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Selection of sparse multifractional model

Pierre Raphaël BERTRAND∗,† , Marie-Eliette DURY‡,

and Nabiha HAOUAS†,§

September 4, 2015

Abstract

The aim of this paper is to provide a simple model with a time-varying Hurst index. Such

models should be both the simplest possible and �t well the real Hurst index. Moreover this

would avoid a numerical artefact pointed out in this article. For this, after a recall on fBm,

mBm and statistical estimation of the Hurst index, including a time-varying one, we propose

a �tting test for a model with a time-varying Hurst index. Then an approach is given to

select the most simple model.

Keywords: fractional Brownian motion (fBm), multifractional Brownian motion

(mBm), Hurst index, Model selection, Sparse model, Big data, Portemanteau test, Quanti-

tative �nance, E�cient Market Hypothesis, Behavioural �nance.

Introduction

The most famous centered Gaussian process is the Brownian motion. One of its generalisations

is the fractional Brownian motion (fBm) introduced in 1940 by Kolmogorov [23] as "Gaussian

spirals in Hilbert space" and popularised since 1968 by Mandelbrot and Van Ness. The fBm

is the unique H-self-similar Gaussian process with stationary increments up to a multiplicative

constant, where 0 < H < 1 denotes the Hurst index. Case H = 1/2 corresponds to the Brownian

motion. The multifractional Brownian motion (mBm) is hence de�ned from the fBm but with a

time-varying Hurst index, which can be encountered in many di�erent kinds of applications:

� In turbulence, Papanicolaou and Sølna (2002) denote that "the power law itself [i.e. the

Hurst index, . . . ] and the multiplicative constant are not constants but vary slowly" in

[30], whereas Lee (2003) uses mBm with a regularly time-varying Hurst index for the air

velocity, see [25, Fig. 5, p. 103].
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� In a statistical study on magnetospheric dynamics, Wanliss and Dobias (2007) point out

that an abrupt change in Hurst index can be observed a few hours before a space storm in

solar wind [35].

� In systems biology, [28] uses mBm to simulate molecular crowding that matches the sta-

tistical properties of sample data, whereas Lim and Teo (2009) use mBm with piecewise

constant Hurst index to model single �le di�usion that is the motion of chemical, physical

or biological particules in quasi-one-dimensional channel [27].

On the other hand, quantitative �nance has been the most important �eld of application of

both time series and stochastic processes for the last �fty years. Actually, fBm was revived

during the 1960's by Mandelbrot to also serve as a model for speculative prices, as we read in

its posthumous autobiography [26]. However, the e�cient market hypothesis has lead to reject

fBm as an admissible model for stock price. So, since the 1970's, the use of martingale models

has become mainstream in quantitative �nance. Unfortunately enough, from time to time,

�nancial crises highlight the fact that the martingale model is just a good approximation for

�nancial assets, but presents some drawbacks mainly during such crises. Each crisis reinforces

the investigation of new or alternative models [31]. But, the main objection to fBm, as an

admissible model for stock prices, is the existence of an arbitrage opportunity for such a fBm

with a constant and known Hurst index. To put it into a nutshell, an arbitrage opportunity

means the possibility of producing a positive return from zero investment by clever trading. For

a fBm with known and constant Hurst index, it is possible to make an arbitrage, with a strategy

based on in�nitely small meshes of times and without transaction cost [32, 34, 17], which turn

to be quite nonrealistic conditions. Moreover this objection is not applicable for generalisations

of fBm that allows a Hurst index varying with time or frequency, see e.g. [8, 9, 4, 10] and the

references therein.

An economic complementary point of view is developed in [11, 13, 14, 15, 20]: Firstly, by

analysing di�erent �nancial time series (Standard & Poor's 500 between 1982 and 2002, and

Japanese Nikkei Index N225 between 1984 and 2004) [11, Fig.9 and Fig.10, p.275] Bianchi (2005)

pointed out that the Hurst index estimated on sliding windows is varying with time between 0.45

and 0.65. Then Bianchi and Pianese (2008) [12, Fig.6 p. 583 and Fig.7, p.584] checked that the

same empirical evidence is veri�ed for the US Dow Jones Index (daily observed from 1928 to

2004) and for the UK FTSE 100 Index (daily observed from 1984 to 2005) with a Hurst index

H(t) varying between 0.3 and 0.6 in both cases.

Theoretical explanations are then developed by economists Bianchi, Pianese, Pantanella and

Frezza [13, 14, 15, 20]. To sum up, arbitrage opportunities for fBm are possible when the Hurst

index is constant and known in advance, but not when it is time-varying and random. Moreover,

periods with a Hurst index that signi�cantly di�ers from 1/2 can be explained by behavioural
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economics. For periods where H(t) < 1/2 the market overreacts, which means in probabilistic

term, that the increments of the (log)price process are negatively correlated (antipersistence),

whereas for periods where H(t) > 1/2 the market underreacts, which means that the increments

of the (log)price process are positively correlated (persistence). In behavioural �nance, underre-

action is due to overcon�dence of investitors, see e.g. [15, Table 1, p. 13]. Recall that the case

H = 1/2 corresponds to independence of the increments and to e�ciency of the market.

The next logical step is to assume that the Hurst index is itself a stochastic process, that is

to say with irregular paths as the multifractional process with random exponent (MPRE) [2].

However, we will show in this paper that this choice is counterproductive as this complex model

contains a statistical artefact. On the contrary, we here look for a model as simple as possible

with a time-varying Hurst index, which can still be random. By using a �tting test we describe

a way of model selection.

In the rest of the paper our plan will be the following: In a �rst section, we set the framework

and explain the underlying ideas. Next in a second section, we recall the de�nition and main

properties of fBm, mBm and statistical estimation of the Hurst index. Then in a third section

we present the �tting test, we apply it to reject a stochastic Hurst index, then we provide the

application to select the simplest model with a time-varying Hurst index. All technical proofs

are postponed in appendices.

1 Framework and motivation of our study

In this paper, we aim at giving a method for the selection of a good probabilistic model with

a time-varying Hurst index. So, to begin with, we provide an overview of the context and the

process we work with. This process is the so-called multifractional Brownian motion (mBm) that

can be viewed as a generalisation of the fractional Brownian motion (fBm). Let {BH(t), t ∈ R}
be a fBm with Hurst index H ∈ (0, 1]. It can be de�ned as follows:

De�nition 1.1 The fBm {BH(t), t ∈ R} is the zero mean Gaussian process which covariance

function is

cov
[
BH(s), BH(t)

]
=

σ2

2

{
|s|2H + |t|2H − |t− s|2H

}
for all (s, t) ∈ R2. (1)

The fBm has stationary increments, it admits di�erent representations and can be also viewed

as a Gaussian �eld depending both on the time t and the Hurst index H. For instance, the

harmonisable representation of the fBm considered as a Gaussian �eld is given by

B(t,H) =

ˆ
R

(
eitξ − 1

)
|ξ|H+1/2

dW (ξ), for all t ∈ R, (2)
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where (t,H) 7→ B(t,H) := BH(t) is the fBm, and W is a complex valued Wiener measure such

that B(t,H) is real valued. As said above the mBm can be de�ned as a generalisation of the

fBm where the Hurst index H is replaced by a time-varying function H(t). The mBm is hence

de�ned by

X(t) = B
(
t,H(t)

)
, for all t ∈ R.

The use of such a process is motivated by statistical studies, which have shown that a model

with constant Hurst index such as the fBm does not �t real life applications [6, 24]. Indeed fBm is

a very rich model where a unique parameter, namely the Hurst index H, drives many properties:

the correlation structure of the increments, the long range dependency, the self-similarity, and

the roughness of the paths. Due to the time-varying Hurst index, stationarity of the increments

does not hold anymore, therefore both long range dependency and structure of the increments

are meaningless notions. For the mBm, only the roughness of the paths corresponds to the Hurst

index H(t). However, this property is satis�ed under an extra-condition insuring that the Hölder

regularity of the time-varying Hurst index t 7→ H(t) is greater than the maximum value of H(t),

see e.g. [2, 6]. In order to allow very general probabilistic models, new generalisations of fBm or

mBm have been introduced with a Hurst index which can be very irregular and even be itself a

stochastic process, namely multifractional process with random exponent (MPRE) or generalised

multifractional process (GMP) [2, 3].

Actually, we cannot know whether �uctuations re�ect reality or are just artefacts byproducts

of statistics. This phenomenon is brought to light by the estimation of a time-varying Hurst

index for a process X being a fBm with a constant Hurst index H = 0.7. Indeed Fig. 1 gives the
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Figure 1: Estimation of a time-varying Hurst index Ĥ(t) for a fBm with constant Hurst index

H = 0.7.

feeling that the Hurst index is itself a stochastic process. In fact, the theoretical Hurst index is
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constant. But if we assume that this theoretical Hurst index is a time-varying function, namely

t 7→ H(t), then at each time t the Hurst index is estimated on a small vicinity around the time t.

Consequently, the sampling �uctuation induces that the time-varying estimator Ĥ(t) becomes a

stochastic process. The same statistical artefact, providing the feeling that the estimated Hurst

index behaves as a stochastic process, would occur for any time-varying Hurst index H(t) which

is a C1 function or a piecewise C1 function. To sum up, the estimated Hurst index is a stochastic

process, while the theoretical Hurst index is a deterministic function regularly varying with time.

The same phenomenon appears in the article of Bardet-Surgailis [5, Fig. 2 and Fig. 3, pages 1023-

1024]. Similarly, simulations presented in [13, Fig. 3, p.6] and [20, Fig. 1, p.1514] show a path of a

mBm with a sine functional Hurst index H(t) with mean 1/2 and the corresponding time-varying

Hurst index Ĥ(t). Clearly, the theoretical Hurst index H(t) is a C∞ function [20, Fig. 1 (c),

p.1514], whereas the estimated Hurst index Ĥ(t) looks like a continuous Hölder function with

regularity α < 1, see [20, Fig. 1 (d), p.1514].

This remark led us to introduce a sparse mBm in [10] for application to �nancial processes.

The guiding idea is to choose a simple function H(t) which describes the real dataset as well as

a more complicated one.

Let us stress that in this section, we have chosen to provide the underlying ideas, avoiding

any technicality.

2 Recalls on fBM, mBm, and statistical estimation of Hurst index

2.1 Recalls on fBm and mBm

One of the most famous Gaussian random processes is the Brownian motion. At the beginning

of the 20th century, this process was developed by Louis Bachelier for stock options in �nance

and next by Albert Einstein in order to describe successive movements of atomic particules

independent one from another. Then the mathematical theory is mainly due to Robert Wiener

in the 1920's; he proved results on the non di�erentiability of the paths and the one-dimentional

version is kwown as the Wiener process. The fractional Brownian motion (fBm) can hence appear

as a generalisation of the Brownian motion.

After the paper of Mandelbrot and Van Ness (1968), modeling by a fBm became more and

more widespread, and the statistical study of fBm was developed during the decades 1970's and

1980's. Nevertheless, in many applications the real data do not perfectly �t with fBm. More

precisely, statistical tests reject the null hypothesis H = 1/2 as it should be for Brownian motion

or di�usion processes, but any alternative hypothesis would also be rejected when the Hurst

index is varying with time.

In fact, access to larger and larger datasets has shown that real time series look locally like
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a fBm, but with a time-varying Hurst index t 7→ H(t) rather than a constant one. This intu-

ition was translated in mathematical modelling, by the introduction of multifractional Brownian

motion (mBm) by Peltier, Lévy-Véhel (1995), and Benassi et al. (1997). Indeed, mBm is a

continuous Gaussian process whose pointwise Hölder exponent evolves with time t. Recall that

for the fBm, the pointwise Hölder exponent and Hurst index are equal. Therefore, a natural idea

is to replace the Hurst index H by a function of time t 7→ H(t) in one of the representations of

the fBm. Simultaneously, Peltier, Lévy-Véhel (1995) proposed to replace the Hurst index H by

a time-varying one in the moving average representation, whereas Benassi et al.(1997) replaced

it by a time-varying one in the harmonisable representation. Actually, both constructions corre-

spond to the same process. Then, to be self-contained, we rely on the work of Ayache and Taqqu

in [2] so we de�ne the multifractional Brownian motion (mBm) as follows:

De�nition 2.1 Let (t,H) 7−→ B(t,H) be the Gaussian �eld de�ned by (2). The multi-fractional

Brownian motion is de�ned by

X(t) = B(t,H(t)). (3)

2.2 Estimation of the Hurst index for fBm and mBm

Let X be a fBm or a mBm. We observe one path of size n of the process X with mesh hn,

namely
(
X(0), X(hn), . . . , X(nhn)

)
. For simplicity and without real restriction, we can assume

that hn = 1/n. We use quadratic variations to estimate the Hurst index. Let us �rst give the

underlying idea: for a fBm with Hurst index H, we have

E
(
|X (t+ hn)−X(t)|2

)
= |hn|2H . (4)

On the one hand, the stationarity of the increments of fBm allows us to estimate the variance

by the empirical variance and to get a central limit theorem (CLT). On the other hand, we

can estimate the variance at M di�erent meshes of time, that is hn, 2hn, . . . ,Mhn; then linear

regression of the logarithm of the empirical variance at those di�erent meshes provides us an

estimator of the Hurst index H. Moreover, a CLT is in force. Eventually, by a freezing argument,

we can shift the technique from fBm to mBm.

More precisely, let a = (a0, . . . , a`) be a �lter of order p, (tk)k=1,...,n a family of observation

times, and X a fBm or a mBm. We de�ne the associated increment by

∆aX(tk) =
∑̀
q=0

aqX(tk−q). (5)

Saying that a is a �lter of order p ≥ 1 means that∑̀
q=0

aq q
k = 0 for all k < p and

∑̀
q=0

aq q
p 6= 0. (6)
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For example, a = (1,−1) is of order 1, whereas a = (1,−2, 1) is of order 2. Next, for a �lter

a = (a0, . . . , a`) and any integer j ∈ N, we de�ne its jth dilatation a(j) = (a
(j)
0 , . . . , a

(j)
j` ) by

a
(j)
ij = ai and a

(j)
k = 0 if k /∈ jN.

Since X is a zero mean Gaussian process, ∆a(j)X(tk) is also a zero mean Gaussian variable for

any time tk and any dilatation j. For a fBm, that is when X = BH , its variance is

Var [∆a(j)BH(tk)] = Ca ×
∣∣∣∣ jn
∣∣∣∣2H .

This variance can be estimated by the empirical variance. However, our aim is the estimation of

the Hurst index for a mBm. The guiding idea is that a mBm behaves locally as a fBm. Therefore,

we localise the estimation and we compute the empirical variance on a small vicinity of each time

t, namely on

V(t, εn) =
{
tk such that |tk − t| ≤ εn

}
,

where εn → 0 and εn/hn → ∞ as n → ∞. To sum up, given a �lter a and a real number

t ∈ (0, 1), we set

Vn(t, a) =
1

vn

∑
tk∈V(t,εn)

∣∣∆aX(tk)
∣∣2 (7)

where vn = 2εn/hn = 2εn × n is asymptotically equivalent to the number of times tk belonging

to V(t, εn). Eventually, we calculate the empirical variance at M di�erent scales j/n for j =

1, . . . ,M . Then we set

Ĥn(t) =
At

2AAt

(
ln(Vn(t, a(j))

)
j=1,...,M

(8)

where A is the row vector de�ned by

Aj = ln(j)− 1

M

M∑
ν=1

ln(ν) for j = 1, . . . ,M (9)

and At the transpose vector (column vector).

Actually the number vn of terms in sum (7) converges to in�nity when n→∞, thus a CLT is

in force with a Gaussian limit. Then, the estimator of the Hurst parameter is also asymptotically

Gaussian. More precisely, we can state the following proposition:

Proposition 2.1 (Coeurjolly, 2005�2006) Let a = (1,−2, 1) be a �lter of order 2 as de�ned

by (6), (tk = k/n)k=1,...,n a family of observation times, X = BH(t) a mBm with Hurst index

H(t) and ∆aX the associate increments de�ned by (5). Then Ĥn(t)
a.s.−→
n→∞

H and

√
2εn · n×

(
Ĥn(t)−H(t)

)
D−→

n→∞
G′(t) (10)



P.R. Bertrand, M.E. Dury & N. Haouas 8

where G′(t) is a zero mean Gaussian process with covariance structure given by

Var(G′(t)) =

(
1

2‖A‖4
1

πaH(t)(0)2

∑
k∈Z

πaH(t)(k)2

)
×At(UU t)A (11)

for all t ∈ (0, 1), and

cov(G′(t1),G′(t2)) = 0 for all (t1, t2) ∈ (0, 1)2 with t1 6= t2 (12)

where the row vector A is de�ned by (9) and U = (1, . . . , 1). Moreover, for a �lter a, and an

integer k, the quantity πaH(k) is de�ned by

πaH(k) := −1

2

∑̀
q=0

∑̀
q′=0

aq aq′ |q − q′ + k|2H . (13)

To sum up, we set

γH(t) := Var(G′(t)) = ΛH(t)× (B.U.U t.Bt)

with

ΛH(t) =
2

πaH(t)(0)2

∑
k∈Z

πaH(t)(k)2 (14)

and

B =
At

2‖A‖2
.

Proof. The proof can be obtained by combining [18, 19]. However, a more direct and natural

proof is provided in Appendix A. 2

3 Statement of our main results

We propose a �tting test for a time-varying Hurst index and apply it to a model selection

approach, leading to the simplest model.

3.1 Fitting test

As the selection of a good probabilistic model is the guideline of this article, the idea is now

to give an adequacy test to select admissible estimators and reject others. For this, we use the
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previous convergence result. Actually, the CLT given in Proposition 2.1 leads to the following

convergence in law:

√
2εn · n×

(
Ĥn(t)−H(t)

)
D−→

n→∞
G′(t)

for all t ∈ (0; 1) where (G′(t), t ∈]0; 1[) is a zero mean Gaussian process which covariance structure

is known. If H(.) is the theoretical index, then this means that we can explain the L2 risk

function, namely the MISE (Mean Integrated Squared Error) by E‖Ĥn(t)−H(t)‖2L2(]0;1[) , where

‖Ĥn(t)−H(t)‖2L2(]0;1[) :=
1

n

n∑
k=1

|Ĥn(tk)−H(tk)|2

with (tk = k
n)k=1,...,n a family of observation times. Applying the previous CLT, we get the

convergence in law

2nεn‖Ĥn(t)−H(t)‖2L2(]0;1[)
D−→

n→∞

1

n

[
n∑
k=1

|G′(tk)|2
]
. (15)

Set

Vn :=
1

n

n∑
k=1

|G′(tk)|2. (16)

We can deduce a CLT on Vn as stated in the following proposition

Proposition 3.1 Under the same assumptions than in Proposition 2.1. Let Vn be de�ned by

(16). We can rewrite Vn as follows

Vn = µn + Sn × ξn (17)

with µn = E(Vn) its mean, Sn =
√
Var(Vn) its standard deviation. Then we get the convergence

in distribution to a standard normal deviate

ξn
D−→

n→∞
N (0; 1). (18)

Proof. The proof is given in Appendix B. 2

As n converges to in�nity, we have

E(Vn) −→
ˆ 1

0
γH(t)dt

and (n
2

)
×Var(Vn) −→

ˆ 1

0
(γH(t))

2dt.

By replacing these quantities by their limits, we can formulate the �tting test:
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Theorem 3.1 Under the same assumptions as in Proposition 2.1 and Proposition 3.1, we can

test the eligibility of a function H̃(t) with the theoretical Hurst index. Namely set :

(H0) : H̃(t) = H(t) (19)

versus (H1) : H̃(t) 6= H(t).

Then H̃(t) is an eligible model if, for a given risk α,

|Tn(H̃(t))| ≤ uα

where Tn(H̃(t)) is de�ned by

Tn(Ĥn(t)) =
2nεn‖Ĥn(t)− H̃(t)‖2L2(]0;1[) −

´ 1
0 γH̃(t)

dt(
2
n

´ 1
0 (γ

H̃(t)
)2dt

)1/2 (20)

where γH(t) := Var

(
G′(t)

)
is given by Formula (11) and uα denotes the fractile of order (1− α

2 )

of the standard normal law.

Proof. The proof is given in Appendix B. 2

For instance, given a risk α = 0.05, we accept the null hypothesis if Tn(H̃(t)) ∈ [−1.96, 1.96].

3.2 Application to model selection

As a by-product, the naive time-varying estimator Ĥ(t) of the Hurst index could not be chosen

as a valid model. Namely, it is not an admissible one. Nevertheless, the assumption H̃(t) = Ĥ(t)

in the null hypothesis (19) is asymptotically rejected, as stated in the following corollary

Corollary 3.1 if H̃(t) = Ĥn(t) we get

Tn(H̃(t)) =
−
´ 1
0 γH̃(t)

dt(
2
n

´ 1
0 (γ

H̃(t)
)2dt

)1/2 = −
√
n

2
×
‖γ

H̃(t)
‖L1(]0;1[)

‖γ
H̃(t)
‖L2(]0;1[)

−→∞ as n→∞

and then, as we are in the critical region, the null hypothesis (H0) is rejected.

Proof. The proof is deduced from Theorem 3.1. 2

The next idea is to determine the simplest possible function H̃(t) that will describe the theo-

retical Hurst index H(t). Note that such a model is in the same time simpler and �ts better the
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theoretical value of the Hurst index as it does not contain the statistical artefact. We are hence

able to look for a suitable model; the aim is to determine the most simple model that is eligible

for test (19). This model selection is a kind of Portemanteau test. Thus, for this, set

� M0 the family of constant models H̃(t) = H

� M1 the family of a�ne models H̃(t)

� M2 the family of piecewise a�ne models H̃(t)

� M3 the family of quadratic models H̃(t)

� M4 the family of piecewise quadratic models H̃(t).

We successively test models extracted from the previous families. Those families of models are

classi�ed by order of complexity of function H̃(t). We stop and use the �rst eligible model,

namely for familyMi with the lowest i. By construction of these families, the selected model is

thus the simplest one.

Conclusion

To sum up, the naive multifractional estimator Ĥn(t) is too complicated and has too many

�uctuations that appear as a statistical artefact as shown in Fig. 1. Moreover, we have built a

�tting test which asymptotically rejects Ĥn(t) as an appropriate estimator of the time-varying

theoretical Hurst index H(t). Next, this �tting test is used to select the simplest time-varying

Hurst index H̃(t) from a given families of models, by a Portemanteau procedure. We have

proposed in Sect. 3.2 a family of piecewise polynomial functions. However di�erent choices are

possible such as logistic functions, see e.g. [25, Fig. 2, p.101].

In a certain way, our work con�rms and enhances the multifractional process with random

Hurst exponent (MPRE) introduced by Ayache and Taqqu (2005) [2]. Indeed, the Hurst exponent

could be random without being itself a stochastic process. For instance a piecewise a�ne (or

quadratic function) with change of slope at random times is still a random exponent, without

having to oscillate roughly, see e.g. [10, Fig. 6, p. 15]. So, we have disentangled a random time-

varying Hurst exponent from a roughly oscillating exponent resulting from a statistical artefact.

This result also better �ts the interpretations proposed by scholars from applied �elds: it is

simpler to interpret a slowly varying function taking values larger or smaller than the nominal

value [30, 25, 35, 14, 20].

Let us add that the selected model is both simpler and �ts better the theoretical value of

the Hurst index H(t). Consequently, this study opens the way to further research like online

detection of change of slope of the Hurst index or study of the di�erent kinds of families of model.
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A Proof of Proposition 2.1

The proof is divided in three steps. Both Step 1 and Step 2 are concerned with fBm. In Step

1, we prove a CLT for the localised quadratic variations of order 2 of the fBm. In Step 2, we

deduce a CLT for the estimator of Hurst index obtained by linear regression of the logarithm of

quadratic variation at di�erent meshes of times for fBm. Next, Step 3 explains how to shift from

fBm to mBm. Before going further, let us state a technical lemma used in Step 1.

Lemma A.1 Let a be a �lter of order p ≥ 1 as de�ned by (6), (tk = k/n)k=1,...,n a family

of observation times, X = BH a fBm with covariance given by (1), and ∆aX the associate

increments de�ned by (5). Then

1. ∆aX(.) is a zero mean Gaussian vector, with covariance structure given by

cov [∆aX(tk),∆aX(tk′)] = σ2n−2HπaH(k − k′) (21)

for all pair (k, k′), where πaH(k) is de�ned by (13).

2. As a by-product, for all k

Var [∆aX(tk)] = E
∣∣∆aX(tk)

∣∣2 = σ2n−2HπaH(0). (22)

3. Moreover, for all k ∈ Z ∣∣πaH(k)
∣∣ ≤ Ctte× |k|2H−2p. (23)
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Remark A.1 Formula (22) implies that Var [∆aX(tk)] = Ctte × h2Hn , with hn = 1/n. This

proves and generalises formula (4).

Proof. 1) and 2) Since X = BH is a zero mean Gaussian process, we deduce that ∆aX(tk) is

a zero mean Gaussian vector, with covariance structure given by

cov [∆aX(tk),∆aX(tk′)] =
∑̀
q=0

∑̀
q′=0

aq aq′ cov
[
BH(tk−q), BH(tk′−q′)

]
=

σ2

2

∑̀
q=0

∑̀
q′=0

aq aq′
{
|tk−q|2H + |tk′−q′ |2H − |tk−q − tk′−q′ |2H

}
= −σ

2

2

∑̀
q=0

∑̀
q′=0

aq aq′ |tk−q − tk′−q′ |2H ,

where the last equality follows from Eq.(6). Next, by setting tk = k/n, we can deduce Formula

(21). As pointed in Lemma A.1, Formula (22) follows from Formula (21).

3) See Coeurjolly (2001, lemma 1). 2

Step 1: CLT for quadratic variations of fBm.

For a fBm X = BH , the variance of the increments does not depend on the time tk, see

Lemma A.1 Formula (22). Thus from (7) we get

Vn(t, a) = Var [∆aX(tk)]×

1 +
1

vn

∑
tk∈V(t,εn))

[ ∣∣∆aX(tk)
∣∣2

E
∣∣∆aX(tk)

∣∣2 − 1

]
= σ2

(
1

n

)2H

πaH(0)×

{
1 + Ṽn(t, a)

}
(24)

where

Ṽn(t, a) :=
1

vn

∑
tk∈V(t,εn))

[(
Z

(a)
k

)2
− 1

]
and

Z
(a)
k :=

∆aX(tk)√
E
∣∣∆aX(tk)

∣∣2 . (25)

For notational convenience, we drop the index (a) in the sequel, and we note that for k = 1, . . . , n,

Zk forms a stationary family of zero mean standard Gaussian variables with correlation

r(k) = corr(Zj , Zj+k) =
πaH(k)

πaH(0)
(26)
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where πaH is de�ned by (13). Actually, Z2
k − 1 = H2(Zk) where H2(x) = x2 − 1 is the Hermite

polynomial of order 2. By using Breuer-Major Theorem [16], a CLT with a Gaussian limit is in

force as soon as
∑
k∈Z

r(k)2 < ∞. Combining Formula (26) and Bound (23) in Lemma A.1, we

deduce that r(k)2 = O(k4H−4p). The series
∑
k∈Z

k4H−4p converges if and only if 4H − 4p < −1

or equivalently i� H < p − 1/4. So, for p = 1 which corresponds to the case a = (1,−1) and

quadratic variations, we get a CLT i� H < 3/4; whereas for p = 2 with a = (1,−2, 1), and the so-

called generalised quadratic variations (GQV), the CLT is in force for all Hurst index H ∈ (0, 1).

For these reasons we do prefer the use of GQV rather than simple quadratic variations, see also

Istas-Lang or Guyon-Leon.

Note that for a = (1,−2, 1), we get πaH(0) = 4− 22H .

The rate of convergence is
√
vn =

√
2nεn. Moreover,

E
(
H2(Zk) ·H2(Zk′)

)
= 2

[
E
(
Zk · Zk′

)]2
.

This relation combined with (26) involves the following calculation of the variance

E
{[√

vn · Ṽn(t, a)
]2}

=
1

vn
×

∑
k,tk∈V(t,εn)

∑
k′,tk′∈V(t,εn)

E(H2(Zk) ·H2(Zk′))

=
2

vn
×

∑
k,tk∈V(t,εn)

∑
k′,tk′∈V(t,εn)

[
E(Zk · Zk′)

]2
=

2

vn
×
∑
|k|<vn

(
vn − |k|

)
×
πaH(k)2

πaH(0)2

=
2

πaH(0)2
×
∑
|k|<vn

(
1− |k|

vn

)
× πaH(k)2

But,
∑

k∈Z π
a
H(k)2 <∞ since p = 2, therefore

lim
n→∞

E
{[√

vn · Ṽn(t, a)
]2}

=
2

πaH(0)2
×
∑
k∈Z

πaH(k)2.

To sum up, Breuer-Major Theorem induces that

√
vn · Ṽn(t, a)

D−→
n→∞

G(t)

where G(t) is a zero mean Gaussian process with variance (see formula (14))

Var(G(t)) =
2

πaH(0)2
×
∑
k∈Z

πaH(k)2 := ΛH(t) for all t ∈ (0, 1) and covariance cov(G(t1),G(t2)) = 0

for all pair (t1, t2) ∈ (0, 1)2 with t1 6= t2.

Step 2: CLT for estimation of the Hurst index of fBm.
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The estimator of Hurst index as de�ned in (8) is obtained by linear regression of the log-variance

with the j-dilated �lters a(j). Stress that the j-dilated �lters a(j) behave like the a �lter with

mesh h
(j)
n = j/n instead of 1/n. Then, Eq.(24) is replaced by

Vn(t, a(j)) = σ2
(
j

n

)2H

πaH(0)×

{
1 + Ṽn(t, a(j))

}
(27)

with

√
2εn × n · Ṽn(t, a(j))

D−→
n→∞

Gj(t). (28)

By taking the logarithm of Eq. (27), we have

lnVn(t, a(j)) = 2H ln(j/n) + ln
(
σ2 πaH(0)

)
+ ln

{
1 + Ṽn(t, a(j))

}
.

Next, by Eq. (28), we get

lnVn(t, a(j)) ' 2H ln(j/n) + ln
(
σ2 πaH(0)

)
+

1√
2εn × n

lnGj(t).

Therefore the Hurst index H can be estimated as the slope by linear regression of the family

{lnVn(t, a(j)), j = 1, . . . ,M} onto the predictor
(

ln(j/n)
)
j=1,...,M

. Thus

Ĥn(t) =
At

2AAt

(
lnVn(t, a(j))

)
j=1,...,M

. (29)

The right Hurst index is obtained by canceling the stochastic part. By doing so, it comes

H =
At

2AAt

(
ln
(
σ2(j/n)2H πaH(0)

))
j=1,...,M

then

Ĥn(t)−H =
At

2AAt

(
lnVn(t, a(j))− ln

(
σ2(j/n)2H πaH(0)

))
j=1,...,M

=
At

2AAt

(
lnP jn(t)

)
j=1,...,M

where we have set

P jn(t) =

(
n

j

)2H

× Vn(t, a(j))

σ2πaH(0)
.

On the other hand, Eq. (27) implies

P jn(t) =

{
1 + Ṽn(t, a(j))

}
.
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Moreover Eq. (28) implies that Ṽn(t, a(j)) converges to 0 as n→∞. Therefore

lnP jn(t) ' Ṽn(t, a(j)). (30)

Next, in order to get the covariance of G′ stated in Prop. 2.1, we look at the following covariance

structure:

cov
(√

2εnn
(
Ĥn(t1)−H

)
,
√

2εnn
(
Ĥn(t2)−H

))
= cov

(√
2εnn

At

2AAt

(
lnP jn(t1)

)
j=1,...,M

,
√

2εnn
At

2AAt

(
lnP jn(t2)

)
j=1,...,M

)
' cov

(√
2εnn

At

2AAt

(
Ṽn(t1, a

(j))
)
j=1,...,M

,
√

2εnn
At

2AAt

(
Ṽn(t2, a

(j))
)
j=1,...,M

)
= cov

(
At

2AAt

(√
2εnn Ṽn(t1, a

(j))
)
j=1,...,M

,
At

2AAt

(√
2εnn Ṽn(t2, a

(j))
)
j=1,...,M

)
' cov

(
At

2AAt

(
Gj(t1)

)
j=1,...,M

,
At

2AAt

(
Gj(t2)

)
j=1,...,M

)
where we have successively used Eq. (30) and Eq. (28). Since cov(G(t1),G(t2)) = 0 for all

pair (t1, t2) ∈ (0, 1)2 with t1 6= t2 (see Step 1), we get

lim
n→∞

cov
(√

2εnn
(
Ĥn(t1)−H

)
,
√

2εnn
(
Ĥn(t2)−H

))
= 0

for all pair (t1, t2) ∈ (0, 1)2 with t1 6= t2, which induces (12). Similarly, when t1 = t2, we get (11).

Step 3: Freezing

The freezing technics insure that mBm behaves almost as a fBm of Hurst index H(t0) in a small

enough vicinity of time t0. Therefore our strategy is to show that the freezing error is negligible

with respect to the rate of convergence of the estimator of the Hurst index for fBm. We recall

the Ayache-Taqqu Theorem and its corollary

Theorem A.1 (Ayache, Taqqu (2005)) Let B(t,H) be the �eld de�ned by Eq. (3). There

exists an event Ω∗ with P(Ω∗) = 1 on which B(t,H) is C∞ with respect to the variable H,

uniformly for all (t,H) in any compact subset [−T, T ]× [a, b] ⊂ R× (0, 1).

Proof. The proof relies on wavelet series expansion of fBm, see [2, Th 2.1 and Prop. 2.2, item

c), p.467]. 2

Corollary A.1 Let X be a mBm as de�ned by Eq. (3). Assume that t 7→ H(t) is an η-Hölder

continuous function, then there exists a random variable C1(ω) with �nite moment of every order

such that for all t0 ∈ (0, 1) and ε > 0, we have∣∣X(t)−BH(t0)(t)
∣∣ ≤ C1(ω)× εη, for all t ∈ V(t0, ε).
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Proof. Indeed, from Th. A.1 and Hölder continuity, we get:∣∣X(t)−BH(t0)(t)
∣∣ ≤ C2(ω)× |H(t)−H(t0)|

≤ C2(ω)×M1|t− t0|η

≤ M1 · C2(ω)× εη,

for all t such that |t− t0| ≤ ε. By setting C1(ω) = M1 ·C2(ω), this �nishes the proof of Cor. A.1.

2

From Cor. A.1, we then get

X(t) = BH0(t) + ξ(t) (31)

for all t ∈ V(t0, εn) =]t0 − εn, t0 + εn[,

� where H0 = H(t0),

� η is the Holder regularity of map t 7→ H(t), for t in the vicinity of t0,

� and | ξ(t)| ≤ C1(ω) εηn where the random variable C1 has �nite moment of every order.

We deduce from (31) that

∆aX(t) = ∆aBH0(t) + ∆aξ(t),

for all t ∈ V(t0, εn) =]t0 − εn, t0 + εn[. Our strategy, in the rest of the proof of Step 3, is to

make an expansion in the vicinity of time t0, then around BH0 . Indeed, since εn = n−α, for all

t ∈ V(t0, ε), we have

∆aBH0(t) ∼ n−H0 and
∣∣∆aξ(t)

∣∣ ≤ 2C1(ω)n−αη. (32)

The condition

α · η > H0 (33)

insures that ∆aξ(t) is in�nitely smaller than ∆aBH0(t), uniformly for all t ∈ V(t0, ε). Then Vn,

as de�ned by (7), becomes

Vn(X, t0, a
(j)) =

1

vn

∑
tk∈V(t0,εn)

{∣∣∆aBH0(tk)
∣∣2 + 2∆aBH0(tk) ·∆aξ(tk) +

∣∣∆aξ(tk)
∣∣2}

= Vn(BH0 , t0, a
(j)) +

 2

vn

∑
tk∈V(t0,εn)

∆aBH0(tk) ·∆aξ(tk)

 + Vn(ξ, t0, a
(j))
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We can easily deduce from (32) and condition (33), that 2

vn

∑
tk∈V(t0,εn)

∆aBH0(tk) ·∆aξ(tk)

 + Vn(ξ, t0, a
(j))

is in�nitely smaller than Vn(BH0 , t0, a
(j)). Next Taylor expansion induces

lnVn(X, t, a(j)) = lnVn(BH0 , t, a
(j)) +

(
2
vn

∑
tk∈V(t0,εn) ∆aBH0(tk) ·∆aξ(tk)

)
+ Vn(ξ, t0, a

(j))

Vn(BH0 , t0, a
(j))

By Cauchy-Schwarz inequality, we get∣∣∣ 1

vn

∑
tk∈V(t0,εn)

∆aBH0(tk) ·∆aξ(tk)Vn(BH0 , t0, a
(j))
∣∣∣ ≤ Vn(BH0 , t, a

(j))1/2 × Vn(ξ, t0, a
(j))1/2

which implies

lnVn(X, t, a(j)) = lnVn(BH0 , t0, a
(j)) + 2µ θ1/2n + θn (34)

where µ ∈ [−1, 1] and θn =
Vn(ξ, t0, a

(j))

Vn(BH0 , t, a
(j))

.

Lemma A.2 Under the same assumptions as previously,∣∣θn∣∣ ≤ C3(ω)× ε2η′n (35)

where the variable C3 has �nite moment of every order and η′ = η − H0
α .

Proof. Cor. A.1 implies the bound (32), which induces Vn(ξ, t0, a
(j)) ≤ 2C1(ω)n−2αη. Indeed,

Vn(ξ, t0, a
(j)) is the average of the quantities

∣∣∆aξ(tk)
∣∣2 for tk ∈ V(t0, εn), which are uniformly

bounded by 2C1(ω)n−2αη. Next, by using formula (27) we get

∣∣θn∣∣ ≤ 2C1(ω) j2H0

σ2πaH(0)×
{

1 + Ṽn(t0, a(j))
} × n−2(αη−2H0)

≤ 2 j2H0

σ2πaH(0)
× C1(ω){

1 + Ṽn(t0, a(j))
} × ε2η′n

This proves the bound (35) with

C3(ω) =
2 j2H0

σ2πaH(0)
× C1(ω){

1 + Ṽn(t0, a(j))
} .
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Then, it remains to prove that C3 has �nite moments, namely that

E

 1{
1 + Ṽn(t0, a(j))

}l
 <∞,

for all l ∈ N. For this, by Hölder inequality, we get

∀l ∈ N, E
(
|C3(ω)|l

)
≤ E

(
C lq1 (ω)

) 1
q × E

(
1

(1 + Ṽn(t0, a(j)))lp

) 1
p

where 1
p + 1

q = 1. We deduce from Corollary A.1 that

E
(
C lq1 (ω)

)
< +∞.

Thus it remains to prove that the other part as �nite moments of any order :

E

(
1

(1 + Ṽn(t0, a(j)))lp

)
< +∞.

But from Formula (24) (see Step 1) we get

1 + Ṽn(t0, a
(j)) =

1

vn

∑
tk∈V(t,εn))

[∣∣∆aBH0(tk)
∣∣2

Var
(
∆aBH0

) ]

where ∆aBH0(tk) is a centered Gaussian random variable. Therefore we get

1 + Ṽn(t0, a
(j)) =

1

vn

∑
tk∈V(t,εn))

∣∣Zk∣∣2
where Zk is a standard random variable de�ned by (25) as Zk :=

∆BH0(tk)√
Var
∣∣∆BH0(tk)

∣∣ . Moreover

random variables Zk are weakly dependent, which implies that 1+ Ṽn(t0, a
(j))

D−→
n→∞

χ2
dn
, see e.g.

Istas-Lang 1997 [22] or Ayache-Bertrand-Lévy-Vehel 2007 [1], with dn → +∞ as n → +∞. We

can deduce that

E

(
1

(1 + Ṽn(t0, a(j)))lp

)
' E

(
1

(χ2
dn

)lp

)

=

ˆ ∞
0

1

tlp
t
dn
2
−1e−t/2dt

=

ˆ ∞
0

t
dn
2
−lp−1e−t/2dt <∞.

This �nishes the proof of Lemma A.2. 2
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Next using (29) combined with (34) and Lemma A.2, we get

Ĥn(X, t) =
At

2AAt

(
lnVn(X, t0, a

(j))
)
j=1,...,M

=
At

2AAt

(
lnVn(BH0 , t0, a

(j)) + 2µ θ1/2n + θn

)
j=1,...,M

= Ĥn(BH0 , t) +O(εη
′
n ).

But for each �xed Hurst index H0, the following CLT, given by (10), holds

√
2εn · n×

(
Ĥn(BH0 , t0)−H0

)
D−→

n→∞
G′(t).

This CLT remains in force for mBm X as soon as the freezing error is negligible with respect to

the rate of convergence of the estimator of the Hurst index for fBm, namely

εη
′
n �

√
2εn · n.

By taking εn = n−α we get the following condition

n−αεη
′
n �

√
2n× n−α

namely

n−αεη
′
n �

√
2n

α−1
2

which means that the Necessary and Su�cient Condition is

2αη′ > 1− α

which is equivalent to

α >
1

1 + 2η′
:= φ(η′).

This �nishes the proof of Step 3 (freezing) and consequently the proof of Proposition 2.1.

B Proof of our main result - Theorem 3.1

Using CLT given in Proposition (2.1), by Formula (10) we get this convergence in law:

√
2εn · n×

(
Ĥn(t)−H(t)

)
D−→

n→∞
G′(t)

for all t ∈ (0; 1) where (G′(t), t ∈]0; 1[) is a zero mean Gaussian process which covariance structure

is known. If H(.) is the real index, then this means that we can explain the L2 risk function,

namely the MISE (Mean Integrated Squared Error) by E‖Ĥn(t)−H(t)‖2L2(]0;1[) , where

‖Ĥn(t)−H(t)‖2L2(]0;1[) :=
1

n

n∑
k=1

|Ĥn(tk)−H(tk)|2
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with (tk = k
n)k=1,...,n a family of observation times. Applying the previous CLT, we get (15):

2nεn‖Ĥn(t)−H(t)‖2L2(]0;1[)
D−→

n→∞

1

n

[
n∑
k=1

|G′(tk)|2
]
.

We can hence use it under the following form

‖Ĥn(t)−H(t)‖2L2(]0;1[) 'CTL
1

2nεn

[
1

n

n∑
k=1

|G′(tk)|2
]
.

Set Vn de�ned by (16)

Vn :=
1

n

n∑
k=1

|G′(tk)|2.

We here aim at proving that Vn satis�es a CTL.

Proof. Up to a multiplicative factor, it su�cies to prove the CLT for Ṽn de�ned by

Ṽn := n× Vn =
n∑
k=1

|G′(tk)|2.

For this, we can apply the CLT proved in [1, Th 3.1]

Ṽn = µ̃n + S̃n × ξn

and consequently Formula (17)

Vn = µn + Sn × ξn

where µn = E(Vn) is the expected value, Sn =
√
Var(Vn) is the standard deviation, and the

following convergence in distribution to a standard normal deviate (18) holds

ξn
D−→

n→∞
N (0; 1).

Actually, as G′(tk) are Gaussian centred random variables, we can apply a result from Istas-Lang

(2007) [22]. A su�cient condition to get result (18) is

lim
n−→∞

maxk∈{1,...,n}

[∑n
j=1 cov

(
G′(tk);G′(tj)

)]
√
Var(Ṽn)

= 0. (36)

For j 6= k, if tj and tk where adequately located, namely at a su�cient distance each other (N ,

with N −→∞), we would have

cov

(
G′(tk);G′(tj)

)
= 0. (37)
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Then, as G′(tk) are Gaussian random variables with zero mean, we just keep

n∑
j=1

cov

(
G′(tk);G′(tj)

)
= Var

(
G′(tk)

)
= E

(
G′(tk)2

)
.

Next, it comes that

max
k∈{1,...,n}

[
n∑
j=1

cov

(
G′(tk);G′(tj)

)]
= max

k∈{1,...,n}

[
Var

(
G′(tk)

)]
.

From Proposition (2.1), formula (11) gives us the expression of Var

(
G′(tk)

)

Var

(
G′(tk)

)
= γH(tk).

On the other hand, by de�nition of Ṽn and by assumption (37) of independence of Gaussian

random variables G′(tk), we can write that

Var(Ṽn) =

n∑
k=1

Var

(
G′(tk)2

)
. (38)

As G′(tk) is Gaussian, the variance of G′(tk)2 can be explained in the following way

Var

(
G′(tk)2

)
= E

[(
G′(tk)2 − E(G′(tk)2)

)2]

= E

[
G′(tk)4

]
− (E[G′(tk)2])2

= 2×

[
Var(G′(tk))

]2
and it comes that

Var

(
G′(tk)2

)
= 2×

(
γH(tk)

)2

. (39)

Then su�cient condition (36) becomes

lim
n−→∞

maxk∈{1,...,n}

(
γH(tk)

)
√√√√∑n

k=1

(
2× (γH(tk))

2

) = 0
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since

maxk∈{1,...,n}

(
γH(tk)

)
√√√√∑n

k=1

(
2× (γH(tk))

2

) ≤
maxk∈{1,...,n}

(
γH(tk)

)
√√√√2n×mink∈{1,...,n}

[(
γH(tk)

)2]

so this condition is satis�ed and CLT (Th.3.1 in [1]) holds. We hence have proved that CLT (17)

holds. Then, by de�nition of Vn, we have

E(Vn) =
1

n

n∑
k=1

Var

(
G′(tk)

)
=

1

n

n∑
k=1

E

(
G′(tk)2

)
=

1

n

n∑
k=1

γH(tk) (40)

and

Var(Vn) =
1

n2
Var(Ṽn) =

2

n

[
1

n

n∑
k=1

(γH(tk))
2

]
(41)

using respectively (38) and (39). From (40) we get that E(Vn) −→
ˆ 1

0
γH(t)dt, and from (41),

we get that
(n

2

)
×Var(Vn) −→

ˆ 1

0
(γH(t))

2dt as n→∞. Consequently, set as in Formula (20):

Tn(Ĥn(t)) =
2nεn‖Ĥn(t)−H(t)‖2L2(]0;1[) −

´ 1
0 γH(t)dt(

2
n

´ 1
0 (γH(t))2dt

)1/2 .

Combining (15) and (18) we get that Tn
D−→

n→∞
N (0, 1) as n→∞. 2


