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Abstract—One of the biggest efforts in designing pervasive
Smart Camera Networks (SCNs) is the implementation of com-
plex and computationally intensive computer vision algorithms on
resource constrained embedded devices. For low-level processing
FPGA devices are excellent candidates because they support mas-
sive and fine grain data parallelism with high data throughput.
However, if FPGAs offers a way to meet the stringent constraints
of real-time execution, their exploitation often require significant
algorithmic reformulations.

In this paper, we propose a reformulation of a kernel-based
gradient computation module specially suited to FPGA imple-
mentations. This resulting algorithm operates on-the-fly, without
the need of video buffers and delivers a constant throughput. It
has been tested and used as the first stage of an application
performing extraction of Histograms of Oriented Gradients
(HOG). Evaluation shows that its performance and low memory
requirement perfectly matches low cost and memory constrained
embedded devices.

I. INTRODUCTION

With the rapidly increasing interest in decentralized ap-
proaches for Smart Camera Networks (SCN), embedded com-
puter vision has become a research field per se. The de-
ployment of complex and smart applications on SCNs now
crucially depends on the the possibility to perform complex
and time-consuming vision algorithms directly at the node
level. This places stringent constraints on the processing
elements embarked on these nodes. This is specially true for
the so-called low-level processing stages, operating on the raw
pixels coming from the sensor, for which the increasing sensor
resolutions lead to data throughputs which cannot be sustained
by embedded general purpose CPUs.

Because they naturally support massive and fine grain data
parallelism, FPGAs have often been advocated as a solution
to the aforementioned issue. However, in most cases, this is
only true if the algorithm to be implemented can be formulated
to operate on sequential streams of pixels, without the need
to memorize and iterate on intermediate results. This refor-
mulation, which essentially amounts to convert an imperative,
stateful model to a dataflow, stateless one is often not trivial
or even feasible in case of non-Turing-complete algorithms.
Moreover, the efficiency of the final implementation directly
depends on it. Yet, it is seldom explicitly described, if not
mentioned, in papers dealing with embedded vision.

Let’s take for example a classical operation in low-level
vision : the computation of the gradient. This operation is used

in many higher-level algorithms such as the Hough transform,
the Canny edge detector or the Histogram of Oriented Gradient
(HOG). It relies on regular, pixel-wise operations but some of
them – the square root and the arc-tangent – are non linear [1]
and thus do not map easily on hardware computing devices
such as FPGAs. To circumvent this problem, two solutions
have typically been proposed : using pre-computed look-up
tables as in [2], [3] or relying on run-time iterative algorithms
such as CORDIC or derivatives [4]. The former approach
requires large amount of memory, which can quickly be a
problem with tightly space and/or cost-constrained devices,
especially when the required precision increases. The second
approach has a strong impact on performances since it is
no longer possible, in the general case, to maintain a 1-
to-1 ratio between the frequency of the input and output
pixels respectively. In certain cases, by taking into account
the algorithmic context – i.e. the subsequent utilisation of
the gradient information computed by the operation –, it is
however possible to overcome the limitations of the above
mentioned solutions. This is the case, in particular, for the
gradient used in the HOG application. The HOG algorithm [5]
relies on two steps : first the computation of the image gradient
followed by a local spatial aggregation of the histogram of
the computed gradients. This algorithm is the basis of several
well-known methods for detecting objects like pedestrians
or vehicles in image sequences [5]–[7]. In this context, the
resulting histograms are then normalised and compared to
reference models by a SVM linear classifier in order to make
decision about the presence/non-presence of the target objects.

In this paper, we describe an optimized implementation of
the gradient extraction operation which can be used as the
first step of the HOG algorithm. By taking into account the
specific needs of the subsequent steps and reformulating the
extraction in terms of purely dataflow basic operators, we have
obtained a highly parallel, fully pipelined implementation,
producing a valid result at every clock cycle and with a
memory footprint considerably smaller compared to other state
of the art solutions. The accuracy of the produced results also
meets the precision requirements of the HOG algorithm. The
rest of this paper is organized as follows. Sec. II is a brief
overview of the existing solutions proposed for computing
the gradient, especially for the HOG algorithm. Our solution,
named HOG-Dot is described in Sec. III. It is evaluated, in
terms of accuracy, in Sec. IV. The corresponding hardware
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implementation is exposed in Sec. V and the performances of
the resulting core are assessed in Sec. VI.

II. RELATED WORK

The state of the art of the gradient implementation is mainly
related to its use in the HOG algorithm [5]. Since spatial
gradients techniques are based on magnitude ‖ ∇I ‖ and angle
orientation θ, gradient can be expressed in polar coordinates
by:

‖ ∇I ‖=
√
Gx

2 +Gy
2 θ = arctan

Gy
Gx

(1)

where Gx and Gy are respectively the gradient in x and y
direction defined as:

Gx = I ∗
[
−1 0 1

]
and Gy = I ∗

[
−1 0 1

]T
(2)

where I is the input image. These operations require strong
computing capabilities for real-time processing. In particular,
the arctan evaluation in a hardware implementation either re-
quires many resources or produces non efficient results. In [8]
a low resolution VLSI gradient module has been proposed. The
gradient approximation is carried out by deploying a steering
filter architecture within a custom CMOS image sensor. More
recently, a fixed point implementation has been proposed by
Kadota et al. [2]. The authors designed a memory-based core
that extracts the gradient with precomputed Look-Up table
(LUT) entries. The memory contains all the possible entries
of
(
Gx, Gy

)
. Therefore the memory footprint would grow as

Gx × Gy sizes increase, i.e. for luminance range extensions
or to achieve better gradient resolution. Although this system
reaches real time performance, it requires a huge memory
footprint (n × 22n+1 bits where n is the Gx representation)
and a square root based on multi-cycles operations per pixel.
Mizuno et al. [4] has improved the Kadota et al. proposal by
using a CORDIC method [9] for the orientation evaluation.
While the CORDIC method provides an acceptable precision
for the orientation, it requires a variable number of iterations
which depends on the initialisation value of the algorithm and
the input operand.

The most used technique for the gradient extraction has
been introduced by Bauer et al. in [10] and then reproduced in
more recent implementations [3], [11]. Bauer et al. propose an
orientation binning scheme without computing the orientation
angle explicitly. The x and y derivatives directly index the
histogram using a LUT, while the magnitude is extracted with
an hardware square root module. Even though this technique
improves the performance with respect to CORDIC-based
solutions, the square root module increments the processing
latency and limits the maximum operating frequency as well.

III. HOG-DOT ALGORITHM

One of the main issue in developing the HOG pipeline
for FPGA-based SC is the polar coordinates computations
through non linear floating-point operations. Even though
floating point arithmetic could be exploited within FPGA, as
shown in [12], its implementation require a non-negligible
amount of hardware resources and furthermore it will decrease

the output throughput. Thus, we propose a highly parallel
architecture capable to approximate the square-root and the
arc-tangent. It is based on a set of linear operations that can
be easily implemented within a pipelined hardware circuitry.
The proposed methods considers a discrete gradient orientation
space divided into N uniformly spaced samples, which are
denoted by îk with k = 0, ..., N − 1. In Fig. 1 the consid-
ered direction versors are shown over the semi-circumference
space, where θk represents the angle orientation of the kth

gradient component.

î0

îk

îk+1

îN−1

θk

Fig. 1. The versors beam used to compute the dot product.

The versor îk can be expressed by its components as
follows:

îk =
{
x̂ cos θk + ŷ sin θk

∣∣k ∈ 0, · · · , N − 1
}

(3)

For each îk versor, we express the overlaying gradient com-
ponent as the scalar projection of ∇I over îk. In Eq. 4 the
scalar product is given.

∂I

∂îk
= ∇I · îk (4)

Then by replacing Eq. 3 in Eq. 4, we obtain:

∂I

∂îk
= cos θk

∂I

∂x
+ sin θk

∂I

∂y
(5)

Finally, by recalling Eq. 2, in Eq. 6 the spatial gradient
component over a generic îk versor is shown.

∂I

∂îk
(x, y) = cos θk [I(x+ 1, y)− I(x− 1, y)]

+ sin θk [I(x, y + 1)− I(x, y − 1)] (6)

As in Eq. 6, the kth projection of the spatial gradient ∇I
can be straightforward computed by applying linear arithmetic
operations to the image pixel. In particular in Eq. 7 the
complete matrix expression is shown. Once the number of
the orientation samples N has been defined, the co-sinusoidal
values are then a-priori fixed for each θk thus resulting a
constant coefficients matrix.

In Eq. 7 a generic kth component can be computed as
convolution product between the kernel matrix and the image
pixels. By applying the same approach for each îk within the
N orientation samples, all the gradient projections are com-
puted. In Fig. 2, N = 8 is assumed. The eight co-sinusoidal
convolutions are carried out over the same 3× 3 mask pixels,
thus computing the gradient projections. The spatial gradient is
then evaluated by extracting the greater magnitude projection
among the available set. The resulting projection represents
the closest gradient approximation among the available N
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∂I

∂îk
(x, y) =

 0 − sin θk 0
− cos θk 0 + cos θk

0 + sin θk 0

 ·
 I(x− 1, y − 1) I(x, y − 1) I(x+ 1, y − 1)

I(x− 1, y) I(x, y) I(x+ 1, y)
I(x− 1, y + 1) I(x, y + 1) I(x+ 1, y + 1)

 (7)

i 0
i 1
i 2
i 3
i 4
i 5
i 6
i 7

a
rg
m
a
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∇IDot(x, y)

Fig. 2. The proposed HOG-Dot parallel implementation.

orientation samples. Once the maximum magnitude has been
computed, the argmax operator extracts the relative k̄th

orientation as follows:

k̄ = argmax
{ ∂I
∂îk̄

(x, y)
∣∣ k ∈ 0, · · · , N − 1

}
(8)

Finally, in Eq. 9 the resulting gradient approximation is shown.

∇IDot(x, y) =
( ∂I
∂îk̄

(x, y) , θk̄
)

(9)

The original HOG implementation defines instead the gradient
∇IHOG(x, y) as:

∇IHOG(x, y) =
(
‖ ∇I(x, y) ‖ , θk̄

)
(10)

By comparing Eq. 9 and Eq. 10, the resulting vectors have
the same orientation direction îk thus both belong to the
same histogram bin. With respect to the magnitude differences,
in Fig. 3 both approximations are reported along with the
mathematical formulation. This expression, defined as ∇I ,
represents the spatial gradient definition as in Eq. 1 which
results without the HOG orientation binning. In particular, it
is clearly shown that ∇IDot always represents a round down
approximation of the ∇IHOG. Since HOG-Dot involves a
dot-product operation, the ∇IDot approximation can be also
expressed as follows:

‖ ∇IDot(x, y) ‖=‖ ∇I(x, y) ‖ cos(θ − θk̄) (11)

All in all, the HOG-Dot technique allows gradient computa-
tion by deploying only linear operations rather than square
root and arc-tangent operator. By controlling the number
of the considered orientations N , the algorithm accuracy

θ −
θ
k̄ ∇IHOG

∇
I

∇IDot
îk̄

Fig. 3. ∇I , ∇IHOG and ∇IDot comparisons.

can be estimated and then predicted. The higher N means
a finer granularity of the gradient projections but requires
more computing iterations. Nevertheless the increased iterative
operations, our method is suitable for a parallel exploitation
thus achieving the highest performance.

IV. HOG-DOT ACCURACY EVALUATION

To evaluate the approximation error a mathematical ex-
pression has been derived, in terms of gradient angle and
magnitude. As previously introduced, the angle approximation
depends on the number of orientation samples N . Given a
fixed N , the orientation accuracy is then equal to 2π/N
radiant. As far as the magnitude approximation concerns,
the Error Vector Magnitude (EVM) metric has been used.
The EVM is usually deployed to quantify the difference
between transmitted and received constellation points and can
be expressed as:

EVM =

√
Perror
Pref

(12)

where the power of the error vector is expressed as Perror
while the ideal one as Pref . In this context, the EVM can be
rewritten as:

EVMDot =

√
‖ e ‖2

‖ ∇IHOG(x, y) ‖2
=

‖ e ‖
‖ ∇IHOG(x, y) ‖

(13)
where e is ∇IHOG(x, y)−∇IDot(x, y), the difference vector
between the HOG and our version. As in Eq. 11 the difference
vector between ∇IHOG(x, y) and ∇IDot(x, y) is straightfor-
ward evaluated as follows:

‖ e ‖ = ‖ ∇IHOG(x, y)−∇IDot(x, y) ‖

= ‖ ∇I(x, y) ‖
[
1− cos(θ − θk̄)

]
(14)

Thus, the EVMDot is a deterministic function of θ − θk̄,
and, consequently of N (θk̄ = k̄π/N ). The EVMDot is then
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described by:

EVMDot = 1− cos
(
θ − k̄π

N

)
(15)

In Fig. 4 the EVMDot is then shown. It is expressed
within a single bin span as function of θ − θk. Since the
angle resolution directly depends on N , two EVM curves are
reported for N equal to 8 and 16 respectively. The error goes to
zero whether θ is equal to θk, while it achieves the maximum
value when ∇IDot lies in the middle between θk−1 and θk+1

instead. Nevertheless, with N = 8 the maximum error is
bounded to 2%. To complete the comparison, in Fig. 5 the
Fig. 4. The EVMHOG Dot evaluation as function of θ − θk̄ .

maximum and average errors, defined as max(EVMDot) and
avg(EVMDot), are reported as function of N . By increasing
the orientation samples N , the difference between θ and θk̄
monotonically decreases, thus the maximum EVM decreases
as well. Given all values on its period, the average EVM is
evaluated as follows:

avg(EVMDot) =
2

T

T/2∫
0

EVMDot dθ (16)

= 1− 2N

π
sin(

π

2N
)

where T is equivalent to the EVMDot period π
N . The average

value is clearly bounded by Eq. 15 and decreases when N
increases. Although we exploit the gradient extraction with a
linear kernel based method, our results are comparable with
those obtained by the HOG technique. As shown in Fig. 5,
by fixing N equal to 8, the resulting average EVM is close
to 0.5%. Whether an improved accuracy is requested, the
sampling factor N can be further increased to match the output
specifications.
Fig. 5. Maximum and average EVMDot as function of N .

V. HARDWARE IMPLEMENTATION

In Section III the proposed method has been first formally
introduced. In this Section a FPGA hardware implementation
will be shown. In particular, the proposed hardware design has
been developed as the gradient extraction circuit for the HOG
pipeline. Therefore the number of orientation samples N is
then equivalent to the number of the HOG histogram bins,
usually equal to 8.

The hardware design is obtained following Eq. 7. The matrix
convolution between the kernel coefficients and the 3 × 3
mask pixel is computed by leveraging on pipelined hardware
module. Since these coefficients are constant for a given angle
θk, the kth gradient component can be evaluated by deploying
two hardware multipliers and three adder/subtractor modules.
In Fig. 6 the hardware circuitry for a single gradient projection
is shown. More in detail, the input pixel is represented with
8bit while each coefficient value has been represented with
9bit two’s complement. Due to the internal pipeline structure,
the module shown in Fig. 6 is capable of processing new input
data every clock cycle to achieve the maximum throughput. In

Fig. 6. The hardware implementation for the ik gradient component.

order to extend the gradient computation to all the available
projections, N convolution modules are instantiated in parallel.
As previously suggested by Fig. 2, the resulting hardware
structure generates N parallel gradient projections. Each clock
cycle, those resulting projections are compared each other to
extract the maximum magnitude value. In Fig. 7 the hardware
argmax implementation is shown. This is implemented as
log2(N) comparative stages within a pipelined architecture.

∂I
∂i0

∂I
∂i1

∂I
∂i2

∂I
∂i3

∂I
∂i4

∂I
∂i5

∂I
∂i6

∂I
∂i7

∂I

∂îk̄

θk̄

Fig. 7. Pipelined argmax extraction (N = 8).

With the assumption of N = 8, the first stage is composed
by four parallel comparators, which are fed by the computed
gradient projections. Each comparator propagates to the next
stage the temporary maximum projection and its orientation.
In the presented example, the comparison ends at the third
stage, where the closest gradient approximation is generated.
The resulting couple ∂I

∂îk̄
and θk̄ represents the closest spatial

gradient approximation retrieved from the HOG-Dot method,
as in Eq. 9.

VI. PERFORMANCE EVALUATION

In this Section the proposed gradient extraction module is
evaluated in terms of memory footprint, data throughput, data
latency and output accuracy. We adopted the Terasic DE0-
nano development board which embeds an Altera Cyclone
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IV FPGA with 22k Logic Elements (LE), 600 kbits on-board
memory and 144 9x9 bits multiplier modules. Considering a
VGA resolution and N equal to 8, the proposed hardware
module occupies only 5.4% of the Logic Elements (LEs),
1.2 KByte of the on-chip RAM (0.2%) and uses 16 of 144
available multiplier module. These results are depending on
the number of gradient components N and to the maximum
image width size W . Higher N would increase the number
of the used multiplier as 2 ·N while an increased image size
will increase only the memory footprint due to neighborhood
extraction. In Tab. I a comparison with the state of the art is
shown. In particular, due to the limited implementation details
in the state of the art and the different FPGA technologies
involved, numerical LEs comparisons are impractical. We
rather compare the on-chip memory occupancy footprint and
the used DSP modules among the considered solutions.

TABLE I
HARDWARE RESOURCE UTILIZATION FOR VGA RESOLUTION.

Platform RAM DSPs

Kadota [2] Altera Stratix II N/A 12
Mizuno [4] Altera Cyclone IV 64 KB 68
Bauer [10] Xilinx Spartan-3 225 KB 18
Negi [11] Xilinx Virtex-5 162 KB 0
HOG-Dot Altera Cyclone IV 1.2 KB 16

Although the proposed work uses a higher amount DSP
modules with respect to Kadota et al. [2] and Negi et
al. [11], HOG-Dot memory footprint is significantly lower
than others. Moreover, with respect to the implementations
proposed by Bauer et al. [10] and Mizuno et al. [4], our
method reduces the DSP usage. This results of the HOG-
Dot pipelined architecture, which optimizes the hardware
resource occupancy. In Table II the processing latency and
the maximum operating frequency are shown with respect to
the other implementations. As far as throughput concerns, our
implementation achieves the same results as the Negi et al.
proposal, while is deployed within a low-end FPGA device.
With respect to Bauer et al., the resulting processing latency is
increased by removing frame buffering and external memory
accesses. The maximum operating frequency is 78MHz, which
corresponds to the higher throughput achievable. Hence, the
theoretical image frequency of 250 fps can be reached at VGA
resolution. Given the limited processing latency, our module
is then suitable for real-time processing applications.

TABLE II
PROCESSING LATENCY COMPARISONS.

Latency Operating
(clock cycles) frequency (MHz)

Kadota et al. [2] 24 127.49
Mizuno et al. [4] N/A 40
Bauer et al. [10] 3262 63
Negi et al. [11] 2 44.85
HOG-Dot 3 78

A. HOG performance comparison

In this Section, our HOG-Dot method is then compared
with the state of the art HOG implementation. In order to
compare the results, an entire hardware HOG pipeline has been
deployed following the module presented in [13]. The HOG-
Dot hardware module is then followed by the histogram circuit
which provides to the classifier an ordered flow of oriented
gradient over 8 × 8 pixel cells. The original HOG and our
modified approach have been trained both with a classification
SVM provided by SVMLight [14]. The INRIA pedestrian [15]
dataset has been used to train and test both systems. The
reference HOG implementation has been provided by the
OpenCV framework, which implements a double precision
floating point arithmetic with arc-tangent and square root
operations. The comparison results are summarized with the
Receiver Operator Characteristics (ROC) metric and shown
in Fig. 8. This curve shows in the x-axis the relationship
between the False Positive Rate (FPR) and the True Positive
Rate (TPR) on the y-axis. The closer to the upper left the
ROC goes, the higher performance are achieved. The plots
are made by changing the SVM decision threshold within ±5
range as proposed by [16]. As a result, the proposed fixed

Fig. 8. ROC curves with INRIA dataset

point HOG-Dot algorithm shows TPR up to 91% with FPR
at 2%. These performance have been obtained with a L2 his-
togram normalization as in the OpenCV implementation. The
original OpenCV instead results around 93% TPR with 2%
FPR. The difference between the reference and our proposed
method is clearly due to the approximation error shown in
Fig. 4. Although our method only involves fixed-point linear
operation, the detection performance shows comparable results
with the floating point, non linear reference implementation.
As far as the accuracy evaluation is concerned, the proposed
approximated algorithm performs up to 2% of error on the
gradient magnitude.

VII. CONCLUSIONS

In this paper the parallel gradient extraction HOG-Dot
algorithm is presented. This algorithm is suitable for real-time
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image processing in FPGA-based low-cost Smart Cameras.
The fixed point and linear HOG-Dot implementation has been
evaluated in a HOG-SVM pedestrian detection system. It
shows comparable detection performance with respect to the
floating point, non linear reference implementation. Moreover,
the hardware implementation shows benefits in terms of mem-
ory footprint and hardware resources occupancy with respect
to state of the art FPGA solutions. The final implementation
shows real-time processing performance, enabling a wide
range of applications in the smart camera scenario.
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