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Abstract  

In this article, after a historical introduction, we give an 

epistemological point of view of the physics of complex systems. 

Complex systems are epistemologically interesting because of the 

fundamental interaction experiment/observer and physicists in their 

everyday life can experience the paradoxes given by this interaction. 

Here we describe some of these paradoxes, we make a parallel with 

quantum mechanics and give a possible philosophical solution, 

based on notorious physicists/philosopher from the past, transposing 

and reinterpreting their ideas to modern times. In particular, we 

analyse the interaction with a complex system such as the living cell, 

and therefore we also analyse some biophysical implications of 

complexity.   
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1. Introduction  
Here, we are interested in an epistemological view of complex systems, 

giving insights about some typical problems often faced by researchers in this 

domain. In particular, the complex system we will focus on is the cell, with its 

structure, its motility, its cytoskeleton, its ability to reproduce, in one word 

living. It is impossible to imagine to deal with such a complex system with tools 

coming from a unique discipline, necessitating, among others, even an 

epistemological approach.  

In this context I think it is important to ask ourselves what we are really 

doing and what we are looking for, in a general, I would say systemic, way. To 

tackle these questions, we need to keep some distance from the particular work 

or the particular experiment, and enter in a deeper, kind of philosophical, 

thought. I believe that this process is important for every physicist, even every 

scientist, and probably everyone has his own answers, because a «true» answer 

is maybe impossible to achieve. Today the high specialisation of science makes 

it more difficult to take this distance, but to understand complex systems this is 

necessary. Indeed, in order to find out the exchange of information taking place 

in a living organism, within itself and with the environment, and the different 

behaviours at different scales, we need a global point of observation. Here I deal 

with these problems from a complex systems point of view, giving my personal 

vision.  

 

2. Complex systems: an epistemology point of 

view 

First, let us introduce and discuss the definition of complex systems, which 

is already not an easy task. Historically, we could say that the first appearance 

of complexity is with the deterministic chaos from Jules Henri Poincaré at the 

end of the 19th century [1]. First with the attempt to find a solution of the three-

body problem, Poincaré showed that a completely deterministic system can lead 

to chaotic behaviour, for example via period doubling. The complexity is in the 

fact that despite the deterministic origin of the system, its behaviour cannot be 

forecast because of nonlinear terms in the ordinary differential equations of 

Newtonian mechanics. Epistemologically, this raised fundamental questions, 

because knowing the mathematical formulation of the problem (Newton 

equations) does not guarantee its prediction, since the system can yield chaotic 

behaviour. It was therefore evidence that the scientist dealing with these systems 

can only do a classification, a phase portrait of the disorder, of the chaotic 

behaviour [2]. Later on, Edward N. Lorenz [3], in the context of meteorology 

and weather forecasts elaborated on the dependence of a dynamical system with 

non-linearities on the initial condition, giving rise to the famous butterfly effect. 
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In a century we observed the transition from the simple and well calculable 

universe of Galileo, Newton and Laplace, to a universe of unexpected 

unpredictable paths.  

If Poincaré introduced the first ideas of complexity in Mathematics, giving 

origin to the field of dynamical systems, in physics, almost contemporary, 

complexity appeared at the beginning in the context of neural network 

modelling, with William James [4] and then later, with more mathematical 

rigour, with the works of Warren S. McCulloch and Walter H. Pitts [5]. But even 

though these ideas of complexity were already present since many years in an 

unstructured way, only in the lasts 20-30 years they were accepted in the physics 

community as a science (the first research institute of complex systems, the 

Santa Fe Institute, was founded in 1984), giving rise to the physics of complex 

systems. A complete historical description of complex systems is not our 

purpose here, let us only cite an example of complex system that will be useful 

to introduce the main characteristics of complexity: the Ising model [6]. With 

this example in mind let us move to the definition of complex systems, or, maybe 

better, to some possible definitions.  

In general, we refer to complex systems as systems in which interactions 

between the objects composing the system, and/or between the system and its 

environment, are important and give origin to collective behaviour. Complex 

systems are not necessarily complicated: a normal every day pendulum can be 

considered as a complex system just taking into account the interactions 

between the pendulum and the environment (friction and an external applied 

torque), or in interaction with other pendula. Its complexity is given by the fact 

that varying the control parameter, in this case for example the applied torque, 

can lead to complex behaviours like period doubling and chaotic oscillations, 

which are not predictable, in the sense that we cannot have a trajectory of the 

pendulum indicating the precise position at a given time. This is a complex 

behaviour that goes out from standard classical mechanics physical tools and 

therefore needs more adapted statistical and physical instruments to be studied.  

At first sight, this can be a good definition, but could lead to the wrong 

conclusion that since all the objects are connected with all the other objects of 

the system, and even with the observer, these complex interactions may lead to 

an impossibility of a complete knowledge (of the type for instance of a phase 

portrait, being a forecast not possible) of the system behaviour. The essential 

fact here, as we will see better later, is that the scientist is himself an active part 

of the system, which builds representations, models, interpretations, and not 

only a passive observer. As expressed by Ignazio Licata [7], the theoretical 

description, built on our choices, is necessary to give a meaning to vague 

observations.  

This makes the definition of complex systems complicated, therefore it is 

better to discuss some key properties of them. The most important property, that 
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we did not exploit yet, is emergence: complex systems are systems in which 

interactions between a multitude of objects and/or with the environment lead to 

emergent collective properties which are not directly explainable by the 

properties characteristic of each element. The phase transition undergoing in the 

Ising model, for example, is a collective effect not explainable only with 

individual spins properties. Life itself is an emergent property, try to mix 

together 70 kg of hydrogen, oxygen and carbon, shake well, and you will see it 

start running around and writing PhD theses. 

Let us describe better what emergence is. The first appearance of the idea in 

the physics world was with Philipp Anderson with his famous More is Different 

[8], stating that the formalisms and the concepts needed to understand physical 

(and in general scientific) phenomena at a given scale are not always linked to 

the ones at lower scales, and not from them achievable. This was against the 

dominant reductionist idea (for which everything can be explained starting from 

a basic, low scale, law) predominating at that time, and even probably 

nowadays. Besides, he noted a general lower, and in any case different, degree 

of symmetry while looking at the system at a larger scale. Therefore, the laws 

of microscopic physics cannot always explain new phenomena emerging at 

larger scales, for which an adapted theory capturing the essence of the 

phenomena has to be created. The laws of objects composed by a large number 

of individuals, in particular living systems, cannot be deduced uniquely from 

the laws of particle physics, as the reductionist approach would predict. Notably, 

the lower degree of symmetry observed while increasing the complexity of a 

system, allows us to say that life can be seen as a breaking of symmetry effect. 

There are many examples of this, sugar molecules produced by living systems 

have all a R (for right) configuration, while in principle R and S (sinister, latin 

for left) configurations have the same energy and should be present in the same 

amount. The same happens for many chiral molecules and cells, like sperm cells, 

for which chirality is essential for life and which can move in their environment 

only thank to this symmetry breaking, otherwise the scallop theorem would not 

allow them to move at low Reynolds numbers (i.e. at normal life conditions) [9]. 

In one sentence, emergence is a continuous novelty production in an essentially 

unpredictable way. 

These ideas of emergence were already present at a philosophical level with 

the idea of new categories, ontological entities with a hierarchical organisation 

needed to describe interactions with different strata at least since the late 

19th/early 20th century with Nicolai Hartman [10], or also John S. Mill or 

Charlie D. Broad, but only in the last 20-30 years were accepted in the physics 

community (more or less at the same time as the definition of physics of 

complex systems as a science). 

Another key feature of complexity is the definition of the border between 

system and environment. Here the active choice of the scientist comes into play: 
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to build a model on an aspect of nature we make some assumptions on this 

border, on the interactions between the system and the environment. These 

changeable assumptions are the most important active part contribution of the 

scientist. The definition of them leads to different emergent properties and the 

modelling of distinct aspects of the system. In the Middle Way, citing the Nobel 

prize Robert Laughlin, standing between the physics of particles and the 

cosmological theories, there is the realm of incertitude, of randomness, where 

nature expresses a game of probability resulting from the competition between 

freedom and constraints. This does not mean at all that we cannot do science, 

but in contrast to a classical Newtonian universe, where the observer records 

events resulting from predefined universal laws, allowing in principle for a full 

prediction of the system, here the active observer has to look for a global 

comprehension. He has to do a global picture of the possibilities, without being 

able to predict which one will be realized. For example, the process of protein 

folding can happen in a myriad of different fashions with exactly the same 

energy level and the one finally chosen cannot be predicted. In the same way in 

an Ising system we cannot predict the exact state of the system at a given time, 

we cannot say which orientation spin i will have at time t, but only say that at 

some critical temperature a collective behaviour will arise. 

In this realm, reductionist approach cannot explain this diversity, nor these 

emergent properties, but this is not because there is something wrong in it, 

simply, in these situations, it does not work. The scientist creates a variety of 

models, not necessarily all convergent in a unique vision, to describe different 

levels and different behaviours of the systems. Finally, a complex system is a 

system which is unpredictable, and not reducible to a single formal model, to a 

single theory of everything. 

Now it should be clearer what a complex system is and the issues of a 

scientist studying it. Let us then focus further on the epistemological side of 

these issues. A direct and common answer to the epistemological problems 

settled at the beginning, would be a circular vision between experiment and 

theory, a kind of experimentalism of Galilean memory: sensate esperienze e 

necessarie dimostrazioni (sensible experiences and necessary demonstrations), 

in which the experimental evidence builds the theory, the theory generalises the 

results, inducing new experiments to verify its consistency. In some cases, it is 

sufficient to stop here, and «keep calculating». But after a deeper 

epistemological analysis, of relevance in particular for complexity given what 

we said about the observed/observer interactions, this vision would have at least 

two problems. First, what would be the starting point of the circle? Theory or 

experiments? We are tempted to say experiments, since physics is an 

experimental science, but then there would be another question, can an 

experiment exist without a theory? The answer is: not really. This leads us 

directly to the second problem of this circular vision. Is the experiment true 
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independently of the framework in which it is operating, therefore independent 

of the theory or of the tradition (the social structure)? A theory is an (unstable) 

equilibrium state between the experiment and the observer, but is not unique and 

never complete. As we said, in complex systems science we select an aspect of 

our observation and we model this aspect under a certain hypothesis, a theory 

of all is here not even conceivable, essentially because of emergency. Therefore, 

maybe a more adapted point of view is the one of Pierre Duhem, who was 

coincidentally a professor here in Bordeaux. His holistic vision states that 

experiments and theories are connected to conventional principle which can 

change during time [11]. The connection to the active observer needed for 

complex systems is evident, and also the idea that natural phenomena are not 

pre-existing facts ruled by a unique formula that once discovered will predict 

everything. A theory and an experiment can be true in a certain set-up, at a 

certain scale, but could not work at others. So, there is no such thing as a crucial 

experiment allowing us to discern a good from a bad theory. The experiment 

itself is defined within a set-up, under some hypothesis, ultimately by our 

cognitive structure. 

In this regard you may have thought about the observation of a quantum 

system, as one of the most evident interaction observed/observer. Therefore, it 

is very interesting to discuss briefly the idea presented in the nice book edited 

by Licata and Ammar Sakaji Physics Of Emergence and Organization (2008) 

(in which I cite the articles by Eliano Pessa and by Ignazio Licata [12]) of a 

systemic science based on quantum or quantum field theories applications to 

phase transition in biological matter, supported by the indissoluble connection 

between emergent properties and the observer, the scientist himself. Indeed, this 

connection observer/observed can be thought to have a link with quantum 

mechanical properties, in which an observation causes the irreversible collapse 

of the wave function. However, as pointed out by Pessa himself, the success of 

this quantum biological theory is still very partial, mostly because while the 

particles in quantum theories are all considered as identical (if, of course they 

have same charge, mass, etc ...) the variability of living beings is in striking 

contrast with that. Moreover, many complex processes studied from a statistical 

point of view (like the Moran model for evolution genetics [13] or processes on 

networks [14]) do not have an evident correspondent Hamiltonian from which 

one could start a quantum approach, and even if we could build one 

approximated, we would need an out of equilibrium generalisation of the 

quantum theories. Also, many biological concepts, like, with the example of 

evolution models, the fitness, and the environmental effects are, if not 

impossible, very difficult to be tackled with a quantum field formalism. 

The richness of complex systems is given by the fact that they are not linked 

to a particular physical model, which would be confined in a particular domain 

of science, like for example gravitation or other physical theories, it is rather a 
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result of physical and mathematical research as a whole. This is related to the 

fact that complex systems deal mostly with the mesoscopic realm, a realm where 

physics meets many other disciplines and macroscopic and microscopic 

descriptions melt together. As a matter of fact, the range of applications of the 

physics of complex systems is very large. Thinking for example of the theory of 

deterministic chaos and nonlinear theory, which are part of the physics of 

complex systems, applications go through meteorology, electronics, optics, 

thermoconvection, chemical reactions, biology and even astrophysics. Its 

transversal property, creating links, connecting together scientific domains 

traditionally very far apart from each other, is a unifying factor of science itself 

and of theory with applications. 

To conclude, when we start observing outside well defined ideal conditions, 

the famous spherical cow, we often must face complexity. That is because 

interactions with the environment become important and change themselves as 

the system evolves, therefore the border itself between the system and the 

environment becomes difficult to be defined, leading to an active choice of 

modelling a particular phenomenon, made by the observer, and leading then to 

complexity. 

 

3. What can biologists learn from complex 

systems? 

There are many examples where the physics of complex systems gave 

important insights on biological systems and helped to better understand them. 

We have already mentioned protein folding and chiral motion of cells (such as 

sperm cells, or some bacteria). It is worth to mention, for its historical relevance, 

also the Lotka-Volterra model, describing the prey-predator competition in 

simple, but already informative mathematical terms with important implications 

on ecosystem science [15]. In its simplest version two continuous non-linear 

differential equations are coupled, to represent the time evolution of both prey 

and predator populations. Under some assumptions, actually realistic only in 

ecosystems isolated from other effects and where all the other conditions – 

weather, temperature, availability of food ... – are constant over the time 

considered (it is just the simplest version of the model), it can be shown that 

there are two fixed points of the dynamics. One is the extinction of both 

populations, and the other is an oscillatory dynamic, with a feedback regulated 

mechanism: the more prey means the more food for predators, implying a 

growth of the predator population. Despite its strong assumptions this model 

was already interesting for the understanding of ecosystems, helping to take 

decisions on regulatory politics for nature preservation, in particular after human 

alteration. 

More closely related to our system, the living cell, we can cite important  
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Figure 1. Schematic view of the two states ratchet model, the higher, constant 

potential (W2) is the Brownian diffusion state, and W1 is the asymmetric ratchet 

periodic potential. Arrows symbolise stochastic transitions between the 2 states, 

where up pointing arrows need an active energy injection to jump to the upper 

state. Adapted with permission from [23]. 

 

works proving the existence of long-range correlations in genomic DNA 

packaging [16, 17], or works on tissue growth showing self-developed 

homeostatic stresses [18]. The homeostatic stress is the steady stress proper to 

growing living systems, as biological tissues, arising from the non-equilibrium 

state of the system, balancing apoptosis and cell division and its regulation is 

essential in many pathologies, like cancer [19]. This is an important aspect 

involved in mechano-sensitivity, which appears to be a property shared by all 

cells of the human body and all phyla, from mammals to plants, fungi and 

bacteria [20]. Diffusion effects in crowded environments, such as cytoplasm or 

nuclei, are also fields where physics gave a good contribution. Non-standard 

diffusion exponents have been put in evidence, different from the standard 

Brownian motion due to crowding and hydrodynamical back-reflection effects 

(a molecule moving in a liquid creates a flow which is reflected from other 

molecules of the same size) [21]. 

Here, I would like to discuss shortly the modelling of molecular motors, 

active proteins responsible for transport of vesicles or nutrients along cell 

cytoskeleton filaments and in general of many other active features of the cell. 

This is an example of a highly out of equilibrium system with an interesting 

physical interpretation. First, it should be noticed that at the nano-scale 

(molecular motors typically move of a few tenths of nanometres per step and 

apply loads of a few pN) viscosity dominates inertia and the relatively high, with 

respect to molecular motors power, thermal noise makes standard motor motion 

impossible. In this context a simple symmetric Brownian ratchet, i.e., a passive 
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motor subject to thermal fluctuations would not lead to a net directed force. The 

first step to a solution of the problem is to reproduce the symmetry of the 

filament in an appropriate potential landscape, where we can find the periodical 

structure of the filament to which the motor is attached and, at the same time, 

the filament polarisation towards one of its ends, giving an asymmetry in the 

sawtooth. Again, it can be proved [22] that yet it is not sufficient to have a direct 

movement, as intuitively we could think: a particle falling randomly on this 

potential landscape could be expected to have a drift to the right. Actually, what 

is really important is how the system is driven out of equilibrium, therefore how 

energy (generally hydrolysis of ATP) is used to switch from the state described 

by potential W1 to the free diffusion potential described by the constant 

potential W2, coupling in this way the 2 states [23] (up pointing arrows in Figure 

1). Within this picture we can find the transition rates between the two states 

that optimise directed movement, arriving at the conclusion that there should 

exist active sites localised along the filament which promote transition from 

state 1 to state 2. This seems to be supported experimentally, by studying the 

experimental velocity curves with respect to ATP density [24, 25]. 

Another field where complex systems and stochastic processes have 

successfully contributed is population genetics. In this field theoretical models 

have a huge database of information represented by the famous Lenski's 

experiment on 12 populations of Escherichia Coli evolving at constant nutrient-

poor conditions since 1988 [26]. The popular Moran model [13] gives a 

stochastic description of evolution, following the path of the pioneering models 

from Sewall G. Wright and Ronald A. Fisher [27, 28], but introducing individual 

random births and deaths, allowing for a better mathematical description. In the 

simplest version of it, the most important parameter governing the dynamics of 

asexually reproducing individuals is the individual fitness. Without going into 

the details of the model, we can say that the passage to a mathematical 

description of evolution was essential to the wide acceptance of Darwin and 

Wallace theories from the scientific community and took more than a century to 

be partially achieved (there are still important open problems). An important 

result is that the mean population fitness increases under selection and the rate 

of fitness increase is proportional to the amount of genetic variability of the 

population. Furthermore, this description helped in the explanation of genetic 

drift (long-term fluctuations of the genetic expression of the population), genetic 

fixation (the probability that a genetic feature dominates others) and evolution 

dynamics. These models are related to a branching process, which is another 

class of stochastic models originally created to explain the extinction of a 

population, but without a genetic point of view. 

Finally, the implications of neural network theory to the understanding of 

brain mechanisms are still a very active subject, since understanding brain 

mechanisms can be very difficult, but we can cite a few findings obtained by a 
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statistical mechanics/complex systems analysis. A good picture of what is going 

on in such a complex network is provided by the statistics of some available 

data, for example the synaptic weights. Since so far it has not been possible to 

observe dynamically a single synapse weight change, then a theoretical 

description can help to understand the underlying mechanism and to infer some 

properties, as storage capacity, of real neural networks. In different areas of the 

brain (similar distributions are observed also in cortical networks) [29, 30], the 

synaptic weight distribution has a skewed form which can be approximated to a 

log-normal, in fact it has been fitted by a lognormal by Sen Song et al. [31], 

without considering a large number of silent synapses, up to 60% [32]. 

Theoretically, this has been associated to memory optimisation in neural 

network: the condition of maximum storage of memories, together with the 

constraint of positive synaptic weights (i.e., excitatory synapses), leads to a large 

proportion of silent neurons and to a truncated Gaussian distribution for the 

synaptic weights [33]. Behind such ideas there are mechanisms driving the brain 

to an attractor where memory would be optimised. If optimality has not yet been 

reached, the decay of the distribution for large weights could be much slower 

than Gaussian. Other optimality principles, for instance considering the 

energetic cost of maintaining excitatory synapses [34], lead to similar 

conclusions. In both cases it was not necessary to specify any details on the 

plasticity rule, that could bring to a more precise identification of the final 

distribution. Caution should be adopted with this evolution-driven optimality 

and with the idea of evolution itself, remembering what we said previously, are 

not complete unique theories which can explain everything, we should not forget 

that we are dealing with a complex system. The quantity to be optimised can 

change with time and even with the observed scale, we do not face an 

equilibrium system. 

In general, we can say that the point of view of complex systems helps to 

interpret and explain some observations that otherwise would be considered in 

biology as unexpected events or noise. We think for example of extreme events, 

or the observation of asymmetric distributions, considered as atypical with 

respect to the common normal distribution. Moreover, having a global phase 

diagram of some aspects of a biological system, helps to understand what are 

the control parameters that can trigger non-trivial collective behaviours essential 

for life.  

To conclude, in all the discussed situations it is now evident that a 

deterministic description is not even conceivable, because stochastic and out of 

equilibrium processes are dominant in living systems. Also, we can say that in 

general we can infer much interesting information on underlying processes just 

by looking «critically» at statistical distributions or time variations of 

observable quantities. 
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