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A Characteristic Averaging Property of the
Catenary

Vincent Coll and Jeff Dodd

Abstract. It is well-known that the catenary is characterized by an extremal centroidal con-
dition: It is the shape of the curve whose centroid is the lowest among all curves having a
prescribed length and specified endpoints. Here, we establish a broad characteristic averaging
property of the centenary that yields two new centroidal characterizations.

1. INTRODUCTION. In the May 1690 Acta Eruditorum1, Jacob Bernoulli chal-
lenged the mathematical community to determine the shape of the “chain curve”
formed by an idealized chain hanging from two points with no force other than gravity
acting upon it. The following year, Johann Bernoulli, Huygens, and Leibniz indepen-
dently solved the problem to find the curve that Huygens named the catenary and that,
in today’s notation, is the graph of the hyperbolic cosine function

y = f (x) = k cosh

(
x − c

k

)
. (1)

Johann Bernoulli and Leibniz noted three surprising ways in which the catenary
mimics the graph of a constant function [5]. To formulate these, consider the graph
y = f (x) of a smooth, strictly positive function f as depicted in Figure 1.

a b

C

y = f (x)

A

(xC , yC )

(xA , yA)

y

x

Figure 1. Two centroidal properties of the catenary (in standard vertical position)

For an interval [a, b] on the x-axis, let C denote the segment of the graph of f lying
over [a, b], and let A denote the shaded planar region lying over [a, b] that is bounded

http://dx.doi.org/10.4169/amer.math.monthly.123.7.683
MSC: Primary 34A00

1Latin for “transactions of the scholars,” Acta Eruditorum, the first German journal of science and scholar-
ship, was published from 1682 to 1782.
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above by C . Let (xC , yC) be the coordinates of the centroid of C and (x A, y A) be
the coordinates of the centroid of A. Both Bernoulli and Leibnitz formulated what we
would now call a differential equation for the catenary, reading

f (x) = k
√

1 + [ f ′(x)]2, for each x ∈ R, (2)

and it follows directly from (2) that the catenary in standard vertical position (1) shares
the following properties with the graph of the constant function f (x) = k.

Proportionality. For every interval [a, b], (area of A) = k · (arclength of C):

∫ b

a
f (x) dx = k

∫ b

a

√
1 + [ f ′(x)]2 dx . (3)

Horizontal Collocation. For every interval [a, b], x A = xC :

∫ b
a x f (x) dx∫ b
a f (x) dx

=
∫ b

a x
√

1 + [ f ′(x)]2 dx∫ b
a

√
1 + [ f ′(x)]2 dx

. (4)

Vertical Bisection. For every interval [a, b], y A = 1

2
yC :

∫ b
a (1/2)[ f (x)]2 dx∫ b

a f (x) dx
= 1

2

∫ b
a f (x)

√
1 + [ f ′(x)]2 dx∫ b

a

√
1 + [ f ′(x)]2 dx

. (5)

Note that while the horizontal collocation property (4) and the vertical bisection prop-
erty (5) look a bit more complicated than the proportionality property (3), they are
more elegant in that they involve no unit-dependent constants, whereas the constant k
in the proportionality property has the dimension of length.

It is natural to ask to what extent each of these properties characterizes the catenary.
As far as we know, this question has never been addressed for the two centroidal prop-
erties of horizontal collocation and vertical bisection. Here, we show that each of these
two centroidal properties is in fact a characteristic property of the catenary. The proof
of this fact is surprisingly subtle. Moreover, it reveals a broad averaging property of
the catenary that, despite its geometric manifestations, is essentially analytic in nature.

2. FROM PROPERTIES TO CHARACTERIZATIONS. We wish to determine
the extent to which the horizontal collocation property (4) and vertical bisection prop-
erty (5) characterize the catenary. But first, we warm up by addressing the same ques-
tion for the proportionality property (3). To what extent does this property characterize
the catenary?

A rough answer to this question requires only the fundamental theorem of calculus.
For a continuously differentiable function f , fixing a and differentiating with respect
to b in (3) recasts the global proportionality property as a local property in the form
of the differential equation (2). This differential equation has the “singular solution”
f (x) = k, and separation of variables and integration yield a catenary of the form
(1). This straightforward argument has been included as an example, or prompted
as an exercise, in differential equation textbooks for at least the last 150 years; see,
for example, the well-known 1859 text by George Boole [2]. It leaves one with the
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impression that the catenary is the only nontrivial continuously differentiable function
satisfying the proportionality property.

The subtlety here, as noted recently by E. Parker [6], is that it is possible to form
positive, nonconstant, continuously differentiable solutions of (2) by joining a por-
tion of the graph of f (x) = k with the left half and/or right half of a catenary of the
form (1). But of course, these piecewise defined functions are not twice differentiable
everywhere, so the precise answer to our warm up question reads this way.
Parker’s characterization of the catenary. Catenaries of the form (1) are the only
positive, nonconstant, twice-differentiable functions satisfying the differential equation
(2) or the proportionality property (3).

We were surprised to discover that it is not such a straightforward matter to charac-
terize the functions that satisfy the horizontal collocation property (4) or the vertical
bisection property (5). (We invite the reader to spend a few minutes trying!) It is eas-
iest to see the source of the difficulty and to distill what we need to overcome it if we
take a step back and notice that each of the four quantities appearing in (4) and (5) can
be written in this form: ∫ b

a g(x)w(x) dx∫ b
a w(x) dx

(6)

where w is a positive, continuous function. For example, on the left-hand side of
(4), g(x) is the horizontal coordinate x and w(x) dx is the differential area element
f (x) dx . In general, the expression (6) is a weighted mean of the function g over
[a, b], where the weight function w is defined globally on all of R but is normalized
locally over each interval [a, b]. The natural hope is that if we could untangle these
global and local aspects of the horizontal collocation and vertical bisection properties,
then we might be able to localize these properties completely in the form of the dif-
ferential equation (2). Toward this end, we have formulated and proven the following
fact, which is new to us.

Lemma (Equal Averages Principle). Let g be a function that is continuously differ-
entiable on an interval [c, d] and such that g′(x) �= 0 for x ∈ (c, d). Suppose that w1

and w2 are functions that are continuous on [c, d] and positive on (c, d). Then

∫ b
a g(x)w1(x) dx∫ b

a w1(x) dx
=
∫ b

a g(x)w2(x) dx∫ b
a w2(x) dx

, for every subinterval [a, b] of [c, d] (7)

if and only if w1 = kw2 for some constant k > 0.

Proof. It is clear that if w1 = kw2 for some constant k > 0, then (7) holds. To
prove the converse implication, let Wi(x) = ∫ x

c wi (s)ds for i = 1 and 2. Then for any
x ∈ (c, d), writing (7) for the interval [c, x] gives us∫ x

c g(t)W ′
1(t) dt

W1(x)
=
∫ x

c g(t)W ′
2(t) dt

W2(x)
.

Integrating by parts in the numerators on both sides yields

g(x)W1(x) − ∫ x
0 g′(t)W1(t) dt

W1(x)
= g(x)W2(x) − ∫ x

c g′(t)W2(t) dt

W2(x)
. (8)
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Because g′ is continuous and nonzero on (c, d), g′(x) is either positive or negative on
all of (c, d), we can safely rewrite (8) as∫ x

c g′(t)W1(t) dt

g′(x)W1(x)
=
∫ x

0 g′(t)W2(t) dt

g′(x)W2(x)
=⇒ g′(x)W1(x)∫ x

c g′(t)W1(t) dt
= g′(x)W2(x)∫ x

0 g′(t)W2(t) dt
.

Letting Gi (x) = ∫ x
c g′(t)Wi(t) dt for i = 1 and 2, we have that

G ′
1(x)

G1(x)
= G ′

2(x)

G2(x)
=⇒ ln |G1(x)| = ln |G2(x)| + I =⇒ G1(x) = kG2(x) (9)

where I is a constant of integration and, because G1(x) and G2(x) have the same sign
on (c, d), k > 0. Finally, differentiating the last equation in (9) and again keeping in
mind that g′(x) �= 0 for all x ∈ (c, d), it follows for all such x that

g′(x)W1(x) = kg′(x)W2(x) =⇒ W1(x) = kW2(x) =⇒ w1(x) = kw2(x).

Armed with the equal averages principle, we can now formulate characterizations
for the catenary based on the horizontal collocation property and the vertical bisection
property.

Theorem (Centroidal Characterizations of the Catenary). Catenaries of the form
(1) are the only positive, nonconstant, twice-differentiable functions satisfying either
the horizontal collocation property or the vertical bisection property.

Proof. If a positive, nonconstant, twice-differentiable f satisfies the horizontal col-
location property, then it satisfies (4). Applying the equal averages principle with
g(x) = x , w1(x) = f (x), and w2(x) =

√
1 + [ f ′(x)]2 yields the differential equation

(2), which must hold everywhere, and the conclusion follows from Parker’s character-
ization of the catenary.

If a positive, nonconstant, twice-differentiable f satisfies the vertical bisection
property, then it satisfies (5). Applying the equal averages p with g(x) = (1/2) f (x),
w1(x) = f (x), and w2(x) =

√
1 + [ f ′(x)]2 yields the differential equation (2), which

must hold on any open interval where f ′ �= 0.
By the continuity of f ′, S = {x ∈ R : f ′(x) �= 0} can be written as the disjoint

union of open intervals, and at any endpoint p of such an open interval, f ′(p) = 0. On
each of these open intervals, by Parker’s characterization of the catenary, f is given
by a segment of a catenary of the form (1), so each open interval must be of the form
(−∞, c1) or (c2, ∞). Outside of these intervals, f ′ = 0, so f is constant. The only way
in which f can be twice-differentiable is if S = (−∞, c1) ∪ (c2, ∞) where c1 = c2,
yielding a catenary of the form (1).

Remark. It is tempting to modify the vertical bisection property by requiring that the
graph of a positive, continuously differentiable function y = f (x) satisfy y A = λyC
over all intervals [a, b] for some λ �= 1/2. However, there are no such functions. If∫ b

a (1/2)[ f (x)]2 dx∫ b
0 f (x) dx

= λ

(∫ b
a f (x)

√
1 + [ f ′(x)]2 dx∫ b

a

√
1 + [ f ′(x)]2 dx

)
, for all intervals [a, b],

then letting b → a and evaluating the resulting indeterminate limits by l’Hôspital’s
rule yields λ = 1/2.
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In the equal averages principle, letting the weight functions w1 and w2 be f and√
1 + [ f ′]2 yields the same differential equation for f regardless of the choice of the

function g, which is the differential equation (2) whose only positive, nonconstant,
twice-differentiable solution is the catenary function. So the horizontal collocation and
vertical bisection properties are only special cases of a broad characteristic averaging
property of the catenary or, to say it another way, of a multitude of characteristic aver-
aging properties of the catenary corresponding to different choices for the function g.

For example, letting g(x) = (x − x0)
n for any real number x0 and any integer

n ≥ 1, we see that catenaries of the form (1) are the only positive, nonconstant, twice-
differentiable functions f such that over every interval [a, b],

∫ b
a (x − x0)

n f (x) dx∫ b
a f (x) dx

=
∫ b

a (x − x0)
n
√

1 + [ f ′(x)]2 dx∫ b
a

√
1 + [ f ′(x)]2 dx

. (10)

That is, for each interval [a, b], the nth moment of the region A under the graph of
f on [a, b] and the nth moment of the segment C of the graph of f over [a, b] are
the same with respect to any vertical axis x = x0. If the graph of the catenary (1) is
assigned a uniform linear mass density and the region below this graph is assigned a
uniform area mass density, then (10) has natural physical interpretations when n = 1
and n = 2.

When n = 1, (10) is the horizontal collocation property and a straightforward phys-
ical interpretation is that when f is a catenary of the form (1), then for any inter-
val [a, b], the x-coordinate of the center of mass of the region A is the same as the
x-coordinate of the center of mass of the segment C . An equivalent, and perhaps more
counterintuitive, physical interpretation is that for any interval [a, b], the x-coordinate
of the center of mass of C ∪ A is unaffected by the uniform mass densities assigned
to the graph of the catenary and the region under the graph of the catenary. That is,
suppose we were to build a fence on level ground with the top of the fence following
a catenary of the form (1). Then the horizontal position of the center of mass of any
slice of the fence bounded by two vertical lines would be unchanged by the addition of
a railing of uniform linear mass density running along the top of the fence, no matter
how heavy the railing.

When n = 2, the left- and right-hand sides of (10) represent, respectively, the radius
of gyration x A(x0) of the region A about the axis x = x0 and the radius of gyration
xC(x0) of the segment C about the axis x = x0. (The radius of gyration of an object
O about the axis x = x0 is defined as the distance x O(x0) such that if the mass of the
object were concentrated into a point mass at a distance x O(x0) from the axis x = x0,
then this point mass would have the same moment of inertia around the axis x = x0

as the object O itself.) So when f is a catenary of the form (1) then, for every interval
[a, b] and any axis x = x0, the radius of gyration xC(x0) of the segment C of the graph
of f over [a, b] is the same as the radius of gyration x A(x0) of the region A under the
graph of f on [a, b].

3. CONCLUSION. It is remarkable to us that new mathematical properties, char-
acterizations, and generalizations of the catenary continue to be discovered (see, for
example, the recent Amer. Math. Monthly articles by Apostle and Mnatsakanian [1]
and Coll and Harrison [3]).

Here is just one follow up question for further investigation. Upon revolution about
the x-axis, the catenary produces the catenoid, which is the unique minimal surface
of revolution in R

3. The generalized catenaries are curves that, in an analogous way,
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generate the unique minimal hypersurfaces of revolution in R
n (see [3], [4], and [7]).

Surely, these curves have characteristic centroidal properties. What are they?
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