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The Hammock(𝟐𝟐, 𝟐𝟐, … , 𝟐𝟐⏟      
𝒌𝒌

)-Poset Cover Problem is a variation of the Poset Cover Problem with 

the same input – set {𝑳𝑳𝟏𝟏, 𝑳𝑳𝟐𝟐,… , 𝑳𝑳𝒎𝒎} of linear orders over the set {𝟏𝟏, 𝟐𝟐,… , 𝒏𝒏}, but the solution is 

restricted to a set of simple hammock(𝟐𝟐, 𝟐𝟐, … , 𝟐𝟐⏟      
𝒌𝒌

) posets. The problem is NP-Hard when 𝒌𝒌 ≥  𝟑𝟑 

but is in 𝑷𝑷 when 𝒌𝒌 = 𝟏𝟏. The computational complexity of the problem when 𝒌𝒌 = 𝟐𝟐 is not yet 
known. In this paper, we determine the approximation complexity of the cases that have been 

shown to be NP-Hard. We show that the Hammock(𝟐𝟐, 𝟐𝟐,… , 𝟐𝟐⏟      
𝒌𝒌

)-Poset Cover Problem is in 𝑨𝑨𝑷𝑷𝑨𝑨 

and, in particular, (𝟏𝟏 + 𝟏𝟏𝟐𝟐𝒌𝒌 )-approximable, for 𝒌𝒌 ≥  𝟑𝟑. On the other hand, we also explore the 
computational complexity for the case where 𝒌𝒌 = 𝟐𝟐 [Hammock(2,2)-Poset Cover Problem]. 
We show that it is in 𝑷𝑷 when the transposition graph of the input set of linear orders is 
rectangular.  

Keywords: algorithm, approximation, complexity, partial order, poset 

INTRODUCTION 

Sequential data such as logs may contain a wealth of information that can be mined to discover knowledge about the 
objects in the data or about the system that generates the data. One interesting aspect of the objects in the data is their 
dependencies or ordering. The task of determining such is more commonly referred to as mining posets – a data mining 
task that is relevant in bioinformatics, process model mining, web mining, network management and intrusion 
detection, and preference-based service (Pei et al. 2006). 

A (strict) partially ordered set or poset 𝑃𝑃 = (𝑉𝑉,<𝑃𝑃),  is a pair consisting of a finite set 𝑉𝑉 and a partial ordering on it 
that is defined by an irreflexive, antisymmetric and transitive binary relation <𝑃𝑃. Poset 𝑃𝑃 becomes a totally ordered 
set or a linear order when every pair of elements in 𝑉𝑉 are related, i.e. (𝑢𝑢, 𝑣𝑣) ∈ <𝑃𝑃 or (𝑣𝑣, 𝑢𝑢) ∈ <𝑃𝑃 for every distinct 
𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉.  Moreover, a linear order, say 𝐿𝐿 = (𝑉𝑉,<𝐿𝐿) is a linear extension of a poset 𝑃𝑃 if <𝑃𝑃⊆<𝐿𝐿. We denote the set of 
all linear extensions of poset 𝑃𝑃 as ℒ(𝑃𝑃). For example, Figure 1c shows the set of all linear extensions of the poset 
defined in Figure 1a.  
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Using these mathematical structures, Heath and Nema (2013) abstracted the said data mining task as the Poset Cover 
Problem, where they represented the input sequences as linear orders and the solution is one or more posets that 
explain, through their linear extensions, the ordering in the linear orders. This is formally defined as follows: 

Poset Cover Problem 
Instance: A set Υ = {𝐿𝐿1, 𝐿𝐿2, . . . , 𝐿𝐿𝑚𝑚} of linear orders over the set 𝑉𝑉 = {1,2,3, . . . , 𝑛𝑛}. 

Solution: A set 𝑃𝑃∗ = {𝑃𝑃1, 𝑃𝑃2, . . . , 𝑃𝑃𝑞𝑞} of posets where ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝑃𝑃∗ = Υ and 𝑞𝑞 is minimum. 

Heath and Nema (2013) showed that the decision version of the Poset Cover Problem is NP-Complete. Fernandez et 
al. (2013) also studied the hardness of the problem for different classes of posets with respect to their Hasse diagram. 
Every poset corresponds to a directed acyclic graph (DAG) 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) with vertex set 𝑉𝑉 and edge set 𝐸𝐸 =
{(𝑢𝑢, 𝑣𝑣) ∈<𝑃𝑃}. The Hasse diagram of poset 𝑃𝑃 = (𝑉𝑉, <𝑃𝑃), denoted as H(P), is the transitive reduction of the DAG 𝐺𝐺. 
Figure 1b shows the Hasse diagram of poset 𝑃𝑃 defined in Figure 1a. Classes of posets according to their Hasse diagram 
include leveled posets and hammock posets. A leveled poset 𝑃𝑃 =  (𝑉𝑉, <𝑃𝑃) is a poset where the set 𝑉𝑉 can be partitioned 
into different levels 𝑉𝑉1, 𝑉𝑉2, . . . , 𝑉𝑉𝑘𝑘 such that for 𝑢𝑢 ∈  𝑉𝑉𝑖𝑖 and 𝑣𝑣 ∈  𝑉𝑉𝑗𝑗, 𝑢𝑢 <𝑃𝑃  𝑣𝑣 if and only if 𝑖𝑖 <  𝑗𝑗. Leveled posets could 
be used as combinatorial models for workflow diagrams in process model mining since workflow diagrams could 
have also a series of different stages or levels. On the other hand, a hammock poset is a leveled poset where |𝑉𝑉1| =
|𝑉𝑉𝑘𝑘| = 1 and either |𝑉𝑉𝑖𝑖| = 1 or |𝑉𝑉𝑖𝑖+1| = 1 for 2 ≤  𝑖𝑖 ≤  𝑘𝑘 − 1. A non-singleton 𝑉𝑉𝑖𝑖 in a hammock poset is called a 
hammock. Figure 1b shows the Hasse diagram of a hammock-poset with hammocks {1,9} and {2,4,5}. The sequence 
of the sizes of the hammocks is used to name the class of hammock posets. The hammock(𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛) is a class of 
hammock posets where 𝑎𝑎𝑖𝑖 is the size of the 𝑖𝑖th hammock. Hence, the poset in Figure 1 is a hammock(2,3) poset. 
Hammock posets are also used as a combinatorial model to represent mixed-initiative dialog systems (Fernandez et 
al. 2013).  

P=(V,<P) where 

V={1,2,3,4,5,6,7,8,9} and 

<P={(3,1),(3,9),(3,6),(3,2),(3,4), 

          
(3,5),(3,8),(3,7),(1,6),(1,2), 

          
(1,4),(1,5),(1,8),(1,7),(9,6), 

          
(9,2),(9,4),(9,5),(9,8),(9,7), 

          
(6,2),(6,4),(6,5),(6,8),(6,7), 

          
(2,8),(2,7),(4,8),(4,7),(5,8), 

          (5,7),(8,7) } 

(a) P=(V,<P) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) H(P) 

 

 ℒ(P) = {(3,1,9,6,2,4,5,8,7), 

(3,1,9,6,2,5,4,8,7), 

(3,1,9,6,5,2,4,8,7), 

(3,1,9,6,5,4,2,8,7), 

(3,1,9,6,4,2,5,8,7), 

(3,1,9,6,4,5,2,8,7), 

(3,9,1,6,2,4,5,8,7), 

(3,9,1,6,2,5,4,8,7), 

(3,9,1,6,5,2,4,8,7), 

(3,9,1,6,5,4,2,8,7), 

(3,9,1,6,4,2,5,8,7), 

(3,9,1,6,4,5,2,8,7)} 

 

(c) ℒ(P) 

Figure 1. Poset P and its Hasse diagram and linear extensions. 
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In our study, we only consider hammock(2,2, … ,2⏟    
𝑘𝑘

) posets that have 𝑘𝑘 hammocks of size 2. Note that these posets have 

exactly 2𝑘𝑘 linear extensions; hence, we can say that they are a simple class of posets. It is also then interesting to 
determine the hardness of the problem in this simple class of posets. We can then define the variant of the problem 
for this as follows:  

Hammock(𝟐𝟐, 𝟐𝟐,… , 𝟐𝟐⏟      
𝒌𝒌

)-Poset Cover Problem  

Instance:  A set Υ = {𝐿𝐿1, 𝐿𝐿2, . . . , 𝐿𝐿𝑚𝑚} of linear orders over the set 𝑉𝑉 = {1,2,3, . . . , 𝑛𝑛}. 

Solution: A set 𝑃𝑃∗ = {𝑃𝑃1, 𝑃𝑃2, . . . , 𝑃𝑃𝑞𝑞} of  hammock(2,2, … ,2⏟    
𝑘𝑘

) posets where ⋃ ℒ(𝑃𝑃𝑖𝑖) = Υ𝑃𝑃𝑖𝑖∈ 𝑃𝑃∗  and 𝑞𝑞 is minimum. 

The decision version of the Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem is NP-Complete for 𝑘𝑘 ≥  3 and in 𝑃𝑃 for 𝑘𝑘 = 1 

(Fernandez et al. 2013). The computational complexity of the problem when 𝑘𝑘 = 2 is not yet known. In our previous 
study (Ordanel and Adorna 2018), we presented a solution for 𝑘𝑘 = 2; however, the solution runs in exponential time 
in the worst case. 

For problems that have been shown to be NP-hard, one common approach is approximation. In approximation, we 
want to find an algorithm that produces a solution that is not necessarily optimal but with a cost that is guaranteed to 
be within a factor of the optimal solution. With this, another measure of the complexity of hard optimization problem 
is to determine how hard it is to approximate the problem. This is the first part of our results; we determine the 

approximation complexity of the problem that has been shown to be NP-hard which is the Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset 

Cover Problem for 𝑘𝑘 ≥  3. We have rewritten and extended our results from Ordanel et al. (2017) for this. 

On the other hand, in determining the computational complexity for the case where 𝑘𝑘 = 2 or the Hammock(2,2)-Poset 
Cover Problem, we first explore some of its simpler cases – a common approach in dealing with hard problems. For 
instance, the well-known Hamilton Path Problem is known to be NP-hard. Itai et al. (1982) studied the case where the 
input graph to the problem is a rectangular graph and the problem is in 𝑃𝑃 for this simple case. In a similar way, for the 
Hammock(2,2)-Poset Cover problem, we study and determine the computational complexity of the problem when the 
transposition graph of the input set of linear orders is a rectangular graph.  

Definitions 
In this section, we establish the other terminologies and notations used in the discussion of results. 

Grid Graph (Itai et al. 1982) 
Let 𝐺𝐺∞ be the infinite graph whose vertex set consists of all points in a plane with integer coordinates and in which 
two vertices are connected if and only if the (Euclidean) distance between them is equal to 1. A grid graph is a finite, 
node-induced subgraph of 𝐺𝐺∞. 

Rectangular Graph (Itai et al. 1982) 
Let 𝑅𝑅(𝑚𝑚, 𝑛𝑛) be the grid graph whose vertex set is 𝑉𝑉(𝑅𝑅(𝑚𝑚, 𝑛𝑛))  =  {(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦): 1 ≤  𝑣𝑣𝑥𝑥 ≤  𝑚𝑚 and 1 ≤  𝑣𝑣𝑦𝑦 ≤  𝑛𝑛}. A 
rectangular graph is a grid graph which, for some 𝑚𝑚 and 𝑛𝑛, is isomorphic to 𝑅𝑅(𝑚𝑚, 𝑛𝑛). 

Adjacent Transposition Graph 
We say that two linear orders differ by a single adjacent transposition if one can be transformed to the other by 
interchanging or swapping two adjacent elements. The adjacent transposition graph 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) is an undirected graph 
where 𝑉𝑉 is a set of linear orders over a given base set and 𝐸𝐸 = {{𝐿𝐿1, 𝐿𝐿2}|𝐿𝐿1 and 𝐿𝐿2 differ by a single adjacent 
tranposition}. Given a set of linear orders Υ, we denote the adjacent transposition graph of 𝐺𝐺 = (Υ, 𝐸𝐸) as 𝒢𝒢(Υ). 
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Rectangular Hammock(2,2)-Poset Cover Problem  
Instance: A set Υ = {𝐿𝐿1, 𝐿𝐿2, . . . , 𝐿𝐿𝑚𝑚} of linear orders over the set 𝑉𝑉 = {1,2,3, . . . , 𝑛𝑛} where 𝒢𝒢(Υ) is a rectangular graph 

Solution: A set 𝑃𝑃∗ = {𝑃𝑃1, 𝑃𝑃2, . . . , 𝑃𝑃𝑞𝑞} of hammock(2,2) posets where ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝑃𝑃∗ = Υ and 𝑞𝑞 is minimum 

Cover 
Given a set of linear orders Υ and poset 𝑃𝑃, we say that 𝑃𝑃 covers Υ if and only if ℒ(𝑃𝑃)  = Υ. Given a set of linear orders 
Υ and a set of posets 𝑃𝑃∗, we say that 𝑃𝑃∗ covers Υ if and only if ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝑃𝑃∗  = Υ. 

NP Optimization Problem (Ausiello and Paschos 2005; Crescenzi 1997) 
An NP optimization problem, NPO, 𝜋𝜋 is defined as a four-tuple (ℐ, 𝑆𝑆𝑆𝑆𝑆𝑆,𝑚𝑚, 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆) where: 

 ℐ is the set of instances of 𝜋𝜋 and it can be recognized in polynomial time; 
 given 𝑥𝑥 ∈ ℐ, 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) denotes the set of feasible solutions of 𝑥𝑥; for any 𝑦𝑦 ∈  𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥), |𝑦𝑦| is polynomial in |𝑥𝑥|; 

given any 𝑥𝑥 and 𝑦𝑦 polynomial in |𝑥𝑥|, one can decide in polynomial time if 𝑦𝑦 ∈  𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥); 
 given 𝑥𝑥 ∈ ℐ and 𝑦𝑦 ∈  𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥), 𝑚𝑚(𝑥𝑥, 𝑦𝑦) denotes the value of 𝑦𝑦 and can be computed in polynomial time; and 
 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆 ∈  {𝑚𝑚𝑚𝑚𝑛𝑛,𝑚𝑚𝑔𝑔𝑥𝑥} indicates the type of optimization problem. 

k-Set Cover Problem 
 ℐ : Finite set 𝑆𝑆 and a collection 𝐶𝐶 of subsets of 𝑆𝑆 where |𝑐𝑐| ≤  𝑘𝑘, for 𝑐𝑐 ∈  𝐶𝐶; 
 𝑆𝑆𝑆𝑆𝑆𝑆:  𝐶𝐶′ ⊆  𝐶𝐶 such that every element in 𝑆𝑆 belongs to at least one member of 𝐶𝐶′; 
 𝑚𝑚: |𝐶𝐶′|; and 
 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆: 𝑚𝑚𝑚𝑚𝑛𝑛 

The decision version of the 𝑘𝑘-Set Cover Problem is NP-Hard for 𝑘𝑘 ≥  3  (Ausiello et al. 1999). 

Approximation Ratio 
Let 𝜋𝜋 be an NPO problem. Given an instance 𝑥𝑥 and a feasible solution 𝑦𝑦, we define the approximation or performance 
ratio 𝜌𝜌 of 𝑦𝑦 with respect to 𝑥𝑥 as the ratio between 𝑚𝑚(𝑥𝑥, 𝑦𝑦) and the optimal solution 𝑆𝑆𝑜𝑜𝑜𝑜(𝑥𝑥), i.e.: 

𝜌𝜌(𝑥𝑥, 𝑦𝑦)  =  𝑚𝑚𝑔𝑔𝑥𝑥 { 𝑚𝑚(𝑥𝑥, 𝑦𝑦)𝑆𝑆𝑜𝑜𝑜𝑜(𝑥𝑥) ,
𝑆𝑆𝑜𝑜𝑜𝑜(𝑥𝑥)
𝑚𝑚(𝑥𝑥, 𝑦𝑦) } 

Strict Reduction (Ausiello and Paschos 2005; Crescenzi 1997) 

Let 𝜋𝜋1 and 𝜋𝜋2 be two NPO minimization problems. Then, we say that 𝜋𝜋1 is strictly reducible to 𝜋𝜋2, denoted by 
𝜋𝜋1 ≤𝑆𝑆  𝜋𝜋2, if there exist two polynomial time computable functions 𝑓𝑓, 𝑔𝑔 that satisfy the following properties: 

  𝑓𝑓: ℐ𝜋𝜋1 → ℐ𝜋𝜋2 , i.e. 𝑓𝑓 maps instances of 𝜋𝜋1 into instances of 𝜋𝜋2; 
 𝑔𝑔: ℐ𝜋𝜋1 ×  𝑆𝑆𝑆𝑆𝑆𝑆𝜋𝜋2 →  𝑆𝑆𝑆𝑆𝑆𝑆𝜋𝜋1  , i.e. 𝑔𝑔 maps back solutions of 𝜋𝜋2 into solutions of 𝜋𝜋1; and 
 for all  𝑥𝑥 ∈ ℐ𝜋𝜋1 and for all  𝑦𝑦 ∈  𝑆𝑆𝑆𝑆𝑆𝑆𝜋𝜋2(𝑓𝑓(𝑥𝑥)), 𝜌𝜌𝜋𝜋2(𝑓𝑓(𝑥𝑥), 𝑦𝑦) ≥ 𝜌𝜌𝜋𝜋1(𝑥𝑥, 𝑔𝑔(𝑥𝑥, 𝑦𝑦)). 

RESULTS AND DISCUSSION 

Approximation Complexity of Hammock(𝟐𝟐, 𝟐𝟐, … , 𝟐𝟐⏟      
𝒌𝒌

)-Poset Cover Problem 

There is already a result in the literature where, given a set of linear orders Υ and an integer 𝑘𝑘, we can efficiently get 
all the possible hammock posets with 𝑘𝑘 hammocks of size 2 whose union cover Υ. This is stated as follows. 
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Theorem 1 (Ordanel and Adorna 2018): Given a set of linear orders Υ =  {𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑚𝑚} over the set 𝑉𝑉 = {1,2, … , 𝑛𝑛} 
and an integer 𝑘𝑘 > 0, we can determine the set of posets 𝑃𝑃∗ = { 𝑃𝑃 is  hammock(2,2,… ,2⏟    

𝑘𝑘
) poset and ℒ(𝑃𝑃) ⊆ Υ } such 

that ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝑃𝑃∗ = Υ in 𝑂𝑂(𝑘𝑘𝑛𝑛2 𝑚𝑚2)-time. 

We denote the algorithm that determines 𝑃𝑃∗ as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺𝑘𝑘2𝑘𝑘𝑃𝑃𝐺𝐺𝑘𝑘𝐺𝐺𝐺𝐺𝑘𝑘. As an example, given the set of linear 
orders Υ in Figure 2a and 𝑘𝑘 = 2, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺𝑘𝑘2𝑘𝑘𝑃𝑃𝐺𝐺𝑘𝑘𝐺𝐺𝐺𝐺𝑘𝑘 determines the set of Hammock(2,2)-Posets 𝑃𝑃∗ =
{𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3} whose Hasse diagrams are illustrated in Figure 2b.  

Note that 𝑃𝑃∗ is not necessarily optimal – a subset of 𝑃𝑃∗ could be enough to exactly cover Υ. For instance, in the 
example given in Figure 2, we can see that the subset {𝑃𝑃1, 𝑃𝑃3} is the optimal solution. To approximate then the 

Hammock(2,2,… ,2⏟    
𝑘𝑘

)-Poset Cover Problem, we can approximate the minimum subset of 𝑃𝑃∗ that still cover Υ. To do 

this, note that each 𝑃𝑃𝑖𝑖 in 𝑃𝑃∗ corresponds to its set of linear extensions ℒ(𝑃𝑃𝑖𝑖) ⊆ Υ. From this, we can then reduce the 
problem to a variant of the Set Cover Problem. We establish the reduction with the following results. 

 
Figure 2. Example of GetAllHammock2kPoset Algorithm. 
 
Lemma 2: Given a poset 𝑃𝑃 = (𝑉𝑉,<𝑃𝑃), if 𝑃𝑃 is a hammock(𝐺𝐺1, 𝐺𝐺2,… , 𝐺𝐺𝑦𝑦), then |ℒ(𝑃𝑃)| =  𝐺𝐺1! 𝐺𝐺2!… 𝐺𝐺𝑦𝑦!. 

Proof: Let 𝑛𝑛 = |𝑉𝑉|. To form a linear extension 𝐺𝐺 of length 𝑛𝑛, we first place all the link vertices in order while leaving 
respective spaces for the hammock vertices. Then, place elements of hammock 𝐺𝐺1 in the space allotted for 𝐺𝐺1. There 
are 𝐺𝐺1! possible arrangement of the elements of hammock 𝐺𝐺1. Do this for hammock 𝐺𝐺2 to 𝐺𝐺𝑦𝑦. Hence, by the 
Multiplication Principle, |ℒ(𝑃𝑃)| =  𝐺𝐺1! 𝐺𝐺2!… 𝐺𝐺𝑦𝑦!. 

Theorem 3: Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem  ≤𝑆𝑆 𝑘𝑘′-Set Cover Problem, where 𝑘𝑘′ = 2𝑘𝑘. 

Proof: Let 𝜋𝜋1 be the Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem and 𝜋𝜋2 be the 𝑘𝑘′-Set Cover Problem where 𝑘𝑘′ = 2𝑘𝑘.  
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Let Υ ∈ ℐ𝜋𝜋1.  

We define 𝑓𝑓 to be the following: 

1. 𝑃𝑃∗ ← GetAllHammock2kPosets(Υ, 𝑘𝑘) 

2. 𝜏𝜏 ← {ℒ(𝑃𝑃)|𝑃𝑃 ∈  𝑃𝑃∗ } 
3. Return (Υ, 𝜏𝜏)  

From Theorem 1, 𝑃𝑃∗  =  {𝑃𝑃|𝑃𝑃 is hammock(2,2, … ,2⏟    
𝑘𝑘

) poset and ℒ(𝑃𝑃) ⊆ Υ } and  ⋃ ℒ(𝑃𝑃)𝑃𝑃∈ 𝑃𝑃∗ = Υ. Hence, 𝜏𝜏 =
{ℒ(𝑃𝑃)|𝑃𝑃 ∈  𝑃𝑃∗} is a collection of subsets of Υ and ⋃ 𝑡𝑡𝑡𝑡∈𝜏𝜏 = Υ. Moreover, from Lemma 2 |ℒ(𝑃𝑃)| = 2𝑘𝑘. Hence, |𝑡𝑡| =
2𝑘𝑘 = 𝑘𝑘′ for each 𝑡𝑡 ∈ 𝜏𝜏. Clearly, 𝑓𝑓(Υ) = (Υ, 𝜏𝜏) ∈ ℐ𝜋𝜋2. From Theorem 1, we can determine 𝑃𝑃∗ using 
𝐺𝐺𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘2𝑘𝑘𝑃𝑃𝐺𝐺𝑘𝑘𝐺𝐺𝑡𝑡𝑘𝑘 in polynomial-time. ℒ(𝑃𝑃) can be determined in two ways. First, since 

𝐺𝐺𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘2𝑘𝑘𝑃𝑃𝐺𝐺𝑘𝑘𝐺𝐺𝑡𝑡𝑘𝑘 builds hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset 𝑃𝑃 by combining its linear extensions, then ℒ(𝑃𝑃) can be 

stored efficiently as a property of a poset 𝑃𝑃. Second, given a poset 𝑃𝑃 we can also determine ℒ(𝑃𝑃) using the algorithm 
of Pruesse and Ruskey (1994). Thus, we can say that 𝑓𝑓 is a polynomial computable function. 

The problem of determining a minimum Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset that covers Υ can then be translated to the problem 

of determining the minimum set cover of Υ from subsets in 𝜏𝜏. If 𝑥𝑥 ∈ ℐ𝜋𝜋1, 𝑦𝑦 ∈  𝑆𝑆𝐺𝐺𝐺𝐺𝜋𝜋2 for 𝑓𝑓(𝑥𝑥), we can define 
polynomial computable function 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = {𝑃𝑃 ∈  𝑃𝑃∗|ℒ(𝑃𝑃) ∈  𝑦𝑦 }.  

From these premises, we can clearly infer that the same approximation ratio applies, i.e.  𝜌𝜌𝜋𝜋2(𝑓𝑓(𝑥𝑥), 𝑦𝑦)  =
𝜌𝜌𝜋𝜋1(𝑥𝑥, 𝑔𝑔(𝑥𝑥, 𝑦𝑦)). The shown reduction is hence a strict reduction.  ∎ 

Corollary 4: Given an integer 𝑘𝑘 ≥  3, Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem is in 𝐺𝐺𝑃𝑃𝐴𝐴. Specifically, it is (1 +

 12𝑘𝑘)-approximable. 

Proof: The 𝑘𝑘′-Set Cover Problem is in 𝐺𝐺𝑃𝑃𝐴𝐴 for 𝑘𝑘′ ≥  3 (Halldorsson 1996). Strict reduction preserves the membership 

in 𝐺𝐺𝑃𝑃𝐴𝐴 (Crescenzi 1997; Ausiello and Paschos 2005). Hence, Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem where  𝑘𝑘 ≥
3 is also in 𝐺𝐺𝑃𝑃𝐴𝐴. 

In the literature, the best approximation ratio to our knowledge for the 𝑘𝑘′-Set Cover Problem is the (1 + 1𝑘𝑘′)-
approximation algorithm of Essa et al. (2016) for 𝑘𝑘′ ≥  6. Since, 𝑘𝑘 ≥  3, then 𝑘𝑘′ ≥  8; hence, we can use the algorithm. 

From the proof of Theorem 3, the same approximation ratio also applies to Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem. 

Hence, Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem is (1 + 1
2𝑘𝑘)-approximable, for 𝑘𝑘 ≥  3.      ∎  

Computational Complexity of Rectangular Hammock(2,2)-Poset Cover Problem 

In this section, we present a polynomial-time solution for the Rectangular Hammock(2,2)-Poset Cover Problem. From 
Theorem 1, given Υ and 𝑘𝑘 = 2, we can get efficiently using 𝐺𝐺𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘2𝑘𝑘𝑃𝑃𝐺𝐺𝑘𝑘𝐺𝐺𝑡𝑡𝑘𝑘 Algorithm the set 𝐼𝐼∗ = { 𝑃𝑃 
is a hammock(2,2) poset and ℒ(𝑃𝑃) ⊆ Υ } where ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝐼𝐼∗ = Υ. What remains then is to determine the minimum 
subset of 𝐼𝐼∗ that covers Υ. Remember that for Rectangular Hammock(2,2)-Poset Cover Problem we have an additional 
assumption, i.e. 𝒢𝒢(Υ) is rectangular. Let us then first characterize the transposition graph 𝒢𝒢(Υ) with the help of the 
following previous result. 
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Lemma 5 (Ordanel and Adorna 2018): Given two distinct hammock(2,2) posets 𝑃𝑃1   =  (𝑉𝑉, <𝑃𝑃1) and 𝑃𝑃2   =  (𝑉𝑉, <𝑃𝑃2) 
and let 𝒢𝒢(ℒ(𝑃𝑃1)) and 𝒢𝒢(ℒ(𝑃𝑃2)) be their respective adjacent transposition graph. Then,  

 𝒢𝒢(ℒ(𝑃𝑃1)) and 𝒢𝒢(ℒ(𝑃𝑃2)) are cycles of length 4 

 If ℒ(𝑃𝑃1) ∩ ℒ(𝑃𝑃2) ≠ ∅, then either ℒ(𝑃𝑃1 ) ∩ ℒ(𝑃𝑃2) = {𝐿𝐿1}  or  ℒ(𝑃𝑃1) ∩ ℒ(𝑃𝑃2) = {𝐿𝐿1, 𝐿𝐿2}  where {𝐿𝐿1, 𝐿𝐿2} is an 

edge in 𝒢𝒢(ℒ(𝑃𝑃1)) and 𝒢𝒢(ℒ(𝑃𝑃2)).  

With the first property of Lemma 5, for every 𝑃𝑃𝑖𝑖 ∈  𝐼𝐼∗, the transposition graph 𝐺𝐺(ℒ(𝑃𝑃𝑖𝑖), 𝐸𝐸𝑖𝑖) is a cycle of length 4, 
which we can also treat and call as a unit square. We can then denote 𝒢𝒢(Υ)  =  𝐺𝐺(Υ, 𝐸𝐸) as ⋃ 𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖∈𝒞𝒞 , where 𝐶𝐶𝑖𝑖  =
 𝐺𝐺(ℒ(𝑃𝑃𝑖𝑖), 𝐸𝐸𝑖𝑖), Υ = ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝐼𝐼∗ , and 𝐸𝐸 = ⋃ 𝐸𝐸𝑖𝑖𝑖𝑖=1,…,|𝐼𝐼∗| . In other words, we can say that 𝒢𝒢(Υ) is composed of |𝐼𝐼∗| 
unit squares. From now on, we can also interchangeably call a unit square in 𝒢𝒢(Υ) as a poset. 

Now, from the second property, we can say that when two squares intersect – they either intersect in a vertex or in an 
edge in the graph. Since we are only dealing with the case where 𝒢𝒢(Υ) is rectangular, then we know that the former 
case always holds. Moreover, we can say that for every edge 𝑒𝑒 ∈  𝐸𝐸, there is at least one and at most two unit squares 
𝐶𝐶𝑖𝑖  =  𝐺𝐺(ℒ(𝑃𝑃𝑖𝑖), 𝐸𝐸𝑖𝑖), 𝐶𝐶𝑗𝑗  =  𝐺𝐺(ℒ(𝑃𝑃𝑗𝑗), 𝐸𝐸𝑗𝑗), 𝐶𝐶𝑖𝑖 ≠  𝐶𝐶𝑗𝑗 where 𝑒𝑒 ∈  𝐸𝐸𝑖𝑖 and 𝑒𝑒 ∈  𝐸𝐸𝑗𝑗. In other words, an edge in 𝒢𝒢(Υ) is either 
covered by one unit square or two unit squares or, equivalently, by one or two posets in 𝐼𝐼∗. 

As an example, if we build 𝒢𝒢(Υ) where Υ is the set of linear orders in Figure 2a, then we have the transposition graph 
in Figure 3. The graph is rectangular and consists of three squares – namely 𝐶𝐶1, 𝐶𝐶2, and 𝐶𝐶3 – which corresponds to 
𝑃𝑃1, 𝑃𝑃2, and 𝑃𝑃3, respectively in Figure 2b. Moreover, 𝐶𝐶1 and 𝐶𝐶2 intersect in an edge, as do 𝐶𝐶2 and 𝐶𝐶3. From this, we can 
then also treat the problem as finding the minimum set of unit squares that cover all the vertices of the transposition 
graph. 

The pseudocode of Algorithm 1 for Rectangular Hammock(2,2)-Poset Cover Problem is shown below. The algorithm 
works by iterating through the set of posets in 𝐼𝐼∗  or equivalently the set of unit squares in 𝒢𝒢(Υ). In every iteration, it 
selects one poset 𝑃𝑃 to be part of the optimal solution 𝑃𝑃∗. To determine the poset to be selected, it finds a linear order 
(vertex) that can be covered by exactly one poset (unit square). That single poset should then be selected and be part 
of the optimal solution. After selecting a poset, it then determines posets that can be trimmed. A poset can be trimmed 
if its remaining uncovered linear extensions can already be covered by exactly one other poset in the remaining set of 
candidate posets. The above steps are repeated until all the linear orders are already covered.  

To illustrate the algorithm, let us consider again the simple posets in Figure 2 and 3. In the first iteration, 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿7, 
and 𝐿𝐿8 are the linear orders that are covered only by a single poset. If, for example, we have evaluated 𝐿𝐿1 first, then 
we should add 𝑃𝑃1 to 𝑃𝑃∗. After selecting 𝑃𝑃1, its linear extensions 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3 and 𝐿𝐿4 are now covered. The remaining 
uncovered vertices are given by Υ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {𝐿𝐿5, 𝐿𝐿6, 𝐿𝐿7, 𝐿𝐿8}. Now, we determine if there are posets in the remaining ones 
which is contained in 𝑃𝑃𝑢𝑢𝑐𝑐𝑢𝑢𝑐𝑐

∗  = {𝑃𝑃2, 𝑃𝑃3}, that can be trimmed. 𝑃𝑃3 cannot be trimmed since its remaining uncovered  

 

linear extensions are covered by itself and 𝑃𝑃2. On the other hand, 𝑃𝑃2 can already be trimmed since its remaining 
uncovered linear extensions, which are 𝐿𝐿5 and 𝐿𝐿6, can already be covered by another exactly one poset, which is 𝑃𝑃3. 

Figure 3. Transposition Graph (Υ).       
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After the first iteration, we can now visualize our current transposition graph like the one in Figure 4. When 𝑃𝑃2 is 
trimmed, we can now say that 𝐿𝐿5 and 𝐿𝐿6 remains uncovered but are now covered only by a single poset in 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ . 
Hence, in the next iteration, after evaluating 𝐿𝐿5, 𝐿𝐿6, 𝐿𝐿7, or 𝐿𝐿8, 𝑃𝑃3 can already be selected to be part of the optimal 
solution. After selecting 𝑃𝑃3, all the linear orders are now covered; hence, the Algorithm terminates and returns {𝑃𝑃1, 𝑃𝑃3} 
as the optimal solution.  

 
                                                         Figure 4. Example of an iteration in Algorithm 1. 
 

__________________________________________________________________________________________
___________ 
Algorithm 1: Algorithm for Rectangular Hammock(2,2)-Poset Cover Problem 
Input: A set Υ = {𝐿𝐿1, 𝐿𝐿2, . . . , 𝐿𝐿𝑚𝑚} of linear orders on 𝑉𝑉 = {1,2, . . . , 𝑛𝑛} where 𝒢𝒢(Υ) is rectangular. 
Output: A set 𝑃𝑃∗ = {𝑃𝑃1, 𝑃𝑃2, . . . , 𝑃𝑃𝑘𝑘} of hammock(2,2) posets where ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝑃𝑃∗ = Υ and 𝑘𝑘 is minimum.}  
1 𝐼𝐼∗ ∶=  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘2𝑘𝑘𝑃𝑃𝐺𝐺𝑘𝑘𝐺𝐺𝐺𝐺𝑘𝑘(Υ, 2) 
2 If 𝐼𝐼∗  =  𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺 
3        return null 
4 Else 
5        Let 𝐼𝐼∗ = {𝑃𝑃1, 𝑃𝑃2, … , 𝑃𝑃𝑝𝑝} 
6        Set 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ ∶=  𝐼𝐼∗, Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢  ∶= Υ, Υ𝑐𝑐𝑢𝑢𝑢𝑢  = ∅  
7        for 𝑖𝑖 ∶=  1 to 𝐺𝐺 and 𝑗𝑗 ∶=  1 to 𝑝𝑝, set 𝑀𝑀[𝑖𝑖][𝑗𝑗] = 1 if 𝐿𝐿𝑖𝑖 ∈ ℒ(𝑃𝑃𝑗𝑗), otherwise, 𝑀𝑀[𝑖𝑖][𝑗𝑗] = 0  
8        while Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 ≠ ∅ do 
9  Select 𝐿𝐿𝑟𝑟 ∈ Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 where there is a unique  𝑘𝑘 ∈  {1, … , 𝑝𝑝} such that 𝑀𝑀[𝑟𝑟][𝑘𝑘]  =  1 
10  𝑃𝑃∗ ∶=  𝑃𝑃∗ ∪ 𝑃𝑃𝑠𝑠 
11  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ ∶=  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∗ ∖  𝑃𝑃𝑠𝑠 

12  for every 𝐿𝐿𝑡𝑡 ∈ ℒ(𝑃𝑃𝑠𝑠), set 𝑀𝑀[𝐺𝐺][𝑘𝑘] = 0, Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 ∶= Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 ∖  {𝐿𝐿𝑡𝑡} and  Υ𝑐𝑐𝑢𝑢𝑢𝑢  = Υ𝑐𝑐𝑢𝑢𝑢𝑢 ∪ {𝐿𝐿𝑡𝑡} 
13  /* Trim removable posets */  
14  for each 𝑃𝑃𝑢𝑢 ∈  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ , sequentially do 
15         ℒ′: = ℒ(𝑃𝑃𝑢𝑢) ∖ Υ𝑐𝑐𝑢𝑢𝑢𝑢 
16         if there is a unique  𝑃𝑃𝑢𝑢 ∈  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ , 𝑃𝑃𝑢𝑢 ≠  𝑃𝑃𝑢𝑢 where ℒ′ ⊂ ℒ(𝑃𝑃𝑢𝑢) 
17   𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ : =  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∗ ∖  {𝑃𝑃𝑢𝑢} 

18   for every 𝐿𝐿𝑤𝑤 ∈ ℒ(𝑃𝑃𝑢𝑢), set 𝑀𝑀[𝑤𝑤][𝑛𝑛] = 0 
19        return 𝑃𝑃∗ 

Theorem 6: Given a set of linear orders Υ =  {𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑚𝑚} over the set 𝑉𝑉 = {1,2, … , 𝑛𝑛} where 𝒢𝒢(Υ) is rectangular, 
Algorithm 1 returns a set of posets 𝑃𝑃∗ = { 𝑃𝑃 is  hammock(2,2) poset} such that ⋃ ℒ(𝑃𝑃𝑖𝑖)𝑃𝑃𝑖𝑖∈ 𝑃𝑃∗ = Υ and |𝑃𝑃∗| is minimum 
in 𝑂𝑂(𝑛𝑛2 𝐺𝐺2   + 𝐺𝐺3)-time. 

Proof: From Theorem 1, we know that we can determine in 𝑂𝑂(𝑛𝑛2 𝐺𝐺2)-time the set 𝐼𝐼∗ = {𝑃𝑃|𝑃𝑃 is hammock(2,2) poset 
and ℒ(𝑃𝑃) ⊆ Υ} where ⋃ ℒ(𝑃𝑃)𝑃𝑃∈ 𝐼𝐼∗ = Υ. If 𝐼𝐼∗ is null, then it means that there exists no set of hammock(2,2) posets that 
covers Υ. Hence, the algorithm also returns null in Line 3. On the other hand, in Line 5, we are already sure that 𝐼𝐼∗ 
contains all possible hammock(2,2) posets that cover Υ. Let 𝐼𝐼∗  =  {𝑃𝑃1, 𝑃𝑃2, … , 𝑃𝑃𝑝𝑝 }. Without loss of generality, let every 
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𝑃𝑃𝑖𝑖 ∈  𝐼𝐼∗ be distinct, i.e. for every posets 𝑃𝑃1 and 𝑃𝑃2 in 𝐼𝐼∗, <𝑃𝑃1≠ <𝑃𝑃2. What remains then is to determine a subset of 𝐼𝐼∗ 
with minimum cardinality that covers Υ.  

Let 𝑃𝑃∗ be the intended output – the minimum set of poset that covers Υ. Let 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∗  be the set of candidate posets that 

are eligible to be selected next for 𝑃𝑃∗. Let Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 be the set of linear orders that are not yet covered. Lastly, let Υ𝑐𝑐𝑢𝑢𝑢𝑢 
be the set of linear orders that are already covered. 

Now, we want to show that the following loop invariants hold in every iteration 𝑖𝑖 of the while loop body (lines 8–18).  

1) At Line 9, there always exists 𝐿𝐿𝑟𝑟 ∈ Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢, that is covered by exactly one poset in 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∗ , i.e. there is a unique 

𝑠𝑠 ∈  {1, … , 𝑝𝑝} where 𝑀𝑀[𝑟𝑟][𝑠𝑠]  =  1. 

2) At Line 18, 𝑃𝑃∗ is the minimum set of Hammock(2,2)-Posets that covers Υ𝑐𝑐𝑢𝑢𝑢𝑢. 

o When 𝑖𝑖 = 1  
Initially, Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢  = Υ. Since 𝒢𝒢(Υ) is a rectangular graph and is composed of unit squares, then there exists a vertex 
𝑣𝑣 that is incident to exactly 2 edges and these two edges are part of exactly one square. Equivalently, this means 
that there exists a linear order in Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 that is covered by exactly one poset, say 𝑃𝑃1. Thus, invariant 1 is satisfied. 
Now, since only 𝑃𝑃1 covers 𝐿𝐿𝑟𝑟, then it must be that 𝑃𝑃1 ∈  𝑃𝑃∗. Hence, 𝑃𝑃∗ = {𝑃𝑃1} is the minimum set that covers  
Υ𝑐𝑐𝑢𝑢𝑢𝑢 = ℒ(𝑃𝑃1). This satisfies invariant 2. 

o Suppose the invariants hold for iteration 𝑖𝑖 = 𝑘𝑘  
o When  𝑖𝑖 = 𝑘𝑘 + 1 

In every iteration, the values in 𝑀𝑀 are changed into two parts of the algorithm. First, in Line 12, 𝑀𝑀[𝑢𝑢][𝑣𝑣]  =  0 
for 𝐿𝐿𝑢𝑢 ∈ ℒ(𝑃𝑃𝑢𝑢) where 𝑃𝑃𝑢𝑢 is the poset chosen and transferred from 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗  to 𝑃𝑃∗. Second is in Line 18, 𝑀𝑀[𝑢𝑢][𝑣𝑣]  =
 0 for 𝐿𝐿𝑢𝑢 ∈ ℒ(𝑃𝑃𝑢𝑢) where 𝑃𝑃𝑢𝑢 is the poset trimmed. Note that in either update, the poset 𝑃𝑃𝑢𝑢 is removed from 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ . 
Hence, we can say that 𝑀𝑀[𝑢𝑢][𝑣𝑣] = 1 if and only if 𝐿𝐿𝑢𝑢 ∈ ℒ(𝑃𝑃𝑢𝑢) where 𝑃𝑃𝑢𝑢 ∈  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ . We can then also say that 
𝒢𝒢(⋃ ℒ𝑃𝑃∈ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ (𝑃𝑃)) ⊂ 𝒢𝒢(Υ) is also a grid graph that consists of |𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∗ | unit squares, i.e. ⋃ 𝐶𝐶𝑗𝑗𝑃𝑃𝑗𝑗∈ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗   where 𝐶𝐶𝑗𝑗  =
 𝐺𝐺(ℒ(𝑃𝑃𝑗𝑗), 𝐸𝐸𝑗𝑗). This implies that there exists a set of vertices, say 𝑊𝑊, from 𝒢𝒢(⋃ ℒ(𝑃𝑃)𝑃𝑃∈ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ ) that is incident to 
exactly 2 edges and these two edges are part of exactly one square, or equivalently exactly one poset. In other 
words, 𝑊𝑊 =  {𝐿𝐿𝑢𝑢|𝑀𝑀[𝑢𝑢, 𝑣𝑣] = 1 for exactly one 𝑣𝑣}.  

Next, we show that there is at least one 𝐿𝐿𝑟𝑟 ∈  𝑊𝑊 that is not yet covered, i.e. 𝐿𝐿𝑟𝑟 ∈ Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢. To show this, suppose 
every 𝐿𝐿𝑟𝑟 ∈  𝑊𝑊 is already covered. Now, since 𝑀𝑀[𝑟𝑟][𝑠𝑠]  =  1, we know that 𝑃𝑃𝑠𝑠 is the only poset in 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗  that 
covers 𝐿𝐿𝑟𝑟. Let 𝐶𝐶𝑠𝑠 =  𝐺𝐺(ℒ(𝑃𝑃𝑠𝑠), 𝐸𝐸𝑠𝑠) be the corresponding unit square of 𝑃𝑃𝑠𝑠 where ℒ(𝑃𝑃𝑠𝑠)  =  {𝐿𝐿𝑟𝑟, 𝐿𝐿𝑒𝑒, 𝐿𝐿𝑓𝑓, 𝐿𝐿𝑔𝑔} and 𝐸𝐸𝑠𝑠  =
 {{𝐿𝐿𝑟𝑟, 𝐿𝐿𝑒𝑒}, {𝐿𝐿𝑟𝑟, 𝐿𝐿𝑓𝑓}, {𝐿𝐿𝑒𝑒, 𝐿𝐿𝑔𝑔}, {𝐿𝐿𝑓𝑓, 𝐿𝐿𝑔𝑔}}. Since 𝐿𝐿𝑟𝑟 is covered, then it must have been covered by a poset in 𝑃𝑃∗, say 
𝑃𝑃𝑔𝑔. As we mentioned earlier, 𝐿𝐿𝑟𝑟 is incident to two edges of 𝐸𝐸𝑠𝑠 that belong to 𝐶𝐶𝑠𝑠 only, i.e. there exists no other 
square 𝐶𝐶𝑡𝑡 =  𝐺𝐺(ℒ(𝑃𝑃𝑡𝑡), 𝐸𝐸𝑡𝑡) in  𝒢𝒢(⋃ ℒ(𝑃𝑃)𝑃𝑃∈ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ ) where {𝐿𝐿𝑟𝑟, 𝐿𝐿𝑒𝑒}, {𝐿𝐿𝑟𝑟, 𝐿𝐿𝑓𝑓} ∈  𝐸𝐸𝑡𝑡. By Property 2 of the transposition 
graph, an edge is covered by at most 2 unit squares. Then, 𝑃𝑃𝑔𝑔 must have covered not only 𝐿𝐿𝑟𝑟 but a vertex or a 
linear order that is adjacent to 𝐿𝐿𝑟𝑟. Let it be the 𝐿𝐿𝑒𝑒 since {𝐿𝐿𝑟𝑟, 𝐿𝐿𝑒𝑒} ∈  𝐸𝐸𝑠𝑠. The remaining vertices are 𝐿𝐿𝑓𝑓 and 𝐿𝐿𝑔𝑔. Note 
that {𝐿𝐿𝑓𝑓, 𝐿𝐿𝑔𝑔} is also an edge in 𝐸𝐸𝑠𝑠. Hence, we have two cases. First, {𝐿𝐿𝑓𝑓, 𝐿𝐿𝑔𝑔} is a common edge of at most two unit 
squares or equivalently two posets in 𝐼𝐼∗. Then, 𝑃𝑃𝑠𝑠 should have been trimmed in the previous iteration. Second, 
{𝐿𝐿𝑓𝑓, 𝐿𝐿𝑔𝑔} is an edge of only one unit square or equivalently one poset, i.e. 𝑃𝑃𝑠𝑠. Then at least one of 𝐿𝐿𝑓𝑓, 𝐿𝐿𝑔𝑔 is in 𝑊𝑊 
and not yet covered. Both cases arrive at a contradiction; hence, we can say that there exists at least one  𝐿𝐿𝑟𝑟 ∈  𝑊𝑊 
that is also in Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 and invariant 1 holds. 

Now, let 𝐿𝐿𝑟𝑟 be the selected linear extension at the start of iteration 𝑘𝑘 + 1 in Step 8 where there is a unique 𝑠𝑠 ∈
 {1, … , 𝑝𝑝} where 𝑀𝑀[𝑟𝑟][𝑠𝑠]  =  1. Moreover, let 𝑃𝑃𝑖𝑖

∗, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖
∗ , Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢,𝑖𝑖, Υ𝑐𝑐𝑢𝑢𝑢𝑢,𝑖𝑖 be the values of 𝑃𝑃∗, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ , Υ𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢, and 
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Υ𝑐𝑐𝑐𝑐𝑐𝑐 at the end of iteration 𝑖𝑖, respectively. To satisfy invariant 2, we must show that 𝑃𝑃𝑘𝑘+1
∗  =  𝑃𝑃𝑘𝑘

∗ ∪ ℒ(𝑃𝑃𝑠𝑠) is the 
minimum set of posets that cover Υ𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘+1  = Υ𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘 ∪ ℒ(𝑃𝑃𝑠𝑠).  

Suppose, 𝑃𝑃𝑘𝑘+1
∗  is not minimum, i.e. there exists 𝑃𝑃𝑘𝑘+1

∗′  where |𝑃𝑃𝑘𝑘+1
∗′ |  <  |𝑃𝑃𝑘𝑘+1

∗ | that covers Υ𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘+1. This means 
that |𝑃𝑃𝑘𝑘+1

∗′ |  <  |𝑃𝑃𝑘𝑘
∗|  +  1 or, in other words, |𝑃𝑃𝑘𝑘+1

∗′ | ≤  |𝑃𝑃𝑘𝑘
∗ |. Let 𝑃𝑃𝑘𝑘

∗′ be also the subset of 𝑃𝑃𝑘𝑘+1
∗′  that covers Υ𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘. 

With our assumption that 𝑃𝑃𝑘𝑘
∗ is the minimum set that covers Υ𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘 , then it must be that |𝑃𝑃𝑘𝑘

∗′| ≥  |𝑃𝑃𝑘𝑘
∗|. Let us now 

consider the following cases: 
o Case 1: There is only one poset in 𝐼𝐼∗, which is 𝑃𝑃𝑠𝑠, that cover 𝐿𝐿𝑟𝑟 

In this case, since 𝐿𝐿𝑟𝑟 is not yet covered, then 𝑃𝑃𝑠𝑠 must be part of the solution. Hence,  𝑃𝑃𝑘𝑘
∗′ ∪ {𝑃𝑃𝑠𝑠} ⊆  𝑃𝑃𝑘𝑘+1

∗′ . 
Thus, |𝑃𝑃𝑘𝑘+1

∗′ | ≥  |𝑃𝑃𝑘𝑘
∗′|  +  1. However, |𝑃𝑃𝑘𝑘

∗′| ≥  |𝑃𝑃𝑘𝑘
∗|. Hence, it cannot be that |𝑃𝑃𝑘𝑘+1

∗′ | ≤  |𝑃𝑃𝑘𝑘
∗|. 

o Case 2: 𝐿𝐿𝑟𝑟 is covered by more than one poset in 𝐼𝐼∗ 
Without loss of generality, let 𝐿𝐿𝑟𝑟 be covered by two posets in 𝐼𝐼∗, 𝑃𝑃𝑠𝑠 and 𝑃𝑃𝑡𝑡.  
Since there is a unique 𝑠𝑠 ∈  {1, … , 𝑝𝑝} where 𝑀𝑀[𝑟𝑟][𝑠𝑠]  =  1 at the current iteration and 𝐿𝐿𝑟𝑟 ∈ Υ𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 means it 
is not yet covered by any poset in 𝑃𝑃𝑘𝑘

∗, then 𝑀𝑀[𝑟𝑟][𝑡𝑡], was set to 0 and removed in 𝑃𝑃𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐
∗  in Step 14-18 during 

some previous iteration. Note that we trimmed poset when the remaining uncovered linear extension of the 
poset can already be covered by another and exactly one poset. Let the remaining uncovered linear extensions 
be ℒ(𝑃𝑃𝑡𝑡)𝑢𝑢  =  {𝐿𝐿 ∈ ℒ(𝑃𝑃𝑡𝑡)|𝐿𝐿 ∈ Υ𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘 }. Note that 𝐿𝐿𝑟𝑟 ∈ ℒ(𝑃𝑃𝑡𝑡)𝑢𝑢. The exactly one poset that covers ℒ(𝑃𝑃𝑡𝑡)𝑢𝑢 
must be 𝑃𝑃𝑠𝑠. In other words, ℒ(𝑃𝑃𝑡𝑡)𝑢𝑢 ⊂ ℒ(𝑃𝑃𝑠𝑠). Choosing 𝑃𝑃𝑡𝑡 then will only add ℒ(𝑃𝑃𝑡𝑡)𝑢𝑢 to the covered linear 
orders, but choosing 𝑃𝑃𝑠𝑠 will cover ℒ(𝑃𝑃𝑡𝑡)𝑢𝑢 ∪ (ℒ(𝑃𝑃𝑠𝑠) ∖ ℒ(𝑃𝑃𝑡𝑡)𝑢𝑢). Hence, 𝑃𝑃𝑠𝑠 is the optimal choice to cover 𝐿𝐿𝑟𝑟. 
This means that 𝑃𝑃𝑠𝑠 ∈  𝑃𝑃𝑘𝑘+1

∗′ .  Hence, 𝑃𝑃𝑘𝑘
∗′ ∪ {𝑃𝑃𝑠𝑠} ⊆  𝑃𝑃𝑘𝑘+1

∗′ . Hence, |𝑃𝑃𝑘𝑘+1
∗′ | ≥  |𝑃𝑃𝑘𝑘

∗′|  +  1. However, |𝑃𝑃𝑘𝑘
∗′| ≥

 |𝑃𝑃𝑘𝑘
∗|. Hence, it cannot be that |𝑃𝑃𝑘𝑘+1

∗′ | ≤  |𝑃𝑃𝑘𝑘
∗ |. 

The two cases lead to contradiction; hence, 𝑃𝑃𝑘𝑘+1
∗  =  𝑃𝑃𝑘𝑘

∗ ∪ {𝑃𝑃𝑠𝑠} is the minimum set that covers  Υ𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘+1. 

Since the while loop terminates when Υ𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 is empty, or in other words  Υ𝑐𝑐𝑐𝑐𝑐𝑐  = Υ, then the final 𝑃𝑃∗ is the minimum 
set that covers Υ. 

Now, we determine the running time complexity of the algorithm.  

One dominating part is the subroutine 𝐺𝐺𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2𝐺𝐺𝑃𝑃𝐺𝐺𝑠𝑠𝐺𝐺𝑡𝑡𝑠𝑠(Υ, 2) which has a running time of 𝑂𝑂(2 𝑛𝑛2 𝐺𝐺2) 
where 𝑛𝑛 = |𝑉𝑉| and 𝐺𝐺 = |Υ| by Theorem 1. Since 𝒢𝒢(Υ) is rectangular, then the return of the subroutine has a maximum 
size of |𝐼𝐼∗| ≤  ⌈𝑚𝑚

2 ⌉ −  1. This is when the rectangle has only one row or one column. This means that evaluating 𝑃𝑃𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐
∗  

takes 𝑂𝑂(𝐺𝐺)-time, while evaluating every element of the matrix 𝑀𝑀 takes 𝑂𝑂(𝐺𝐺2)-time. 

Another dominating part is the nested loop, which consists of the outer while-loop and the inner for-loops. The outer 
while-loop iterates until all linear orders are covered; hence, it runs in 𝑂𝑂(𝐺𝐺)-time. The most dominating part inside 
the while loop is the last for-loop in line 14, which iterates through 𝑃𝑃𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐

∗  twice in 𝑂𝑂(𝐺𝐺2)-time. Hence, the running 
time of the nested loop is 𝑂𝑂(𝐺𝐺3). 

Overall, the algorithm runs in 𝑂𝑂(𝑛𝑛2 𝐺𝐺2  + 𝐺𝐺3)-time.                 ∎ 

We have tried to apply the Algorithm 1 for grid graphs, which are super graphs of rectangular graphs. Note that grid 
graphs also capture the properties of the transposition graph of hammock(2,2) posets in Lemma 5. It is also a union of 
unit squares. Moreover, it captures the property that two unit squares can intersect in a vertex. However, in a general 
grid graph, the loop invariants in the proof do not always hold. Hence, a possible next step in determining the hardness 
of Hammock(2,2)-Poset Cover Problem is to study its hardness when the transposition graph is a general grid graph. 
There are also hard problems such as the Hamilton Path that have been shown to be in 𝑃𝑃 with rectangular graphs but 
are already NP-Hard in a general grid graph (Itai et al. 1982). 
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CONCLUSION 

In this paper, we have provided some complexity results for the Hammock(2,2, … ,2⏟    
𝑘𝑘

)-Poset Cover Problem, a variation 

of the Poset Cover Problem with the same input – set {𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑚𝑚} of linear orders over the set {1,2, … , 𝑛𝑛}, but the 
solution is restricted to a set of simple hammock(2,2, … ,2⏟    

𝑘𝑘
) posets . It is known that the problem is NP-hard when 𝑘𝑘 ≥

 3 but in 𝑃𝑃 when 𝑘𝑘 = 1. The computational complexity of the problem when 𝑘𝑘 = 2 is not yet known. In this paper, 
we have determined the approximation complexity of the cases that are NP-Hard. We have shown that the 
Hammock(2,2,… ,2⏟    

𝑘𝑘
)-Poset Cover Problem is in 𝐴𝐴𝑃𝑃𝐴𝐴 when 𝑘𝑘 ≥  3. Specifically, it is 1 + 12𝑘𝑘 - approximable. On the 

other hand, we have continued to explore the computational complexity of the problem when 𝑘𝑘 = 2 (Hammock(2,2)-
Poset Cover Problem). We have shown that it is in 𝑃𝑃 when the transposition graph of the input set of linear orders is 
rectangular. Other simple structures that agree with the property of the transposition graph of hammock(2,2) posets 
are grid graphs, which are supergraphs of rectangular graphs. Hence, one direction in determining the hardness of 
Hammock(2,2)-Poset Cover Problem is to study the hardness of the problem when the transposition graph of the input 
linear orders is a grid graph. 
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