
 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10880 35

Network Transmission Flags Data Affinity-based
Classification by K-Nearest Neighbor

Nahla Aljojo
Department of Information System and Technology, College of Computer Science and Engineering, University of Jeddah,

Jeddah, Saudi Arabia

Abstract—This research is concerned with the data generated
during a network transmission session to understand how to
extract value from the data generated and be able to conduct
tasks. Instead of comparing all of the transmission flags for a
transmission session at the same time to conduct any analysis, this
paper conceptualized the influence of each transmission flag on
network-aware applications by comparing the flags one by one on
their impact to the application during the transmission session,
rather than comparing all of the transmission flags at the same time.
The K-nearest neighbor (KNN) type classification was used because
it is a simple distance-based learning algorithm that remembers
earlier training samples and is suitable for taking various flags with
their effect on application protocols by comparing each new sample
with the K-nearest points to make a decision. We used transmission
session datasets received from Kaggle for IP flow with 87 features
and 3.577.296 instances. We picked 13 features from the datasets
and ran them through KNN. RapidMiner was used for the study,
and the results of the experiments revealed that the KNN-based
model was not only significantly more accurate in categorizing
data, but it was also significantly more efficient due to the decreased
processing costs.

Index Terms—Transmission control protocol flags,
K-nearest neighbors, Investment, Financial risk, Deep
learning.

I. Introduction
The transmission control protocol (TCP) operations is
conducted with the use of flags which are very important
component of the TCP protocol that must be understood
to perform transmission of data over a network and for the
network to function properly (Hartpence and Kwasinski,
2020). Those transmission flags are contained within the
seventh field of the TCP header and can be set to either 0
or 1 depending on the situation, which they regulate and
determine how connection states are managed as well as the
manner in which packet transfers are carried out (Kadhim
and Abed, 2017). It is also possible to use flags to control

the establishment of connections as well as the closure and
termination of connections; in other words, when a flag is
turned on, it is referred to as being set; conversely, when
a flag is turned off, it is referred to as being unset. A total
of nine TCP flags can be set, six of which are commonly
used in network communications and the other three are
not. When a flag is set to 1, it indicates that a control was
set for the function of that flag in the and when it is set
to 0, it means it’s off. One of the major functions of TCP
in transmission is to “control” the transmission process
in general. A TCP segment should be processed first, for
example, if there is a problem with priority, TCP would be
able to give priority of one segment over other segments
with the use of flag. Similarly, TCP would be able to provide
control over transmission and retransmission and many other
transmission tasks.

The main research problems that this present study
highlighted lie with the use of data. That is in this study, the
usage of data created during the transmission session linked
with the activities of flags was identified as one of the most
significant research problems that needed to be addressed.
When the sending computer sends, for example, a “push
flag,” it is usually to inform the receiving computer that the
sending computer should flush the TCP buffers and send
whatever data are still present in them at the time the push
flag is sent. The push flag can be used to indicate a variety
of different things associated with the payload in different
circumstances. It means gathering such scenarios, there
will be some insight that will be gain in order to properly
understand the transmission operations fully. In addition,
it is usual for the transmitting computer to send a “push
flag” to inform the receiving computer that it should flush
the TCP buffers and deliver any data that are still present
in them at the time the push flag is sent. When used in a
variety of various contexts, the push flag can be used to
convey a variety of different things that are linked to the
payload. By analyzing such circumstances, some information
can be gathered that can then be used to correctly identify
the transmission flaws as well. Moreover, given that these
flags must be toggled on or off, their impact on various
application layer protocols on different transmission sessions
will be extremely significant for understanding network
communication in general, something that has hitherto been
overlooked by the academic community.

ARO-The Scientific Journal of Koya University
Vol. X, No. 1 (2022), Article ID: ARO.10880. 43 pages
DOI: 10.14500/aro.10880
Received: 17 September 2021; Accepted: 21 February 2022
Regular research paper: Published: 25 April 2022
Corresponding author’s email: nmaljojo@uj.edu.sa
Copyright © 2022 Nahla Aljojo. This is an open access article
distributed under the Creative Commons Attribution License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

36 http://dx.doi.org/10.14500/aro.10880

Considering the research problems highlighted above, the
objective of the present study is to examine the use of data
generated during the transmission session in conjunction
with the activities of transmission flags, based on the fact
that this has been outline as the current research gaps and as
one of the most critical research concerns that required more
investigation. There are many motivations for achieving
this objective. The crucial one lies with the use of reset
flag. Consider a transmission where an attempt to establish
a connection result in the return of a reset flag; however,
it is possible that an attempt will be made and a reset flag
will be returned because a port may not be open at the time
of the attempt. It means that information will be generated
in various aspects that would require further analysis.
Furthermore, the previous research studies have identified
that TCP flags can be used in packet analysis to determine
the state of the communications process at any given point in
the TCP conversation or to trace a session from its inception
to its conclusion, depending on the protocol (Kumar, et al.,
2018; Chow, Li, Mountrouidou, 2017; Muelas, et al., 2017;
Kushwah, et al., 2019; Hartpence and Kwasinski, 2020;
Tomar, 2019; Sahi, et al., 2017; D’souza, et al., 2020).

The present study makes it obvious that the unit of
analysis is “data,” and as a result, the problem of connection
construction between two TCP segments is handled as the
core major problem. TCP flags can be used to determine
the current state of the communication process at any
given point in the conversation by studying the contents
of the flags (Gital, et al., 2016). In reality, malicious users
can take advantage of TCP flags to their own advantage;
they can be configured in such a way that they can be used
to launch denial of service attacks and other malicious
actions on the network (Amanowicz and Jankowski, 2021).
Considering a network scenario, where a central source and
four destinations are in transmission (Fig. 1). In all the four
cases, the various TCP flags can be found in the TCP header,
despite coming from a single source and they are responsible
for the transmission and flow of packets across the network
connection. As a result, they are approximately in control
of how data are transmitted, and how data are processed.
Each of the TCP flags is on its way out to carry out its
responsibilities on the target in all the four connections. The
urgent flag is used to specify that a packet must be processed
immediately, and you’re attempting to pass that information
along to the target or to any other device that will be
processing that packet. The push flag is used to transmit data
as soon as it is received. The Fin brings the transmission

to a close. The ACK flag indicates that a packet has been
successfully received. To initialize the connection between
two devices, the SYN or synchronization flag is used.

II. Related Work
Analyzing transmission session data are mostly carried out

in response to network monitoring (Demertzis, et al., 2021),
crucial to that is employing an architecture that monitors the
entire traffic and analyzes them for identification of either
attacks or real-time problems. Data are generated within
a network operation for various reason, an organization’s
network activity generates data, such as new benchmark
datasets for evaluating data-driven intrusion detection systems
(Abubakar, et al., 2015). The generation of data from any
network process or operation is necessary, but the analysis of
that data is much more crucial. Poorzare and Calveras
(2021) generate network transmission data to reveals an
understanding of why TCP cannot differentiate between
congestion and other network flaws that can cause packet
drops. Atan, et al. (2021) utilized some traffic data to gain an
understanding of degradation attacks and TCP performance.
Although data can be collected from various area of network,
the analysis of such kind of data is the key problems. That is
why there are many machine learning approaches to analysis
data to draw out some values from such data.

The K-nearest neighbors (KNN) classifier has been used
in a number of the previous studies to better understand the
functioning of networks. Gordon et al. (2021) revealed that
to identify and classify Internet of Things devices, as well as
to detect several types of DDoS attacks, including TCP-SYN,
UDP, and ICMP, KNN has performed. Dini and Saponara
(2021) utilized KNN for instruction detection in a network
transmission session. In analysis with data, the amount of
recorded patterns makes the approach more efficient. KNN
provides a set of patterns in the training set. Given KNN and
other machine learning algorithms operations, it is easy to
see how the KNN method of classification is a simple but
extremely effective method of categorizing network data
associated with network transmission (Nikam, 2015). In a
similar vein, it has been demonstrated that a classification
algorithm known as the KNN is critical in the solution of
fundamental classification problems for network transmission
operations (Alweshah, et al., 2020). KNN has also been
recognized as the most appropriate option when dealing with
long-term network operations datasets (Jannach and Ludewig,
2017). Despite having a wide acceptance, KNN also faces
some drawbacks.

It has been recognized that analysis associated with KNN
is mostly affected by the preparation of the “good value” for
the parameter k, which is also required before constructing
a network of nodes. It’s a significant problem in the KNN
algorithm because it makes selecting a “good value” for k
more difficult than it should be, which makes it less efficient
(Zhang, et al., 2017). Furthermore, another significant
shortcoming of the algorithm is that it does not take into
consideration any of the input data, which is another serious Fig. 1. The types of TCP flags in a transmission session.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10880 37

flaw in the algorithm (Liao, et al., 2021). In a survey of a
techniques, datasets, and challenges in intrusion detection
systems, KNN has been identified to be among the crucial
intrusion detection technique (Khraisat, et al., 2019), several
points were highlighted on the reason why KNN retains
all of the training data for classification, which many other
algorithms discard those portions of it to improving their
performance.

Using KNN for anomaly detection in TCP/IP networks,
Zanero and Savaresi (2004) did a critical classification
analysis for the aim of anomaly detection in TCP/IP
networks, and the findings were published. To perform
their analysis, the research team used a clustering approach
followed by normal anomaly detection techniques. In
a network transmission session, Ponmaniraj and Anand
(2018) were able to analyses both the usual traffic pattern
and the anonymous traffic pattern using KNN. Wenke and
Stolfo (1998) developed an established framework capable
of taking a classification and clustering techniques for
detection intrusion detection on specific network scenarios
with the purpose of detecting hostile activity and applying
them to specific network situations. A better grasp of how
many potentially harmful patterns can be discovered by
an intrusion detection system was demonstrated to gain a
better comprehension of the concept. A majority distance-
based weighting (Zhang, 2020) has been demonstrated
to extend the application of KNN to the setting of
classification in a variety of situations, as demonstrated by
Zhang, et al. KNNs in network management and analysis,
on the other hand, have gained widespread acceptance as
a result of the demand for the selection of a suitable value
for k, which has a substantial impact on the performance
of the classification method when it is combined with
other algorithms. A recent study on KNN suggests that an
alternative KNN technique should be used. To summarize,
the KNN model approximately recalls all of the training
samples and compares the current sample with the k
nearest points to draw conclusions from the data. Whereas
there are a variety of approaches for determining the k
value, the easiest is to run the algorithm several times with
different k values and then choose the one that performs
the best on average.

III. The KNN Model
It was discovered over the course of adoption of KNN,

there are many ways to implement it. This study utilized
two KNN-related algorithms (Algorithm 1 and Algorithm 2).
The algorithms are concerned with the cost of categorizing
the datasets with all of the information associated with
transmission flags and network application layer protocols,
and the techniques are designed to minimize this cost to the
greatest extent possible, according to the requirements of
the specifications. As a result, the conceptualization process
follows a similar pattern to the classification process. It has
been previously stated that the reason for this is due to the
simple fact that practically all the computation that occurs

during the classification process depend on the computational
resources and value of k, and also the size of the training
samples. Algorithm 1 entails running KNN for the first round
and then following the procedure where the k in KNN was
picked at random with no consideration for its impact on the
outcome.

Algorithm 1: The first round KNN Algorithm
Input: s, x, y;
Output: Class of I
 Initialize the distance d (x′λ′) between the points (x, xi)”
in the dataset
Set s{I} where 1, 2, 3., n
d within points (1+n, ∞,).
set n→ ∞ and find k distances
k ≥ 1
end.
match k-points & d
if (ki>kj) and I > j,
set x ϵ 1
end
end
On completion of the successful implementation of

Algorithm 1, it was discovered that the KNN had been
implemented, but not in the most efficient manner. Because
it cannot be used to areas where dynamic categorization is
required for a where the value of k is required, the first model
can be seen as pre-modeling to maximize its efficiency. As
a result, in Algorithm 2, validation was accomplished by
maximizing the value of k. Attempts are made to tackle
these concerns, and an optimization parameter is presented to
obtain the desired value of k.

Algorithm 2: The second round KNN Algorithm
Input: s, x, y;
Output: Class of s
Initialization: for (x′λ′) ϵ y set task and do
Normalize x and y;
match flags labels;
end

for each set of s;
set the distance(d) within (x, y) ϵ R
sort (d)
Obtaining class labels k-nearest point to (d)
end

end

IV. Experimental Analysis and Evaluation Technique
This section of the study describes in detail the

experimental analysis processes that were carried out on
the basis of the conceptualization of transmission flags that
had an impact on the network-aware application (application
layer protocols). Preparation of data, pre-processing of data,
and final analysis are all necessary steps in the experimental
analysis and evaluation of outcomes. The KNN was used
to forecast the classification of the model before it was
implemented.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

38 http://dx.doi.org/10.14500/aro.10880

A. Dataset
Kaggle provided the raw data for this study, which

contained some transmission sessions through IP flow
with 87 features and 3.577.296 occurrences, which were
employed in this investigation. Imagine that we are looking
at a transmission pool, which is primarily concerned with the
transmission of data via specific ways; once the data have
been processed, it will be transferred to one or more networks,
for example (processes). Because of the unpredictability of
the data gathering technique, the amount of data collected
will vary from session to session. Furthermore, it is critical
to emphasize the amount of information that can be obtained
through network transmission, as this allows any filtering
and aggregation capabilities to be performed to any of the
packets that were delivered as a result of the transmission
operation to be highlighted. Remember that the information
gathered is primarily intended for the development of models
that classify the interplay between network transmission flags
associated with network-aware applications on transmission
sessions, which will then be used to construct models
based on the classification models. The dataset indicates
that only 13 of the 87 features associated with flags were
utilized, out of a total number of 87 features in the dataset
overall (Table I). A number of variables must be considered,
including: The number of times the push flag was set in
packets transmitting in the forward direction (Fwd.PSH.
Flags), the number of times the push flag was set in packets
transmitting in the backward direction (Bwd.PSH.Flags),
the number of times the urgent flag was set in packets
transmitting in the forward direction (Fwd.URG.Flags), and
the number of times the push flag was set in packet (Bwd.
URG.Flags). Following that, is the count of the finish flag
(FIN.Flag.Count), the count of the starting communication
flag (SYN.Flag.Count), the count of the reset flag (RST.Flag.

Count), the count of the push count flag (PSH.Flag.Count),
the count of the acknowledgement flag (ACK.Flag.Count),
the count of the urgent flag (URG.Flag.Count), and the count
of the common weakness enumeration flag, which follows by
the (ECN-Echo ECE.Flag. Count). The goal of all of them is
to have some sort of impact on the network-aware application
in some form, which means that they are conceptualized to
have some sort of influence on the network-aware application
(application layer protocols).

The network-aware apps are the most significant aspects
of a network because they are at the heart of the underlying
applications over IP flow, and they are responsible for either
monitoring the status of the underlying network or receiving
information about the status of the underlying network from
network monitors. Although less important, the ability of the
network to change its behavior in response to the information
it receives is equally important, and it is associated with
transmission flags, which are used to identify which protocols
are being used at the application layer and are associated
with transmission flags. A network transmission session
is defined as a period of time during which an application
delivers acceptable and predictable performance. A total of
60 of these applications were acquired during a transmission
session, and they are included in the current dataset (Table
II). Google was determined to have the greatest number
of transmission sessions, whilst NFS count only had one,
making it the least amount of transmission sessions among
the dataset’s participants. This study hypothesized that
transmission flags had an impact on these protocols.

B. Data Pre-processing
KNN method uses a distance measure, which is

determined by the scale of the variables being compared,
to get classification results. When the unit of measurement

TABLE I
FEATURES ASSOCIATED WITH FLAGS IN THE DATASET

Fwd.
PSH.
Flags

Bwd.
PSH.
Flags

Fwd.
URG.
Flags

Bwd.
URG.
Flags

FIN.
Flag.
Count

SYN.
Flag.
Count

RST.
Flag.
Count

PSH.
Flag.
Count

ACK.
Flag.
Count

URG.
Flag.
Count

CWE.
Flag.
Count

ECE.
Flag.
Count

ProtocolName

0 0 0 0 0 0 0 0 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 0 1 1 0 0 HTTP_PROXY
1 0 0 0 0 1 0 0 1 0 0 0 HTTP
0 0 0 0 0 0 0 0 1 1 0 0 HTTP
1 0 0 0 0 1 0 0 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 0 1 0 0 0 HTTP_PROXY
1 0 0 0 0 1 0 0 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 1 0 0 0 0 HTTP_CONNECT
1 0 0 0 0 1 0 0 1 0 0 0 SSL
0 0 0 0 0 0 0 1 0 0 0 0 GOOGLE
1 0 0 0 0 1 0 0 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 0 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 0 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 0 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 1 1 0 0 0 HTTP_PROXY
0 0 0 0 0 0 0 1 1 0 0 0 SSL
1 0 0 0 0 1 0 0 1 0 0 0 HTTP
1 0 0 0 0 1 0 0 1 0 0 0 HTTP
1 0 0 0 0 1 0 0 1 0 0 0 HTTP

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10880 39

is changed, the distance between two objects with the same
length and mass will change dramatically. Because of this,
all variables should be brought into the same range to be
able to compare values that have been measured with more
consistency. Finding any anomalies in the data, such as null
values and outliers, was the first step in the process, which
took several hours. A number of columns were omitted
from the dataset because they were judged unimportant
for analysis and prediction, such as those requiring natural
language processing. Additional columns from the dataset
were excluded from the dataset since they were deemed to be
unrelated to the research on the basis of the problem domain.

C. Performance Evaluation
The performance of the classification algorithms is

presented in Table III, it relies on the evaluation metrics such
as accuracy, recall, precision.

The evaluation is critical when estimating the performance
of a machine learning algorithm. Typically, performance
is measured using indicators such as precision and recall.
Precision and recall are two different metrics that describe
how well a prediction algorithm performs when rejecting a
non-relevant class, and precision and recall are two different
metrics that describe how well the algorithm finds all relevant
classes. A binary label is used to differentiate between what
happened in real life and what happened in the prediction
when evaluating precision and recall.

Finally, the evaluation of the model will follow using
the sensitivity and specificity measures. Considering that
substantial research studies on prediction utilized rules
based scores, sensitivity and specificity in identifying and
predicting problems, the sensitivity-based approach reveals
the efforts of each flags contribution and the least effect
on the protocol. Hence, the positive and negative class
of performance measure present true positives (TP), false

positives (FP), true negatives (TN), and false negatives
(FN). TP: Precisely predict, FP: Erroneously predict,
FN: Erroneously rejected, TN: Precisely rejected. This is
used for measuring the “Sensitivity (Se),” and “Specificity
(Sp),” based on the following evaluates the performance
measure of the models used:
•	 Accuracy =TP+TN/TP+FP+FN+TN
•	 Classification error =1−Accuracy
•	 Positive precision value (PPV) =TP/TP+FP
•	 Negative precision value (NPV) =TN/FN+TN
•	 Sensitivity/true positive rate (TPR) =TP/TP+FN
•	 Specificity/true negative rate (TNR) =TN/FP+TN.

D. Experimental Simulations
RapidMiner Studio 9.9 was used for the processing

component of the analysis, which allowed for a wide range
of options to be used in the data preparation and analysis.
Under all conditions in this experiment, the ideal numbers
split (0.7–0.3) was employed for both training and testing
in all situations, respectively, irrespective of the context.
All of the model’s attributes were implemented as a result
of the model’s correctness being determined. To conduct
this experiment, an Intel® CoreTM i7-10750H CPU running
at 5.0 GHz and 16 GB of total RAM were employed in a
computer system powered by an Intel® CoreTM i7-10750H
processor. When it comes to network-aware application
variables, the envisioned influencing of transmission flags

Table II
The underlying applications over IP flow in the dataset

Protocol Name Transmission Sessions # Protocol Name Transmission Sessions # Protocol Name Transmission session
1 Google 256726 21 Instagram 1159 41 WAZE 52
2 HTTP 254525 22 WhatsApp 829 42 NTP 40
3 HTTP_Proxy 154026 23 Wikipedia 741 43 Easytaxi 34
4 SSL 131461 24 Netflix 699 44 Twitch 24
5 HTTP_Connect 94362 25 MS_One_Drive 654 45 Unencryped_Jabber 19
6 Youtube 46236 26 DNS 516 46 Deezer 16
7 Microsoft 19389 27 IP_ICMP 503 47 Citrix 11
8 Amazon 15495 28 Apple_Itunes 376 48 Whois_Das 10
9 Windows_Update 11996 29 Ebay 345 49 Opensignal 9
10 Gmail 9565 30 Apple_Icloud 322 50 Skinny 8
11 Skype 7497 31 SSL_NO_CERT 300 51 Oracle 7
12 Yahoo 7450 32 HTTP_Download 157 52 Edonkey 6
13 Facebook 7020 33 Spotify 136 53 MSSQL 4
14 Dropbox 6780 34 Teamviewer 130 54 UPNP 4
15 Twitter 5315 35 TOR 110 55 Mail_Imaps 3
16 Cloudflare 4228 36 Google_Maps 102 56 Openvpn 2
17 MSN 3791 37 Ubuntuone 93 57 Oscar 2
18 Apple 2103 38 SSH 74 58 Simet 2
19 Content_Flash 1610 39 MQTT 72 59 Starcraft 2
20 Office_365 1373 40 FTP_Data 53 60 NFS 1

Table III
Performance evaluation metrics

True+ve True –ve Precision
Pred+ve Count of TP Count of FP PPV
Pred–ve Count of FN Count of TN NPV
Recall Sensitivity Specificity Accuracy

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

40 http://dx.doi.org/10.14500/aro.10880

is based on comparing multiple flags one after another in
terms of their impact on the protocol for throughout the
transmission session, which is why KNN was utilized. The
simplicity of the KNN algorithm’s design makes it an easy
distance-based supervised learning algorithm that merely
remembers earlier training samples and compares a new
sample with the K-nearest points to make a decision.

V. Presentation of the Results and Discussion
There was a large amount of data entered into the

training dataset, and there are no missing data records
inside the record. This set of datasets was divided into
training and testing datasets using a variety of percentage
splits. A series of investigations were conducted; the model
is presented in Fig. 2. The performance of the prediction
model for each partition was recorded and analyzed in
detail. Algorithm 1 was used to conduct the first round of
analysis. The accuracy of the model’s performance was
greater than 80%, and the sensitivity and specificity of the
model were all reported in Table IV to demonstrate their
effectiveness.

As a result, the value of k was adjusted in the following
round of analysis, but not in accordance with the
optimization prediction; as a result, the analysis with the
same large amount of data entered into the training dataset,
where it was divided into training and testing datasets using
a model presented in Fig. 3 shows that the performance of
the prediction model for each partition was recorded and
analyzed. The first phase of analysis was carried out with the
help of Algorithm 1. Performance of the model was more
than 80% accurate; the model’s sensitivity and specificity
were all presented in Table V to indicate its efficacy.

The successful implementation of Algorithm 1 was followed
by the discovery that the KNN had been implemented,
but that it had not been done in the most efficient manner.

Table IV
The performance of implementation of the Algorithm 1

True SF True S0 True REJ Class precision
Pred. SF 4244 269 306 88.07%
Pred. S0 246 1820 640 67.26%
Pred. REJ 2 14 17 51.52%
Class recall 94.48% 86.54% 1.77%

Table V
The performance of implementation of the modified Algorithm 1

True SF True S0 True REJ Class precision
Pred. SF 4244 269 306 88.07%
Pred. S0 246 1820 640 67.26%
Pred. REJ 2 14 17 51.52%
Class recall 94.48% 86.54% 1.77%

Table VI
The performance of the final implemented Algorithm 2

True SF True S0 True REJ Class precision (%)
Pred. SF 2959 184 228 87.78
Pred. S0 185 1287 439 67.35
Pred. REJ 0 1 7 87.50
Class recall 94.12% 87.43% 1.04%

Fig. 2. The model for implementation of the Algorithm 1.

Fig. 3. The model for implementation of the modified Algorithm 1.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10880 41

It is possible to think of the first model as pre-modeling to
maximize its efficiency because it cannot be applied to areas
where dynamic categorization is necessary and where the
value of k is required. As a result, Algorithm 2 was developed,
in which the optimization was performed by increasing the
value of k to its maximum. Following the completion of the
optimization, the required value of k was determined, and this
value was utilized to modify the model (Fig. 4).

The model’s sensitivity and specificity were all provided in
Table VI to demonstrate its effectiveness, and as a result, we
obtain the greatest performance scores of the model, which
was more than 80% accurate.

VI. Discussion
According to the findings of this study, there are six

different most essential transmission flags that TCP uses
(the push flag, the reset flag, the fin flag, the synchronization
flag, the acknowledgement flag, and the urgent flag). These
flats are critical for the transmission session to be successful.
Typically, to terminate a connection, the fin flag must be used,
whereas the syn flag must be used when sending a connection
request, and the ACK flag must be used if we wish to send
an acknowledgment of a request. An instance of the push flag
is one in which the sender and receiver intend to engage in
interactive conversation, which may begin with the transmission
of two bytes. When a sender’s payload is 2 bytes, a minimum
of 20 bytes IPv4 header and a maximum of 60 bytes will be
appended at the transport layer, resulting in a total of [2+20=22]
bytes. A minimum of 20 bytes IPv4 header will be added at the
network layer, and a maximum of 60 bytes will be added at
the application layer, so let’s assume the minimum, which will

result in 22+20=42 bytes. It is expected that an extra minimum
of 48 bytes will be added at the data connection layer, increasing
the total amount of bytes received at the receiver to 90 bytes.
To put it another way, to convey two bytes of information, a
total of 90 bytes of information must be sent out. And what is
the efficiency of sending 2 bytes over a 90 byte transmission,
to put it another way. This is when the usage of a push flag
proves to be quite advantageous. Rather of waiting until a
particular amount of data has been compiled into a segment,
it enables the transmission to push the two bytes immediately
after they are received. Following the arrival of a pair of bytes
in a given transmission session, they are sent out using the push
flat method. When the push flag is set to the first position, this
occurs. When the current connection fails, the reset flag is used
to attempt to re-establish the connection with the server again. It
is possible to priorities interconnected transmissions by referring
to them as urgent and urgent pointer, respectively.

The classification of the interrelationships among the
variables was accomplished through the application of KNN.
There was a significant amount of data entered into the training
dataset, and there are no missing data records contained inside
the record itself. With the help of a number of percentage
splits, this collection of datasets was divided into training and
testing datasets. Investigations were carried out in a number
of different ways. The outcome of the prediction model’s
performance for each partition was recorded and studied in
great detail. Both algorithms outperformed their counterparts.

It’s also worth noting that the network transmission session
is considered a data generating tool, because it generates data
and adds some value to the organization and management in
the long run. Numerous solutions can be derived from this
data. Some key qualities linked with them can be found

Fig. 4. The final model for implementation of the Algorithm 2.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

42 http://dx.doi.org/10.14500/aro.10880

using those data in this essential area of data science. Since
the data created during a network transmission session
might be used to extract value, our research addressed the
problem. So that any study could be conducted, this research
conceptualized the influence of each transmission flag on
network-aware applications by comparing the flags one by
one on their impact to the application during the transmission
session rather than comparing all of them at the same time.

VII. Conclusion
Data generated during a network transmission session is
studied to discover the optimal method of extracting value
from the data provided and being able to perform actions.
However, instead of comparing them all simultaneously,
this paper conceptualized each transmission flag’s impact
on network-aware apps by comparing each flag’s effects
one by one during the transmission session. By comparing
each flag’s impact on the application during the transmission
session, this article conceptualized the impact of each
transmission flag on network-aware apps. Because it is an
easy-to-use distance-based learning algorithm that remembers
prior training samples and can be applied to a variety of
flags that have variable effects on application protocols,
KNN type classification was chosen. Researchers found that
the KNN machine learning algorithm was more accurate at
categorizing data, but it was also more efficient due to the
reduction in processing costs. Denoted as a data-generating
instrument, the network transmission session generates
valuable information for the company. These data can be used
to find a variety of solutions. Those data can be used in this
crucial area of data science to discover some of their most
important characteristics. This was a concern of ours because
the data generated during a network transmission session
could be utilized to extract value. Therefore, to conduct a
study on the impact of each transmission flag on network-
aware apps, this research evaluated each flag individually,
rather than comparing them all at once, to determine their
impact on the programmer during the transmission session.

References
Abubakar, A.I., Chiroma, H., Muaz, S.A. and Ila, L.B., 2015. A review of the
advances in cyber security benchmark datasets for evaluating data-driven based
intrusion detection systems. Procedia Computer Science, 62, pp.221-227.

Alweshah, M., Al Khalaileh, S., Gupta, B.B., Almomani, A., Hammouri, A.I. and
Al-Betar, M.A., 2020. The monarch butterfly optimization algorithm for solving
feature selection problems. Neural Computing and Applications, 32(13), pp.1-15.

Amanowicz, M. and Jankowski, D., 2021. Detection and classification of
malicious flows in software-defined networks using data mining techniques.
Sensors, 21(9), pp.2972.

Atan, F.M., Zulkifl, N., Idrus, S.M., Ismail, N.A. and Zin, A.M., 2021.
Understanding degradation attack and TCP performance in next generation
passive optical network. Journal of Physics: Conference Series, 1933, p.012107.

Available from: https://www.kaggle.com/jsrojas/ip-network-traffic-flows-
labeled-with-87-apps [Last accessed 2021 Jun 20].

Chow, J., Li, X. and Mountrouidou, X., 2017. Raising flags: Detecting covert

storage channels using relative entropy. In: 2017 IEEE International Conference
on Intelligence and Security Informatics (ISI), pp.25-30.

D’souza, J., Kaur, M.J., Mohamad, H.A. and Maheshwari, P., 2020. Transmission
Control Protocol (TCP) Delay Analysis in Real Time Network. In: 2020
Advances in Science and Engineering Technology International Conferences
(ASET), pp.1-6.

Demertzis, K., Tsiknas, K., Takezis, D., Skianis, C. and Iliadis, L., 2021. Darknet
traffic big-data analysis and network management for real-time automating of
the malicious intent detection process by a weight agnostic neural networks
framework. Electronics, 10(7), p.781.

Dini, P. and Saponara, S., 2021. Analysis, design, and comparison of machine-
learning techniques for networking intrusion detection. Designs, 5(1), p.9.

Gital, A.Y.U., Ismail, A.S., Chiroma, H. and Abubakar, A., 2016. TCP Skudai:
A High Performance TCP Variant for Collaborative Virtual Environment Systems.
In: 2016 6th International Conference on Information and Communication
Technology for The Muslim World (ICT4M), pp.118-121.

Gordon, H., Batula, C., Tushir, B., Dezfouli, B. and Liu, Y., 2021. Securing
smart homes via software-defined networking and low-cost traffic classification.
arXiv, 2021, p.00296.

Hartpence, B. and Kwasinski, A., 2020. Combating TCP Port Scan Attacks Using
Sequential Neural Networks. In: 2020 International Conference on Computing,
Networking and Communications (ICNC), pp.256-260.

Hartpence, B. and Kwasinski, A., 2020. Combating TCP Port Scan Attacks Using
Sequential Neural Networks. In: 2020 International Conference on Computing,
Networking and Communications (ICNC), pp.256-260.

Jannach, D. and Ludewig, M., 2017. When Recurrent Neural Networks Meet
the Neighborhood for Session-based Recommendation. In: Proceedings of the
Eleventh ACM Conference on Recommender Systems, pp.306-310.

Kadhim, J.M. and Abed, A.E., 2017. Steganography Using TCP/IP’s Sequence
Number. Al-Nahrain Journal of Science, 20(4), pp.102-108.

Khraisat, A., Gondal, I., Vamplew, P. and Kamruzzaman, J., 2019, Survey of
intrusion detection systems: Techniques, datasets, and challenges. Cybersecurity,
2, p.20.

Kumar, P., Tripathi, M., Nehra, A., Conti, M. and Lal, C., 2018. SAFETY:
Early detection and mitigation of TCP SYN flood utilizing entropy in SDN.
IEEE Transactions on Network and Service Management, 15(4), pp.1545-1559.

Kushwah, D., Singh, R.R. and Tomar, D.S., 2019. An Approach to Meta-Alert
Generation for Anomalous TCP Traffic. In: International Conference on Security
and Privacy. Springer, Singapore, pp.193-216.

Liao, T., Lei, Z., Zhu, T., Zeng, S., Li, Y. and Yuan, C., 2021. Deep Metric
Learning for K Nearest Neighbor Classication. IEEE Transactions on Knowledge
and Data Engineering.

Muelas, D., de Vergara, J.E.L., Ramos, J., García-Dorado, J.L. and Aracil, J.,
2017, On the impact of TCP segmentation: Experience in VoIP monitoring. In:
2017 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pp.708-713.

Nikam, S.S., 2015. A comparative study of classification techniques in data
mining algorithms. Oriental Journal of Computer Science and Technology,
8(1), pp.13-19.

Ponmaniraj, S., Rashmi, R. and Anand, M.V. 2018, IDS Based Network
Security Architecture with TCP/IP Parameters Using Machine Learning,
2018 International Conference on Computing, Power and Communication
Technologies (GUCON), 2018, pp.111-114.

Poorzare, R. and Calveras, A., 2021. FB-TCP: A 5G mm wave friendly TCP for
urban deployments. IEEE Access, 9, pp.82812-82832.

Sahi, A., Lai, D., Li, Y. and Diykh, M., 2017. An efficient DDoS TCP flood
attack detection and prevention system in a cloud environment. IEEE Access,
5, pp.6036-6048.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10880 43

Tomar, D.S., 2019. An Approach to Meta-Alert Generation for Anomalous TCP
Traffic. Vol. 939. In: Security and Privacy: Second ISEA International Conference,
ISEA-ISAP 2018, Jaipur, India, January, 9-11, 2019. Springer, Berlin, p.193.

Wenke, L. and Stolfo, S.J., 1998. Data mining approaches for intrusion detection.
In: Proceedings of the 7th USENIX Security Symposium, 7, pp.6-6.

Zanero S. and Savaresi, S.M., 2004. Unsupervised learning techniques for an

intrusion detection system. In: Proceedings of the 2004 ACM symposium on
Applied computing SAC 04, pp.412-419.

Zhang, S., 2020. Cost-sensitive KNN classification. Neurocomputing, 391,
pp.234-242.

Zhang, S., Li, X., Zong, M., Zhu, X., and Cheng, D., 2017. Learning k for knn
classification. ACM Transactions on Intelligent Systems and Technology, 8(3), pp.1-19.

