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MODULAR GENERALIZED SPRINGER CORRESPONDENCE:

AN OVERVIEW

PRAMOD N. ACHAR, ANTHONY HENDERSON, DANIEL JUTEAU, AND SIMON RICHE

Abstract. This is an overview of our series of papers on the modular generalized Springer
correspondence [AHJR2, AHJR3, AHJR4, AHJR5]. It is an expansion of a lecture given by
the second author in the Fifth Conference of the Tsinghua Sanya International Mathematics
Forum, Sanya, December 2014, as part of the Master Lecture ‘Algebraic Groups and their
Representations’ Workshop honouring G. Lusztig. The material that has not appeared in
print before includes some discussion of the motivating idea of modular character sheaves,
and heuristic remarks about geometric functors of parabolic induction and restriction.

1. Motivation: modular character sheaves

One of Lusztig’s fundamental contributions to the development of geometric representation
theory was the theory of character sheaves on a connected reductive group [L3, L4, L5, L6,
L7]. This theory complemented his earlier work with Deligne on the representation theory
of finite reductive groups [DeL, L1], and was crucial to the later development of algorithms
to compute the irreducible characters of such groups [L8, L12, L13, Sh2, Sh3]. Introductions
to this theory are given in [L9, Sh1, MS].

The subsequent thirty years have seen several generalizations of character sheaves, includ-
ing generalizations to wider classes of algebraic groups; some of these are surveyed in [L15],
and see also [Gi, FGT, Boy, BoyD, ShS1, ShS2, ShS3]. To date, these generalizations, like
Lusztig’s original theory, have used sheaves or D-modules with coefficients in a field of char-
acteristic zero, often Qℓ. Thus, they mimic ordinary (characteristic-zero) representations of
finite groups. It is natural to hope for a theory of modular character sheaves that mim-
ics modular (positive characteristic) representations of finite groups. Such a theory should
complement the existing modular applications of Deligne–Lusztig theory (see [GH] for a
particularly relevant survey and [CE] for a general introduction and references), and could
perhaps lead, for example, to a geometric interpretation of the decomposition matrix of a
finite reductive group in the case of non-defining characteristic.

This hope builds on recent progress in other areas of modular geometric representation

theory, which may be loosely defined as the use of sheaves with characteristic-ℓ coefficients
to answer questions about representations over fields of characteristic ℓ. This theme arose in
the work of Mirković–Vilonen [MV] and Soergel [So]. Just as modular representation theory
is made difficult by the failure of Maschke’s Theorem, modular geometric representation
theory is made difficult by the failure of the Decomposition Theorem of Bĕılinson–Bernstein–
Deligne–Gabber [BBD]. However, works such as [JMW2] indicate ways to overcome this
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obstacle. For our present purposes, a key inspiration is the modular Springer correspondence

of the third author [Ju], which affords a geometric interpretation of the decomposition matrix
of a finite Weyl group by comparing Qℓ-sheaves and modular sheaves on the nilpotent cone.

We cannot yet formulate precise statements about, or even adequate definitions of, mod-
ular character sheaves. We will merely outline some features that such a theory may or may
not be expected to possess, in comparison with Lusztig’s theory.

In the following remarks, G denotes a connected reductive group over an algebraically
closed field K of positive characteristic p, and F : G→ G denotes a Frobenius endomorphism
relative to some finite subfield of K, so that GF is a finite reductive group. We fix a prime ℓ
different from p, and let k be either Qℓ or a finite extension of Z/ℓZ (we refer to the latter
possibility as the modular case). For either choice of k, it makes sense to consider k-sheaves
on G for the étale topology.

(1) In the k = Qℓ case, Lusztig defined a collection Ĝ of simple perverse Qℓ-sheaves on
G, the character sheaves. These correspond, in a somewhat loose sense recalled in (4)
below, to irreducible Qℓ-representations of the finite groups GF as F varies. In the
modular case, since we aim to mimic the non-semisimple categories Rep(GF , k) of
k-representations, we should define a category Ch(G, k) rather than just a collection
of simple objects. To bring Lusztig’s theory into the same framework, we could define

Ch(G,Qℓ) to be the category of finite direct sums of elements of Ĝ.
(2) Lusztig, using the technology available at the time, defined character sheaves as

certain objects A of the bounded derived category Db(G,Qℓ), and more specifically
of the subcategory Perv(G,Qℓ) of perverse sheaves, which are G-equivariant (for the
G-action on itself by conjugation) in the sense that a∗A ∼= p∗A where a : G × G →
G is the action and p : G × G → G is the second projection. This elementary
notion of equivariance suffices for perverse sheaves, but the best definition of the
equivariant derived category Db

G(G, k) is the one given subsequently by Bernstein
and Lunts [BL]. It seems likely that Ch(G, k) should be defined as a subcategory of
the abelian subcategory PervG(G, k) ofDb

G(G, k), or at least (if some further structure
is required) should have a forgetful functor to PervG(G, k).1

(3) As in the k = Qℓ case, we would expect character sheaves to be stable under geometric
functors of parabolic induction and restriction. We will illustrate what we mean in
the case of induction. If P is a parabolic subgroup of G and L is a Levi factor of
P so that P = L ⋉ UP where UP is the unipotent radical of P , then the parabolic
induction functor

IGL⊂P : Db
L(L, k)→ Db

P (P, k)→ Db
G(G, k)

is the composition of a pull-back functor associated to the projection P ։ L and
a push-forward functor associated to the inclusion P →֒ G.2 Thus, in the case
that L and P are F -stable, it is analogous to the representation-theoretic parabolic

induction functor IndGF

LF⊂PF : Rep(LF , k) → Rep(GF , k), also known as Harish–
Chandra induction, which is the composition of the pull-back (inflation) functor
associated to P F

։ LF and the induction functor associated to P F →֒ GF . We want

1Another possibility might be to use parity sheaves as in [JMW2].
2See Section 3 below for a detailed definition of geometric parabolic induction in a slightly different setting.
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IGL⊂P : Db
L(L, k)→ Db

G(G, k) to induce a functor IGL⊂P : Ch(L, k)→ Ch(G, k), so that
we can speak of cuspidal simple objects and induction series as usual (see Section 4).

(4) As the name ‘character sheaves’ suggests, the relationship that Lusztig demonstrated
between Ch(G,Qℓ) and Rep(GF ,Qℓ) goes via a matching-up of natural decategorifica-
tions of these categories, namely characteristic functions of sheaves and characters of
representations. Recall that there are several subtleties in this matching-up. Firstly,

one does not work with the whole of Ĝ at once: rather, the choice of a Frobenius
endomorphism F determines a finite subset ĜF ⊂ Ĝ of F -stable character sheaves,
those which are isomorphic to their pull-back under F . Secondly, the isomorphisms
have to be suitably normalized in order to define for each A ∈ ĜF a characteris-
tic function χA in C (GF ,Qℓ), the vector space of Qℓ-valued class functions on GF .

Thirdly, {χA |A ∈ ĜF} is not the set of characters of irreducible representations
of GF ; rather, it turns out to be the set of almost characters, a different basis of
C (GF ,Qℓ). Any relationship between Ch(G, k) and Rep(GF , k) in the modular case
will necessarily be even looser, because (as is well known) to get a reasonable de-
categorification of Rep(GF , k) one must consider Brauer characters rather than the
naive characters in C (GF , k). It is not clear what will be the right way to take the
Frobenius endomorphism into account in the modular case.

(5) Despite the preceding remark, it might still be possible to draw analogies between
operations on Ch(G, k) and operations on Rep(GF , k), precisely by checking that
they relate to the same operations on C (GF , k); in that sense, the name ‘character
sheaves’ is still justified in the modular case. For example, we can make precise

the above suggestion that IGL⊂P : Db
L(L, k) → Db

G(G, k) is analogous to IndGF

LF⊂PF :
Rep(LF , k) → Rep(GF , k). It is well known that the effect of the latter functor on

the k-valued characters is given by the linear map IG
F

LF⊂PF : C (LF , k) → C (GF , k),
defined by

IG
F

LF⊂PF (f)(g) =
∑

[g′,p]∈GF×
PF PF

g′p(g′)−1=g

f(p),

where : P F
։ LF is the projection and [g′, p] denotes the orbit of a pair (g′, p) ∈

GF ×P F under the P F -action defined by p′ · (g′, p) = (g′(p′)−1, p′p(p′)−1). It is indeed
true in the modular case, just as in the k = Qℓ case, that if L and P are F -stable,
A ∈ Db

L(L, k) is F -stable, and the characteristic function of A is χA ∈ C (GF , k),

then IGL⊂P (A) ∈ Db
G(G, k) is F -stable and has characteristic function IG

F

LF⊂PF (χA).
Although this statement may be less important in the modular setting (because k-
valued characters are less useful than Brauer characters), it gives meaning to the

analogy between IGL⊂P and IndGF

LF⊂PF .

Lusztig’s definition of Ĝ is purely geometric and applies equally well if the field K over
which G is defined has characteristic zero. One could expect the same to be true of any
theory of modular character sheaves. Of course, in this case K has no finite subfields, so the
analogy with representations of finite reductive groups is one step more remote.
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2. The unipotent variety and the nilpotent cone

Lusztig’s theory of character sheaves is intimately related to his theory of the generalized
Springer correspondence, contained in [L2, L10, L11] and surveyed in [Sh1]. Here he studied
G-equivariant perverse sheaves, not on G itself, but on the unipotent variety UG ⊂ G
and the nilpotent cone NG ⊂ g = Lie(G). That is, he studied the abelian categories
PervG(UG,Qℓ) and PervG(NG,Qℓ). Recall that G has finitely many unipotent conjugacy
classes and nilpotent adjoint orbits, so these categories have finitely many simple objects,
unlike PervG(G,Qℓ); morally, this explains why there is no need to restrict attention to a
proper subcategory like the subcategory Ch(G,Qℓ) ⊂ PervG(G,Qℓ).

If the characteristic of the field of definition K is either zero or sufficiently large relative
to the root system of G, there is a G-equivariant isomorphism NG

∼
−→ UG which induces

an equivalence between PervG(UG,Qℓ) and PervG(NG,Qℓ). Thus, the difference between the
two versions of the generalized Springer correspondence is negligible in a first approximation.

Character sheaves relate to perverse sheaves on UG or NG in three interdependent ways,
which we will do no more than mention here:

(1) [L2, Theorem 6.5] If A ∈ Ĝ is a unipotent character sheaf,3 the restriction A|UG
is a

shift of a simple object of PervG(UG,Qℓ).
(2) [L10] There is a collection of character sheaves4 on g analogous to the character

sheaves on G. If A is a nilpotent character sheaf on g (the analogue of a unipotent
character sheaf on G), then not only is the restriction A|NG

a shift of a simple object
of PervG(NG,Qℓ), the Fourier–Deligne transform Tg(A) of A is itself a (generally
different) simple object of PervG(NG,Qℓ), extended by zero to the whole of g.

(3) [L2, L10] Assume for convenience in this statement that G is semisimple. Then cuspi-
dal simple objects of PervG(UG,Qℓ) (respectively, PervG(NG,Qℓ)), when extended by
zero to the whole of G (respectively, g), are important examples of cuspidal character
sheaves.

For all these reasons, in working towards a theory of modular character sheaves, a natural
first step is a modular version of the generalized Springer correspondence, in which one
considers PervG(UG, k) and PervG(NG, k) for the more general fields k introduced in the
previous section.

In the modular case, there is a strong reason to prefer NG ⊂ g to UG ⊂ G. Namely,
there seems to be little hope of a modular analogue of the restriction statements in (1) and
(2), since the constant k-sheaf k on UG or NG is not a shift of a simple perverse sheaf in
general (see e.g. [Ju, Section 8]). However, the Fourier–Deligne statement in (2) seems more
likely to have a modular analogue. This phenomenon was encountered by the third author
in the development of the modular Springer correspondence [Ju], in which Fourier–Deligne
transform is the vital tool.

Henceforth, we restrict attention to PervG(NG, k). Moreover, we make the simplifying
assumption that K = C; this allows us to isolate the new phenomena associated with the

3By ‘unipotent character sheaf’ we mean one of the simple perverse sheaves denoted (φ!K)ρ in [L2,
Theorem 6.5(c)], which were shown to be character sheaves in [L7].

4In Lusztig’s terminology in [L10], these are the ‘admissible’ objects in PervG(g,Qℓ). The statements
recalled here are special cases of general results about admissible objects, [L10, 3(b) and Theorem 5(a)].
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change of coefficients from the k = Qℓ case to the modular case, without worrying about the
phenomena associated with small values of p.

Largely for technical convenience, we consider k-sheaves on NG for the complex topology
rather than the étale topology. We can then allow k to be any field (or even, for some
purposes, a commutative ring as in [AHR, AHJR1]). The replacement for Fourier–Deligne
transform in this setting is the Fourier–Sato transform defined in [KS].

3. Parabolic induction and restriction

We have now arrived at the setting of our series of papers [AHJR2, AHJR3, AHJR4,
AHJR5]. For clarity, we restate the assumptions that apply henceforth:

• G is a connected reductive group over C;
• NG is the nilpotent cone in g = Lie(G);
• k is a field of characteristic ℓ ≥ 0 (where the ℓ = 0 case can be regarded as already
known from Lusztig’s work);
• Db

G(NG, k), PervG(NG, k) are defined as in [BL] using the complex topology on NG.

We furthermore assume that k is big enough for the following condition to hold:

(3.1)
k is a splitting field for all the finite groups Lx/L

◦
x

where L is a Levi subgroup of G and x ∈ NL.

Here Lx is the stabilizer of x in L, and Lx/L
◦
x is its group of components. If k is algebraically

closed, (3.1) certainly holds; see [AHJR4, Section 3.2] for a detailed analysis of (3.1) for
various groups G, which shows that it is a very mild assumption.

Let P be a parabolic subgroup of G and L a Levi factor of P . Our first task is to define
a parabolic induction functor IGL⊂P : Db

L(NL, k) → Db
G(NG, k). As was motivated above

in the context of character sheaves, this should be the composition of a pull-back functor
associated to the projection P ։ L and a push-forward functor associated to the inclusion
P →֒ G, but we need to interpret these appropriately for equivariant derived categories. We
will explain our thinking in some detail, to provide a model for possible generalization.

Recall from [BL, Section 6] that one has an equivariant pull-back functor Q∗
f and a right

adjoint equivariant push-forward functor Qf∗ for any map f : X → Y , where the groups
acting on X and Y are G and H respectively, and f is G-equivariant for the G-action on
Y defined using a given homomorphism φ : G → H . The push-forward functor in general
only preserves the equivariant bounded-below derived categories, but we will consider certain
special cases where it does restrict to a functor Qf∗ : Db

G(X, k) → Db
H(Y, k). The pull-

back functor Q∗
f : Db

H(Y, k) → Db
G(X, k) always preserves the equivariant bounded derived

categories. These categories possess a Verdier duality D by [BL, Theorem 3.5.2], so we can
also set Q!

f = D ◦Q∗
f ◦D and Qf ! = D ◦Qf∗ ◦D, with Q!

f being right adjoint to Qf !.

From the stack viewpoint, Q∗
f , Qf∗, Q

!
f , Qf ! are just the standard four functors for the

induced map of quotient stacks [G\X ] → [H\Y ]. Since the latter map factors as [G\X ] →
[G\Y ] → [H\Y ], we can express each of the four functors as a composition where one
factor relates Db

G(X, k) and Db
G(Y, k) and the other factor relates Db

G(Y, k) and Db
H(Y, k).

Henceforth we will do so, at the risk of obscuring the essential simplicity of the definitions.
Applying this formalism to the inclusion iL⊂P : NP →֒ NG of varieties and the as-

sociated inclusion P →֒ G of groups, we obtain the pull-back functor (iL⊂P )
∗ ◦ ForGP ,

where (iL⊂P )
∗ : Db

P (NG, k) → Db
P (NP , k) is as defined in [BL, Section 3] and ForGP :

5



Db
G(NG, k)→ Db

P (NG, k) is the forgetful functor defined in [BL, Section 2.6.1] (where it was
denoted ResP,G). The right adjoint push-forward functor is ΓG

P ◦ (iL⊂P )∗, where (iL⊂P )∗ :
Db

P (NP , k)→ Db
P (NG, k) is as defined in [BL, Section 3] and ΓG

P : Db
P (NG, k)→ Db

G(NG, k)
is the right adjoint to ForGP defined in [BL, Theorem 3.7.1]. The Verdier-dual versions of
these functors are (iL⊂P )

! ◦ ForGP and γG
P ◦ (iL⊂P )!, where γG

P is the left adjoint to ForGP ,
discussed in [AHR, Section B.10.1]. Since iL⊂P is a closed embedding and G/P is complete,

γG
P ◦ (iL⊂P )! ∼= ΓG

P ◦ (iL⊂P )∗[2 dim(G/P )],

so a Verdier-self-dual version of the push-forward functor is γG
P ◦ (iL⊂P )![− dim(G/P )].

Applying the same formalism to the projection pL⊂P : NP ։ NL and the associated pro-
jection P ։ L, we obtain the pull-back functor (pL⊂P )

∗◦γP
L , because γ

P
L
∼= ΓP

L : Db
L(NL, k)→

Db
P (NL, k) and ForPL : Db

P (NL, k) → Db
L(NL, k) are inverse equivalences by [BL, Theorem

3.7.3]. The right adjoint push-forward functor is ForPL ◦ (pL⊂P )∗. The Verdier-dual versions
of these functors are (pL⊂P )

! ◦ ΓP
L and ForPL ◦ (pL⊂P )!. Since pL⊂P is smooth with fibres of

dimension dim(G/P ), we have

(pL⊂P )
∗ ◦ γP

L
∼= (pL⊂P )

! ◦ ΓP
L [−2 dim(G/P )],

so a Verdier-self-dual version of the pull-back functor is (pL⊂P )
∗ ◦ γP

L [dim(G/P )].
The upshot of these comments is the following definition of parabolic induction:

IGL⊂P = γG
P ◦ (iL⊂P )! ◦ (pL⊂P )

∗ ◦ γP
L
∼= ΓG

P ◦ (iL⊂P )∗ ◦ (pL⊂P )
! ◦ ΓP

L : Db
L(NL, k)→ Db

G(NG, k).

We stated the first of these equivalent definitions in [AHJR2, Section 2.1].5 The fact that the
two definitions are equivalent says that IGL⊂P commutes with Verdier duality. See [AHJR2,
Lemma 2.14] for yet another equivalent definition of IGL⊂P , which is closer to the form that
Lusztig used.

We see immediately that IGL⊂P has right and left adjoint functors of parabolic restriction,
respectively

RG
L⊂P = ForPL ◦ (pL⊂P )∗ ◦ (iL⊂P )

! ◦ ForGP : Db
G(NG, k)→ Db

L(NL, k),
′RG

L⊂P = ForPL ◦ (pL⊂P )! ◦ (iL⊂P )
∗ ◦ ForGP : Db

G(NG, k)→ Db
L(NL, k),

which are interchanged by Verdier duality.6

The key properties of these induction and restriction functors, needed to get the theory
started, are proved in [AHR, Proposition 4.7, Corollary 4.13] and [AM, Proposition 3.1],
using Braden’s hyperbolic restriction theorem [Br].

Proposition 3.1. IGL⊂P , R
G
L⊂P and ′RG

L⊂P restrict to exact functors between the perverse

subcategories PervL(NL, k) and PervG(NG, k), which of course still satisfy the adjunctions

′RG
L⊂P ⊢ IGL⊂P ⊢ RG

L⊂P .

Moreover, we have an isomorphism

′RG
L⊂P
∼= RG

L⊂P− as functors PervG(NG, k)→ PervL(NL, k),

where P− denotes the parabolic subgroup opposite to P with the same Levi factor L.

5In [AHJR2, Section 2.1] we omitted γP
L , since it can be thought of as an identification.

6In stating the definitions of R
G
L⊂P and ′

R
G
L⊂P in [AHJR2, Section 2.1], we suppressed the forgetful

functors.
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It may seem surprising that we do not have an isomorphism ′RG
L⊂P
∼= RG

L⊂P and hence
a biadjunction between IGL⊂P and RG

L⊂P . In Lusztig’s setting, one can use the fact that

PervG(NG,Qℓ) and PervL(NL,Qℓ) are semisimple to prove such a biadjunction; this proof
does not apply in the modular setting, since PervG(NG, k) is semisimple only when ℓ does
not divide the order of the Weyl group W of G, see [AHJR5, Proposition 7.9].

In the representation theory of finite reductive groups (with ℓ 6= p as in Section 1), one
does have a biadjunction between parabolic induction and restriction. In a sense, this relies
on the fact that in characteristic ℓ, invariants and coinvariants for the finite p-group UF

P are
the same. There is no obvious geometric analogue of this fact.

4. Cuspidal pairs and induction series

Let NG,k denote the set of pairs (O , E) where O is a G-orbit in NG and E runs over the
irreducible G-equivariant k-local systems on O (taken up to isomorphism). Recall that such
irreducible local systems E on O are in a natural bijection with irreducible k-representations
of the finite group AG(x) = Gx/G

◦
x, where x ∈ O is a chosen point. The assumption (3.1)

ensures that each such E is absolutely irreducible, and that the same holds for all Levi
subgroups of G.

The isomorphism classes of simple objects in PervG(NG, k) are in bijection with NG,k.
For (O , E) ∈ NG,k, the corresponding simple perverse sheaf is the intersection cohomology

complex IC(O , E), also known as the intermediate extension pj!∗(E [dimO ]) where j : O →֒ O

is the inclusion, extended by zero from O to N . See [BBD] for the definition of IC(O , E),
and [JMW1] for some worked examples showing the difference between the characteristic-0
and modular cases.

Definition 4.1. [AHJR2, Definition 2.2] We say that a pair (O , E) ∈ NG,k, or the corre-
sponding simple perverse sheaf IC(O , E), is cuspidal if the following equivalent conditions
hold (where P and L denote parabolic and Levi subgroups as before):

(1) RG
L⊂P (IC(O , E)) = 0 for all L ⊂ P ( G;

(2) ′RG
L⊂P (IC(O , E)) = 0 for all L ⊂ P ( G;

(3) IC(O , E) is not a quotient of IGL⊂P (A) for any L ⊂ P ( G and any A ∈ PervL(NL, k);
(4) IC(O , E) is not a subobject of IGL⊂P (A) for any L ⊂ P ( G and any A ∈ PervL(NL, k).

The equivalence of these conditions follows immediately from Proposition 3.1, see [AHJR2,
Proposition 2.1]. We let Ncusp

G,k ⊂ NG,k be the set of cuspidal pairs.

When ℓ = 0, the Decomposition Theorem of [BBD] implies that if A ∈ PervL(NL, k) is
simple, then IGL⊂P (A) is semisimple, so one can replace ‘quotient’ or ‘subobject’ in Defini-
tion 4.1 by ‘simple constituent’. When ℓ > 0, the failure of the Decomposition Theorem
means that IGL⊂P (A) is sometimes not semisimple, and it can have simple constituents (even
cuspidal ones) which are not quotients or subobjects; see [Ju, Section 8] for an example in
the case G = SL(2) and ℓ = 2. Of course, this situation is familiar in modular representation
theory.

A key ingredient in Lusztig’s treatment of cuspidal pairs is that in the ℓ = 0 case there is
another criterion for cuspidality, equivalent to those in Definition 4.1, which refers only to
the local system E and not to the perverse sheaf IC(O , E) [L2, Proposition 2.2]. We showed
in [AHJR2, Proposition 2.4] that in the ℓ > 0 case Lusztig’s criterion implies cuspidality but
is not implied by it. In view of this, one can immediately expect that there will be more
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cuspidal pairs in the modular case, and that they will be harder to classify. However, one of
Lusztig’s results about cuspidal pairs does generalize easily:

Proposition 4.2. [AHJR3, Proposition 2.6] If (O , E) is cuspidal, then O is distinguished.

Recall that a nilpotent orbit is said to be distinguished if it does not meet the Lie algebra
of any proper Levi subgroup L ( G.

A cuspidal datum for G is a triple (L,OL, EL) where L is a Levi subgroup of G (possibly
equal to G) and (OL, EL) ∈ N

cusp
L,k is a cuspidal pair for L. We let MG,k denote either the set of

G-conjugacy classes of cuspidal data or, in a slight abuse of notation, a set of representatives
of these G-conjugacy classes.

Any (L,OL, EL) ∈MG,k gives rise to a parabolically induced perverse sheaf

I(L,OL, EL) = IGL⊂P (IC(OL, EL)) ∈ PervG(NG, k),

where P is a parabolic subgroup of G having L as a Levi factor.

Proposition 4.3. [AHJR3, Section 2] Up to isomorphism, I(L,OL, EL) is independent of

the choice of parabolic subgroup P , and depends only on the G-conjugacy class of (L,OL, EL).
The head and socle of I(L,OL, EL) are isomorphic to each other.

Proposition 4.3 is an analogue of a known result in modular representation theory [GH,
Section 2.2]. However, unlike in that context, we do not prove that IGL⊂P (A) is independent
of P for all A ∈ PervL(NL, k), only for cuspidal simple A. Our proof proceeds by describing
the Fourier–Sato transform of I(L,OL, EL) as an intersection cohomology complex on g: as
in the ℓ = 0 case, it is the intermediate extension of a certain local system on a piece of the
Lusztig stratification of g, defined in [L14, Section 6].

Definition 4.4. For (L,OL, EL) ∈ MG,k, the induction series associated to (L,OL, EL)
is the set of isomorphism classes of simple quotients (equivalently, simple subobjects) of

I(L,OL, EL), or the corresponding set of pairs N
(L,OL,EL)
G,k ⊂ NG,k.

As in the ℓ = 0 case, it is a straightforward consequence of the transitivity of parabolic
induction [AHJR2, Lemma 2.6] that

NG,k =
⋃

(L,OL,EL)∈MG,k

N
(L,OL,EL)
G,k ,

see [AHJR2, Corollary 2.7]. In more concrete terms, every simple perverse sheaf IC(O , E)
in PervG(NG, k) occurs as a quotient of I(L,OL, EL) for some (L,OL, EL) ∈MG,k.

At one extreme, we have cuspidal data of the form (G,O , E) where (O , E) ∈ N
cusp
G,k : the

associated induction series consists just of (O , E). At the other extreme, we have the cuspidal
datum (T, {0}, k) where T is a maximal torus of G: the associated induction series is called
the principal series. By [AHJR2, Lemma 2.14], the parabolically induced perverse sheaf
I(T, {0}, k) is exactly the Springer sheaf Spr = µ∗k[dimNG], where µ : T ∗B → NG is
Springer’s resolution of the nilpotent cone, so the principal series can alternatively be defined
as the set of isomorphism classes of simple quotients of the Springer sheaf.
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The modular Springer correspondence of the third author [Ju] is a canonical bijection

between the principal series N
(T,{0},k)
G,k and the set Irr(k[W ]) of isomorphism classes of irre-

ducible k-representations of the Weyl group W of G, generalizing Springer’s original corre-
spondence in the ℓ = 0 case. The group W has a natural action7 on Spr by automorphisms in

PervG(NG, k), and the modular Springer correspondence sends a pair (O , E) ∈ N
(T,{0},k)
G,k to

the representation Hom(Spr, IC(O , E)). This correspondence has been explicitly described
in the various cases in [Ju, JLS, AHJR3].

5. The main theorem

We are now ready to state our main theorem, the modular generalized Springer correspon-

dence, which generalizes the aforementioned modular Springer correspondence, and includes
Lusztig’s generalized Springer correspondence as the ℓ = 0 case. The general statement
is [AHJR4, Theorem 1.1]; special cases appeared separately as [AHJR2, Theorem 3.3] (the
case where G = GL(n)) and [AHJR3, Theorem 1.1] (the case where G is a classical group).

Theorem 5.1. We keep the assumptions made at the start of Section 3.

(1) The induction series associated to different cuspidal data are disjoint, so that we have

NG,k =
⊔

(L,OL,EL)∈MG,k

N
(L,OL,EL)
G,k .

In other words, every simple perverse sheaf IC(O , E) ∈ NG,k occurs as a quotient of

I(L,OL, EL) for a unique (L,OL, EL) ∈MG,k.

(2) For any (L,OL, EL) ∈ MG,k, we have a canonical bijection between the induction

series N
(L,OL,EL)
G,k and the set Irr(k[NG(L)/L]) of isomorphism classes of irreducible

k-representations of NG(L)/L.
(3) Hence, combining (1) and (2), we have a bijection

NG,k ←→
⊔

(L,OL,EL)∈MG,k

Irr(k[NG(L)/L]),

called the modular generalized Springer correspondence.

The bijection defined in (2) is independent of the chosen representative (L,OL, EL) of a
G-conjugacy class in MG,k, in the following sense. If (M,OM , EM) = g · (L,OL, EL) for some

g ∈ G, then conjugation by g induces an isomorphism NG(L)/L
∼
−→ NG(M)/M . The induced

bijection Irr(k[NG(L)/L]) ↔ Irr(k[NG(M)/M ]) does not depend on the choice of g, and its
composition with the bijection defined in (2) is the analogous bijection for (M,OM , EM).

The disjointness of induction series is well known in the context of the representation
theory of finite reductive groups, and, as in that theory, our general proof of part (1) uses a
Mackey formula for the composition of functors RG

M⊂Q ◦ I
G
L⊂P . In our setting, this Mackey

formula [AHJR4, Theorem 2.2] has a filtration rather than a direct sum. It is analogous
to the Mackey formula for character sheaves proved in [MS, Section 10.1], and the Mackey
formula for D-modules on Lie algebras proved in [Gu, Section 3]. Our proof in [AHJR4]

7Actually there are two ways to define the W -action, using either restriction or Fourier–Sato transform
as in Section 2, but it is proved in [AHJR1] that they differ only by tensoring with the sign representation.
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imitates the proof of the former, but could have been phrased in the language of stacks like
the proof of the latter.

Part (2) differs from the analogous statement in representation theory in two ways; these
differences were already apparent in Lusztig’s result in the ℓ = 0 case. First, we have
the full group NG(L)/L rather than a subgroup, because the normalizer NG(L) preserves
(OL, EL); this can be deduced, using Proposition 4.2, from a general result on distinguished
orbits [AHJR4, Proposition 3.1]. Second, we have the group algebra k[NG(L)/L] rather
than a deformation such as a Hecke algebra; this is a more delicate matter. Our proof of
this aspect, which is contained in [AHJR3, Section 3], uses the description of the Fourier–
Sato transform of I(L,OL, EL), mentioned above in connection with Proposition 4.3. It
relies on a detailed analysis of certain resolutions of pieces of the Lusztig stratification of
g defined by Bonnafé [Bon]; it is this geometry which allows us to show that a certain
endomorphism algebra, which a priori is a twisted group algebra of NG(L)/L, is in fact
canonically isomorphic to k[NG(L)/L].

In this proof we are required to diverge from Lusztig’s proofs in [L2] and [L14], mainly
because of one key difference from his setting. In the ℓ = 0 case, Lusztig shows in [L2,
Theorem 9.2] that any Levi subgroup L supporting a cuspidal pair must be self-opposed in
G in the terminology of [Bon, Section 1.E], a serious restriction which implies in particular
that NG(L)/L is a finite Weyl group. The trivial and sign representations of NG(L)/L
then play important special roles in the generalized Springer correspondence.8 This is a
key ingredient not only of Lusztig’s proof of part (2), but also of Spaltenstein’s explicit
determination of the generalized Springer correspondence for exceptional groups [Sp].

In the modular case, a Levi subgroup L supporting a cuspidal pair need not be self-opposed
in G, as one sees already in the case where G = GL(n) (see Example 6.1 below). In fact, the
group NG(L)/L need not even be a reflection group [AHJR4, Remark 6.5]. The situation
appears to be much less rigid than the ℓ = 0 case: for instance, we have not found a general

rule predicting which element of the induction series N
(L,OL,EL)
G,k corresponds to the trivial

representation of NG(L)/L, analogous to Lusztig’s result [L2, Proposition 9.5].9

Finally, let us mention that one can in some cases obtain statements (1) and (2) by simpler
methods. For instance, (2) is easy if every L-equivariant local system on OL is constant,
and (1) is easy if one knows that no proper Levi subgroup L of G has two cuspidal pairs
supported on the same orbit with the same central character (see [AHJR3, Corollary 2.3]). In
particular these conditions clearly hold when G = GL(n) (because in this case all equivariant
local systems on all nilpotent orbits of all Levi subgroups are constant – see Example 6.1
below), which allowed us to treat this case in [AHJR2], before developing the general theory.
More generally, for classical groups, we were able to check the second condition by explic-
itly classifying the cuspidal pairs (at the same time as establishing the correspondence)
in [AHJR3]; hence in that paper we did not need the Mackey formula.

8The bijection between N
(L,OL,EL)
G,k and Irr(k[NG(L)/L]) defined by Lusztig in his setting [L2, Theorem

6.5(c) and Theorem 9.2(d)] differs from the ℓ = 0 case of our bijection by tensoring with the sign representa-
tion of NG(L)/L. This is because he relates character sheaves on G to perverse sheaves on UG by restriction
(see Section 2 above), whereas we work with NG ⊂ g and use Fourier–Sato transform.

9Lusztig’s result [L2, Proposition 9.5] concerns the sign representation, but that becomes the trivial
representation in our conventions, as per Footnote 8. For example, in our conventions, the pair in the

principal series N
(T,{0},k)
G,k corresponding to the trivial representation of W is ({0}, k).
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6. Examples

Example 6.1. Suppose that G = GL(n) for some positive integer n; this case is treated in
detail in [AHJR2]. The G-orbits in NG are in bijection with the set Part(n) of partitions of n:
for a partition λ = (λ1, λ2, · · · ) ∈ Part(n), the corresponding orbit Oλ consists of nilpotent
matrices whose Jordan blocks have sizes λ1, λ2, · · · . The unique distinguished nilpotent orbit
is the regular orbit Oreg = O(n).

In this case AG(x) = 1 for all x ∈ NG, so all pairs in NG,k have the form (Oλ, k) for some
λ ∈ Part(n). Moreover, every Levi subgroup L of G has the form Lν = GL(ν1)×GL(ν2)×· · ·
for some partition ν ∈ Part(n), and it follows that AL(x) = 1 for all x ∈ NL. So the
condition (3.1) holds for all k.

The Weyl group of GL(n) is the symmetric group Sn. When ℓ = 0, it is well known that
the irreducible k-representations of Sn are parametrized by Part(n); accordingly, every pair
in NG,k must belong to the principal series, and the generalized Springer correspondence is
just the Springer correspondence. In other words, when ℓ = 0, every simple perverse sheaf
IC(Oλ, k) in PervG(NG, k) is a quotient, and hence a direct summand, of the Springer sheaf
Spr. It follows that GL(n) does not have a cuspidal pair unless n = 1.

Now consider the ℓ > 0 case. The irreducible k-representations Dλ of Sn are labelled
not by the whole set Part(n) but by the subset Partℓ(n) consisting of partitions that are
ℓ-regular, meaning that no part occurs ℓ or more times. Under the modular Springer corre-
spondence [Ju], Dλ corresponds to the pair (Oλt, k) where λt is the transpose partition. Thus
the only simple perverse sheaves IC(Oλ, k) arising as quotients of Spr are those where λ is

ℓ-restricted, i.e. λt is ℓ-regular. (By contrast, using modular reduction from the ℓ = 0 case,
one sees that all IC(Oλ, k) arise as simple constituents of Spr; see [AHJR2, Remark 3.2].)
In particular, the principal series is not the only induction series in the modular generalized
Springer correspondence unless ℓ > n.

By Proposition 4.2, the only possible cuspidal pair for GL(n) is (Oreg, k). In [AHJR2,
Theorem 1] we showed that (Oreg, k) is cuspidal for GL(n) if and only if n = ℓi for some
nonnegative integer i (our proof there was based on a counting argument, but the claim also
follows from Theorem 7.1 below). As a consequence, the Levi subgroup Lν has a cuspidal
pair if and only if ν belongs to the set Part(n, ℓ) of partitions of n into powers of ℓ, and in this
case the unique cuspidal pair is (OLν ,reg, k). So the set MG,k is in bijection with Part(n, ℓ),
with ν ∈ Part(n, ℓ) corresponding to the cuspidal datum (Lν ,OLν ,reg, k).

For ν ∈ Part(n, ℓ), letmℓi(ν) be the multiplicity of ℓi as a part of ν; then n =
∑

i≥0mℓi(ν)ℓ
i.

It is easy to see that

NG(Lν)/Lν
∼=

∏

i≥0

Sm
ℓi
(ν),

so we have a canonical bijection

Irr(k[NG(Lν)/Lν ])←→
∏

i≥0

Partℓ(mℓi(ν)),

where an element (λ(0), λ(1), λ(2), · · · ) of the right-hand side corresponds to the irreducible

representation ⊠i≥0D
λ(i)

of NG(Lν)/Lν . In [AHJR2, Theorem 3.4] we showed that, under the
modular generalized Springer correspondence (see part (2) of Theorem 5.1), this irreducible
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representation corresponds to the pair (Oλ, k) where

λ =
∑

i≥0

ℓi(λ(i))t.

As an example, the pair (Oreg, k) belongs to the induction series associated to the cus-
pidal datum (Lν(n),OLν(n),reg, k), where ν(n) is the unique element of Part(n, ℓ) for which

mℓi(ν(n)) < ℓ for all i ≥ 0; in other words, ν(n) is the partition of n into powers of ℓ
occurring in the base-ℓ expression of n. This is a special case of Theorem 7.1 below.

As might be expected from the proposed theory of modular character sheaves, the above
combinatorics is very similar to the combinatorics of induction series for modular represen-
tations of finite general linear groups, as in [DiDu].

Example 6.2. Suppose that G is of type G2; this case is treated in detail in [AHJR4]. There
are five G-orbits in NG, with Bala–Carter labels G2 (the regular orbit), G2(a1) (the subreg-

ular orbit), Ã1, A1 and {0}. The distinguished orbits are the first two of these. We have
AG(x) = S3 for x ∈ G2(a1) and AG(x) = 1 for all other x ∈ NG. Since every field is a
splitting field for S3, and all proper Levi subgroups of G are isomorphic either to GL(2)
or to GL(1)2, the condition (3.1) holds for all k. Since S3 has (up to isomorphism) three
irreducible k-representations when ℓ /∈ {2, 3} and two when ℓ ∈ {2, 3}, the set NG,k has
seven elements when ℓ /∈ {2, 3} and six when ℓ ∈ {2, 3}. Note that 2 and 3 are also the
primes dividing the order of the Weyl group W , which is the dihedral group of order 12.

When ℓ /∈ {2, 3}, there are six irreducible k-representations of W , corresponding to six of
the seven elements of NG,k in the same way as the Springer correspondence (which is the
ℓ = 0 case10). The remaining element of NG,k is cuspidal, namely (G2(a1), Esign), where Esign
is the G-equivariant local system on G2(a1) corresponding to the sign representation of S3.

When ℓ = 3, there are four irreducible k-representations of W , and the modular Springer
correspondence between these and four of the six elements of NG,k was worked out in [Ju,
Section 9.1.2]. The remaining two elements of NG,k must be cuspidal, because the proper
Levi subgroups of G do not support a cuspidal pair in characteristic 3, as follows from
Example 6.1. These two cuspidal pairs are (G2(a1), Esign), in accordance with a general
principle that the modular reduction of a characteristic-0 cuspidal pair is always cuspidal
(see Section 7) and (G2, k), in accordance with Theorem 7.1 below.

When ℓ = 2, there are only two irreducible k-representations of W , corresponding to the

pairs ({0}, k) and (Ã1, k) under the modular Springer correspondence [Ju, Section 9.1.1].
There are two cuspidal pairs, as in the ℓ = 3 case: (G2(a1), k) and (G2, k). The other two
elements of NG,k belong to two separate induction series associated to the two G-conjugacy
classes of Levi subgroups isomorphic to GL(2), with (A1, k) attached to the long-root Levi
subgroup and (G2(a1), Erefln) attached to the short-root Levi subgroup. (Here Erefln is the
local system corresponding to the unique 2-dimensional irreducible k-representation of S3.)
For these Levi subgroups L, the group NG(L)/L is S2, which indeed has only one irreducible
k-representation.

10Up to the difference in conventions amounting to tensoring with the sign representation; see Footnote 8.
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7. Further results

Theorem 5.1 raises the problem of computing the modular generalized Springer correspon-
dence explicitly in terms of the known parametrizations of the setsNG,k and Irr(k[NG(L)/L]),
as was done in the ℓ = 0 case by Lusztig and Spaltenstein [L2, L7, LS, Sp]. Standard prin-
ciples [AHJR3, Section 5.3] reduce the problem to the case where G is simply connected
and quasi-simple, so one can treat each Lie type in turn; we considered the classical types
in [AHJR3] and the exceptional types in [AHJR4], but in both cases some gaps remain.

It is easy to see that, in a suitable precise sense [AHJR4, Lemma 3.3(3)], the modular
generalized Springer correspondence depends only on ℓ, not on the field k itself (assuming as
always that k is big enough to satisfy (3.1)). Another general fact [AHJR4, Proposition 7.1],
already seen in Examples 6.1 and 6.2, is that if ℓ does not divide |W |, the correspondence is
essentially the same as the ℓ = 0 case. The following result illustrates how the correspondence
depends on ℓ and |W | in general. In this statement, for a Levi subgroup L of G, WL denotes
its Weyl group, a parabolic subgroup of W .

Theorem 7.1. [AHJR4, Theorem 4.5] The pair (Oreg, k) ∈ NG,k belongs to the induction

series associated to (L,OL,reg, k) where L is in the unique G-conjugacy class of Levi subgroups

that are minimal subject to the condition that ℓ ∤ |W/WL|. In particular, (Oreg, k) belongs to
the principal series if and only if ℓ ∤ |W |, and (Oreg, k) is cuspidal if and only if no proper

parabolic subgroup of W contains an ℓ-Sylow subgroup of W .

This theorem should be compared with the result of Geck–Hiss–Malle [GHM, Theorem 4.2]
about the modular Steinberg character of a finite reductive group.

The first step towards computing the modular generalized Springer correspondence for a
given simply connected quasi-simple group G and prime ℓ is the classification of cuspidal
pairs, which in the ℓ = 0 case was done by Lusztig [L2]. Our main tools for determining
these pairs are the following:

• Proposition 4.2, which already eliminates all non-distinguished orbits;
• Theorem 7.1, which determines when the pair (Oreg, k) is cuspidal;
• [AHJR2, Proposition 2.22], which says that cuspidality is preserved by modular re-

duction. More precisely, this result implies that if K is a finite extension of Qℓ with
ring of integers O and residue field k, and if (O , EK) is a cuspidal pair over K, then
for any O-form EO of EK and for any irreducible G-equivariant k-local system F on
O which is a constituent of k⊗O E

O, the pair (O ,F) is cuspidal.

These tools are sufficient to classify cuspidal pairs in most cases, although some indeter-
minacies remain for certain bad characteristics in certain exceptional groups; see [AHJR4,
Section 6.4 and Appendix A].

In particular, we have the following result about the case where ℓ is a good prime for G:

Theorem 7.2. [AHJR4, Theorem 1.5] Assume that G is semisimple and simply connected,

and that ℓ is a good prime for G. Then the cuspidal pairs all arise by modular reduction of

characteristic-0 cuspidal pairs.

It is important here that we assume that G is semisimple and simply connected. For instance,
this statement would fail for G = GL(n) when n is a power of ℓ, as we saw in Example 6.1,
and it would therefore also fail for G = PGL(n) when n is a power of ℓ. The cuspidal pair
(Oreg, k) in these cases really arises by modular reduction of a cuspidal pair (Oreg, E

K) for
13



ℓ = 2 ℓ = 3 ℓ = 5 ℓ ≥ 7

E6 4 3 2 2
E7 6 3 1 1
E8 10 8 5 1
F4 4 3 1 1
G2 2 2 1 1

Table 7.1. Number of cuspidal pairs for exceptional simply connected G

the group SL(n), in which EK has multiplicative order n and thus becomes constant when
reduced modulo ℓ.

By contrast, when ℓ is a bad prime for G, there can be many more cuspidal pairs than in
the ℓ = 0 case, as seen in the following result.

Theorem 7.3. [AHJR3, Theorems 7.1 and 8.1] Let G be a simply connected quasi-simple

group of type B, C or D and let ℓ = 2. Then for every distinguished nilpotent orbit O, the

pair (O , k), which is the only element of NG,k supported on O, is cuspidal.

For groups of these types B, C orD, this bad characteristic (i.e. ℓ = 2) case is in fact the only
case where we have explicitly computed the modular generalized Springer correspondence;
see [AHJR3, Theorems 9.5 and 9.7].

In [AHJR4, Section 6] we explained how to determine the number of cuspidal pairs for
each simply connected quasi-simple group G of exceptional type and each value of ℓ; these
numbers are given in Table 7.1, and again show the differing behaviour of bad primes (recall
that the bad primes for a group of exceptional type are 2, 3 and, for type E8 only, 5).

Theorem 7.2 suggests that one could expect the modular generalized Springer correspon-
dence to have some uniform properties in good characteristic. In fact, a better setting is
that of rather good characteristic, i.e. the case when ℓ is good for G and does not divide the
order of Z(G)/Z(G)◦. (See [AHJR5, §2.1] for a discussion of this condition.) If ℓ is rather
good for G and if K is a finite extension of Qℓ which satisfies condition (3.1), then there
exists a natural bijection NG,k ↔ NG,K, so that the following statement is meaningful:

Theorem 7.4. [AHJR5, Theorem 1.1] If ℓ is rather good for G, the partition of NG,k into

induction series as in Theorem 5.1(1) is a refinement of the corresponding partition of NG,K,

known by the work of Lusztig and Spaltenstein.

An important property of Lusztig’s characteristic-0 generalized Springer correspondence,
which plays a crucial role in the theory of character sheaves, is cleanness, namely the fact that
for every cuspidal pair (O , E) we have IC(O , E)|

OrO
= 0. This property fails in general in the

modular setting, as can already be seen in the case G = GL(2), see [AHJR2, Remark 2.5].
However, Mautner conjectured (in unpublished work) that cleanness holds in rather good
characteristic for the cuspidal pairs obtained by modular reduction from a cuspidal pair in
characteristic 0. (By Theorem 7.2, this covers all cuspidal pairs if G is semisimple and simply
connected.) General principles [AHJR5, Lemma 2.5] allow us to reduce Mautner’s conjecture
to the case where G is either a semisimple group of type A, or a simply connected quasi-simple
group not of type A. In [AHJR5, Theorem 1.3] we have proved the conjecture for groups of
type A, for groups of exceptional type, for characteristics ℓ which do not divide the order
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of the Weyl group, and also for certain low-rank classical groups. In [AHJR5, Theorem 1.6]
we showed that, provided this conjecture holds, the coarser of the two partitions of NG,k in
Theorem 7.4, namely the one provided by the characteristic-0 induction series, induces an
orthogonal decomposition of the whole derived category Db

G(NG, k), as Lusztig observed in
the Qℓ setting.
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MA, 1997, 195–249.

[GHM] M. Geck, G. Hiss and G. Malle, Cuspidal unipotent Brauer characters, J. Algebra 168 (1994),
no. 1, 182–220.

[Gi] V. Ginzburg, Admissible modules on a symmetric space, in Orbites unipotentes et représentations,
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