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A Zero-Suppressed Binary Decision Diagram
Approach for Constrained Path Enumeration

Renzo Tan, Jun Kawahara, Agnes Garciano, and Immanuel Sin

Abstract—Combinatorial optimization over graphs has been
the subject of research. Recently, the solution of such prob-
lems by enumeration using a compact data structure called
the zero-suppressed binary decision diagram was proposed
and studied. The paper augments the existing frontier-based
search method of construction and puts forth a technique
for accommodating additional constraints during computation.
The shortest and longest path problems for the Osaka Metro
transit network are simultaneously solved as demonstration.
Furthermore, a comparison of the approach with a conventional
integer programming method is presented towards justifying
the effectiveness of the algorithm.

Index Terms—zero-suppressed binary decision diagram, sub-
graph optimization, enumeration algorithm.

I. INTRODUCTION

THE zero-suppressed binary decision diagram [1] is a
compact graph-based representation for an identified

family of sets. In combinatorial optimization, therefore,
feasible solutions to a problem may be stored in a zero-
suppressed binary decision diagram economic of space [2].
Moreover, mathematical operations on families of sets may
be performed on zero-suppressed binary decision diagrams as
the composition is inherently recursive [3]. For example, the
intersection and union of two families are easily computed
through the said diagram representation. Since the zero-
suppressed binary decision diagram contains all sets pertinent
to a particular setup, the solution with the maximum or
minimum aggregate weight, the number of feasible solutions,
the mean and variance of the total weights of the solutions,
and other information can also be obtained without manually
extracting the set elements [3].

In the context of graphs, a zero-suppressed binary decision
diagram can stand in for a collection of subgraphs [3]. The
sets of edges that comprise each subgraph are used to distin-
guish the elements in the collection; thus, the nodes in the
zero-suppressed binary decision diagram are consistent with
the edges and not the vertices of the given graph. Segueing
into construction, a technique for efficient zero-suppressed
binary decision diagram creation is the frontier-based search
[4]. The algorithm hinges on storing information in the
nodes of the zero-suppressed binary decision diagram as
it is being generated. Subgraph specifications may then be
set in accord with the graph optimization problem. As a
consequence, real world problems such as region partitioning
for disaster evacuation [5], grid power loss minimization
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[6], and architectural floor planning [7], among others, were
solved through the application of zero-suppressed binary
decision diagram approaches.

In brief, the paper extends the frontier-based search al-
gorithm for zero-suppressed binary decision diagram con-
struction. This allows for the inclusion of a category-based
constraint in addition to the customary degree constraint. By
the proposed routine, one solves a constrained version of the
shortest and longest s-t path problems for the Osaka Metro.
To close, numerical experiments are done to show the success
of the algorithm as opposed to standard methods.

An overview of the study is as follows. The second section
provides a summary of the zero-suppressed binary decision
diagram and the frontier-based search. Experiment results are
in the third section, including a precursory investigation and
the main contribution. A report on computational efficiency is
also seen in the third section. The fourth section emphasizes
the importance of the research and recommends directions
for future work.

II. PRELIMINARIES

A. Zero-Suppressed Binary Decision Diagram

A zero-suppressed binary decision diagram is a data struc-
ture that represents a family of sets over a finite universe
U =

{
x1, x2, . . . , x|U |

}
with ordered elements [1]. For the

elements in U , xi < xj if and only if i < j. More formally,
the zero-suppressed binary decision diagram is a labeled
directed acyclic graph satisfying: (1) There is only one node
with indegree 0 called the root node; (2) there are exactly two
nodes with outdegree 0 called the 0-terminal and 1-terminal;
(3) each nonterminal node has exactly two outgoing arcs
labeled by 0 and 1 and these are called the 0-arc and 1-
arc, respectively; (4) for j ∈ {0, 1}, the destination node
of the j-arc of a node n is called the j-child of n and is
denoted by cj (n); (5) each nonterminal node n is labeled
by an element of U ; and (6) the label of a non-terminal node
is strictly smaller than those of its children [1].

A subset U ′ of U corresponds to a path P from n to n′

in a zero-suppressed binary decision diagram if and only if
there exists a node n′′ labeled with x whose 1-arc is in P for
all x ∈ U ′ [8]. The possibility of a zero-suppressed binary
decision diagram representation of a family of sets F from
U is built on the premise that a subset U ′ of U is in F if and
only if there is a path from the root node to the 1-terminal
in the diagram to which U ′ corresponds [8].

As an aside, a zero-suppressed binary decision diagram is
defined to be reduced whenever: (1) There are no distinct
nodes that have the same label, 0-child, and 1-child; and
(2) there is no node whose 1-child is the 0-terminal [1].
A unique reduced zero-suppressed binary decision diagram
containing the smallest possible number of nodes exists for
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a given family of sets F [1]. An algorithm for reducing a
given zero-suppressed binary decision diagram in linear time
is found in [3].

Zero-suppressed binary decision diagrams have proven to
be capable of handling combinatorial optimization problems.
Computing for the maximum and minimum total weights of
sets in F and counting the number of solutions in F , to
name a few, may be done in time proportional to the number
of nodes in the reduced zero-suppressed binary decision
diagram representing it and not to the number of solutions
[3]. Family algebra is also conveniently handled because of
the recursive structure of the diagram [1].

B. Frontier-Based Search

The frontier-based search is an algorithm for constructing
a zero-suppressed binary decision diagram representing a
distinctively defined set of subgraphs in a given graph.
Diagrams for subgraphs that are paths, trees, and matchings,
among others, may be generated through the frontier-based
search. A complete discussion is in [4]; nonetheless, an
outline of the procedure is given.

Let G = (V,E) be an undirected edge-weighted graph
with vertex set V and edge set E = {e1, e2, . . . , em}. Note
that E is a collection of 2-element subsets of V , each of
which corresponds to a unique edge in G. In other words,
an edge e ∈ E is equivalent to {v, w}, where v, w ∈ V . That
G is simple and connected is also assumed. A subgraph of
G is defined as (V ′, E′) with V ′ = ∪e∈E′e for E′ ⊆ E.
In general, the union ∪ij=1ej is the set of vertices to which
at least one of e1, e2, . . . , ei is incident. This means that a
subgraph has no vertex with degree 0 and that a subgraph is
determined by its edge set. The set E with ordered elements
e1 < e2 < · · · < em is the universe of the zero-suppressed
binary decision diagram.

The algorithm starts with labeling the root node as e1. The
construction advances breadth-first, creating nodes ei+1 only
after all nodes ei have been generated for i = 1, 2, . . . ,m−1.
The arcs of the nonterminal nodes ei must point to nodes
labeled ei+1, the 0-terminal, or the 1-terminal. As each
node n in the zero-suppressed binary decision diagram is
being constructed through the frontier-based search, an array
n.deg mapping a particular subset of V to the set of natural
numbers is stored into the node. Each path from the root node
to n corresponds to a subgraph with vertex degrees specified
by the array. If n.deg is equal to n′.deg for two nodes n
and n′ then the two nodes may be merged. This is defined
as node sharing [4].

Let ei be the edge of largest index among all edges
incident to a vertex v. Since the degree of v is independent
of edges ei+1, ei+2, . . . , em, deg[v] is no longer referred
to after ei is processed. One calls the node v fixed [4]. As
convention, F0 = Fm = ∅ and the ith frontier is defined as
Fi =

(
∪ij=1ej

)
∩
(
∪mj=i+1ej

)
for i = 1, 2, . . . ,m−1 [4]. For

node n with label ei, one stores n.deg[v] into the node if
and only if v ∈ Fi−1. On a side note, pruning is also possible
using the array deg should there be violations in the degree
conditions. Through node sharing and pruning, the zero-
suppressed binary decision diagram representing subgraphs
of a prescribed type can be created.

Fig. 1. The zero-suppressed binary decision diagram for the combination
problem with n = 7 and k = 3.

III. EXPERIMENTS

The results of implementation are discussed in this section.
Common combinatorial problems such as the combination
and knapsack problems are first used as setting for the
utility of the zero-suppressed binary decision diagram. These
serve as preview to the investigation process hired in solving
the constrained shortest and longest s-t path problems for
the Osaka Metro. The subsections correspond to a twofold
treatment covering both general examples and a specific real-
world case of larger scale.

Computer experiments were done in the C++ program-
ming language with the aid of the TdZdd1 library contributed
primarily by H. Iwashita for the frontier-based search and
family operations. The documentation may be read in [9]
and [10]. Apart from the supplementary library, the entirety
of the code used is committed to the ZDDLines2 repository
by R. Tan. Version 4.4.7 of the g++ was used as compiler.
Concerning the machine, the operating system was the Linux
CentOS 6.9, the central processing unit was the Intel®

CoreTM i7-5820K processor working at 3.30GHz, and the
memory was 32GB.

A. Solving Combinatorial Problems

1) The Combination Problem: Determining the ways in
which k objects can be selected from n distinct objects
irrespective of order is known as the combination problem.
The family of k-element subsets from a universe with n
elements may be represented using a single zero-suppressed
binary decision diagram. The diagram in Figure 1 is for the
problem of finding all ways to choose exactly 3 items from
a cardinality 7 item set.

In the diagram, all nodes on a level labeled by a variable
number from 7 to 1 and a node identification number
represent an item in the universe. The solid 1-arc and the
dashed 0-arc correspond to the item being present or not,
respectively. A path formed by 1-arcs and 0-arcs from the
root node to the 1-terminal with symbol > is a set of 3 items
from the n given.

1The link to the library is https://github.com/kunisura/TdZdd.
2The repository is in https://github.com/renzopereztan/ZddLines.
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Fig. 2. The zero-suppressed binary decision diagram for the specified
knapsack problem.

2) The Knapsack Problem: A familiar problem in combi-
natorics is the knapsack problem. Given a set of individually
weighted items, the task is to resolve which subsets have
total weights not exceeding a prescribed weight. These
sets dictate which selection of objects may fill a fixed-size
knapsack, from which the name derives. If one is to choose
from n = 7 different items with assigned weight tuple
w = (4, 3, 7, 5, 6, 8, 10) and weight constraint W = 18, the
rotated diagram is in Figure 2.

3) Taking the Intersection: A variant of the knapsack
problem above may be solved as well. Suppose 7 items with
weights defined by the same sequence (4, 3, 7, 5, 6, 8, 10) are
given. To add, the weight capacity of the knapsack is 18
and the restriction that precisely 3 items may be carried is
imposed. Noticeably, the formulation simply puts together
the constraints for the combination and knapsack problems.
Solving the problem is tantamount to taking the intersection
of the two diagrams previously produced. Figure 3 shows the
resulting zero-suppressed binary decision diagram rotated.
Should a value tuple (7, 2, 8, 3, 6, 9, 5) be incorporated into
the problem, computing for the 3-set with maximum total
value and with weight not exceeding the limit is straightfor-
ward. The set formed by taking the first, fifth, and sixth items
has total weight 18 and yields a value of 22 as maximum.

B. Finding the Shortest and Longest Paths

In this subsection, constrained variations of the shortest
and longest s-t path problems are solved. One operates on the

Fig. 3. The zero-suppressed binary decision diagram for the intersection
of the combination and knapsack diagrams.

Osaka Metro3 map of January 2019 and arbitrarily fixes the
start and end stations. For the exposition, the Esaka Station
of the Midosuji Line and the Kire-Uriwari Station of the
Tanimachi Line are chosen. The main goal is to find the
routes of minimum and maximum cumulative distance that
use each of the lines of the metro network at least once. The
two problems are proven to be nondeterministic polynomial-
time hard [11].

The solution begins with the construction of the zero-
suppressed binary decision diagram for all s-t paths. This is
done through the frontier-based search and the designation of
a degree constraint. For both the initial and terminal vertices,
a vertex degree of 1 is set. The remaining vertices in the
network are forced to be of degree 2 or 0, guaranteeing
subgraphs included in the diagram to be paths. For an idea
of scale, the output zero-suppressed binary decision diagram
has 5197 nodes and stores 15301 elements. The figure has
been omitted for brevity as it is barely visible.

The constraint of having to use each line at least once
is then addressed. Attached as appendix is the Lines class
containing the method used to generate the zero-suppressed
binary decision diagram that represents the aforementioned
requirement. One takes the intersection of the diagram con-

3The route map is found in https://subway.osakametro.co.jp/en/guide/
routemap.php.
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Fig. 4. The shortest constrained s-t path from Esaka to Kire-Uriwari.

Fig. 5. The longest constrained s-t path from Esaka to Kire-Uriwari.

taining all s-t paths with the diagram congruous with the
given line-related constraint. The number of elements is
narrowed down to 4029 with the resulting zero-suppressed
binary decision diagram of 61102 nodes.

To produce the paths with minimum and maximum weight,
the MinDistData and MaxDistData structures are uti-
lized. The two are based on the algorithm for computing the
maximum and minimum weighted sets in [3]. The shortest
s-t path with total distance of 52.1 kilometers is illustrated
in Figure 4. Further, the longest s-t path with total distance
of 73.4 kilometers is shown in Figure 5. The computation
time for the simultaneous solution of the shortest and longest
s-t path problems using the zero-suppressed binary decision
diagram approach is 0.04 seconds. Refer to Table I and Table
II for more specific information on the steps in the shortest
path and longest path, respectively. A condensed listing of
the stations comprising the edges of the optimal paths are in
the tables.

As comparison, the problem is posed as an integer pro-
gramming problem. A formulation motivated by [12] and
[13] was run on version 7.5.2 of the Gurobi Optimizer. Such
a procedure, however, resulted in subgraph solutions with
superfluous loops. This outcome necessitates adding a new
constraint to exclude discovered loops and performing the
process repeatedly until no loops remain. For instance, if

TABLE I
THE CONSTRAINED PATH WITH MINIMUM DISTANCE

Step Initial Station Terminal Station Line

1 Esaka Hommachi

2 Hommachi Cosmosquare

3 Cosmosquare Suminoekoen

4 Suminoekoen Namba

5 Namba Nippombashi

6 Nippombashi Nagahoribashi

7 Nagahoribashi Morinomiya

8 Morinomiya Midoribashi

9 Midoribashi Imazato

10 Imazato Tanimachi 9-Chome

11 Tanimachi 9-Chome Kire-Uriwari

TABLE II
THE CONSTRAINED PATH WITH MAXIMUM DISTANCE

Step Initial Station Terminal Station Line

1 Esaka Hommachi

2 Hommachi Namba

3 Namba Awaza

4 Awaza Cosmosquare

5 Cosmosquare Suminoekoen

6 Suminoekoen Daikokucho

7 Daikokucho Dobutsuen-Mae

8 Dobutsuen-Mae Nagahoribashi

9 Nagahoribashi Morinomiya

10 Morinomiya Tanimachi 4-Chome

11 Tanimachi 4-Chome Minamimorimachi

12 Minamimorimachi Tenjimbashisuji 6-Chome

13 Tenjimbashisuji 6-Chome Taishibashi-Imaichi

14 Taishibashi-Imachi Imazato

15 Imazato Tanimachi 9-Chome

16 Tanimachi 9-Chome Kire-Uriwari

the integer programming problem is solved and a solution
including the loop {e1, e2, . . . , ek} is obtained, a constraint
prohibiting the use of all edges that compose the loop
is added and the program with the added constraint is
rerun. The method renders one unable to predict how many
times the integer programming problem needs to be solved;
accordingly, a solution is not guaranteed to be found.

IV. CONCLUSION

The study has demonstrated through evidence the relative
superiority of a zero-suppressed binary decision diagram
approach over an integer programming technique. Solutions
to two nondeterministic polynomial-time hard problems were
reached in a fraction of a second whereas a solution was not
assured by using an integer program formulation. The possi-
bility of enumeration of feasible solutions based on the zero-
suppressed binary decision diagram is also an advantage.

With regard to future work, the implementation of the
algorithm to a larger network is recommended. Solved in-
teger programming problems in [12] for the Paris Metro
rapid transit system may return a clearer comparison of
the two methods. Lastly, new applications for the zero-
suppressed binary decision diagram such as cluster analysis
and computational graph theory are to be delved into.
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APPENDIX
// The constraint of using each line at least once
class Lines: public tdzdd::DdSpec<Lines, int, 2> {

// The number of edges is n
// The number of lines is L
// The lines each edge is part of is in l
int const n, L;
int const *l;

public:
Lines(int n, int L, int *l)

: n(n), L(L), l(l) {
}

int getRoot(int& state) const{
state = 0;
return n;

}
int getChild(int& state, int level, int value) const{

if(value == 1) state |= (1 << l[n - level]);
level--;

if(level == 0) {
if(state == ((1 << L) - 1) << 1) {

return -1;
} else{

return 0;
}

}
return level;

}
};
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