (classical) action or program meets a required specification. In its
syntax, PDL uses dynamic formulas to express these actions or programs.
Besides the basic actions that were introduced in the previous section, PDL
also considers some special kind of actions, called “tests”. Each classical
property P ∈ P(S) gives rise to a “test” denoted as P?. Hence, the actions
of PDL could be classified in two types: tests P? and basic actions A.
Semantically this means that I slightly generalize the above given semantic
setting to incorporate the two types of actions as follows:

A dynamic frame is a structure F = (S, {
P?
→}P∈L, {

a
→}a∈A), consisting of

a set S of states; a family of binary “transition” relations
P?
→⊆ S × S, which

are labeled by “test” actions P?; a family of binary “transition” relations
a
→⊆ S × S, labeled by basic “actions” a ∈ A. Note that the labels for the
tests come from a given family L ⊆ P(S) of subsets P ⊆ S, which are called
testable properties.

As noted in [1, 2, 3], Kripke frames for standard PDL are a special case
of dynamic frames, namely those in which one takes L =: P(S), and the

transition relation for a test to be given by s
P
→t iff s = t ∈ P . Semantically

this is encodes as the diagonal {(w,w) : w ∈ P} of the set P . As noted
in [2], intuitively P? can be thought of as a “purely epistemic” action by a
(external) observer who “tests” property P , without affecting the state of
the system. The transitions

a
→ are binary relations on S.

The logical language of standard (star-free) PDL consists of two levels:
a level of propositional sentences ϕ (expressing properties) and a level of
programs or actions π which are defined by mutual induction:
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ϕ ::= p| ¬ϕ| ϕ ∧ ϕ| [π]ϕ
π ::= a| ϕ?| π ∪ π| π; π

Here I take p ∈ Ω and Ω to be a given set of basic (elementary) proposi-
tions. The set of basic action labels A is given with a ∈ A. I use ¬ to denote
classical negation and ∧ for classical conjunction. The modal operators [π]
are labeled by actions π and in this I allow for complex action or program
constructions such as the non-deterministic choice of actions π ∪ π and rela-
tional composition π; π. I use labeled modal operators to build a particular
type of formulas [π]ϕ, which construct a new formula from a given program
π and formula ϕ. Here [π]ϕ is used to express weakest preconditions, which
means that if program π would be performed on the current state of the
system then the output state will necessarily satisfy ϕ. The PDL test ϕ?
denotes the action of testing for ϕ in the way as is defined in the above se-
mantics for standard PDL. Hence the test action ϕ? is successful if and only
if ϕ is true and testing for ϕ leaves the state of the system unchanged, in
all other cases the test fails. In line with [6], we note that all these complex
program constructors make PDL particularly well fit for the task of pro-
gram verification as it becomes easy in this setting to express programming
constructs such as “if then else” or “do while”-loops (see [15]). In a way
this indicates the importance of lifting this setting to a quantum framework,
precisely because of the contributions it can offer to the work on quantum
program (or quantum protocol) verification (as in [1, 3]).

4 Dynamic Quantum Logic

In this section, I show how the ideas presented in the previous sections can
be extended to a quantum framework. I don’t present new technical results
here but provide an overview of the main ideas of Dynamic Quantum Logic
as presented in a series of papers [2, 1, 3, 4, 5, 6, 30].

In [2] it was first shown how Hilbert spaces can be structured as non-
classical relational models. These models are a quantum version of the LTS’s
introduced above. I call a Quantum Transition Systems (or QTS) a dynamic

frame (S, {
P?
→}P∈L, {

a
→}a∈A) satisfying a set of ten abstract semantic con-

ditions. In this case the states in S are meant to represent the possible
states of a quantum physical system and the transition relations describe the
changes of state induced by the possible actions that may be performed on
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that quantum system. As before I use the notation L to denote the set of
testable properties. Any such QTS can be equipped with a so-called mea-
surement relation, which allows for the existential quantification over tests as

follows: s→t iff s
P?
→ t for some P ∈ L. The negation of the measurement

relation gives rise to an orthogonality relation, so I write s ⊥ t iff s 6→ t. For
any set P ⊆ S, I write t ⊥ P iff t ⊥ s for all s ∈ P and the orthogonal (or
orthocomplement) of the set P is defined as follows: ∼ P := {t ∈ S : t ⊥ P}.
The biorthogonal closure of a set P is given by the set ∼∼ P = ∼ (∼ P ).

In the following list of semantic frame conditions in a QTS, I take the vari-
ables P,Q to range over testable properties in L, the variables s, t, s′, t′, v, w
range over states in S and a ranges over basic actions (which are also called
“unitary evolutions”) [2]:

Frame Conditions

1. Closure under arbitrary conjunctions: if L′ ⊆ L then
⋂
L′ ∈ L

2. Atomicity. States are testable, i.e. {s} ∈ L.
This is equivalent to requiring that “states can be distinguished by
tests”, i.e. if s 6= t then ∃P ∈ L : s ⊥ P, t 6⊥ P

3. Adequacy. Testing a true property does not change the state:

if s ∈ P then s
P?
→ s

4. Repeatability. Any property holds after it has been successfully tested:

if s
P?
→ t then t ∈ P

5. “Covering Law”. If s
P
→w 6= t ∈ P , then there exists some v ∈ P such

that t→ v 6→ s.

6. Self-Adjointness Axiom: if s
P?
→ w→t then there exists some element

v ∈ S such that t
P?
→ v→s

7. Proper Superposition Axiom. Every two states of a quantum system
can be properly superposed into a new state: ∀s, t ∈ S ∃w ∈ S s→w→t

8. Reversibility and Totality Axioms. Basic unitary evolutions are total
bijective functions: ∀t ∈ S ∃!s s

a
→ t and ∀s ∈ S ∃!t s

a
→ t

9. Orthogonality Preservation. Basic unitary evolutions preserve (non)
orthogonality: Let s, t, s′, t′ ∈ S be such that s

a
→ s′and t

a
→ t′.

Then: s→ t iff s′ → t′.

7



10. Mayet’s Condition: Orthogonal Fixed Points. There exists some uni-
tary evolution a ∈ A and some property P ∈ L,such that a maps P
into a proper subset of itself; and moreover the set of fixed-point states
of a has dimension ≥ 2. In other words:
∃a ∈ A∃P ∈ L∃t, w ∈ S∀s ∈∼∼ {t, w} : a(P ) ⊆ P , a(P ) 6= P , t ⊥ w,
a(s) = s.

As shown in [2], these 10 conditions imply that L, with set-inclusion as
partial order, forms an orthomodular lattice of infinite height satisfying all
the necessary conditions for the representation theorem of Piron, Solèr and
Mayet to hold (see [28, 24, 31]). To understand this result, let us first call
a concrete QTS a QTS which is given by an infinite-dimensional Hilbert
space H. In the concrete case, the “states” in S are taken to the one-
dimensional closed linear subspaces of H, L is then given by the family of
closed linear subspaces of H and the relations that are labeled by testable

properties
P?
→ will correspond to (successful) quantum tests (given by the

projectors onto the closed linear subspace corresponding to property P ). The
relations

a
→ correspond to linear maps (expressing the so-called “quantum

gates”) a on H. The important result for this setting, proved in [2], shows
an “Abstract Soundness and Completeness” theorem for the Hilbert-space
semantics. In particular, the results in [2] show how every (abstract) QTS
can be canonically embedded in the concrete QTS associated to an infinite-
dimensional Hilbert space, i.e. every concrete QTS is a QTS and every QTS
is isomorphic to a concrete QTS.

We argued in [2, 4, 5, 6] for the importance of these results. By moving
to the QTS setting it is possible to solve some of the main problems posed in
the traditional quantum logic work on orthoframes, such as the problem that
orthomodularity could not be captured by a first-order frame condition (as
shown in [14]). In contrast, in a QTS this problem is solved: orthomodularity
now does correspond to a first-order frame condition and receives a natural
dynamic interpretation. In a similar fashion we refrased the “Mayet condi-
tion”, which previously could only be stated using the second-order notion of
a lattice isomorphism. The “Mayet condition” has now been “internalized”
in the setting via the use of quantum actions. Hence from a logical perspec-
tive, the QTS formalism yields an improvement of the traditional quantum
logic setting.

The QTS structures provide us with the models for a propositional logical
system that is different but still close to traditional PDL. The logic is
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called the Logic of Quantum Actions (LQA) in [2, 4, 5, 6] and has the same
syntactic language as (star-free) PDL. Let us restrict our quantum setting
to the language without classical negation ¬ in this paper. This (star-free
and classical negation-free) language of PDL can be interpreted in a QTS.
All the actions are now interpreted as quantum actions, in particular the test
operation will correspond to a quantum test and a basic action is interpreted
as a quantum gate. The complex program expressions can now be interpreted
as quantum programs.1

Note that traditional orthomodular quantum logic (in the tradition of
work by [9]) can be re-interpreted inside LQA. This can be done by defining
the orthocomplement of a property as the impossibility of a successful test,
i.e. ∼ ϕ := [ϕ?]⊥. Note that the operation of “quantum join” is definable
via de Morgan law as ϕ ⊔ ψ :=∼ (∼ ϕ∧ ∼ ψ) and the traditional “quantum
implication” (or so-called Sasaki hook) is given by the weakest precondition
ϕ → ψ := [ϕ?]ψ . This re-interpretation provides us with a dynamic and
operational characterization of all the non-classical connectives of traditional
quantum logic.
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