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Ikaria Island corresponds to a large-scale migmatite-cored MCC. 

Thermal structure revealed by RSCM shows a drastic increase from top to bottom. 

The MCC was exhumed by two detachments through the brittle-ductile transition. 

Migmatites were dated to 15.7 ± 2 Ma by U-Th-Pb analysis on monazites. 

A large-scale high temperature zone is proposed for the central part of the Aegean. 

*Highlights (for review)
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 17 

Abstract 18 

 19 

This work attempted at clarifying the structure of Ikaria using primarily intensive 20 

geological mapping combined with structural analysis and a geothermometry approach of 21 

Raman spectrometry of carbonaceous material. Foliation over the whole island defines a 22 

structural dome cored by high-grade to partially-molten rocks. Its exhumation was completed 23 

by two top-to-the-N ductile extensional shear zones, operating in the ductile and then the 24 

brittle fields, through a single extensional event coeval with progressive strain localization. 25 

*Manuscript
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The thermal structure of the dome with regard to position of ductile shear zones was retrieved 26 

using the Raman spectroscopy of carbonaceous material. Peak-metamorphic temperatures 27 

range from 390 °C in the upper parts of the structure down to 625 °C in the core of the dome 28 

in the vicinity of migmatites and S-type granite. Pioneer in situ U-Th-Pb analyses on monazite 29 

performed on the leucosome parts of these rock yielded a 15.7 ± 0.2 Ma age. Ikaria Island 30 

thus completes the series of Miocene migmatite-cored Metamorphic Core Complex in the 31 

central part of the Aegean domain where a genuine high-temperature zone can be defined as 32 

the central Aegean HT zone. There, the extreme stretching of the continental crust is 33 

associated with dominantly top-to-the-N kinematics. 34 

 35 

Keywords: Structural analysis; RSCM geothermometry; U-Th-Pb geochronology; 36 

Metamorphic Core Complex; Ikaria; North Cycladic Detachment System. 37 

 38 

 39 

1. Introduction 40 

 41 

In the Mediterranean realm, the retreat of oceanic slabs triggered the initiation of back-42 

arc extension (i.e large-scale extension in the upper plate of a subduction zone), leading to the 43 

collapse of previously thickened continental lithosphere (Le Pichon and Angelier, 1979; 44 

Malinverno and Ryan, 1986; Dewey, 1988; Platt and Vissers, 1989; Royden, 1993; Jolivet 45 

and Faccenna, 2000; Rosenbaum et al., 2002; Faccenna et al., 2004; Jolivet et al., 2008). This 46 

post-orogenic evolution (i.e. crustal thinning by extension-related normal faulting after an 47 

episode of crustal thickening) resulted in the formation of series of extensional domains or 48 

wide-rift systems (Lister et al., 1984; Buick, 1991; Corti et al., 2003) such as the Alboran Sea, 49 

the Tyrrhenian Sea, the Pannonian Basin and the Aegean Sea. Lateral evolution from the 50 
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central parts of the extensional domains to the bounding non-collapsed orogenic segments 51 

implies drastic lateral gradients of finite extension and suggests highly non-cylindrical 52 

structures. In the Aegean Sea, along with the drastic decrease in topography and crustal 53 

thickness, the main orogenic structures of the Hellenic belt are increasingly reworked by 54 

extension from continental Greece to Naxos, in the center of the Aegean Sea. Extensional 55 

structures related to back-arc crustal stretching evolve from essentially brittle steep and 56 

shallow-dipping normal faults in continental Greece to shallow-dipping ductile shear zones in 57 

the center of the Aegean domain (Jolivet and Patriat, 1999; Jolivet et al., 2010). Furthermore, 58 

a straightforward correlation between the degree of non-coaxiality of the back-arc domain and 59 

the amount of stretching of the continental crust is observed at the scale of the entire Aegean 60 

domain (e.g. Augier et al., 2015). Marginal areas that connect to non-collapsed orogenic 61 

segments display symmetrically arranged detachment systems. In the western parts of the 62 

Aegean domain, both the West Cycladic Detachment System (WCDS) and the North Cycladic 63 

Detachment System (NCDS) exhume a horst-shaped domain, where orogenic features are still 64 

nicely preserved, depicting bivergent extension (e.g. Jolivet et al., 2010; Grasemann et al., 65 

2012). Conversely, in the center of the Aegean domain, deformation remains highly 66 

asymmetric from Mykonos in the north, all the way to Sikinos in the south (e.g. Gautier et al., 67 

1993; Kumerics et al., 2005; Denèle et al., 2011; Augier et al., 2015). There, orogenic features 68 

are particularly overprinted or even locally erased by the combined effects of intense top-to-69 

the-N shearing and partial-melting. Migmatite-cored Metamorphic Core Complexes (MCCs), 70 

associated with Miocene intrusions, roofed by major top-to-the-N crustal-scale detachments, 71 

are described on Naxos, in the center (e.g. Lister et al., 1984; Urai et al., 1990; Buick, 1991; 72 

Gautier and Brun, 1994; Jolivet et al., 2004a; Vanderhaeghe, 2004) and Mykonos in the north 73 

of the Aegean domain (Lecomte et al., 2010; Denèle et al., 2011). Concentrating a large part 74 

of the total amount of stretching, recognition of MCCs therefore appears of prime importance. 75 
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Similarly, asymmetry of crustal thinning at the regional-scale is another key-question for 76 

understanding back-arc extension dynamics. However, the current understanding of back-arc 77 

dynamics in the Aegean domain is hindered by the severe lack of knowledge for the bulk of 78 

its eastern part. 79 

One of the largest Aegean islands, displaying the largest intrusion of the Aegean Sea, 80 

located between the northern Cyclades and western Turkey, Ikaria Island has been the focus 81 

of several recent studies. However, the first order structural architecture of this island remains 82 

conflicting and the existing geological maps of Ikaria present marked discrepancies. Besides, 83 

the current knowledge of the metamorphic record and particularly the thermal structure of 84 

Ikaria remain fragmentary. These problems were reconsidered after an extensive field survey, 85 

including primarily new geological mapping and structural analysis. The position and 86 

importance of the various tectonic contacts as well as the bulk thermal architecture of the 87 

island were further constrained using the geothermometry approach of Raman Spectrometry 88 

of Carbonaceous Material (RSCM). Following their recent discovery, the migmatites 89 

described in the core of the structure were dated by U-Th-Pb LA-ICPMS analyses on 90 

monazite. 91 

 92 

 93 

2. Geological setting 94 

 95 

2.1. Geodynamic context 96 

 97 

The Aegean domain (Fig. 1) corresponds to the collapsed segment of the Hellenides-98 

Taurides belt, developed as the result of the convergence between Apulian and European 99 

plates, in the eastern Mediterranean, since the Late Cretaceous (e.g. Aubouin and Dercourt, 100 
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1965; Brunn et al., 1976; Bonneau and Kienast, 1982; Bonneau, 1984; van Hinsbergen et al., 101 

2005; Jolivet and Brun, 2010, Ring et al., 2010). During this period, a south-verging crustal-102 

scale orogenic wedge was formed by subduction and accretion of several Apulia-derived 103 

continental blocks separated by oceanic basins. Post-orogenic extension of the Hellenic 104 

thickened crust started in the Early Oligocene (Jolivet and Faccenna 2000; Jolivet et al., 2008) 105 

or the Early Miocene (Ring et al., 2010) by a combination of gravitational collapse and back-106 

arc extension during the southward retreat of the African slab (e.g. Jolivet and Faccenna, 107 

2000; Jolivet and Brun, 2010). Intense crustal stretching of the upper plate leads to the 108 

formation of a series of MCCs (Lister et al., 1984; Avigad and Garfunkel, 1989; 1991; 109 

Gautier and Brun, 1994; Jolivet et al., 2004a). Despite the importance of the post-orogenic 110 

overprint on the orogenic architecture, the original vertical superposition of tectonic units in 111 

the nappe stack is often preserved at the scale of the whole Aegean domain (e.g. Bonneau, 112 

1984; van Hinsbergen et al., 2005). Three main tectonometamorphic units are classically 113 

recognized (e.g. Bonneau, 1984; Ring et al., 2010) (Fig. 1): 114 

1) The Upper Cycladic unit corresponds to a lateral equivalent of the Pelagonian nappe 115 

(e.g. Bonneau, 1984; Jolivet et al., 2004a) recognized in continental Greece. This unit 116 

generally crops out as isolated klippes or rafts in the Cyclades, essentially made of ophiolitic 117 

material such as in Andros, Tinos, Mykonos, Kea, Kythnos, Serifos and Samos (e.g. Ring et 118 

al., 1999; Jolivet et al., 2010; Grasemann et al., 2012). Rocks preserve a Cretaceous HT-LP 119 

metamorphic imprint but escaped both the Eocene HP-LT and the Oligocene-Miocene HT-LP 120 

tectonometamorphic events (Katzir et al., 1996). Syn-tectonic detrital shallow-marine and 121 

continental sediments locally form the uppermost unit on Mykonos, Paros, Naxos and Ikaria 122 

(e.g. Angelier, 1976; Photiades, 2002a; Sánchez-Gómez et al., 2002; Kuhlemann et al., 2004; 123 

Lecomte et al., 2010). Conglomerates mostly contain pebbles derived from the Upper 124 
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Cycladic nappe and reworked magmatic rocks as young as 10 Ma (e.g. Sánchez-Gómez et al., 125 

2002). 126 

2) The Cycladic Blueschists unit crops out as a composite unit including locally a 127 

significant component of metabasic rocks interleaved with metapelites and marbles, all 128 

equilibrated in blueschist-facies conditions (e.g. Blake et al., 1981; Bonneau, 1984; Avigad 129 

and Garfunkel, 1991; Keiter et al., 2004). This unit experienced a complex alpine 130 

tectonometamorphic evolution, with an early burial in HP-LT conditions reaching blueschist 131 

to eclogite-facies conditions during the Eocene, followed by a greenschist overprint of 132 

variable intensity during the Oligocene and the Miocene (Altherr et al., 1979, 1982; Wijbrans 133 

et al., 1990; Parra et al., 2002; Duchêne et al., 2006; Augier et al., 2015). On Ikaria, despite 134 

the lack of reliable HP index minerals, the Messaria unit (Kumerics et al., 2005) was 135 

correlated with the Ampelos nappe recognized on Samos that experienced metamorphic 136 

conditions of the order of 15 kbar and 500 °C (Will et al., 1998). 137 

3) The lower units crop out in tectonic windows. The Cycladic Basement unit crops 138 

out in the central and southern Cyclades (i.e. on Naxos, Paros, Sikinos and Ios) (e.g. 139 

Andriessen et al., 1987). It is composed of Variscan granitoids mantled by micaschists that 140 

retain either metamorphic relics of amphibolite-facies assemblages or inherited radiometric 141 

ages suggesting a complex prealpine history (e.g. Henjes-Kunst and Kreuzer, 1982; 142 

Andriessen et al., 1987; Keay and Lister, 2002). It is sometimes covered by Mesozoic marbles 143 

that may represent a HP equivalent of the Gavrovo unit cropping out in continental Greece 144 

(Jolivet et al., 2004b). Just as the Cycladic Blueschists unit, the Cycladic Basement unit 145 

shows a complex alpine tectonometamorphic evolution, with an initial subduction-related 146 

burial in HP-LT conditions during the Eocene whose trace has been obscured by an 147 

Oligocene-Miocene local overprint (van der Maar et al., 1981; Vandenberg and Lister, 1996; 148 

Baldwin and Lister, 1998; Augier et al., 2015). On Naxos and Paros, it experienced a partial-149 
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melting stage in amphibolite to granulite-facies conditions (i.e. Jansen and Schuiling, 1976; 150 

Buick and Holland, 1989; Vanderhaeghe, 2004; Duchêne et al., 2006). 151 

Rocks of the Cycladic Blueschists and the lower units were exhumed during two 152 

distinctive stages in two contrasted geodynamic settings. The first stage occurred in the 153 

Hellenic subduction context, during the Eocene, with burial and synorogenic exhumation (by 154 

shortening-related normal faulting) of blueschist to eclogite-facies assemblages in an 155 

extrusion wedge structure (e.g. Altherr et al., 1979; Wijbrans et al., 1990; Trotet et al., 2001a; 156 

2001b; Groppo et al., 2009; Ring et al., 2007; Jolivet and Brun, 2010). The second stage 157 

occurred in the Oligocene-Miocene with the post-orogenic exhumation in the back-arc 158 

domain of the Cycladic Blueschists and the lowers units as metamorphic domes or migmatite-159 

cored MCCs (Lister et al., 1984) below a series of detachments (e.g. Avigad and Garfunkel, 160 

1989; Buick and Holland, 1989; Buick, 1991; Faure et al., 1991; Lee and Lister, 1992; 161 

Gautier et al., 1993; Gautier and Brun, 1994; Jolivet and Patriat, 1999; Keay et al., 2001; 162 

Vanderhaeghe, 2004; Kumerics et al., 2005; Mehl et al., 2005; 2007; Denèle et al., 2011; 163 

Augier et al., 2015). In the northern Cyclades, these detachments were recently grouped in a 164 

single large-scale top-to-the-N structure running over 130 km to form the NCDS (Fig. 1; 165 

Jolivet et al., 2010). A similar set of detachments with opposed, top-to-the-S or SW 166 

kinematics, was identified in the western Cyclades (Grasemann and Petrakakis, 2007; Iglseder 167 

et al., 2009, 2011; Tschegg and Grasemann, 2009; Brichau et al., 2010) and recently 168 

mechanically linked to form the WCDS (Grasemann et al., 2012). The Naxos-Paros 169 

Detachment (NDP) completes those series of detachment systems in the center of the Aegean 170 

domain (Buick and Holland, 1989; Buick, 1991; Gautier and Brun, 1994; Kruckenberg et al., 171 

2011). Another major shear zone over which top-to-the-N kinematics rework top-to-the-S 172 

shear sense occurs in the southern Cyclades on the islands of Sikinos and Ios (e.g. 173 

Vandenberg and Lister, 1996; Forster and Lister, 2009; Huet et al., 2009; Thomson et al., 174 
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2009; Augier et al., 2015). Extension on this shear zone starts to exhume rocks near the Early 175 

Miocene (Thomson et al., 2009). Here, top-to-the-S kinematics was first considered as 176 

extensional (Vandenberg and Lister, 1996; Forster and Lister, 2009; Thomson et al., 2009) 177 

and later correlated with the WCDS (Ring et al., 2011). Another study reinterpreted this shear 178 

zone as a top-to-the-S thrust reworked by top-to-the-N extension (the South Cycladic Thrust, 179 

SCT) (Huet et al., 2009). The same interpretation is made on Sikinos where the SCT crops out 180 

(Augier et al., 2015). Late exhumation stages along extensional systems were accompanied by 181 

the emplacement of syn-tectonic Miocene I and S-type granites (i.e. Tinos, Mykonos, Naxos, 182 

Serifos and Ikaria; Fig. 1) (Faure et al., 1991; Lee and Lister, 1992; Altherr and Siebel, 2002; 183 

Grasemann and Petrakakis, 2007; Ring, 2007; Iglseder et al., 2009; Bolhar et al., 2010; 184 

Laurent et al., 2015). The activity of detachments is also constrained by syn-tectonic 185 

deposition of sediments over the Upper Cycladic unit (e.g. Sanchez-Gomez et al., 2002; 186 

Kuhlemann et al., 2004; Lecomte et al., 2010; Menant et al., 2013).  187 

Although part of these features of the Cycladic geology are found further east within 188 

the Menderes massif (Fig. 1), type, distribution and timing of metamorphism appear less 189 

clear. The Cycladic Blueschists unit and the Lycian Nappe that experienced HP-LT 190 

metamorphic conditions rest on top of the structure to the north and to the south of the massif 191 

(Oberhänsli et al., 1998; Rimmelé et al., 2003a; 2003b; Pourteau et al., 2010). HP-LT 192 

metamorphic conditions are dated from Late Cretaceous to Eocene (Oberhänsli et al., 1998; 193 

Pourteau et al., 2013). Crustal stretching responsible for the final exhumation of the 194 

metamorphic part of the Menderes massif under shallow-dipping shear zones (e.g. Rimmelé et 195 

al., 2003b; Bozkurt, 2007; van Hinsbergen; 2010; Bozkurt et al., 2011) is very similar to the 196 

Cyclades one. Detachments juxtapose Neogene syn-tectonic sediments on metamorphic rocks 197 

that are strongly retrograded in the greenschist facies during the Miocene (Hetzel et al., 198 
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1995a; Lips et al., 2001). Here again, crustal thinning is accompanied by the emplacement of 199 

syn-tectonic granites (Ring and Collins, 2005; Glodny and Hetzel, 2007). 200 

  201 

 202 

2.2. Geology of Ikaria  203 

 204 

Ikaria is a 40 km-long island located in the eastern Aegean Sea between Mykonos and 205 

Samos. A recent map coverage was performed by the Greek Institute of Geology and Mineral 206 

Exploration (G-IGME) (Photiades, 2002b), complemented by independent geological maps 207 

presenting highly conflicting interpretations (Papanikolaou, 1978; Kumerics et al., 2005; 208 

Ring, 2007; Bolhar et al., 2010; Kokkalas and Aydin, 2013). 209 

At first glance, the geology of Ikaria consists in an equal distribution of a metamorphic 210 

domain to the east and a large-scale magmatic complex to the west, bounded by sedimentary 211 

rocks (Fig. 2). The metamorphic part consists in a 1500 m-thick tectonometamorphic 212 

succession made of metasediments including metapelites, metaquartzites, marbles and minor 213 

metabasites occurrences passing upward to finely alternating metapelites and marbles 214 

(Photiades, 2002a; 2002b; Kumerics et al., 2005). The metamorphic grade decreases upward 215 

from widespread amphibolite-facies associations (i.e. staurolite-garnet-biotite in metapelites 216 

and hornblende-plagioclase in metabasites) to greenschists-facies associations in the 217 

uppermost parts of the succession (e.g. Altherr et al., 1982; Kumerics et al., 2005; Martin et 218 

al., 2011). Peak-metamorphic conditions, as retrieved from pseudo-section approaches, 219 

yielded 6-8 kbar for 600-650 °C conditions for the basal parts of the tectonometamorphic 220 

succession (Kumerics et al., 2005; Martin et al., 2011), fringing partial-melting conditions 221 

assuming water saturation conditions (Weinberg and Hasalova, 2015). While similar 222 

quantitative P-T estimates are currently lacking for the upper parts of the succession, a 223 



Page 11 of 86

Acc
ep

te
d 

M
an

us
cr

ip
t

localized change in the metamorphic grade has however been proposed within the upper parts 224 

(Papanikolaou, 1978; Altherr et al., 1982; Kumerics et al., 2005). Besides, it is noteworthy 225 

that traces of an initial HP imprint is currently lacking on Ikaria, at variance with neighboring 226 

islands (Altherr et al., 1982; Photiades, 2002a; Kumerics et al., 2005; Ring, 2007). 227 

Three main magmatic intrusions were recognized on Ikaria (Papanikolaou, 1978; 228 

Photiades, 2002b; Ring, 2007); two small-scale, less than 10 km² S-type two-mica 229 

leucogranite intrusions (i.e. the Xylosyrtis and the Karkinagrion intrusions) and a large-scale 230 

I-type intrusion (i.e. the Raches intrusion). Along with a related pervasive pegmatite dyke 231 

array (Photiades, 2002b; Hezel et al., 2011), the Xylosyrtis pluton displays a clear intrusive 232 

character within the metamorphic series. Conversely, the nature of the Raches granite contact 233 

remains highly controversial and was mapped so far as intrusive (Papanikolaou, 1978; 234 

Laurent et al., 2015), as a detachment (Kumerics et al., 2005) or as a thrust (Photiades, 2002a; 235 

2002b; Kokkalas and Aydin, 2013). Emplacement of the main intrusions occurred in a narrow 236 

15-13 Ma age-range (Bolhar et al., 2010). 237 

Metamorphic and intrusive rocks experienced an intense top-to-the-N shearing in both 238 

ductile and then brittle regimes (Kumerics et al., 2005; Ring, 2007). The Raches intrusion in 239 

the west thus shows a top-to-the-N strain gradient toward the upper structural levels, from 240 

proto-mylonites to ultra-mylonites, and finally cataclasites (Laurent et al., 2015). Prior to this 241 

study, two main tectonic contacts, along which deformation is concentrated, were 242 

distinguished: the Messaria and Fanari detachments (Kumerics et al., 2005). According to 243 

Kumerics et al. (2005), the Messaria detachment corresponds to a mylonite zone later partly 244 

overprinted by cataclastic deformation. At variance, the Fanari detachment is currently 245 

regarded as a purely brittle contact roofing the metamorphic rocks and bounding the 246 

sediments of the upper unit (Kumerics et al., 2005; Ring, 2007). This unit, regionally known 247 

as the Fanari unit, consists in sandstones, siltites and conglomerates containing clasts of red 248 
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cherts and ophiolitic rocks of Early Cretaceous age and large-scale olistoliths of Triassic 249 

recrystallized limestones (Papanikolaou, 1978) reminding typically rocks of Pelagonian 250 

affinity (Pe-Piper and Photiades, 2006). Ages of those sediments spread from Oligocene to 251 

Pliocene (Photiades, 2002a; 2002b). In the center of the island, the recrystallized limestone of 252 

Kefala, inferred as Triassic, is sometimes described as a klippe of the upper unit of Ikaria 253 

(Papanikolaou, 1978; Photiades, 2002a; 2002b; Pe-piper and Photiades, 2006). The main 254 

argument for the presence of the Pelagonian unit relies on the description of a diorite intrusive 255 

body that yielded Cretaceous K/Ar ages on hornblende (Altherr et al., 1994). 256 

Precise age-constraints on peak-metamorphic conditions and the accurate timing for 257 

the onset of extensional motions along main shear zones are currently lacking on Ikaria. First 258 

record of cooling, below 550 °C (Villa, 1998), is scattered between 25 and 17 Ma (K/Ar on 259 

hornblende; Altherr et al., 1982). Late exhumation stages are, in turn, well constrained after 260 

15 Ma by varied thermochronological tools (Altherr et al., 1982; Kumerics et al., 2005). The 261 

K/Ar and Ar/Ar ages on both fabric-forming white mica and biotite yield numerous 12 to 9 262 

Ma ages. In metamorphic rocks, these ages are interpreted as both cooling or deformation 263 

ages during exhumation while they are considered as cooling ages for granites (Altherr et al., 264 

1982; Kumerics et al., 2005). Fission-track (FT) analyses yielded 10.3 ± 0.3 to 7.1 ± 0.3 Ma 265 

ages for zircon and 8.4 ± 0.8 to 5.9 ± 0.8 Ma ages for apatite (Kumerics et al., 2005). Final 266 

cooling stages were constrained by U-Th/He analyses on apatite that yielded symmetrically 267 

arranged 6 Ma ages for both flanks and a 3 Ma age for the core of the structure (Kumerics et 268 

al., 2005). Cooling rates therefore exceeded 100 °C/Ma from the ductile to brittle transition 269 

(i.e. 300-400 °C, Stöckhert et al., 1999; Imber et al., 2001) and temperatures as low as 70 °C 270 

between 10 to 6 Ma.  271 

 272 

 273 
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3. A new geological map of Ikaria 274 

 275 

An extensive field survey was carried out on Ikaria including new field mapping in 276 

order to complement the existing G-IGME geological map (Photiades, 2002b). The result is 277 

presented in Fig. 2; readers are referred to existing maps showing very conflicting 278 

interpretations to appreciate the modifications (Papanikolaou, 1978; Photiades, 2002b; 279 

Kumerics et al., 2005; Ring, 2007; Bolhar et al., 2010; Kokkalas and Aydin, 2013). 280 

For clarity, the lithostratigraphic subdivisions of Photiades (2002b) were kept as much 281 

as possible. Three main lithologies, including marbles, micaschists (including calcschists and 282 

minor metaquartzites and metabasites occurrences) and granitic rocks derived from three main 283 

intrusive bodies were mapped (Fig. 2). Definition of the main tectonic units changed as the 284 

result of the modification and the reinterpretation of their boundaries, particularly the tectonic 285 

and intrusive contacts. Three main tectonic units, from bottom to top: the Ikaria, Agios-286 

Kirykos and Fanari units, limited by two major shear zones, are now distinguished. The main 287 

tectonic features having a map-scale expression were also reported in detail. These structures 288 

consist primarily in the Agios-Kirykos and the Fanari ductile shear zones developed as ramp-289 

flat extensional structures either at shallow-angle to the compositional layering as décollement 290 

zones or cutting down-section. The Fanari shear zone even presents evidence for subsequent 291 

displacements in the brittle field superimposed on ductile features. On the map, the Fanari 292 

detachment clearly cuts across the whole Agios-Kirykos unit and the Agios-Kirykos shear 293 

zone.  Other shear zones or brittle contacts put forward on previous maps were abandoned. 294 

The basal contact below Kefala marble (e.g. Papanikolaou, 1978; Altherr et al., 1994; 295 

Photiades, 2002a; 2002b; Pe-piper and Photiades, 2006) is considered less important than in 296 

previous studies since no metamorphic gap is backed up by published data. Moreover, 297 

detailed mapping of this zone indicate that the diorite is intrusive in Ikaria unit. However, a 298 
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panorama on the Kefala marble seen suggests the presence of a tectonic contact at its base 299 

(Papanikolaou, 1978). Although probably minor, this contact might be a late brittle expression 300 

of the system of detachments. Similarly, the nature of the eastern contact of the Raches 301 

granite considered either as the lateral equivalent of the Messaria detachment (Kumerics et al., 302 

2005; Ring, 2007) or a major thrust contact (Photiades, 2002a; 2002b; Kokkalas and Aydin, 303 

2013) was re-evaluated. Field work in the vicinity of the contact of the Raches granite 304 

unambiguously shows, despite ductile deformation, the clear intrusive character of the granite 305 

within Ikaria unit (Fig. 3a) as suggested in earlier studies (e.g. Papanikolaou, 1978; Laurent et 306 

al., 2015). Along with the Fanari detachment, the Fanari sedimentary unit of Kumerics et al. 307 

(2005) was extended further southwest (Fig. 3b). This sedimentary unit was correlated to 308 

sediments recognized on the northern part of Ikaria at Gialiskari (Fig. 3c) as initially proposed 309 

by Photiades (2002a; 2002b) and recently reinforced by Laurent et al. (2015). There, the 310 

Fanari sedimentary unit lies on top of a thick cataclastic body (Figs. 3c and 3d) superimposed 311 

over a 300-500 m-thick ductile strain gradient developed within both the Raches and 312 

Karkinagrion granites (Laurent et al., 2015). Besides, the initial geological outline of the 313 

Karkinagrion granite (Ring, 2007) was significantly modified and extended toward the north 314 

(Fig. 2). Detailed field work within and around this granite massif allows the recognition of a 315 

large-scale migmatite complex closely associated with this S-type granite (see recent 316 

description in Laurent et al. (2015)) (Fig. 3e). 317 

 318 

 319 

4. Structural analysis of the ductile deformation in metamorphic rocks 320 

 321 

4.1. Main planar fabrics 322 

 323 
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All metamorphic rocks and most of magmatic lithologies from Ikaria are pervasively 324 

foliated. In most cases, compositional layering in the metasediments has been transposed into 325 

a main, generally shallow-angle foliation.  326 

221 foliation planes were measured in all lithologies of the two metamorphic units. 327 

Besides, bedding was measured in Fanari unit. Measurements, statistical analysis and foliation 328 

trajectories are reported on Figs. 4a, b and c, respectively. The dip of foliation planes displays 329 

a large range of variation between 10° and 50° for a mean value at 20-25° (Fig. 4b). 330 

Smoothing out these small-scale dip variations, the main foliation planes commonly dip away 331 

from the long axis of the island. The strike of foliation therefore shows a fairly concentric 332 

pattern depicting a NE-SW elongated structural dome (Fig. 4c), which ends in the northeast. 333 

The dome axis, issued from the inversion of field measurements, trends N037°E, which 334 

corresponds to the main orientation of regional foliation (Figs. 4b and 4c). Additionally, this 335 

dome presents a marked asymmetry with a steeper, 30-40° dipping southeastern flank (Fig. 336 

4b). The deeper parts of the dome crop out in the central part of the southern coast of the 337 

island, close to the contact with the Raches granite. Toward the southwest, the axis extends 338 

seaward and turns to a more E-W orientation to finally show up again across the main 339 

occurrence of migmatites (Fig. 4c). Strike and dip of the main foliation are generally 340 

discontinuous across intrusive contact of the Raches intrusion, particularly to the south. 341 

Conversely, foliation trajectories are more continuous to the north where both the granite and 342 

the wall-rocks locally present an ultramylonitic fabric (Fig. 4c). 343 

 344 

 345 

4.2. Stretching lineation 346 

 347 
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Stretching lineation is carried by the foliation plane in most metamorphic rocks, while 348 

it may sometimes occur as the unique strain marker in the intrusive rocks. It is marked by 349 

various indicators, depending on lithology, metamorphic grade and strain intensity. In calcite 350 

and dolomite marbles, it is defined by very fine-grained mica slates and the elongation of 351 

graphite-rich inclusions. In metapelites, it is generally defined by elongated quartz rods and 352 

phyllosilicate aggregates. It is also sometimes marked by the elongation and the truncation of 353 

epidote or tourmaline in granitic rocks. Evidence for stretching is also recorded by the 354 

preferred elongation and the brittle truncation of clasts in conglomeratic layers at the base of 355 

Fanari unit, just above the Fanari detachment. 356 

202 stretching lineations have been measured in the field in all metamorphic rocks. 357 

Data are all reported in Fig. 5 together with some first-order statistics. At first glance, the 358 

trend of lineation shows very little dispersion. It is centered on an average value of N008°E 359 

ranging from N160°E and N020°E (Fig. 5b). Wrapped around the dome, the lineation plunges 360 

to the north in the northwestern flank of the island and to the south in the southeastern flank. 361 

At large-scale, the trend of stretching lineation describes slightly curved patterns from N-S to 362 

more NNE-SSW directions. The spatial rotation of the stretching lineation can be correlated 363 

with the relative structural position; NNE-SSW orientations are observed in the uppermost 364 

parts of the metamorphic succession and particularly in the vicinity of the Fanari shear zone, 365 

in the northeast of Ikaria or at Gialiskari (Fig. 5a).  366 

 367 

 368 

4.3. Asymmetry of ductile deformation  369 

 370 

The whole volume of the metamorphic succession and a great part of the magmatic 371 

intrusions of Ikaria are pervasively affected by a top-to-the-N to -NNE ductile deformation 372 
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(Fig. 5a). Kinematics indicators of top-to-the-N deformation are very common and often 373 

unambiguous, particularly toward the top of Ikaria unit and in the bulk of Agios-Kirykos unit. 374 

Differing in terms of style, asymmetry and physical conditions of deformation, descriptions in 375 

Ikaria and Agios-Kirykos units are presented separately. 376 

 377 

 378 

4.3.1. Top-to-the-N shearing gradient in Ikaria unit 379 

 380 

Shear bands accompanied by asymmetric boudinage are the most common kinematic 381 

indicators in Ikaria unit (Fig. 6). Top-to-the-N shear bands are particularly abundant in 382 

metapelite layers interleaved with more competent rocks such as marbles, metaquartzites or 383 

metabasites. Due to asymmetric dome-shaped architecture of the island, shear bands display, 384 

in their present position, gentle to moderate north-westward dips and normal-sense 385 

displacements on the northwestern flank of the island while they often present flat or even 386 

“reverse” geometry on the southeastern flank. Boudinage occurs at various scales in 387 

alternating lithologies such as metapelites interleaved with marbles, metaquartzites or 388 

metabasites. Boudins frequently show asymmetric shapes consistent with a northward 389 

asymmetry. However, antithetic bookshelf structures compatible with a top-to-the-N sense of 390 

shear can be developed within marble at different scales as observed by Ring (2007). 391 

Top-to-the-N ductile deformation appears unevenly distributed within Ikaria unit, 392 

primarily controlled by the relative structural position. Evolution of its asymmetry can be 393 

studied along a composite cross-section from the deepest parts to the top of this unit from 394 

Plagia to Evdilos. The deepest parts crop out on the southeastern coast between Chrisostomos 395 

and Plagia. There, the most typical structural feature is an intense folding of the primary 396 

compositional layering (Fig. 6a). Folds display a wide range of morphologies but all share 397 
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common subhorizontal axial planes consistent with vertical flattening. A N-S stretching 398 

lineation is only developed in metapelitic or sometimes quartzitic layers while other 399 

lithologies display more randomly oriented intersection lineations. Sense of shear is often 400 

ambiguous with the presence of both top-to-the-N and top-to-the-S shear criteria suggesting a 401 

strong flattening component. Upward, the development of meter-scale decimeter-thick shear 402 

bands marks the appearance of a clear asymmetry. Shear bands delimit asymmetric boudins 403 

that preserve more ductile deformation as tight recumbent to isoclinal folds, or only as 404 

detached fold hinges (Fig. 6b). However, at variance with deeper levels of the unit, fold axes 405 

trend parallel to the stretching lineation arguing for a significant component of shearing in the 406 

direction of stretching (Fig. 6c). Upward, along with the multiplication of shear bands, the 407 

decreasing size of shear domains and boudins, metapelitic rocks become more homogeneous. 408 

Lenses of metabasites, dolomitic marbles and remains of metaquartzites occur as sigma or 409 

more rarely delta-type porphyroclasts systems consistent with an overall top-to-the-N sense of 410 

shear (Fig. 6d). Intense shear strain has turned the rocks into fine-grained mylonites (Fig. 6e). 411 

The resulting cross-section shows a first-order strain gradient, where asymmetric stretching is 412 

more and more systematic toward the highest structural levels of the unit (Fig. 6f).  413 

Metamorphic conditions that prevailed during deformation also depend on structural 414 

position. Amphibolite-facies assemblages and gneisses are generally well preserved in the 415 

deepest parts of Ikaria unit. There, first retrogression stages are clearly synkinematic, as 416 

exemplified by the crystallization of biotite around stable garnets forming sigma-type 417 

porphyroclasts system (Fig. 7a). Upward, developed during garnet breakdown, asymmetric 418 

strain shadows around garnet contain chlorite and white-micas. Biotite, still metastable in the 419 

bulk of the rock is retrograded to chlorite in shear bands. Associated with the crystallization 420 

of large amounts of synkinematic chlorite and albite, top-to-the-N shearing in the highest 421 

levels was clearly recorded within greenschist-facies metamorphic conditions (Fig. 7b). 422 
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 423 

 424 

4.3.2. Deformation in Agios-Kirykos unit and along Fanari shear zone  425 

 426 

The Agios-Kirykos unit can be studied along a series of foliation-orthogonal valleys 427 

from Therma to Agios Kiriaki (see location on Fig. 2). It consists in the alternation of marble 428 

and dark metapelites layers reaching 150-200 m of structural thickness. On most outcrops, 429 

top-to-the-NNE ductile shearing is clear. Greenschist-facies shear bands are abundant and 430 

display a clear upward evolution to more localized or even cataclastic flow (compare Fig. 8a 431 

and Fig. 8b). The core of Fanari shear zone, developed at the expense of the uppermost parts 432 

of Ikaria unit, is well exposed in the western part of Agios Kiriaki harbor (Fig. 8c). While the 433 

contact itself is hidden by the airport runaway, Fanari unit crops out directly to the northeast, 434 

100 m apart (Fig. 8c). There, rocks present a northeast-dipping mylonitic fabric and carry a 435 

N035°E stretching lineation marked by numerous quartz rods and boudins of all sizes from a 436 

few centimeters to several meters. Marble layers are stretched and boudinaged within the 437 

metapelitic matrix. The internal deformation of marbles displays successive stages of 438 

symmetric boudinage, evolving from ductile to brittle (Fig. 8d). Metapelite levels show a 439 

clear non-coaxial component of shearing consistent with an overall top-to-the-NNE 440 

kinematics (Fig. 8e). These layers, generally thinned to 1 m or even less, display a single and 441 

penetrative set of shear bands locally obliterating the main foliation. Spacing between shear 442 

bands, controlled by the presence of quartz lenses is locally as small as 1-3 cm (Fig. 8e). 443 

Chlorite is abundant within these rocks and adopts a clear synkinematic character in the 444 

vicinity of shear bands. The brittle expression of the Fanari shear zone is not exposed there 445 

but occurs spectacularly near Fanari, 1 km further south along the coast (Fig. 9). The Fanari 446 

detachment is described in the next section. 447 
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 448 

 449 

5. Brittle deformation analysis 450 

 451 

Ikaria presents either large to meso-scale brittle structures or locally pervasive 452 

networks of small-scale brittle faults systems developed from the ductile-brittle transition to 453 

the brittle field. Brittle structures of all scales are first described. Results of the paleostress 454 

analysis are then presented. It must be noted here that some NNE-SSW lineaments, visible on 455 

satellite images, do not have any particular expression in the field.  456 

 457 

 458 

5.1. Description of brittle structures 459 

 460 

The Fanari detachment is the only large-scale structure that was active under both 461 

ductile and subsequent brittle conditions. Displacement in the brittle regime over the Fanari 462 

detachment is attested by the development of cataclasites particularly well exposed along the 463 

southeastern coast of the island as a series of several hundreds of meters of continuous 464 

outcrops (Fig. 9). There, the detachment plane appears stripped of its sedimentary cover over 465 

a large surface revealing large-scale corrugations and crescent-shaped structures that remind 466 

the Cape Evros outcrop on Mykonos (Lecomte et al., 2010; Menant et al., 2013) or the Platy 467 

Gialos outcrop on Serifos (Grasemann and Petrakakis, 2007). Breccias, locally reaching more 468 

than 2 m, are mainly developed at the expense of Agios-Kirykos unit but also from the very 469 

first decimeters of Fanari unit. Cataclastic rocks often show typical clasts size ranging from 1 470 

to 20 cm embedded in reddish-brownish cement supposed to be composed of Fe-rich oxy-471 

hydroxides and carbonates. The detachment plane displays a NE-SW strike and a 60° 472 
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southeast-dip. It carries shallow-dipping, southwest-plunging, large-scale corrugations 473 

consistent with the opening of perpendicular cracks. Variable types of kinematics indicators 474 

of top-to-the-NNE brittle deformation in the detachment footwall unambiguously ascribe a 475 

left-lateral reverse sense of displacement. A secondary discrete striae indicates locally a 476 

reverse sense of displacement. At the scale of the map, kinematics of brittle motion over 477 

Fanari detachment indicates northeast-directed displacement consistent with the kinematics of 478 

the last increments of ductile deformation (compare kinematics given on Fig. 9 with the last 479 

ductile stretching lineation on Fig. 5). In its current position, the detachment plane is offset by 480 

a set of NW-SE vertical faults carrying oblique striations. 481 

Cataclastic rocks also occur on the northern part of Ikaria at Gialiskari (Figs. 3c and 482 

3d). They overprint the uppermost parts of a 500 m-thick strain gradient developed 483 

exclusively at the expense of the underlying Raches granite (Laurent et al., 2015). Here, they 484 

bound again a tectonic unit considered as the lateral equivalent of Fanari unit exposed further 485 

east. Sediments, consisting on alternating grey sandstones, conglomerates and brownish 486 

limestones are heavily affected by extensional features. WNW-ESE normal faults are 487 

organized in conjugate sets accompanied by a dense array of subvertical WNW-ESE veins 488 

that both overprint a gently south-dipping bedding. 489 

Beside this major brittle structure, small-scale brittle features mostly correspond to late 490 

W-E to NW-SE conjugate faults systems developed in all lithologies (Figs. 10 and 11). 491 

Displacement on faults ranges typically from a few centimeters to a few meters and can 492 

generally be constrained in the field using marker-levels. In the entire studied area, the fault 493 

population is dominated by dihedral orientations arguing for the formation of newly formed 494 

conjugate sets of faults rather than reactivated shear planes. Normal faults are often 495 

accompanied by subvertical joints and tension gashes filled with quartz, chlorite, iron oxy-496 

hydroxides in the metamorphic rocks, quartz, chlorite or even epidote and tourmaline in 497 
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granites and mostly calcite in the sediments. The close association between faults and joints 498 

often displays contradictory intersection relationships and thus argues for a contemporaneous 499 

development.  500 

 501 

 502 

5.2. Inversion of fault-slip data 503 

 504 

Paleostress orientation patterns were evaluated by the Win-Tensor computer-aided 505 

inversion software (Delvaux and Sperner, 2003). The reduced paleostress tensor consists in 506 

the identification of orientation of the three principal stress axes and the axial ratio of stress 507 

ellipsoid. Determination of the paleostress axes was completed by the analysis of 508 

accompanying brittle structures such as joints, tension gashes or stretched pebbles. Brittle 509 

structure analysis was conducted over 9 main sites scattered over the island (see Fig. 5 for 510 

location). Results are presented in the next two sections. 511 

 512 

 513 

5.2.1. Using microstructures to unfold the Fanari detachment 514 

 515 

 Although the Fanari detachment consistently exhibits top-to-the-NE kinematics, it 516 

currently crops out with the geometry of southeast-dipping left-lateral reverse fault zone, a 517 

quite rare configuration in the Aegean domain (Fig. 9). A detailed study of geometrical 518 

relationships between detachment, sediments of Fanari unit and attitude of small-scale brittle 519 

structures affecting either the sediments or the detachment plane, allows proposing a 520 

restoration scenario of the initial geometry of the Fanari detachment (Fig. 10a). Two reference 521 

outcrops (6 and 7) were selected 2 km apart within sediments of Fanari unit along the 522 
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detachment (see position on Fig. 5) with contrasting spatial relationships between structures. 523 

Outcrop of station 7 (Fig. 10b), which presents almost vertical bedding, displays a conjugate 524 

set of subvertical faults affecting alternating sandstones and conglomeratic layers. N030°E to 525 

N160°E faults present consistent sinistral kinematics while N070°E to N130°E faults present 526 

dextral kinematics. Part of these faults even cuts across the Fanari detachment causing 1-5 m 527 

offsets of the plane. Outcrop of station 6 also presents two sets of faults that affect a 40° 528 

dipping bedding further southeastward. The dominant set of faults displays subvertical fault 529 

planes carrying both normal and reverse kinematics. This set is accompanied by a subordinate 530 

set of flat to gently-dipping fault planes that also present both normal and reverse kinematics 531 

(Fig. 10b). In their present geometry, this heterogeneous fault set requires the superimposition 532 

of two distinct stress regimes. Back-tilting of those systems of faults about a horizontal axis, 533 

in order to obtain a horizontal bedding, permits to get a coherent stress regimes for both sites 534 

6 and 7. Maximum principal stress axis becomes vertical and the two others become 535 

horizontal, compatibly with a NE-SW extension for both sites. It strongly suggests that faults 536 

form before an unequal tilting of the different outcrops. This assumption is confirmed further 537 

to the southwest where both the detachment plane and the bedding of sediments are 538 

subhorizontal (i.e. less than 20° toward the southwest) while tension-gashes are now 539 

subvertical and all faults appear as a single conjugate normal fault set preserved in its initial 540 

attitude. Importantly, back-tilting of the whole system, including the Fanari detachment, 541 

results in a system where the detachment plane operates at shallow angle, 10-15° to the 542 

northwest, with normal-dextral-sense kinematics and cuts the sediments down-section as 543 

observed in the neighboring island of Mykonos (e.g. Lecomte et al., 2010; Menant et al., 544 

2013). In this restored position (Fig. 10a), sediments are pervasively affected by normal 545 

faulting consistent with a unique and common NNE-SSW to NE-SW extension (Fig. 10b). 546 

This paleostress solution is consistent with the paleostress field deduced from other stations 547 
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throughout the island and previous studies (e.g. Kumerics et al., 2005). This point is discussed 548 

below. The causes of the Fanari detachment tilting and the more general arching of the ductile 549 

to brittle fabrics at the scale of the whole island are addressed in the discussion section. 550 

 551 

 552 

5.2.2. Large-scale consistency of the paleostress inversions 553 

  554 

Despite the local coexistence of both N80-110°E and N130-160°E trending normal 555 

faults, results present rather small internal dispersion (Fig. 11). At most stations, stress tensor 556 

analysis shows a consistent subvertical orientation for the maximum principal stress axis (1). 557 

In other stations (e.g. sites 6 and 7 on Fig. 10b), 1 was restored using horizontal-axis back-558 

tilting rotation. The minimum principal stress axis (3) is horizontal or very gently dipping 559 

with a consistent NNE-SSW to more NE-SW direction of extension. In turn, the overall 560 

consistency of the direction of 3 prevents from significant vertical-axis large-scale block 561 

rotations. Planes of joint and tension gashes correspond to the calculated 1-2 plane, and 562 

their poles therefore appear scattered around the 3 axis. Brittle structures recorded during the 563 

last exhumation stages present a marked consistency of a NE-SW stretching direction 564 

occurring in an extensional regime. 565 

 566 

 567 

6. Thermal structure 568 

 569 

The RSCM method is based on the quantitative study of the degree of organization of 570 

carbonaceous material (CM), which is a reliable indicator of metamorphic temperature (e.g. 571 

Pasteris and Wopenka, 1991; Beyssac et al., 2002; Lahfid et al., 2010). Because of the 572 
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irreversible character of graphitization, CM structure is not sensitive to the retrograde 573 

reactions and permits to determine peak temperature conditions (Tmax) reached during 574 

metamorphism, using an area ratio (R2 ratio) of different peak of Raman spectra (Beyssac et 575 

al., 2002).  Tmax can be determined in the 300-640 °C range with an accuracy of ± 50 °C 576 

related with the precision and the dispersion of petrological data used for the method 577 

calibration (Beyssac et al., 2002). Relative uncertainties on Tmax are however much smaller, 578 

around 10-15 °C and relative variations of that order of magnitude can be detected (e.g. 579 

Gabalda et al., 2009; Vitale Brovarone et al., 2013; Augier et al., 2015). Sampling was 580 

performed in order to quantitatively describe the large-scale thermal structure of Ikaria to 581 

complement the few existing, punctual P-T estimates (Kumerics et al., 2005; Martin et al., 582 

2011). Sampling was therefore regularly distributed within the tectonometamorphic 583 

succession of Ikaria and a more systematic sampling was carried out in the vicinity of possible 584 

second-order thermal effects such as intrusions and tectonic contacts. 35 samples consisting of 585 

CM-bearing metasediments were collected (see Fig. 12 for location). In order to bring out and 586 

possibly smooth out the inner structural heterogeneity of CM within samples, 13 to 20 spectra 587 

were recorded for each sample. Detailed results, including R2 ratio, number of spectra, Tmax 588 

and standard deviation are presented on Table 1. In addition, RSCM temperatures are all 589 

reported on Fig. 12. 590 

RSCM results embrace a wide range of temperature from 391 to 625 °C (Table 1). At 591 

first glance, Tmax presents a correlation with the relative structural position. 625 °C was 592 

indeed recorded for the deepest parts of the structural dome with gneisses while 390 °C was 593 

retrieved for the uppermost parts of the metamorphic succession where low-crystallinity 594 

micaschists crop out. Ikaria therefore appears as a metamorphic dome in which temperature 595 

increases down-section (Figs. 12a and 12b). Samples from Ikaria unit show rather high Tmax, 596 

from 625 to 500 °C, presenting an important scatter. The 550 °C temperatures for the volume 597 
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of Ikaria unit are moreover consistent with the amphibolite-facies metamorphic associations. 598 

Samples from Agios-Kirykos unit display lower temperature ranging between 450 and 390 °C 599 

(Table 1). Two main sets of temperatures can then be identified separated by a 50 °C 600 

temperature gap (Figs. 12a and 12b). This gap of temperature corresponds to the position of 601 

the Agios-Kirykos shear zone, independently recognized on the basis of structural criteria. 602 

This particular feature was studied in the east of Ikaria, and particularly along a foliation-603 

orthogonal cross-section upstream of Therma valley (Fig. 12b). There, Tmax shows a regular 604 

temperature decrease from 600 to 400 °C accompanied by a 50 °C normal-sense metamorphic 605 

gap. Among the causes of temperature variation in Ikaria unit, local heating by intrusive rocks 606 

has been tested in the vicinity of the Raches granite (Fig. 12c). Samples were picked at 607 

decreasing distance from the intrusive contact for almost the same relative structural position. 608 

Results show regularly decreasing temperatures from 580 °C to 520 °C, in accordance with 609 

the intrusive character of the Raches granite (Fig. 3a). Accordingly, smaller intrusive bodies 610 

as the Kefala diorite or small-scale pegmatite dykes that are only partly mapped (Fig. 2) may 611 

be responsible of erratic, isolated high Tmax results. 612 

 613 

 614 

7. Age constrains on the partial melting event  615 

 616 

7.1. Analytical methods 617 

 618 

Analyses were performed in thin section by laser ablation inductively coupled plasma 619 

spectrometry (LA-ICPMS) at the Laboratoire Magmas et Volcans (LMV), Clermont-Ferrand 620 

(France). The ablation is performed using a Resonetics Resolution M-50E system equipped 621 

with an ultra-short pulse (<4ns) ATL excimer 193 nm wavelength laser. This laser system is 622 
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coupled with Agilent 7500 cs ICP-MS equipped with a pumping system to enhance the 623 

sensitivity. Spot diameter of 9 µm was used with a 1 Hz repetition rates. Ablated material is 624 

transported using a helium flux, and then mixed with nitrogen and argon before being injected 625 

into the plasma source. Analytical procedures for monazite dating are reported in details in 626 

Didier et al. (2013), Didier et al. (2014) and Paquette and Tiepolo (2007). Following isotopes 627 

204
(Pb+Hg), 

206
Pb, 

207
Pb, 

208
Pb, 

232
Th and 

238
U were acquired. Data disturbed by inclusions, 628 

fractures or age mixing (between different areas of a single grain) were not taken into account 629 

for calculation. The occurrence of initial Pb in the sample can be monitored by the evolution 630 

of the 
204

(Pb+Hg) signal intensity, but no Pb correction was applied. Elemental fractionation 631 

and mass bias were corrected making repeated analyses on Trebilcock monazite (272 ±2 Ma, 632 

Tomascak et al., 1996). Analyses on the Moacyr monazite (Cruz et al. 1996; Seydoux-633 

Guillaume et al. 2002; Gasquet et al. 2010; Fletcher et al. 2010) at the beginning and at the 634 

end of each session, treated as unknowns, verify the reproducibility, especially for the 635 

208
Pb/

232
Th ages, and the accuracy of the corrections. Data reduction was carried out with 636 

GLITTER® software package (van Achterbergh et al. 2001; Jackson et al. 2004). Calculated 637 

ratios were exported and age diagrams were generated using Isoplot software package by 638 

Ludwig (2001).  639 

In this study, 
208

Pb/
232

Th ages are preferably used because: 1) U decay series could be 640 

in disequilibrium in young monazites (Schärer, 1984), resulting in overestimated 
206

Pb/
238

U 641 

ages; 2) 
232

Th is so abundant that 
208

Pb originating from initial Pb is negligible compared to 642 

radiogenic 
208

Pb (Janots et al. 2012; Didier et al. 2013). However, in this study, 
206

Pb/
238

U 643 

ages are fully consistent with the 
208

Pb/
232

Th ages suggesting the absence of disequilibrium in 644 

the U decay series. Slight common Pb contamination is suggested by the Tera Wasserburg 645 

diagram, enhanced by the large uncertainty of the 
207

Pb/
235

U ages due to very low 
207

Pb 646 

content in young monazite ages. 647 
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 648 

 649 

7.2. Results 650 

 651 

Fourteen monazites have been analyzed for U-Th-Pb in situ dating in thin section from 652 

one migmatite sample (IK01A; see Fig. 2 for localization; Qz, Pl, Afs, Bt, Sil and Zrn). 653 

Monazites often appear as inclusions in biotite or set at grain boundaries and occur as large 654 

pristine crystals (Fig. 13a; between 60 and 100 µm) showing in few cases irregular 655 

boundaries. Besides, most of the crystals present a clear core and rim texture (Fig. 13b) which 656 

represents variable Y and U contents :  the core is Y and U-poor (Y2O3 between 0.3 and  1.6 657 

wt% and UO2 between 0.2 and 0.8 wt%) whereas the rim is Y and U-rich (Y2O3 between 1.7 658 

and 4.2 wt% and UO2 up to 3.7 wt %).  659 

Thirty two analyses have been performed in the different domains of the monazite 660 

grains.  
208

Pb/
232

Th analyses yielded ages between 14.9 ± 0.5 and 16.4 ± 0.5 Ma, with a 661 

weighted mean age at 15.7 ± 0.2 Ma (MSWD = 4,1; N=32) . All ages appear always 662 

concordant with the 
206

Pb/
238

U ages (Fig. 13c). The U-Pb ages are mostly discordant and 663 

define a linear trend crosscutting the Concordia at 15.1 ± 0.2 Ma in a Tera Wasserburg 664 

diagram (Fig. 13d). This suggests a slight common Pb contamination and the large uncertainty 665 

of the 
207

Pb/
235

U ages due to the very low 
207

Pb content in young monazite. For this reason, 666 

only 
208

Pb/
232

Th ages are considered here (see details in analytical methods). 667 

The scattering of the 
208

Pb/
232

Th ages (high MSWD) is broadly correlated to the core 668 

to rim zonation, the Y and U-poor cores yielding older ages than the Y and U-rich rims (Fig. 669 

13b). However, the small difference between the ages measured in the cores and in the rim of 670 

the monazite grains (less than 1.5 Ma) does not enable a clear distinction between two age 671 

groups. Because i) the monazite is well known to be an efficient chronometer in dating the 672 
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high temperature metamorphic processes, and ii) no inheritance (suggesting the recording of 673 

older metamorphic event) has been observed, these results clearly establish a Langhian age 674 

for the partial melting event that affected the infrastructure of Ikaria Island. 675 

 676 

 677 

8. Discussion 678 

 679 

8.1. An overall top-to-the-N sense of shear as the main deformation record 680 

 681 

The whole tectonometamorphic succession of Ikaria is pervasively affected by top-to-682 

the-N to -NNE ductile deformation whose intensity increases toward the top of the structure 683 

(Figs. 6f and 14a). While the deepest parts of the tectonometamorphic succession exhibits 684 

rather symmetrical deformation dominated by flattening, top-to-the-N shearing deformation 685 

shows a large-scale strain gradient toward the Fanari shear zone along which most of the 686 

strain is concentrated, with an upward evolution toward a more top-to-the-NNE kinematics 687 

(Fig. 5). Characterized by a subordinate top-to-the-NNE strain gradient, the Agios-Kirykos 688 

shear zone is furthermore responsible for a 50 °C gap of normal sense, as retrieved by RSCM 689 

analyses (Fig. 12). These embedded gradients are accompanied by greenschist-facies 690 

retrogression gradients quite obvious at the scale of the outcrop or hand-specimen (Fig. 7). 691 

Crossing the ductile to brittle transition, the Fanari shear zone has even recorded increments 692 

of motion in brittle conditions responsible for the development of thick cataclasite bodies 693 

(Figs. 3 and 9). The direction of ductile stretching and markers of later brittle extensional 694 

motions on the detachment planes show a continuum of NNE-SSW stretching and top-to-the-695 

NNE shearing, consistent, in a broad sense, with extensional direction in both metamorphic 696 

and sedimentary rocks (Fig. 11). This evolution is interpreted as an evidence of continuous 697 
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stretching from middle to upper crustal levels through the ductile-brittle transition and 698 

continuous shearing along a major detachment localizing deformation. 699 

Low-temperature geochronology pointed out a clear northward younging of ZFT ages 700 

(10.3 ± 0.3 to 7.1 ± 0.3 Ma) and AFT ages (8.4 ± 0.8 to 5.9 ± 0.8 Ma) consistent with an 701 

overall top-to-the-N unroofing with apparent slip-rates over the Fanari detachment of 10-8 702 

km/Ma (Fig. 14b; Kumerics et al., 2005). U-Th/He analyses on apatite for both flanks of the 703 

dome yielded similar 6 Ma ages. Motion over the Fanari detachment seems stop near 6 Ma. 704 

These ages constrain, in turn, the maximum age for the onset of passive “folding” of the 705 

Fanari detachment plane around the dome, which postdates the last brittle motions of the 706 

detachment and even the brittle normal faulting that affects sediments.  707 

A progressive rotation of the stretching and shearing direction is observed from the 708 

core to the outer flanks of the domes (Fig. 5). As suggested by the structural study, the 709 

shearing strain has progressively localized through time upward from a distributed flow, 710 

recorded in the amphibolite-facies conditions, to mylonites, ultramylonites and then 711 

cataclasites in the vicinity of Fanari detachment (Figs. 3 and 9). Accordingly, the N-S 712 

trending lineation preserved in the core is older than the NNE-SSW trending one at the top 713 

along the main shear zones. The core of the dome has therefore rotated 35° counterclockwise 714 

during its exhumation before the final doming that seems to be the latest event recorded on 715 

Ikaria. This late event tends to confer to the dome the geometry of an a-type dome where the 716 

stretching direction is parallel to the dome axis (Jolivet et al., 2004a) and which can suggests 717 

an oblique component of shearing during doming (Le Pourhiet et al., 2012). A significant 718 

component of E-W shortening is currently recorded in the deformation of the northern Aegean 719 

domain as a result of westward motion of Anatolia along the North Anatolian Fault (NAF) 720 

(e.g. Le Pichon and Kreemer, 2010). If the NAF has reached the northern Aegean some 6 Ma 721 

ago as a localized crustal-scale fault zone (Armijo et al., 1999; Melinte-Dobrinescu et al., 722 
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2009), it has been suggested that dextral movements has been active since 12 Ma (Sengör et 723 

al., 2005). In the field, consequences of an E-W shortening are clearly recorded in the 724 

northern Cyclades, all the way to western Turkey (Angelier, 1976; Buick, 1991; Bozkurt and 725 

Park, 1997; Ring et al., 1999; Avigad et al., 2001; Menant et al., 2013). This context, showing 726 

a combination of exhumation, strike-slip and contemporaneous E-W shortening and N-S 727 

crustal stretching, suggests a component of transtension during the last evolution stages (Le 728 

Pourhiet et al., 2012; Fossen et al., 2013). This oblique component fits the hypothesis of a 729 

left-lateral transfer zone from the Menderes massif to the Cyclades proposed by Ring et al. 730 

(1999) and recently reassessed by Gessner et al. (2013). Detailed studies on the timing of the 731 

formation of stretching directions across the dome coupled with the timing of doming are 732 

necessary to go any further. 733 

 734 

 735 

8.2. Eastern extension of the North Cycladic Detachment System  736 

 737 

Obvious structural and metamorphic similarities of the series of detachments from 738 

Andros to Mykonos, with coeval top-to-the-N to -NNE kinematics, led Jolivet et al. (2010) to 739 

mechanically merge them in a single crustal-scale extensional structure, called NCDS. A 740 

probable correlation of the Fanari detachment of Kumerics et al. (2005) with the NCDS was 741 

even proposed (Jolivet et al., 2010). The existence on Ikaria of two detachments, one purely 742 

ductile and the other evolving from ductile to brittle conditions and the presence of the 743 

synkinematic granite piercing through the dome are indeed reminiscent of the anatomy of the 744 

NCDS as described on Andros, Tinos and Mykonos (Jolivet et al., 2010). On Tinos (e.g. 745 

Jolivet and Patriat, 1999; Jolivet et al., 2004a; Brichau et al., 2007) as well as on Mykonos 746 

(e.g. Faure et al., 1991; Lecomte et al., 2010; Denèle et al., 2011; Menant et al., 2013), 747 



Page 32 of 86

Acc
ep

te
d 

M
an

us
cr

ip
t

increments of ductile and then brittle deformation are recorded by synkinematic intrusions 748 

emplaced into the main extensional shear zones. The Tinos Detachment is mostly ductile and 749 

is pierced by the Tinos intrusion. Conversely, the Livada Detachment shows ductile then 750 

brittle deformation and affects the Tinos intrusion (Brichau et al., 2007). This last detachment 751 

is then pierced by the Mykonos intrusion. The more superficial Mykonos Detachment that 752 

clearly post-dates all intrusions, operated only in purely brittle conditions and carries syn-753 

extension sediments (e.g. Lecomte et al., 2010; Menant et al., 2013). These three detachments 754 

that operate sequentially form the NCDS. A similar evolution is observed on Ikaria. 755 

Exclusively operating in the ductile field, the Agios-Kirykos shear zone is later cut down-756 

section by the Fanari detachment that evolves from ductile to brittle and even controls the 757 

deposition of syn-tectonic sediments in the hangingwall. 758 

Along with the current lack of precise time-constraints on synkinematic minerals, 759 

timing of extensional deformation onset is still unclear on Ikaria. If partial melting occurred at 760 

ca. 15.5 Ma, as showed in this study, the signification of the 25-17 K/Ar ages on hornblende 761 

(Altherr et al., 1982) are questioned. These ages may reflect either Ar inheritance from an 762 

earlier tectonometamorphic event or simply excess argon (i.e. extraneous argon), as suggested 763 

by the strong scattering of these ages. Then, onset of extension might starts at or just after ca. 764 

15.5 Ma. The 12-9 Ma K/Ar and Ar/Ar ages obtained on fabric-forming white-micas and 765 

biotite are believed to record either a fast cooling or last recrystallizations during 766 

mylonitization (see compilation on Fig. 14b; Altherr et al., 1982; Kumerics et al., 2005). In 767 

parallel, the three intrusions (Raches, Karkinagrion and Xylosyrtis) that crystallized at 14-13 768 

Ma therefore synkinematically emplace within the Fanari shear zone (U-Pb on zircon; Bolhar 769 

et al., 2010; Laurent et al., 2015). Intrusions all underwent a common fast cooling to 770 

temperatures close to the ductile to brittle transition (Stöckhert et al., 1999; Imber et al., 2001) 771 

at ca. 10 Ma (K/Ar and Ar/Ar on micas; Altherr et al., 1982; Kumerics et al., 2005). Being 772 
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only active in the ductile field, the Agios-Kirykos therefore probably ceased to be active some 773 

10 Ma ago. Displacement and further strain localization were thus transferred to the Fanari 774 

shear zone, responsible for the final exhumation, in the ductile and then the brittle field. The 775 

last exhumation stages were characterized by fast (100-80 °C/Ma) cooling rates and ended at 776 

around 6 Ma (Fig. 14b; FT and U-Th/He on zircon and apatite; Kumerics et al., 2005). As a 777 

comparison, crystallization and cooling of the Mykonos pluton occurred between 13.5 Ma and 778 

9 Ma as a result of the fast exhumation related to the activity of the Livada and Mykonos 779 

detachments (e.g. Brichau et al., 2008; Lecomte et al., 2010; Jolivet et al., 2010). Low-780 

temperature ages even suggest that motions over the Fanari detachment continued until 6 Ma 781 

and are thus the last top-to-the-N to -NNE detachment active in the Aegean domain. These 782 

similarities in terms of geometries, kinematics and timing of the Ikaria detachments and the 783 

various branches of the NCDS confirm the proposed eastward extension of the NCDS all the 784 

way to the eastern end of Ikaria in the Agios-Kirykos and Fanari shear zones (Fig. 15). 785 

Similarly to Mykonos, the detachment system of Ikaria, does not exhume HP-LT 786 

metamorphic rocks belonging to the Cycladic Blueschists unit, at variance with Tinos and 787 

Andros. Indeed, along with the structural position and the lithostratigraphic succession, the 788 

apparent lack of any HP-LT imprint either in Ikaria and Agios-Kirykos units precludes 789 

correlations with the Cycladic Blueschists unit. The Ikaria and Agios-Kirykos units are 790 

characterized by the same monotonous lithologies and a similar 80-100 °C/km thermal field 791 

gradient, it is proposed that both units were equilibrated along a single, warm gradient rooting 792 

in partially-molten rocks. 793 

Correlated with the Upper Cycladic unit, in a broad sense, the Fanari unit reworks 794 

large amount of Pelagonian detritus shed into the extensional basins (Photiades, 2002a). 795 

While deposition of sediments on the Upper Cycladic unit started around 23 Ma throughout 796 

the Aegean domain (Angelier et al., 1976; Sánchez-Gómez et al., 2002; Kuhlemann et al., 797 
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2004), sediments preserved on Ikaria are attributed to Late Oligocene to Early Pliocene 798 

(Papanikolaou, 1978; Photiades, 2002a; 2002b). This rather recent deposition age is consistent 799 

with last denudation ages ascribed to last extensional motions over the Fanari detachment 800 

(Kumerics et al., 2005), which may be responsible for maintaining a significant tectonic 801 

subsidence.  802 

 803 

 804 

8.3. Definition of the Ikaria MCC and the central Aegean HT zone 805 

 806 

The structure of Ikaria is composed of two main parts separated by a detachment 807 

system consisting in shallow-dipping extensional ductile to brittle shear zones connecting 808 

surficial to mid-crustal levels (e.g. Fig. 2). The bulk finite architecture of the footwall consists 809 

in an elongated structural dome roofed by a partly eroded mylonite, ultramylonite and 810 

cataclasite carapace (Fig. 4). This geometrical dome is paired with a fairly concentric 811 

distribution metamorphic zones of decreasing grade from migmatites and 625 °C in the core 812 

to 390 °C in the externals parts (Fig. 12). The dome flanks display 500-m thick strain gradient 813 

evolving upward to mylonites characterized by the uniformity of shear sense from one limb to 814 

the other. They are partially overprinted by cataclasites and fault-rocks in the Fanari 815 

detachment zone (Figs. 3 and 9). The detachment itself is marked by a clear-cut fault plane 816 

carrying evidences for large-scale displacements in the brittle field (Fig. 9). The hangingwall 817 

unit, exclusively composed sediments, is only characterized by brittle deformation (Fig. 10). 818 

Following this description, Ikaria dome shares all attributes of a typical migmatite-cored 819 

MCC (see Platt et al., 2014, for review) firstly described in the Basin and Range of western 820 

United States (Davis and Coney, 1979; Crittenden et al., 1980; Wernicke, 1981, 1985), and 821 

then in other Alpine (e.g. Lister et al., 1984; Dewey, 1988; Gautier et al., 1993; Gautier and 822 



Page 35 of 86

Acc
ep

te
d 

M
an

us
cr

ip
t

Brun, 1994; Jolivet and Patriat, 1999; Vanderhaeghe, 2004) and Variscan or Caledonian 823 

orogenic belts (e.g. Norton, 1986; Andersen et al., 1991). 824 

Partial melting is a key factor that controls the strength of the continental crust. The 825 

recent discovery of migmatites in the infrastructure of the Ikaria MCC dome may have 826 

important implications for the behavior of the Hellenic continental crust during Oligo-827 

Miocene extension. Several high-grade gneiss and migmatite massifs have already been 828 

described in the Aegean realm. However, most of these occurrences of HT rocks are basement 829 

rocks inherited from ancient tectonometamorphic events. An early Paleozoic HT event is 830 

known in the Menderes (e.g. Gessner et al., 2004) and in the East of the Aegean Sea, 831 

particularly on Ikaria (Kumerics et al., 2005; Ring et al., 2007). There, a ca. 460 Ma age 832 

retrieved form a pegmatite dyke may reflect a minimum age for HT metamorphism (Kumerics 833 

et al., 2005). A Variscan inheritance is also well described in the Cycladic basement unit in 834 

the Southern Cyclades (e.g. Henjes-Kunst and Kreuzer, 1982; Andriessen et al., 1987; Keay 835 

and Lister, 2002). On these islands, a ca. 320 Ma granite and amphibolite facies gneisses are 836 

partially overprinted by the Eocene HP imprint (e.g. Henjes-Kunst and Kreuzer, 1982; 837 

Andriessen et al., 1987; Keay and Lister, 2002; Huet et al., 2009; Augier et al., 2015). The 838 

only Oligo-Miocene migmatites crop out in the core of the Naxos MCC, the first that has been 839 

described in the Aegean domain (e. g. Lister et al., 1984). There, the age of the partial melting 840 

is quite constrained by U-Pb analyses on zircon yielding series of ages ranging from 21 to 17 841 

Ma (Keay et al., 2001). The age of migmatites recently discovered on Ikaria is therefore of 842 

prime importance. In this study, pioneer U-Th-Pb analyses on monazites from a leucosome of 843 

the migmatites yielded an age of 15.7 ± 0.2 Ma (Fig. 13). This result falls in the same age-844 

range than the recent U-Pb age on zircon ascribed to the Karkinagrion S-type granite (Bolhar 845 

et al., 2010) together with closely associated migmatites (Laurent et al., 2015).  Clearly 846 

associated with the same large scale partial melting event that affected the Hellenic 847 
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continental crust, anatexis at the latitude of Ikaria appears slightly younger than further south 848 

on Naxos. Along with Naxos, Mykonos and Ikaria, HT MCCs all cluster in the central part of 849 

the Aegean domain. It is here proposed to define the central Aegean HT zone as a large-scale 850 

extensional tectonic window of high-grade, partially-molten rocks (Fig. 15), of Early-Middle 851 

Miocene age (Keay et al., 2001; this study) (Fig. 15). There, intense stretching leads to the 852 

complete tectonic omission of the Cycladic Blueschists unit that is observed in colder MCCs 853 

further west in Syros, Andros or Tinos (e.g. Trotet et al., 2001a; Mehl et al., 2007), to the east 854 

in Samos (e.g. Ring et al., 1999) or to the south in Ios, Folegandros and Sikinos (e.g. Huet et 855 

al., 2009; Augier et al., 2015). This gradient of finite stretching toward the center and east of 856 

the Cyclades is attested by the joint evolution of the topography, the crustal thickness and the 857 

first order transition from brittle to ductile deformation from marginal areas to the center of 858 

the Aegean domain (e.g. Jolivet et al., 2010). Uprise of partially-molten materials in-between 859 

less-extended Cycladic Blueschists unit evokes crustal-scale equivalents of the scar folds that 860 

result from ‘‘boudins’’ separation in the process of boudinage (Tirel et al., 2008). This simple 861 

model should however be adapted as three distinctive detachment bounding smaller-scale 862 

MCCs are currently observed (Fig. 15). The NCDS (Jolivet et al., 2010) exhumes Andros, 863 

Tinos, Mykonos and Ikaria in the north while the NDP exhumes Naxos and Paros in the 864 

center (Buick, 1991; Gautier et al., 1993; Vanderhaeghe, 2004; Duchêne et al., 2006; 865 

Kruckenberg et al., 2011). Both are associated with top-to-the-N shear. Finally, further 866 

southwest, the alignment of Kea, Kythnos and Serifos shows another row of small-scale 867 

domes exhumed by the top-to-the-SW WCDS (Grasemann et al., 2012). If top-to-the-S 868 

criteria on Ios and Sikinos are related to a thrust (Huet et al., 2009; Augier et al., 2015) and 869 

not to a detachment (Vandenberg and Lister, 1996; Forster and Lister, 1999; Thomson et al., 870 

2009; Ring et al., 2011) then extensional top-to-the-N shearing is systematically observed 871 

from north to south of the central Aegean (Fig. 15). This result contrasts with the more 872 
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symmetric deformation recognized in marginal areas, where symmetrically arranged 873 

detachment systems depict more bivergent extensional systems either to the west (Grasemann 874 

et al., 2012) or east in Samos (Ring et al., 1999) or in the Menderes massif (Hetzel et al., 875 

1995b; Gessner et al., 2001). A correlation between the amount of stretching of the crust and 876 

the degree of non-coaxiality is therefore proposed. Just as the Tyrrhenian or the Alboran back-877 

arc systems, the causes of this regional-scale non-coaxial extension in the Aegean back-arc 878 

domain is a first-order question that is outside the focus of this paper but may pertain to the 879 

interactions between the upper plate, the retreating subducting slab and the flowing 880 

asthenospheric mantle (Jolivet et al., 2009; Sternai et al., 2014).  881 

 882 

 883 

9. Conclusions 884 

 885 

Although Ikaria is one of the largest Aegean islands and paves the way between the 886 

Cyclades and the Menderes massif, its geology and tectonic evolution remain poorly 887 

understood since recent studies lead to very conflicting maps and interpretations. This paper 888 

reports a detailed 3D study of the geometry and the thermal structure of Ikaria. The structural 889 

study shows that the HT-LP foliation is arched, forming a NE-SW trending structural dome 890 

cored by partially molten rocks and intruded by late intrusive granitic bodies. Lineation shows 891 

a N-S to NNE-SSW ductile stretching associated with an overall top-to-the-N to -NNE sense 892 

of shear. Final exhumation of the dome was completed by Miocene extensional system made 893 

of two main top-to-the-N to -NNE shear zones, operating in the ductile and then the brittle 894 

fields. The thermal structure revealed by the RSCM approach strengthened the subdivision of 895 

the metamorphic succession in two main metamorphic units (Ikaria and Agios-Kirykos units) 896 

with an upward decrease of maximum temperature, separated by the Agios-Kirykos shear 897 
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zone. The Fanari detachment permits to juxtapose the sedimentary Fanari unit directly on 898 

metamorphic rocks. The distribution of RSCM temperatures within the dome and the presence 899 

of migmatites of ca. 15.5 Ma age in the western part of the island fit the description of a HT 900 

MCC such as Naxos or Mykonos. The proposed tectono-metamorphic evolution of the dome 901 

is consistent with the evolution of the northern Aegean area controlled by the eastern 902 

extension of the NCDS. Definition of Ikaria as a HT MCC allows the definition of the 903 

geographic extent of the central Aegean HT zone associated with strictly asymmetric top-to-904 

the-N ductile shearing and an Early-Middle Miocene partial melting event. A correlation 905 

between the amount of stretching of the crust and the degree of non-coaxiality is therefore 906 

proposed. 907 
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Table caption 1511 

 1512 

Table 1: RSCM peak temperature results 1513 

RSCM results classified by increasing temperatures. For each sample are indicated the GPS 1514 

position, the total number of Raman spectra (n) performed, the mean R2 ratio and temperature 1515 

calculated, both associated with their standard deviation (SD) related to the intra-sample 1516 

heterogeneity. Location of samples and Tmax results are given on Fig. 12. 1517 

 1518 

 1519 

Figure captions 1520 

 1521 

Figure 1: Tectonic map of the Aegean domain 1522 

Tectonic map of the Aegean domain showing the main geological units and structures related 1523 

to both synorogenic and postorogenic episodes, modified after Jolivet et al. (2013) and 1524 

references therein. Original map has been modified incorporating recent works (Ring et al., 1525 

1999; Kumerics et al., 2005; Rosenbaum et al., 2007; Huet et al., 2009; Grasemann et al., 1526 

2012; Augier et al., 2015). NCDS: North Cycladic Detachment System; WCDS: West 1527 

Cycladic Detachment System; NDP: Naxos-Paros Detachment; SCT: South Cycladic Thrust. 1528 

 1529 

Figure 2: Geological map of Ikaria  1530 

(a) New geological map of Ikaria proposed in this study. Lithologic outlines correspond to 1531 

new field observations and a compilation of existing maps (e.g. Papanikolaou, 1978; 1532 
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Photiades, 2002b; Kumerics et al., 2005; Ring, 2007). Also indicated are two representative 1533 

tectonometamorphic piles for the eastern and the western parts of Ikaria. 1534 

 1535 

Figure 3: New geological features and precisions about nature of contacts 1536 

(a) The intrusive contact between Raches granite and marbles of Ikaria unit is clearly marked 1537 

by the presence of granitic dykes within marbles. (b) Southward extension of the Fanari 1538 

detachment at Therma, separating conglomerates of Fanari unit and metasediments of Agios-1539 

Kirykos unit. (c) Panorama of the Fanari detachment at Gialiskari between sediments of 1540 

Fanari unit and the Raches granite. (d) Close-up view of granite-derived cataclasites beneath 1541 

the Fanari detachment at Gialiskari. (e) Details of migmatites from the lower parts of Ikaria 1542 

unit preserved in the south of Raches granite. See Fig. 2 for location. 1543 

 1544 

Figure 4: Main planar fabrics 1545 

(a) Foliation-map of Ikaria. Geometry of sedimentary bedding in Fanari unit is also showed. 1546 

(b) Statistics of the main foliation geometry. Poles of foliation are presented in Schmidt’s 1547 

lower hemisphere equal-area projection and preferred orientations of foliation is given by the 1548 

rose-diagram. The elongation of the cloud allows retrieving the geometry of the dome axis. 1549 

Also note that the asymmetry of the cloud calls for the asymmetry of the dome with a steeper 1550 

southeast flank. (c) Simplified geological map showing foliation trajectories and traces of the 1551 

main shear zones.  1552 

 1553 

Figure 5: Stretching lineation 1554 

(a) Stretching lineation-map of Ikaria. Note that the trend of the lineation shows very little 1555 

dispersion. It is noteworthy that the strike of the stretching lineation describes slightly curved 1556 

patterns from N-S to more NNE-SSW directions. Indicated are the results of the fault-slip data 1557 
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inversion. (b) Statistics on the preferred orientation of stretching lineation presented in 1558 

Schmidt’s lower hemisphere equal-area projection. 1559 

 1560 

Figure 6: Upward strain gradient within Ikaria unit 1561 

(a) Incomplete transposition of the compositional layering into a main, flat-lying penetrative 1562 

foliation within the deepest parts of the structure. (b) More advanced transposition of the 1563 

compositional layering into the flat-lying penetrative foliation. Note that boudin-shaped 1564 

volume of rocks preserved isoclinal folds between decameter-scale top-to-the-N shear bands. 1565 

(c) Close-up view of the cross-cutting relationships compositional layering and the main 1566 

foliation. Note that fold axes are now mostly parallel to the stretching direction. (d) Mylonitic 1567 

deformation of the upper parts of Ikaria unit. The foliation dips gently toward the north. 1568 

Metabasites form asymmetric pinch-and-swell boudinage indicating top-to-the-N kinematics. 1569 

(e) Typical mylonites from the uppermost parts of Ikaria unit, near Evdilos. Quartz veins have 1570 

been transposed and stretched into the shear direction and forming asymmetric sigmoids 1571 

indicating top-to-the-NNE kinematics. (f) Composite cross section showing the first-order 1572 

strain gradient and the structural position of outcrops of Fig. 6. Trace is represented on Fig. 2. 1573 

 1574 

Figure 7: Physical conditions of the deformation within Ikaria unit 1575 

(a) Small-scale top-to-the-S shear bands operating in the lower parts of Ikaria unit. The 1576 

volume of rocks involved in the deformation is quite large and the amphibolite-facies 1577 

associations are quite well preserved. Note that in these incipiently deformed rocks, 1578 

deformation is rather symmetrical and local top-to-the-S kinematics are sometimes observed. 1579 

(b) Close-up view of syn-greenschist-facies mylonites from the core of the Agios-Kirykos 1580 

shear zone in the upper parts of Ikaria unit.  1581 

 1582 
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Figure 8: Deformation in Agios-Kirykos unit 1583 

Outcrop pictures of rather weak (a) and intense (b) top-to-the-NE asymmetric deformation in 1584 

Agios-Kirykos unit. Note that shearing, developed in the greenschist-facies conditions, 1585 

displays a clear evolution to more localized or even cataclastic flow. (c) Large-scale view of 1586 

the core of the Fanari shear zone at Agios Kiriaki. Exposed are the mylonites of the 1587 

uppermost parts of Ikaria unit, on the first plane, while sediments of Fanari unit crop out in 1588 

the background. Close-up views of the deformation of (d) marble and (e) metapelite layers. 1589 

Marble layers display successive stages of symmetric boudinage, ranging from ductile to 1590 

strictly brittle while metapelite levels show a strong non-coaxial component consistent with 1591 

an overall top-to-the-NE kinematics. 1592 

 1593 

Figure 9: The Fanari detachment plane 1594 

Large-scale representative view of the Fanari detachment plane at Fanari. The detachment 1595 

plane is stripped of its sedimentary cover over several hundreds of square meters. Sediments 1596 

that are almost vertical are preserved in the incised gullies and all along the coast from Fanari 1597 

to Agios Kirykos. The plane carries series of large-scale corrugations and crescent-shaped 1598 

structures indicating a consistent top-to-the-NNE kinematics. Note that the detachment plane 1599 

is cut across by series of high-angle faults carrying sub-horizontal striations. Also are 1600 

represented stereographic projections of striations and kinematics of both the detachment 1601 

plane and the faults that offset the plane. 1602 

 1603 

Figure 10: Using microstructures to unfold the Fanari detachment 1604 

 (a) Sketch depicting the probable geometry of the Fanari detachment prior to its tilting 1605 

together with the whole system (see Fig. 9). The result is a system where the detachment 1606 

plane operates at shallow angle with dextral-normal-sense. In the restored position, sediments 1607 
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appear pervasively affected by a single set of conjugate normal faults. (b) Outcrop pictures 1608 

and stereographic projections of fault systems before and after back-tilting rotation for sites 6 1609 

and 7 (see Fig. 5 for location). In this restored position, paleostress solutions are all consistent 1610 

with a unique and common NNE-SSW to NE-SW extensional stretching. This orientation is 1611 

consistent with the paleostress field deduced from other stations throughout the island (see 1612 

Fig. 11). Note that, conversely, three successive stress states are required to account for the 1613 

heterogeneous fault populations present in their current position.  1614 

 1615 

Figure 11: Small-scale brittle structures  1616 

Detailed results of the fault-slip data inversion. Fault planes, associated striae and results of 1617 

inversion were plotted using WinTensor software in Schmidt’s lower hemisphere equal-area 1618 

projection (Delvaux and Sperner, 2003). Also is presented a representative outcrop recognized 1619 

as demonstrative of a brittle stage subsequently developed after the ductile one (site 1; see 1620 

location on Fig. 5). Faults occur as a dense array of rather steep normal faults. Note the 1621 

consistency of the NNE-SSW to NE-SW direction of extension all over the island. 1622 

 1623 

Figure 12: RSCM peak temperature results  1624 

(a) Sampling map used for the RSCM study. In the bottom right corner, Tmax are sorted by 1625 

increasing temperature, where errors brackets correspond to intra-sample heterogeneity 1626 

standard deviation. Note that temperature is comparable for two samples, positioned side by 1627 

side in the chart, for Ikaria unit on one hand, and for Agios Kirykos unit on the other hand. 1628 

But the two units are characterized by clearly differentiable bulk temperature. (b) Tmax vs 1629 

structural position for the northeastern part (samples used for (b) are written in bold on the 1630 

map). Note the gap of temperature near the Agios-Kirykos shear zone, quite clear on the 1631 

Therma cross section. (c) Increasing temperature approaching the Raches granite. 1632 
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 1633 

Figure 13: U-Th-Pb analyses on monazite from migmatite sample IK01A 1634 

(a) Typical textural relationships between monazite (Mnz) crystals and the magmatic 1635 

paragenesis as explored by BSE mean. Mnz 3 is included into biotite (Bt). (b) Details of the 1636 

internal texture of Mnz 3 and Mnz 4 monazite crystals. BSE image reveal a clear core-rim 1637 

textures. Is also shown the location of ICPMS laser ablation analysis (9 µm) and their 1638 

corresponding 
208

Pb/
232

Th ages (2σ level). Note the correlation between ages and the core-rim 1639 

textures. (c) 
206

Pb/
238

U vs 
208

Pb/
232

Th diagram for all data showing a 
208

Pb/
232

Th age of 15.7 ± 1640 

0.2 Ma concordant with the 
206

Pb/
238

U ages. (d) Tera-Wasserburg diagram for all analyses, 1641 

intercepting the Concordia at 15.1 ± 0.2 Ma. Discordant U/Pb ages suggest a slight common 1642 

Pb contamination and the uncertainty of the 
207

Pb/
235

U ages due to the low 
207

Pb content of 1643 

young monazites. In this study, only the 
208

Pb/
232

Th ages were considered (inset c). 1644 

Mineral abbreviations are after Whitney and Evans (2010) 1645 

 1646 

Figure 14: Large-scale structure and available time-constraints 1647 

(a) Three-dimensions large-scale sketch of Ikaria depicting the relationships between the 1648 

structural dome, the synkinematic intrusions and the major shear zones. (b) Time-chart 1649 

compiling all geochronological constraints available for Ikaria. Note that both the 1650 

metamorphic dome and the late intrusions share a common fast cooling from 11-10 Ma 1651 

onward. U/Pb ages on zircon (Zrn) are from Bolhar et al. (2010); K/Ar ages on muscovite 1652 

(Ms) and biotite (Bt), Rb/Sr ages on muscovite and FT ages on apatite (Ap) are from Altherr 1653 

et al. (1982) and Kumerics et al. (2005). (U-Th)/He ages on apatite and FT ages on zircon are 1654 

from Kumerics et al. (2005); K/Ar ages on hornblende (Hbl) are from Altherr et al. (1982). 1655 

Mean closure temperature are from Harrison (1981), Steck and Hunziker (1994), Grove and 1656 

Harrison (1996), Brandon et al. (1998), Ketcham et al. (1999), Farley (2000), Cherniak and 1657 
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Watson (2001) and Harrison et al. (2009). K/Ar, Ar/Ar and Rb/Sr ages on metamorphic rocks 1658 

could reflect deformation-assisted crystallization (Kumerics et al., 2005) or cooling (Altherr et 1659 

al., 1982). Same ages on granites are interpreted as cooling ages (Altherr et al., 1982; 1660 

Kumerics et al., 2005). The new age of partial melting from this study is also showed. 1661 

Question mark is associated with ages which are discussed in the text. 1662 

 1663 

Figure 15: Large-scale implications 1664 

(a) Tectonic map of synorogenic and postorogenic structures in the Aegean domain showing 1665 

i) how far the back-arc postorogenic extension remains highly asymmetric in the center of the 1666 

domain and ii) the footprint of the central Aegean HT zone where MCCs are described. Red 1667 

and green arrows indicate the ductile sense of shear associated to the Oligo-Miocene 1668 

extensional episode associated with the NCDS, the WCDS and the NDP (Lister et al., 1984; 1669 

Faure et al., 1991; Gautier and Brun, 1994; Vandenberg and Lister, 1996; Jolivet and Patriat, 1670 

1999; Mehl et al., 2005; 2007; Huet et al., 2009; Grasemann et al., 2012; Augier et al, 2015). 1671 

On Syros and Sifnos islands, the synorogenic top-to-the-ENE sense of shear is associated to 1672 

the synorogenic Vari detachment of Syros (Trotet et al., 2001a; 2001b). (b) Stretching-parallel 1673 

cross-section through the central Aegean HT zone where intensity of stretching and 1674 

asymmetry of the deformation are maximum. 1675 
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Figure1
Click here to download high resolution image
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Figure2
Click here to download high resolution image
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Figure3
Click here to download high resolution image
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Figure4
Click here to download high resolution image

http://ees.elsevier.com/geod/download.aspx?id=64055&guid=eb006af4-e858-4acd-b8cf-beb3401359aa&scheme=1


Page 74 of 86

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure5
Click here to download high resolution image

http://ees.elsevier.com/geod/download.aspx?id=64056&guid=7efc0559-f029-47f0-9731-76d6bea1f8f3&scheme=1
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Figure6
Click here to download high resolution image
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Figure7
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Figure8
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Figure9
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Figure10
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Figure11
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Figure12
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Sample Coordinates (UTM 35 N) n

Mean SD Mean SD

IK 12-15 441548   4168007 21 0,562 0,036 391 16

IK 13-33 438478   4163867 19 0,535 0,043 403 19

IK 13-31 438178   4163625 20 0,482 0,049 426 21

IK 13-34 438453   4164338 19 0,473 0,044 430 19

IK 12-13 439086   4164923 19 0,453 0,037 439 17

IK 13-22 440733   4168835 14 0,433 0,023 448 10

Ikaria unit

IK 13-28 441898   4171296 19 0,312 0,049 502 22

IK 12-14 439237   4165283 20 0,303 0,082 506 36

IKS 13-13 428570   4164441 17 0,278 0,035 517 16

IKS 13-11 431485   4165492 21 0,269 0,104 521 46

IK 12-01 428758   4164611 23 0,266 0,051 522 22

IK 12-20 427111   4163553 18 0,264 0,038 523 17

IK 13-29 442324   4170727 13 0,262 0,034 524 15

IK 13-35 438248   4164495 15 0,251 0,039 530 17

IK 13-27 441743   4170619 15 0,241 0,033 534 15

IK 13-07 426986   4160696 21 0,233 0,081 537 36

IKS 13-06 432513   4162583 16 0,228 0,029 540 13

IKS 13-03 424903   4158649 16 0,219 0,047 543 21

IK 12-12 438723   4164980 20 0,216 0,082 545 37

IK 13-05 426436   4160041 15 0,216 0,055 545 24

IK 13-06 426795   4160494 16 0,213 0,065 546 29

IKS 13-12 427145   4161730 16 0,209 0,035 548 16

IK 12-04 426177   4165286 16 0,204 0,040 550 18

IK 13-08 425761   4165301 18 0,202 0,057 551 25

IK 12-21 425535   4161591 13 0,194 0,044 555 19

IK 12-11 438363   4165292 19 0,174 0,041 564 18

IKS 13-10 435557   4167534 13 0,130 0,042 583 19

IK 13-09 425573   4165499 17 0,129 0,045 584 20

IKS 13-04 430168   4161819 11 0,129 0,041 584 18

IKS 13-01 429434   4159919 17 0,110 0,051 592 23

IK 13-16 440281   4168893 18 0,107 0,051 594 22

IK 13-13 439031   4170692 15 0,083 0,040 604 18

IKS 13-14 427196   4158256 13 0,072 0,041 609 18

IKS 13-15 431859   4160264 14 0,054 0,045 617 20

IK 12-24 433322   4166192 18 0,037 0,034 625 15

R2 T (°C)

Agios-Kirykos unit

Table1
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Supplementary data (e-component)
Click here to download Supplementary data (e-component): Th-U-Pb analyses.xls
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