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The Relative Isolation Probability of a Vertex in a
Multiple-Source Edge-Weighted Graph

Renzo Roel P. Tan∗, Kyle Stephen S. See, Jun Kawahara, Kazushi Ikeda, Richard M. de Jesus,
Lessandro Estelito O. Garciano, and Agnes D. Garciano

Abstract—Various measures that characterize graphs exist
in literature. Insights into the properties of a graph as a
whole and its components are revealed largely through graph
measures, also called graph metrics. In seeking to interpret
a consequential edge metric from a vertex-centric perspective,
the paper advances an original measure – the relative isolation
probability of a vertex. Concisely, the probability of relative
isolation pertains to the likelihood of a vertex to be disconnected
from all designated source vertices in a graph with probability-
weighted edges. A two-step algorithm for efficient calculation
is presented and evaluated. Contained within the procedure
is a Monte Carlo simulation and the use of a compact data
structure called the zero-suppressed binary decision diagram,
efficiently constructed through the frontier-based search. The
novel measure is then computed for a diverse set of graphs,
serving as benchmark for the proposed method. In closing,
case studies on real-world networks are performed to ensure
the consistency of the experimental with the actual.

Index Terms—frontier-based search, graph measure, Monte
Carlo method, probability of relative isolation, zero-suppressed
binary decision diagram.

I. INTRODUCTION

THE world operates through networks, thereby establish-
ing the need to study the graphs through which they

are represented. On that account, graph measures or graph
metrics have long been a domain of interest. Classical metrics
such as the connectivity, distance, betweenness, clustering,
and reliability polynomial are commonly used to characterize
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graphs [1]. In addition, there are spectral measures that look
into the matrices associated with the graphs [2].

Among the aforementioned are measures that aim to
examine whether or not a network would remain to be
functioning satisfactorily in the event of damage [3]. In
the research, a new graph metric called the probability
of relative isolation is introduced. The relative isolation
probability reveals how likely it is that a vertex would be
disconnected from sources given the failure of some edges.
Lifelines such as road networks, water pipelines, power lines,
communication systems, et cetera and their possible failure
during stress are contexts to which the measure is especially
applicable. Several advantages to its utility are being able to:

• Know which nodes may require more urgent attention
after a destructive episode;

• Have a reasonable basis for the sequence of links for
immediate repair;

• Gauge if there are redundancies in the network design
and construction;

• Discover prospective node or link groups for further
network reinforcement; and

• Estimate possible node locations for the process of
adding more network sources.

To compute for the vertex probabilities of relative isola-
tion, a two-step procedure is devised. The first step employs
the use of randomness and iteration through conducting a
Monte Carlo experiment. The random numbers determine the
survival or failure of the edges and consequently, the active
components of the graph for each iteration. A check for any
source connection is done on the vertices in the second step,
having recourse to a compressed data representation known
as the zero-suppressed binary decision diagram.

The paper is summarized as follows. A thorough presenta-
tion of the relative isolation probability as a novel metric for
graphs is contained in the second section. The succeeding
two sections review preliminary concepts for efficient im-
plementation, the zero-suppressed binary decision diagram
and the frontier-based search. The methodology immediately
follows, covering both the algorithm details and the machine
specifications. The sixth section discusses the results in two
parts – benchmark and real-world figures are supplied. In the
seventh section, the practicality of the measure is discussed
in greater detail through a case study. The work is concluded
in the last section with a recapitulation of the contribution
and some recommendations for future research.

Basic notation used throughout are infra. Uniformity with
[4] is decided.

V The set of vertices {v1, v2, v3, . . . , v|V |}.
E The set of edges {e1, e2, e3, . . . , e|E|}.
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G The graph (V,E) defined by V and E.
S The set of source vertices {s1, s2, s3, . . . , s|S|}.
U A finite universe {x1, x2, x3, . . . , x|U |}.
F A family of subsets from U .
D The zero-suppressed binary decision diagram

for the family F .
n (D) The number of nodes in D.
|D| The number of elements represented by D.
f : A→ B A function mapping the set A to the set B.

II. PROBABILITY OF RELATIVE ISOLATION

Requisite for the formulation of the metric is the notion
of a path in graph theory.

Definition 1 (Path). Given a graph, a path is a sequence
y1, y2, . . . , yp where yi = {vi−1, vi} is an edge of the graph
for i = 1, 2, . . . , p with vertex vi 6= vj of the graph if i 6= j.
A path from vertex v0 to vertex vp is called a v0-vp path.

A path is thus a sequence of edges that joins a sequence
of vertices which are distinct. The formal definition of the
relative isolation probability of a vertex in a given graph is
below.

Definition 2 (Probability of Relative Isolation). Consider the
graph G = (V,E) and the set of source vertices S ⊂ V .
Let the probability of failure of an edge be π (ei) for i =
1, 2, 3, . . . , |E|, with function π : E → [0, 1].

The number of iterations, which is essentially how many
times the Monte Carlo experiment is executed, is set to be
N . A random number ρk (ei) with function ρk : E → [0, 1]
is assigned to each edge ei on the kth iteration for k =
1, 2, 3, . . . , N . For all ei ∈ E, an indicator function µk is
defined to be

µk (ei) =

{
1 if ρk (ei) > π (ei)

0 otherwise
,

assigning either a 1 or a 0 to each edge indicating its survival
or failure, respectively, for iteration k.

Subsequently, a subgraph Gk = (Vk, Ek) is produced,
with ei ∈ Ek if and only if µk (ei) = 1 and vj ∈ Vk
for j = 1, 2, 3, . . . , |V | if and only if there exists e ∈ Ek
such that vj ∈ e or if vj ∈ S. More precisely, Ek = {e ∈
E | µk (e) = 1} and Vk = {v ∈ V | v ∈ e, e ∈ Ek} ∪ S in
notation. For all vj ∈ V \ S, a second indicator function is
then defined as

λk (vj) =

{
0 if there exists a path in Gk to some s ∈ S

1 otherwise
,

specifying whether or not each vertex is reachable by a
source for iteration k. If vj ∈ S then λk (vj) = 0.

Given the above, the relative isolation probability of a
vertex vj within N instances, denoted by ΠN

ι (vj), is

ΠN
ι (vj) =

∑N
l=1 λl (vj)

N
.

III. ZERO-SUPPRESSED BINARY DECISION DIAGRAM

The section shows similar sequencing as [4]. The zero-
suppressed binary decision diagram is a graph-based data
structure for the efficient storage and handling of families of
sets [5]. More formally, consult the definition as follows [6].

Definition 3 (Zero-Suppressed Binary Decision Diagram).
Consider a universe U . For xk ∈ U , xi < xj if and only if
i < j. A zero-suppressed binary decision diagram is a labeled
directed acyclic graph satisfying the following properties.

1) There is only one node with indegree 0 called the root.
2) There are only two nodes with outdegree 0 called the

0-terminal and the 1-terminal, denoted by ⊥ and >,
respectively.

3) A nonterminal node has exactly two outgoing arcs la-
beled by 0 and 1 called the 0-arc and 1-arc, respectively.

4) The destination of the 0-arc and the 1-arc of a nontermi-
nal node is called the 0-child and 1-child, respectively.

5) A nonterminal node is labeled by an element of U .
6) The label of a nonterminal node is strictly smaller than

those of its children.

There exists a unique reduced zero-suppressed binary
decision diagram with the fewest nodes for a family of
concern [6]. Reduction of a diagram in linear time apropos
of the number of nodes is seen in [7].

Remark 1. A reduced zero-suppressed binary decision dia-
gram adheres to the two points below.

• There is no node whose 1-child is the 0-terminal.
• There are no distinct nodes that have the same label,

0-child, and 1-child.

Based on the definition, a family of subsets F from
U may be represented by a single zero-suppressed binary
decision diagram D. A path P from the root to the 1-terminal
comprising 0-arcs and 1-arcs corresponds to a subset U ′ ∈ F
if and only if for all x ∈ U ′, there is a node labeled with
x whose 1-arc is in P [8]. One proceeds to a theorem that
hints at the inherent recursiveness of the diagram [6].

Theorem 1. Let diagram D correspond to family F . The
root e is either a terminal node or a nonterminal node.

1) If e is the 0-terminal then F = ∅, the empty family.
2) If e is the 1-terminal then F = {∅}, the family

containing only the empty set.
3) If e is nonterminal then it has two children. Let e0 be

the 0-child and e1 be the 1-child of e. Denote the family
with diagram rooted at ei by Fi. The family F may then
be written as the union F0 ∪

(⋃
x∈F1

x ∪ {e}
)
.

Expounding the theorem, the sets in F that do not contain
e are connected to e through its 0-arc. On the other hand,
the sets in F that do contain e are connected to e through
its 1-arc. In notation, F0 = {x | x ∈ F , e /∈ x} and F1 =
{x \ {e} | x ∈ F , e ∈ x}.

The recursive structure of the zero-suppressed binary de-
cision diagram is revealed. For such a reason, the execution
of family operations through the use of the diagram be-
come straightforward [6]. Complexities for several important
operations are explicitly stated [9]. Let two diagrams D1

and D2 correspond to families F1 and F2 with elements
from universes U1 and U2. Computing for |D1| or identi-
cally, the number of subsets in F1, is of time complexity
O (n (D1)). The enumeration of elements represented by
D1 is of O (|D1| · |U1|) complexity. Finally, the intersection
F1 ∩ F2 and the union F1 ∪ F2 may each be computed in
time complexity O (n (D1) · n (D2)).
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1 2

3 4

e1

e2 e3

e4

(a) The sample grid.

1 2

3 4

e1

e2 e3

e4

(b) The first path
utilizing edges iden-
tified as e2 and e4 in
the diagram.

1 2

3 4

e1

e2 e3

e4

(c) The second path
utilizing edges iden-
tified as e1 and e3 in
the diagram.

e1

e2

e3

e4

⊥ >
(d) A diagram representing all
paths {{e2, e4}, {e1, e3}} from
the first to the fourth vertex in a
grid with four vertices.

Fig. 1: Representing paths in a graph using a zero-suppressed
binary decision diagram.

For problems under the domain of combinatorics, subset
solutions may be represented by a zero-suppressed binary
decision diagram [10]. The enumeration of solutions and
accordingly, the optimal solution, the number of solutions,
the mean and variance of solutions, and other data may
be extracted with ease [7]. In a graph-theoretic setting, the
edges of a graph may correspond to the items of a universe.
Every node in the diagram is labeled with an edge in the
graph and its 0-arc and 1-arc indicates the exclusion and
inclusion, respectively, of the edge serving as label. As a
path from the root node to the 1-terminal of the diagram is
a subgraph of the given graph, the entirety of the diagram
stands in for a collection of subgraphs. In the case of the
paper, the zero-suppressed binary decision diagram is utilized
particularly for path enumeration. An illustration explaining
how a diagram may represent a set of paths follows.

Consider the square grid of two vertices by two vertices
shown in Figure 1a and the possible paths from the first
vertex to the fourth vertex shown in Figures 1b and 1c. The
zero-suppressed diagram representing all paths is Figure 1d.

All nodes are labeled by a variable number corresponding
to an edge and a node identification number for reference
in the diagram. A 1-arc is represented by a solid line and a
0-arc is represented by a dashed line. The former and latter

correspond to the edge being present or not, respectively. At
each level, one proceeds to the 1-child if the edge is included
and to the 0-child if the edge is not. Any traversal from the
root node to the 1-terminal with symbol > formed by 1-arcs
and 0-arcs, then, is a path in the sample grid. In particular,
taking the 0-arc of node e1, the 1-arc of node e2, and the 1-
arc of node e4 means taking the path from vertex 1 to vertex
4 through vertex 3; taking the 1-arc of node e1 and the 1-arc
of node e3 means taking the path from vertex 1 to vertex 4
through vertex 2.

IV. FRONTIER-BASED SEARCH

The frontier-based search is an approach for constructing a
zero-suppressed binary decision diagram representing the set
of subgraphs satisfying specified constraints [11]. Subgraphs
of prescribed types such as paths, matchings, and trees,
among others, may be stored in a diagram based on the
context of the problem. An outline of the framework for
representing a set of paths as laid out in [12] is provided.

The construction of the zero-suppressed binary decision
diagram representing the set of all the s-t paths of a given
graph is explained below as an example of the frontier-based
search. This algorithm is similar to SIMPATH in [7]. Let
G = (V,E) be a weighted undirected graph that is simple
and connected. There are to be no multi-edges in G; each
element of E is uniquely defined by a 2-subset of V . Let
s and t be vertices of V . A subgraph of G is denoted by
G′ = (V ′, E′), where E′ ⊆ E and V ′ =

⋃
e∈E′ e. Refining

the notation, a union
⋃j
i=1 ei is the set of vertices to which at

least one of e1, e2, e3, . . . , ej is incident. No vertex of degree
0 may exist in any subgraph. One sets E as the universe for
the zero-suppressed binary decision diagram. The elements
of E are ordered, with e1 < e2 < e3 < · · · < e|E|.

The diagram is constructed breadth-first, creating and
labeling nodes starting from the element in the universe
considered to be the smallest. To begin, the root node is
labeled with e1. For i = 1, 2, 3, . . . , |E| − 1, a node labeled
ei+1 is generated only after nodes labeled ei are generated.
Only the 1-terminal, the 0-terminal, or a node labeled ei+1

may serve as destination to both the 0-arc and the 1-arc of
any node labeled ei.

In motivating systematic construction, information on pre-
vious edge selection is maintained for vertices which are
incident to both a processed edge and an unprocessed edge.
Fittingly, the said set of vertices is called the frontier [11].
With F0 = F|E| = ∅, the jth frontier is defined in [11] as

Fj =

(
j⋃
i=1

ei

)
∩

 |E|⋃
i=j+1

ei


for j = 1, 2, 3, . . . , |E| − 1.

Concurrently, an array n.deg that takes into account sub-
graph specifications is recorded on each node n. A specified
subset of V is mapped to the set of natural numbers by the
array. Moreover, to ensure the connectivity of an s-t path,
the partition of frontier Fj−1 is stored in n as n.comp. Vertex
pairs that belong to the same connected component in G are
to be in the same partition in n.comp.

Initially, for the root node r, r.deg[v] = 0 for all v. For
e = {u,w}, if e is taken then n.deg[u] and n.deg[w] are
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incremented by one. For a vertex v, one designates the largest
among the indices of incident edges as k. The node v is fixed
once ek has been processed. No further updating is done on
n.deg[v] as it is independent of ek+1, ek+2, ek+3, . . . , e|E|.
An s-t path is never completed if n.deg[s] or n.deg[t] is not
one or n.deg[v] is not zero or two for v 6= s, t. In this case,
the node becomes ⊥. If there is no vertex on the frontier that
has the same n.comp value as n.comp[v] then the node also
becomes ⊥ because this means that at least two connected
components, one including v and another not including v,
are generated and are never to be combined.

The node sharing strategy is then hired, merging two nodes
n and n′ if n.deg is equal to n′.deg and n.comp is equal
to n′.comp. If a vertex v is in Fj−1, n.deg[v] is cached in
ej-labeled node n.

Through node sharing and pruning, the frontier-based
search produces a zero-suppressed binary decision diagram.
Node generation and information input are simultaneously
done towards representing a collection of subgraphs. An
unabridged discussion of the technique may be found in [11].

V. METHODS

Benchmark configurations from literature and graphs for
real networks are each translated into an edge list. Every row
is an edge, represented by the two vertices through which it
is defined. The source vertices and failure probabilities of the
edges are kept in a separate file in order to conveniently cre-
ate multiple scenarios. Visualization is done in the general-
purpose diagramming software yEd1 with version 3.20.1.

The preliminary processing step is first done through a
Monte Carlo simulation, instituting the survival or failure
of each edge and generating all Gk for k = 1, 2, 3, . . . , N .
Algorithm 1 shows the pseudocode, in which line 11 draws
up the random numbers uniformly over the interval (0, 1)
for comparison to the relevant probabilities assigned to the
edges. The product is a combined input file holding the
resulting N instances of the graph.

The computation proper happens in the second step, out-
lined in Algorithm 2. For each simulation, a zero-suppressed
binary decision diagram is constructed for each pair compris-
ing a nonsource vertex v and a source vertex s to determine
whether or not there is a path from s to v. The degree
constraint dc prescribes v and s as the endpoints of a path,
with both vertex degrees being one as designated in Lines 12
and 15). The other vertices are either inner vertices of a path
or are not included in the path, with vertex degrees being
two or zero as designated in Lines 7, 21, and 26). Using
dc, the zero-suppressed binary decision diagram denoted by
paths in Line 16 that represents the set of all the paths from
s to v is constructed by CONSTRUCTPATHZDD described in
the previous section.

Thereafter, a path from s to v used for examining connec-
tivity must only go through available edges. This constraint is
represented by the zero-suppressed binary decision diagram
of in Line 10. Let Eavail be the set of available edges in
E. The function CONSTRUCTOMITFAILUREZDD constructs
the diagram of representing the set of any subsets of Eavail,
that is, the power set of Eavail. The structure of the zero-
suppressed binary decision diagram representing a power

1Link: https://www.yworks.com/products/yed.

Algorithm 1 MCPREPRO

1: G← READGRAPH()
2: S ← READSOURCES()
3: Assume G = (V,E).
4:
5: PRINT(|E|, N )
6: PRINTEOL
7:
8: for all e ∈ E do
9: PRINT(e.u, e.v)

10: for i = 1, . . . , N do
11: if (RANDUNIFORM(0, 1) ≤ e.p) then
12: PRINT(1)
13: else
14: PRINT(0)
15: end if
16: end for
17: PRINTEOL
18: end for
19:
20: PRINT(|S|)
21: PRINTEOL
22:
23: for all s ∈ S do
24: PRINT(s)
25: end for
26:
27: PRINTEOL
28: PRINTEOF
Note that e.p is the probability that the edge e is alive and e.u and e.v
stand for the vertices of the edge e.

e2

e4

e5

>

Fig. 2: A zero-suppressed binary decision diagram represent-
ing the power set of {e2, e4, e5}.

set is quite simple; an example is shown in Figure 2. The
diagram is constructed outside the for loops of v and s since
it is independent from v and s.

The function ZDDINTERSECTION in Line 17 performs
the intersection operation on the two zero-suppressed binary
decision diagrams, constructing the diagram representing the
intersection of the two families of sets represented by the two
diagrams [13]. The intersection of paths and of generates
the set of paths that use only the available edges as a
zero-suppressed binary decision diagram. The existence of
a path from the source to the vertex is then inspected by the
comparison of zdd and ⊥ in Line 18. If such a path does
not exist then zdd becomes ⊥, the diagram for the empty
set. The check is carried out by the comparison of the two
pointers directed to the roots of zdd and ⊥ in constant time.
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Algorithm 2 PIZDD

1: G← READGRAPH()
2: S ← READSOURCES()
3: Assume G = (V,E).
4:
5: Let isolations and dc be arrays whose indices are

vertices.
6: isolations[v]← 0 for all v ∈ V
7: dc[v]← {0, 2} for all v ∈ V
8:
9: for sim = 1, . . . , N do

10: of ← CONSTRUCTOMITFAILUREZDD(sim)
11: for v ∈ V − S do
12: dc[v]← {1}
13: found ← false

14: for s ∈ S do
15: dc[s]← {1}
16: paths ← CONSTRUCTPATHZDD(dc)
17: zdd ← ZDDINTERSECTION(paths, of )
18: if zdd 6= ⊥ then
19: found ← true

20: end if
21: dc[s]← {0, 2}
22: if found then
23: break
24: end if
25: end for
26: dc[v]← {0, 2}
27: if not found then
28: isolations[v]← isolations[v] + 1
29: end if
30: end for
31: end for
32:
33: for v ∈ V do
34: PRINT(v, isolations[v]/n)
35: end for

If a valid path from s to v is not found then the algorithm
adds 1 to the isolation count of that vertex and moves on to
the next vertex; otherwise, it simply moves on to the next
vertex. In the end, isolation count of each vertex is divided
by the number of simulations to get the probability of relative
isolation.

As a comment, keep in mind that source vertices have a
relative isolation probability of 0 since there always exists a
path to itself. Sources are skipped when running the decision-
diagram-based simulation part.

In summary, the algorithm calculates the relative isolation
probabilities of the vertices by running a number of random-
ized simulations, checking if the vertex is disconnected from
all sources in each simulation, and getting the percentage of
simulations in which the vertex is relatively isolated.

The C++ programming language, coupled with version
9.3.0 of the g++ as compiler, is selected for implemen-
tation. Fundamental diagram manipulation is carried out
through the TdZdd (https://github.com/kunisura/TdZdd) li-
brary documented in [14]. The ZDDLines (https://github.
com/renzopereztan/ZDDLines) program serves as foundation
for the portion involving the enumeration of paths [15]. For

the complete code, refer to the PIZDD (https://github.com/
renzopereztan/PIZDD) repository as published online.

Concerning machine specifications, the operating system is
the Ubuntu 18.04.4 Long Term Support (Bionic Beaver). The
processor is the Intel® CoreTM i7-8565U running at 1.80GHz.
A memory of 16GB and an NVIDIA® GeForce® MX250
graphics card are also made available for use.

VI. RESULTS

Two segments comprise the results. Outcomes on six
sample networks are presented in the first part as benchmark.
Graphs with varying structures, seen in Figures 3 to 11, are
hand-picked from familiar published work [16], [17]. In the
second part, the technique is evaluated on graphs representing
real-world lifeline networks. One inspects the Bursa, Hanoi,
and Kobe water supply systems [18]–[20].

Sample networks with 6 ≤ |V | ≤ 40 and 15 ≤ |E| ≤ 58
are first used as setting for the benchmarking experiment. In
order, the six are a complete graph, a Petersen graph, two
distinctive graphs, a square grid, and a rectangular mesh.

The number of simulations is initialized to 100, 1000,
10000, and 100000. To examine the algorithm correctness,
the vertex relative isolation probabilities are computed for
edge failure probabilities 0.50, 0.05, and 0.95. The routine
is repeated twelve times over per network.

Tables I, II, III, and IV summarize the results. To reiterate,
|E| is the number of edges and |V | is the number of vertices.
The computation time for each of the two steps is presented
both separately and as a sum. For example, tπ(e),1 and tπ(e),2

are costs in seconds for the Monte Carlo instance generator
and the decision diagram connectivity test, respectively, and
tπ(e) is the overall time taken. The average time consumed
for all set-ups of equal N is t̄. In symbols,

tπ(e) = tπ(e),1 + tπ(e),2

and
t̄ =

tπ1(e) + tπ2(e) + tπ3(e)

3
.

Considering the complexity of an enumerative decision-
diagram-based approach, the consumption of time is fair
[15], [21]. The total cost ranges from seconds for experi-
ments with 100 iterations to minutes for experiments with
100000 iterations.

The set of probabilities obtained for the graphs when
all edges are set to fail half of the time are attached as
Appendices A, B, C, D, E, and F. A superscript † indicates
a source vertex. Setting the results from the different values
for N side by side serve as preview to the convergence of
the method.

The procedure is then applied to real-world systems. More
specifically, the water distribution networks of three cities –
Bursa in Turkey, Hanoi in Vietnam, and Kobe in Japan – are
chosen for processing. For the three networks, 12 ≤ |V | ≤
32 and 15 ≤ |E| ≤ 34.

The program is run four times for each network, accom-
modating 100, 1000, 10000, and 100000 instances. The edge
probabilities of failure differ per network. Information is
sought from references that provide well-justified data. De-
tails on the Bursa city network is found in [22]. Furthermore,
a comprehensive analysis of the Hanoi city network may be
seen in [19]. Lastly, the Kobe city network is treated in [23].
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Fig. 3: Network 1.

Fig. 4: Network 2.

Fig. 5: Network 3.

Fig. 6: Network 4.

The results for the lifeline networks are in Tables V, VI,
VII, and VIII, following the same format as the previous
tables. The vertex probabilities of relative isolation are con-
sistently calculated in reasonable time. An experiment of
100 iterations requires seconds and an experiment of 100000
iterations requires minutes. Likewise, the probabilities are
noted as Appendices G, H, and I for reference.

With respect to convergence, it is important to note that the
computation hinges on dividing the number of simulations
where the vertex is relatively isolated by the total number of
simulations. Beyond 100 simulations, therefore, the chances
of succeeding simulations making any change larger than a
percent is minuscule. Regarding complexity, the following
remark is verified.

Remark 2. For a nonsource vertex v ∈ V \ S and source
vertex s ∈ S, let DNv,s be the zero-suppressed binary decision
diagram zdd with the most number of nodes considering
all N instances. The diagram with the most number of
nodes across all constructed diagrams DNv,s is then denoted
by DΩ. The worst-case complexity of the algorithm is
O (N · |S| · |V \ S| · n (DΩ)).

As an aside, accuracy is further ensured by running the
entire pool of experiments multiple times. One remarks that
the variability between the initializations is not substantial.

VII. DISCUSSION

A primary application for the probability of relative isola-
tion is under civil engineering. As mentioned in the introduc-
tion, the operation of critical lifeline networks is subject to
natural hazards. This fact necessitates evaluating the ability
of such networks to withstand damage. While there is much
evidence to the edge probability of failure being a reliable
basis for network resilience metrics, additional details may
be obtained from a vertex point of view.

In reality, vertices in a graph representing a lifeline repre-
sent points of demand – a household in a water supply sys-
tem, a corporate office in an electrical grid, a commercial hub
in a transport network, and others. By generating the vertex
probabilities of relative isolation from the edge probabilities
of failure, collective information on edge resilience is trans-
lated into vertex resilience. The efficiency and effectiveness
of a network in responding to demand under unfavorable
circumstances is then better understood.

To exhibit the interpretability of the proposed graph met-
ric, the Kobe water distribution network is investigated as
a case study. The representative graph has 20 edges and 15
vertices as configured in Figure 11. Vertices 1 and 6, both
marked with an asterisk, serve as sources for the pipeline
network. In drawing insight, the given edge probabilities
of failure and calculated vertex probabilities of relative
isolation are incorporated in a hierarchical layout of the
network shown by Figure 12. The upper right quadrant is
labeled as Q1 and the lower left quadrant is labeled as
Q2 for convenience. For the purpose of visualization, the
edges are of different line styles. A solid line means a low
failure probability, a dashed line means a moderate failure
probability, and a dotted line means a high failure probability.
Correspondingly, the vertices are filled with colors from
a grayscale scheme. Lighter colors mean lower relative
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isolation probabilities; darker colors mean higher relative
isolation probabilities.

At a glance, the interpretation of edge failure into
vertex relative isolation through simulation proves to be
well-grounded. Overall, two contrasting vertex clusters are
formed. Found in Q1 is the source vertex 1. As transmission
lines boast low failure probabilities, the relative isolation
of vertices in the quadrant is not significant. Despite Q2
having a dedicated source – vertex 6, demand points in the
quadrant suffer from high relative isolation. The rather high
probabilities of edge failure are accurately translated into
high probabilities of vertex relative isolation. Observations
within the above context follow.

In proactive mitigation, a direct implication of the com-
puted relative isolation probability values is the reinforce-
ment of major resource channels. In Q2, for example, the
edge from the vertex 6 to vertex 5 and the edge from vertex 5
to vertex 2, for example, should survive as much as possible.
Otherwise, it would look as though Q2 has no source vertex.

Although multiple interquadrant transmission lines exist,
this appears to be a futile back-up as all edges share a high
likelihood of breakage. In the event of a disaster, it would
be unlikely for the source of Q1 to temporarily answer to
the demand of Q2. Redundancies in the network, when put
in place, should be beneficial.

When a disaster occurs, vertices in Q2 are to be closely
monitored. With the vertex probability of relative isolation,
one has supplementary information on which points of
demand are most vulnerable. In response to the relative
isolation of vertices, stand-in sources such as fire trucks and
mobile water stations may be deployed.

Observations from the Hanoi water distribution network
are similar. Figure 13 is a hierarchical representation of the
network, formatted in the same way as the Kobe case study.
The right side of the network with respect to the viewer is
referred to as S1. The left side of the network with respect to
the viewer is referred to as S2. Two water sources are present
in S1; however, their service to S2 is prone to disruption.
While four links serve as transmission lines from S1 to S2,
only one has a low likelihood of failure. Through the use
of the probability of relative isolation, redundancy in this
network is discovered to be futile. It is clear that vertices in
S2 are bound to be isolated from the sources after destructive
seismic activity.

VIII. CONCLUSION

In brief, a novel measure for graphs consisting of edges
that have known failure probabilities is put forward. Its
definition is accompanied by a demonstration of efficient
calculation through a Monte Carlo method integrated with
a decision-diagram-based technique. The new probabilistic
metric is worked out across selected networks, proving
reasonable computational cost. Insights generated by the
measure is then discussed in a case study.

For future study, an original consolidated measure for the
whole graph based on the vertex probabilities of relative
isolation is to be pursued. In regard to probability evaluation,
crafting an algorithm that offers less computation time and
an implementation on larger networks are suggested.

APPENDIX A
PROBABILITIES FOR NETWORK 1

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1† 0.0000 0.0000 0.0000 0.0000
2 0.0600 0.0400 0.0409 0.0430
3 0.0400 0.0430 0.0435 0.0424
4 0.0300 0.0480 0.0446 0.0418
5 0.0500 0.0400 0.0463 0.0415
6† 0.0000 0.0000 0.0000 0.0000

APPENDIX B
PROBABILITIES FOR NETWORK 2

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1 0.4500 0.3360 0.3234 0.3294
2† 0.0000 0.0000 0.0000 0.0000
3 0.5300 0.4580 0.4289 0.4365
4 0.3900 0.3720 0.3533 0.3602
5 0.5400 0.5070 0.5087 0.5101
6 0.5200 0.5230 0.5005 0.4944
7 0.5700 0.4910 0.5034 0.4952
8 0.5500 0.5460 0.5164 0.5078
9 0.4000 0.3810 0.3619 0.3572
10 0.4100 0.4680 0.4423 0.4369
11† 0.0000 0.0000 0.0000 0.0000
12 0.3200 0.3330 0.3352 0.3307
13 0.4100 0.3710 0.3590 0.3578
14 0.4600 0.4320 0.4385 0.4366
15 0.5200 0.5220 0.5016 0.4972
16 0.5100 0.4920 0.5151 0.5107
17 0.5100 0.5230 0.5118 0.5125
18 0.4700 0.4950 0.4916 0.4963
19 0.4400 0.4450 0.4391 0.4379
20 0.3300 0.3280 0.3556 0.3551

APPENDIX C
PROBABILITIES FOR NETWORK 3

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1 0.1700 0.1520 0.1410 0.1437
2 0.2400 0.3220 0.3113 0.3026
3 0.3600 0.4350 0.4058 0.4007
4 0.2900 0.3490 0.3411 0.3372
5† 0.0000 0.0000 0.0000 0.0000
6 0.2000 0.2140 0.2038 0.2033
7 0.3200 0.3170 0.3067 0.3097
8 0.1500 0.1910 0.1825 0.1880
9† 0.0000 0.0000 0.0000 0.0000
10 0.2300 0.2490 0.2257 0.2311
11 0.3000 0.3180 0.3062 0.3040
12 0.3900 0.4240 0.3964 0.4016
13 0.2800 0.3500 0.3255 0.3252
14 0.4900 0.4950 0.4922 0.4842
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APPENDIX D
PROBABILITIES FOR NETWORK 4

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1† 0.0000 0.0000 0.0000 0.0000
2 0.2600 0.3400 0.3321 0.3369
3 0.4500 0.4000 0.4408 0.4421
4 0.4400 0.4440 0.4424 0.4408
5 0.4800 0.4240 0.4407 0.4429
6 0.4900 0.4380 0.4460 0.4423
7 0.3200 0.3490 0.3350 0.3363
8 0.3800 0.3400 0.3455 0.3351
9 0.4500 0.4320 0.4423 0.4409
10 0.4200 0.4250 0.4394 0.4400
11† 0.0000 0.0000 0.0000 0.0000
12 0.4200 0.4390 0.4416 0.4408
13 0.4700 0.4240 0.4493 0.4404
14 0.3200 0.3390 0.3371 0.3344
15 0.4500 0.4280 0.4450 0.4417
16 0.4900 0.4360 0.4473 0.4391
17 0.3800 0.3160 0.3301 0.3367
18 0.2700 0.3240 0.3362 0.3361
19 0.5000 0.4300 0.4494 0.4397
20 0.4300 0.4420 0.4484 0.4387

APPENDIX E
PROBABILITIES FOR NETWORK 5

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1† 0.0000 0.0000 0.0000 0.0000
2 0.3700 0.3370 0.3467 0.3491
3 0.5000 0.4670 0.4983 0.5003
4 0.5700 0.5610 0.5938 0.5925
5 0.7100 0.6560 0.6805 0.6857
6 0.3700 0.3320 0.3422 0.3487
7 0.4400 0.3700 0.3828 0.3892
8 0.4700 0.3990 0.4487 0.4502
9 0.5300 0.4650 0.5078 0.5096
10 0.6000 0.5530 0.5973 0.5917
11 0.5100 0.5050 0.4902 0.5010
12 0.5200 0.4480 0.4468 0.4508
13 0.4800 0.4310 0.4448 0.4445
14 0.5000 0.4170 0.4523 0.4499
15† 0.5100 0.4620 0.5039 0.5000
16 0.6800 0.5910 0.5756 0.5913
17 0.5600 0.5040 0.5005 0.5080
18 0.5000 0.4520 0.4510 0.4499
19 0.3800 0.3590 0.3966 0.3891
20 0.3700 0.3300 0.3556 0.3494
21 0.7900 0.6900 0.6724 0.6854
22 0.6600 0.5910 0.5832 0.5915
23 0.6200 0.4820 0.4992 0.5019
24 0.4000 0.3430 0.3565 0.3489
25 0.0000 0.0000 0.0000 0.0000

APPENDIX F
PROBABILITIES FOR NETWORK 6

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1† 0.0000 0.0000 0.0000 0.0000
2 0.4800 0.4520 0.4328 0.4298
3 0.3800 0.4210 0.4275 0.4303
4 0.5100 0.5430 0.5328 0.5381
5 0.6200 0.6610 0.6453 0.6478
6 0.6400 0.6850 0.6687 0.6747
7 0.7200 0.7840 0.7698 0.7728
8 0.7300 0.7820 0.7790 0.7818
9 0.8000 0.8480 0.8518 0.8522
10 0.7600 0.8550 0.8538 0.8544
11 0.8800 0.9000 0.9020 0.9020
12 0.8500 0.9050 0.9059 0.9030
13 0.9200 0.9250 0.9373 0.9343
14 0.9100 0.9320 0.9359 0.9347
15 0.9400 0.9550 0.9569 0.9546
16 0.9600 0.9500 0.9575 0.9542
17 0.9600 0.9660 0.9667 0.9657
18 0.9600 0.9690 0.9675 0.9663
19 0.9900 0.9760 0.9720 0.9715
20 0.9800 0.9780 0.9725 0.9715
21 0.9900 0.9730 0.9726 0.9718
22 0.9800 0.9820 0.9716 0.9717
23 0.9700 0.9660 0.9689 0.9666
24 0.9700 0.9720 0.9680 0.9667
25 0.9500 0.9540 0.9569 0.9550
26 0.9400 0.9540 0.9580 0.9555
27 0.9300 0.9370 0.9364 0.9354
28 0.9000 0.9380 0.9372 0.9351
29 0.9000 0.9080 0.9026 0.9034
30 0.8800 0.9160 0.9035 0.9028
31 0.8300 0.8690 0.8538 0.8537
32 0.8300 0.8670 0.8510 0.8534
33 0.7700 0.7880 0.7799 0.7803
34 0.7900 0.7790 0.7758 0.7737
35 0.7100 0.6630 0.6733 0.6764
36 0.6700 0.6320 0.6481 0.6497
37 0.5100 0.5130 0.5304 0.5371
38 0.4000 0.4190 0.4281 0.4307
39 0.4800 0.4190 0.4299 0.4293
40† 0.0000 0.0000 0.0000 0.0000

APPENDIX G
PROBABILITIES FOR THE BURSA NETWORK

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1 0.0100 0.0060 0.0055 0.0062
2 0.0500 0.0290 0.0330 0.0338
3 0.0300 0.0210 0.0163 0.0170
4 0.0000 0.0100 0.0067 0.0073
5 0.0400 0.0060 0.0055 0.0051
6 0.0000 0.0120 0.0092 0.0095
7 0.0000 0.0100 0.0095 0.0097
8† 0.0000 0.0000 0.0000 0.0000
9 0.0100 0.0100 0.0088 0.0086
10 0.0300 0.0300 0.0304 0.0319
11† 0.0000 0.0000 0.0000 0.0000
12† 0.0000 0.0000 0.0000 0.0000
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APPENDIX H
PROBABILITIES FOR THE HANOI NETWORK

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1† 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0700 0.1090 0.1026 0.1029
5 0.1500 0.2160 0.2147 0.2148
6 0.2600 0.3460 0.3403 0.3427
7 0.3400 0.4690 0.4586 0.4620
8 0.4300 0.5460 0.5399 0.5427
9 0.5200 0.5950 0.5848 0.5858
10 0.5800 0.5970 0.5949 0.5934
11 0.7300 0.6880 0.7011 0.6932
12 0.8300 0.7600 0.7766 0.7717
13 0.8900 0.8280 0.8317 0.8317
14 0.6400 0.5830 0.5619 0.5595
15 0.5400 0.5300 0.4906 0.4894
16 0.4100 0.4050 0.3826 0.3779
17 0.2800 0.3150 0.3109 0.3061
18 0.2200 0.2090 0.2099 0.2054
19 0.1600 0.1060 0.1084 0.1037
20 0.0600 0.0550 0.0598 0.0625
21 0.0600 0.0610 0.0729 0.0735
22† 0.0000 0.0000 0.0000 0.0000
23 0.2400 0.2310 0.2467 0.2388
24 0.3600 0.3360 0.3452 0.3416
25 0.3300 0.3770 0.3823 0.3805
26 0.4500 0.4430 0.4322 0.4284
27 0.4600 0.4510 0.4384 0.4303
28 0.3600 0.3870 0.3756 0.3729
29 0.4600 0.4500 0.4475 0.4418
30 0.4900 0.4430 0.4503 0.4432
31 0.3300 0.3770 0.3823 0.3805
32 0.3300 0.3770 0.3823 0.3805

APPENDIX I
PROBABILITIES FOR THE KOBE NETWORK

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj) Π100000

ι (vj)

1† 0.0000 0.0000 0.0000 0.0000
2 0.2300 0.2890 0.2552 0.2565
3 0.2200 0.1600 0.1688 0.1655
4 0.1100 0.0440 0.0418 0.0415
5 0.1700 0.1460 0.1533 0.1464
6† 0.0000 0.0000 0.0000 0.0000
7 0.1700 0.1480 0.1490 0.1427
8 0.1800 0.1640 0.1653 0.1623
9 0.1200 0.1330 0.1400 0.1330
10 0.0700 0.0440 0.0509 0.0483
11 0.0600 0.0260 0.0268 0.0277
12 0.0600 0.0270 0.0288 0.0293
13 0.1100 0.0250 0.0338 0.0343
14 0.0000 0.0000 0.0000 0.0000
15 0.0000 0.0000 0.0000 0.0000

Fig. 7: Network 5.
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Fig. 8: Network 6.

Fig. 9: Bursa network.

Fig. 10: Hanoi network.

Fig. 11: Kobe network.
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Fig. 12: The case of the Kobe water distribution network.

Fig. 13: The case of the Hanoi water distribution network.
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TABLE I: Summary figures of the experiment on baselines with N = 100.

G |E| |V | t0.50,1 t0.50,2 t0.50 t0.05,1 t0.05,2 t0.05 t0.95,1 t0.95,2 t0.95 t̄

1 15 6 0.0103 0.1736 0.1839 0.0024 0.1236 0.1261 0.0021 0.1919 0.1940 0.1680
2 30 20 0.0033 1.0636 1.0669 0.0162 0.5781 0.5943 0.0032 1.9426 1.9458 1.2023
3 23 14 0.0178 0.9262 0.9440 0.0028 0.8109 0.8137 0.0024 1.3442 1.3465 1.0347
4 30 20 0.0044 1.9757 1.9801 0.0038 1.2902 1.2940 0.0025 2.3726 2.3751 1.8831
5 40 25 0.0085 3.1381 3.1466 0.0036 2.4443 2.4478 0.0036 3.1186 3.1222 2.9056
6 58 40 0.0053 1.7131 1.7183 0.0033 1.0292 1.0325 0.0033 4.5098 4.5132 2.4213

TABLE II: Summary figures of the experiment on baselines with N = 1000.

G |E| |V | t0.50,1 t0.50,2 t0.50 t0.05,1 t0.05,2 t0.05 t0.95,1 t0.95,2 t0.95 t̄

1 15 6 0.0053 1.7947 1.8001 0.0051 1.2479 1.2530 0.0059 2.1511 2.1570 1.7367
2 30 20 0.0105 9.9300 9.9405 0.0083 5.8300 5.8383 0.0090 17.5446 17.5536 11.1108
3 23 14 0.0085 11.0732 11.0817 0.0149 7.9114 7.9262 0.0068 12.3743 12.3811 10.4630
4 30 20 0.0100 16.5517 16.5617 0.0094 12.7018 12.7112 0.0100 22.5323 22.5423 17.2718
5 40 25 0.0211 32.8138 32.8349 0.0108 24.4238 24.4346 0.0106 45.9786 45.9892 34.4196
6 58 40 0.0164 18.2109 18.2273 0.0174 12.0532 12.0706 0.0171 68.3464 68.3635 32.8871

TABLE III: Summary figures of the experiment on baselines with N = 10000.

G |E| |V | t0.50,1 t0.50,2 t0.50 t0.05,1 t0.05,2 t0.05 t0.95,1 t0.95,2 t0.95 t̄

1 15 6 0.0390 17.3316 17.3706 0.0376 12.3935 12.4311 0.0365 20.3875 20.4240 16.7419
2 30 20 0.0732 107.6360 107.7092 0.0689 55.6890 55.7579 0.0682 193.2180 193.2862 118.9178
3 23 14 0.0563 122.2990 122.3553 0.0636 84.4677 84.5313 0.0587 151.2630 151.3217 119.4028
4 30 20 0.0737 184.9180 184.9917 0.0744 140.5700 140.6444 0.0692 237.3070 237.3762 187.6708
5 40 25 0.0969 361.1590 361.2559 0.0929 252.3040 252.3969 0.0896 435.6780 435.7676 349.8068
6 58 40 0.1342 199.3880 199.5222 0.1306 116.1300 116.2606 0.1297 684.7590 684.8887 333.5572

TABLE IV: Summary figures of the experiment on baselines with N = 100000.

G |E| |V | t0.50,1 t0.50,2 t0.50 t0.05,1 t0.05,2 t0.05 t0.95,1 t0.95,2 t0.95 t̄

1 15 6 0.3253 172.1320 172.4573 0.3180 109.7850 110.1030 0.3173 207.7550 208.0723 163.5442
2 30 20 0.6377 1022.9700 1023.6077 0.6194 521.9100 522.5294 0.6193 1836.6500 1837.2693 1127.8021
4 23 14 0.4895 1124.5700 1125.0595 0.4777 775.5610 776.0387 0.4874 1261.7900 1262.2774 1054.4586
5 30 20 0.6569 1674.9800 1675.6369 0.6277 1264.4100 1265.0377 0.6249 2215.3100 2215.9349 1718.8698
8 40 25 0.8540 3283.4000 3284.2540 0.8323 2463.4500 2464.2823 0.8323 4070.1600 4070.9923 3273.1762
9 58 40 1.2304 2237.0600 2238.2904 1.1988 1120.3600 1121.5588 1.1990 6780.1100 6781.3090 3380.3860
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TABLE V: Summary figures of the experiment on applica-
tions with N = 100.

G |E| |V | t1 t2 t

Bursa 15 12 0.0015 0.3540 0.3555
Hanoi 34 32 0.0033 1.4145 1.4178
Kobe 20 15 0.0025 0.5263 0.5288

TABLE VI: Summary figures of the experiment on applica-
tions with N = 1000.

G |E| |V | t1 t2 t

Bursa 15 12 0.0042 3.6731 3.6773
Hanoi 34 32 0.0099 12.7125 12.7224
Kobe 20 15 0.0057 5.6930 5.6987

TABLE VII: Summary figures of the experiment on applica-
tions with N = 10000.

G |E| |V | t1 t2 t

Bursa 15 12 0.0372 36.7711 36.8083
Hanoi 34 32 0.0985 114.5840 114.6825
Kobe 20 15 0.0505 57.1823 57.2328

TABLE VIII: Summary figures of the experiment on appli-
cations with N = 100000.

G |E| |V | t1 t2 t

Bursa 15 12 0.3722 406.2250 406.5972
Hanoi 34 32 0.7168 1079.8100 1080.5268
Kobe 20 15 0.4222 543.7810 544.2032
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