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Understanding the properties of tilings is of increasing relevance to the study of

aperiodic tilings and tiling spaces. This work considers the statistical properties

of the hull of a primitive substitution tiling, where the hull is the family of all

substitution tilings with respect to the substitution. A method is presented on

how to arrive at the frequency module of the hull of a primitive substitution

tiling (the minimal Z-module, where Z is the set of integers) containing the

absolute frequency of each of its patches. The method involves deriving the

tiling’s edge types and vertex stars; in the process, a new substitution is

introduced on a reconstructed set of prototiles.

1. Introduction

Tiling theory has evolved in recent years owing to the

increasing relevance of aperiodic tilings and tiling spaces to

various fields in mathematics such as algebra, geometry,

topology, dynamical systems, computer science and statistics

[see for instance Grünbaum & Shephard (1986), Solomyak

(1997), Frettlöh (2008), Baake & Grimm (2013), Frettlöh &

Richard (2014) and Moustafa (2010), and references therein].

Moreover, tiling theory gained more significance during the

1980s as theories on aperiodic tilings were used as a basis for

understanding structural properties of quasicrystals.

One of the methods for constructing an aperiodic tiling is

via a substitution. In a nutshell, a substitution is a rule on how

to inflate a given prototile (or a set of several prototiles) and

dissect it into equivalent copies of the prototiles (see Fig. 1).

Iterating this rule fills larger and larger regions of space.

Many studies deal with substitutions that are primitive

(defined in Section 2). This is primarily because the primitivity

of a substitution � paves the way to interesting properties of

the hull X� , the space which contains all tilings corresponding

to �. One of these properties is the frequency module of

the hull X� . By a frequency module, we mean the minimal

Z-module that contains the absolute frequency of every patch

in a tiling T 2 X�.

For a one-dimensional substitution tiling with substitution

factor � > 1 ð� 2 RÞ, the frequency module is known to be

the Z½1=��-module generated by the frequencies of the tiles

together with the frequencies of the vertex stars (Bellissard,

1992). This article demonstrates the two-dimensional

analogue of this result, which states that the frequency module

is the Z½1=�2�-module generated by the frequencies of the

tiles, edge types and vertex stars.
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Embedding techniques and projection methods are known

methods for deriving frequencies of vertex stars (Baake &

Grimm, 2013). However, these methods fail for some primitive

substitutions such as the pinwheel substitution. The frequen-

cies of the vertex stars of a pinwheel tiling are derived via the

introduction of a variation of the pinwheel substitution called

the kite-domino substitution (Baake et al., 2007; Baake &

Grimm, 2013), where its construction is based on the obser-

vation that the triangles in the pinwheel tiling always match

face to face along their hypotenuse. The kite-domino substi-

tution gives rise to a tiling which is closely related to a

pinwheel tiling.

In this article, we extend the ideas employed in extracting

the frequencies of the vertex stars of a pinwheel tiling (Baake

et al., 2007; Baake & Grimm, 2013) to the computation of the

frequencies of edge types and vertex stars of any primitive

substitution tiling of R2, and to the extraction of the respective

frequency module. More precisely, we give conditions that

lead to the construction of variations of a given primitive

substitution �, which gives rise to the computation of the

frequencies of the edge types and vertex stars of any tiling in

the hull X� . We illustrate the method on the primitive

substitution ! (see Fig. 1).

An alternative method to derive the frequencies of the

patches of a primitive substitution tiling is by means of K-

theory, discussed in the article by Moustafa (2010) in which the

frequency module of a pinwheel tiling was derived. The

process involved determining the 108 collared prototiles

corresponding to a pinwheel tiling together with their

frequencies. This method, however, can be tedious for

substitution tilings with more than one prototile compared to

the method presented here, since the number of collared tiles

is expected to be huge.

In related work, deriving patch frequencies requires a finite

number of prototiles up to translations only (Solomyak, 1997;

Baake & Grimm, 2013). In the present article, we consider a

finite number of prototiles up to Euclidean motions.

It is interesting to note that the frequency module of the

hull of a tiling T has implications on the diffraction spectrum

of an aperiodic solid associated to T . By the well known gap-

labelling conjecture (Bellissard, 1992; van Elst, 1994; Bellis-

sard et al., 2001), the frequency module of the hull of a tiling

(with finite local complexity) is equal to the gap-labelling

group associated to the tiling, which is the set of possible gap

labels for the spectrum of a Schrödinger operator describing

the electronic motion in the aperiodic solid (Bellissard et al.,

2000; Kellendonk, 2021).

This article is organized as follows. Section 2 contains some

basic definitions and facts about substitution tilings. The

method for deriving the frequency module of the hull of

a primitive substitution and its application to a primitive

substitution is discussed in Section 3. Finally, Section 4

provides a summary and considers possible future work.

2. Preliminaries

A tiling T of R2 is a collection of sets called tiles which have

pairwise disjoint interiors and whose union is the entire R2. A

finite set P � T of tiles is called a patch of T . A vertex star of

T is a patch of all tiles intersecting some vertex in T . An edge

type of (an edge-to-edge tiling) T is a patch consisting of two

tiles that intersect along an edge. Two tiles or patches of T are

equivalent if the tiles or patches, respectively, can be made to

coincide with each other by an isometry in R
2. Let

F :¼ fT1;T2; . . . ;Tmg be a finite set of tiles and � > 1 a real

number. For each tile Ti 2 F , 1� i�m, let �Ti ¼ [nðiÞ
j¼1Tij

such

that each Tij
is equivalent to a tile in F and the tiles

Ti1
;Ti2

; . . . ;Tin ið Þ
have pairwise disjoint interiors. A substitu-

tion � is the mapping � : F ! S defined by �(Ti) =

fTi1
;Ti2

; . . . ;Tin ið Þ
g, where S is the collection of all sets

containing tiles equivalent to tiles in F . The substitution � has

prototiles T1, T2, . . . , Tm and substitution factor �. This

mapping naturally extends to any equivalent copy of a

prototile as follows: an equivalent copy T of a prototile Ti of �
can be written as T = RTi + t, where R is an isometry fixing the

origin and t 2 R
2. The image of T under � is defined as �(T) =

�(RTi + t) = R�(Ti) + �t. Moreover, givenA 2 S , � extends to

any set in S by �ðAÞ ¼ f� Tð Þ j T 2 Ag. Hence, � : S ! S is

a well defined mapping. One can iterate � on a prototile Ti to

obtain the k-order supertile �k(Ti) of Ti. A tiling T is called a

substitution tiling with respect to � if for each patch P � T
there is a k 2 N and i 2 {1, 2, . . . , m} such that an equivalent

copy of P is contained in �k(Ti). The family of all substitution

tilings with respect to the substitution � is called the hull of �,
denoted by X�.

An example of a substitution is the substitution ! (Frettlöh

et al., 2017; Say-awen et al., 2018; Say-awen, 2016) shown in

Fig. 1. It is defined using four prototiles T1, T2, T3 and T4 with

substitution factor 71/2. One of the tilings in the hull X! of ! is

obtained as follows: let R� denote the rotation about the origin

by �, where � is the smallest interior angle of T2. Let T1 be

centred at the origin. Then T1 � R�!ðT1Þ. Consequently,

R�!ð Þk�1
T1ð Þ � ðR�!ÞkðT1Þ (see Fig. 2 for k = 1, 2, 3). Thus,

ðR�!ÞkðT1Þ
� �

k2N is a nested sequence that converges to a tiling

in X!. Other tilings in X!, particularly those tilings with

rotational symmetry, are derived in Say-awen et al. (2018).

A substitution � is primitive if there is a k 2 N such that the

k-order supertile of every prototile of � contains an equivalent

copy of every prototile. A substitution tiling with respect to a

primitive substitution is called a primitive substitution tiling. A

way to determine primitivity of a substitution is through its

research papers
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Figure 1
The substitution ! with substitution factor 71/2. The prototiles T1, T3 and
T4 are regular polygons. The circular arrows indicate the orientations of
symmetric tiles. The dot at the midpoint on the middle edge of T2 is a
pseudo-vertex. (A larger version of this figure is available in the
supporting information.)
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corresponding substitution matrix. The substitution matrix of �
with prototiles T1, T2, . . . , Tm is the square matrix M� =

(aij)1�i, j�m, where the entry aij is the number of tiles equivalent

to Ti in the 1-order supertile �(Tj), i, j 2 {1, 2, . . . , m}. A

substitution � is primitive if its substitution matrix M� is

primitive, that is, if there exists a k 2 N such thatM�
k contains

positive entries only (Baake & Grimm, 2013).

For example, the substitution ! given earlier is primitive. Its

substitution matrix M! is given by

M! ¼
1 0

6 5

0 6

0 0
24 4

0 0

0 13

1 0

2
64

3
75:

It can be checked from Fig. 1 that !(T1) contains 1 copy of T1,

6 copies of T2 and 24 copies of T3, and no copy of T4. This

yields the first column entries of M!. The other entries can be

obtained similarly. It can be checked that the matrix M!
3

contains positive entries only.

It is well known that if � is primitive, then the hullXT of any

tiling T in X� is X� itself (Frettlöh, 2008; Baake & Grimm,

2013). The hull XT of T is the closure of the set fxT j x 2 Gg
in the local topology, where G is the group of all rigid motions

in R
2. The local topology can be defined via a metric. In this

metric, two tilings are �-close if they agree on a large ball of

radius 1/� around the origin after a small translation or direct

Euclidean motion.

3. Frequency module

The frequency module of the hull X� of a primitive substitu-

tion � is the minimal Z-module that contains the absolute

frequency of every patch in a tiling T 2 X�. The absolute

frequency or frequency of a patch P � T , denoted by freqðPÞ,
is defined as the average number of equivalent copies of P per

unit area in T . That is,

freq Pð Þ ¼ limr!1
#fP0 2 T \ Br j P0 is equivalent to Pg

AreaðBrÞ
;

ð1Þ

where Br is the ball of radius r > 0 around the origin and

Area(Br) is the area of Br.

Because the hull XT of any tiling T 2 X� is X� itself as �
is primitive, we consider the frequency module of the hull

of T .

The frequencies of the prototiles in T can be computed via

its substitution matrix M�, which satisfies the condition of the

Perron–Frobenius theorem (Perron, 1907). The Perron–

Frobenius theorem (Theorem 1, which we state below) asserts

thatM� has a positive real eigenvalue which is greater than the

absolute value of any other eigenvalue of M�.

Theorem 1. Let M be a primitive non-negative square

matrix. Then M has a real eigenvalue � > 0 which is

simple. Moreover, � > |�0| for any eigenvalue �0 6¼ � ofM. This

eigenvalue is called the Perron–Frobenius-eigenvalue or

PF-eigenvalue. Moreover, the associated left and right

eigenvectors of � can be chosen to have positive entries.

Such eigenvectors are called the left PF-eigenvector and right

PF-eigenvector of M.

A significant consequence of the Perron–Frobenius

theorem is stated in the following theorem (Pytheas Fogg,

2002; Baake & Grimm, 2013), which is essential in our

calculations.

Theorem 2. Let � be a primitive substitution in R
2 with

substitution factor � and prototiles T1, T2, . . . , Tm; let M� be

the substitution matrix of �. Then the PF-eigenvalue of M� is

�2. The left PF-eigenvector u = (u1, u2, . . . , um) contains the
areas of the different prototiles, up to scaling. The normalized

right PF-eigenvector v = (v1, v2, . . . , vm)
T of M� contains the

relative frequencies of the prototiles of any tiling T 2 X� in

38 April Lynne D. Say-awen et al. � Primitive substitution tilings Acta Cryst. (2022). A78, 36–55
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Figure 2
The first four terms of the nested sequence ðR�!ÞkðT1Þ

� �
k2N, which converges to a tiling in X!.
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the following sense: The entry vi is the relative frequency of Ti

in T .

The relative frequencies from the above theorem and

equation (1) can be used to compute the absolute frequency of

the prototile Ti, as follows:

freq Tið Þ ¼ viPm
j¼1 ujvj

¼ vi
u � v ; ð2Þ

where u � v is the dot product of the left PF-eigenvector u and

normalized right PF-eigenvector v of M�. We note that the

absolute frequency of the prototile Ti is the average number of

equivalent copies of Ti per unit area in T , whereas the relative

frequency vi of Ti is the ratio of the number of equivalent

copies of Ti to the number of tiles in T (Baake et al., 2007;

Frettlöh, 2005).

An important result in determining the frequency module

of T 2 X� is stated in the next theorem. For convenience in

the discussion, we introduce the following terminologies.

Given an edge type E and vertex star V of T , the patches

�k(E) and �kðVÞ, k 2 N, will be referred to as the k-order

super-edge type and k-order super-vertex star of E and V,
respectively. Moreover, the boundary between the two

k-order supertiles in a k-order super-edge type will be called a

k-order super-edge and the common vertex of the k-order

supertiles in a k-order super-vertex star will be called a k-order

super-vertex.

Theorem 3. The frequency module of the hull of a primitive

substitution tiling with convex prototiles and substitution

factor � is the Z½1=�2�-module generated by the absolute

frequencies of its prototiles, edge types and vertex stars.

Proof. Given a primitive substitution � on convex proto-

tiles, consider a tiling T 2 X�. To derive the absolute

frequencies of patches in T we need to count copies of patches

such that each copy is counted exactly once. For this we use

the notion of s-order supertiles, s-order super-vertex stars and

s-order super-edges.

In order to count the equivalent copies of a patch P � T we

choose s such that the following are satisfied for an equivalent

copy of P: (a) it contains at most one s-order super-vertex and

(b) it is entirely contained in at least one s-order super-vertex

star.

The natural number s is obtained in the following manner.

Let P0 be an equivalent copy of P in T . Since T is a substi-

tution tiling, P0 is contained by a qP0 -order supertile LP0 for

some qP0 2 N. P0 is entirely contained by at least one sP0 -order

super-vertex star, which either occurs in the interior of LP0

ðsP0 < qP0 Þ or contains LP0 ðsP0 ¼ qP0 Þ. If P0 is entirely

contained by an sP0 -order super-vertex star, then it should be

contained by a super-vertex star with a higher order than sP0 .

So, we take s � maxðfsP0 j P0 is an equivalent copy of P}) so
then every equivalent copy P0 of P is contained by at least one

s-order super-vertex star. At the same time s is taken so thatP0

contains at most one s-order super-vertex.

Now having chosen s, we count equivalent copies of P as

follows. First, count each equivalent copy of P that is entirely

contained in some s-order supertile. The set of all s-order

supertiles is a partition of R2 (since the set of all tiles in T is a

partition of R2), thus each copy is counted at most once. Next,

we count each equivalent copy of P that contains an s-order

super-vertex. Each copy is counted at most once since it

contains exactly one s-order super-vertex by condition (a).

The remaining equivalent copies of P cross some s-order

super-edges, but contain no s-order super-vertex. Suppose P0

is one of these copies and that it crosses more than one s-order

super-edge. Since the prototiles are convex, the intersection of

the boundaries containing these s-order super-edges is a single

s-order super-vertex. Because P0 is entirely contained in one

s-order super-vertex star S [by condition (b)] and all the tiles

are convex (since prototiles are convex), these s-order super-

edges must intersect in the single s-order super-vertex defining

S. We account for P0 by this s-order super-vertex star S. Lastly,

suppose P0 crosses a single s-order super-edge. We count P0 by

counting the s-order super-edge type that contains P0.

Now we consider the absolute frequencies of s-order

supertiles, s-order super-vertex stars containing the patches

considered earlier and for the last case the s-order super-edge

types corresponding to the s-order super-edges.

If Ti is a prototile of T , then the absolute frequency of

�s(Ti) [using Theorem 2 and equations (1) and (2)] is given by

freq �s Tið Þð Þ ¼ freqðTiÞ
�2s

: ð3Þ

Using equation (3) and its analogue computations for

absolute frequencies for s-order super-vertex stars and s-order

super-edge types, the absolute frequency of each patch in T is

contained in the Z½1=�2�-module generated by the absolute

frequencies of the prototiles together with the absolute

frequencies of the vertex stars and the absolute frequencies of

the edge types. &

In view of Theorem 3, the derivation of the frequency

module requires finding the edge types and vertex stars of

T 2 X� and their frequencies, and the frequencies of the

prototiles. We begin by discussing how to determine the edge

types and vertex stars of T .

Note that the number of non-equivalent edge types and

vertex stars is finite.

3.1. Determining the complete list of edge types

Let E be an edge type of T . Since T is a substitution tiling

with respect to �, there exist a natural number k and a

prototile Ti of � such that an equivalent copy E0 of E is

contained in �k(Ti). Now, we note that �k(Ti) can be parti-

tioned into 1-order supertiles. Hence, either E0 is contained by

a 1-order supertile or E0 crosses a 1-order super-edge whose

corresponding edge type is contained in �k�1(Ti).

Based on the above remarks, the complete list of non-

equivalent edge types of T can be found by performing the

following steps.

(1) List the edge types that are entirely contained by

1-order supertiles.

research papers
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(2) Apply � on every edge type E obtained in step (1) and

list the new edge types crossing the 1-order super-edge(s)

corresponding to �(E).
(3) Repeat step (2) to every new edge type until no more

new edge types are found.

To illustrate the given steps, consider the substitution !
(Fig. 1) introduced earlier. Let T ! 2 X!. We denote an edge

type by Ei ði 2 NÞ if it corresponds to an edge of length 1 or

two edges of length 1 (intersecting at a pseudo-vertex) and by

E0
j ðj 2 NÞ if it corresponds to an edge of length 71/2.

The first step is to list the edge types which are entirely

contained by 1-order supertiles as shown in Fig. 3. These are

E1, E2, . . . , E8 and E1
0.

We proceed by applying ! to every edge type E in the set

{E1, E2, . . . , E8, E
0
1} and listing, if it exists, every new edge type

that crosses the 1-order super-edge/s of !(E). Let us begin

with E1. Applying ! on E1 yields the edge type E0
2, which

crosses the 1-order super-edge of !(E1) [Fig. 4(a)]. Applying !
on the edge types E2, E3 and E4 yields copies of E

0
2, which we

previously found [Fig. 4(b)]. Applying ! on E5 yields the edge

type E0
3 [Fig. 4(c)]. Applying ! on E6 yields the edge type E0

4

[Fig. 4(d)]. Applying ! on E7 and E8 yields copies of E
0
1 [Fig.

4(e)]. Applying ! on E0
1 yields the edge types E9 and E10 [Fig.

4(f)].

We continue by applying ! to each of the edge types E0
2, E

0
3,

E0
4, E9, E10 found in the previous step. The edge types E0

2, E
0
3

and E0
4 yield E11, E12 and E13, respectively; while E9 and E10

yield copies of E0
1 (Fig. 5). So, in this step, we have obtained

the new edge types E11, E12, E13.

We repeat the process with E11, E12 and E13. The edge types

E11 and E12 yield copies of E0
1, and the edge type E13 gives rise

to the new edge type E0
5 (Fig. 6).

The edge type E0
5 gives rise to the new edge types E14 and

E15 (Fig. 7).

The edge types E14 and E15 yield copies of E
0
5 (Fig. 8). In this

step, no new edge types are found, which means that we have

arrived at the complete list of non-equivalent edge types.

3.2. Determining the complete list of vertex stars

Let V be a vertex star of T . Just as in the case of an edge

type, there exist a natural number k and a prototile Ti of �
such that an equivalent copy V0 of V is contained by �k(Ti).

Since �k(Ti) can be partitioned into 1-order supertiles, V0

satisfies one of the following: (a) V0 is contained by a 1-order

supertile in �k(Ti); (b) V0 crosses a single 1-order super-edge in

�k(Ti) whose corresponding edge type is contained in

�k�1(Ti); or (c) the defining vertex of V0 is a 1-order super-

vertex whose corresponding vertex star is contained by

�k�1(Ti).

The location of the vertex stars allows us to determine the

complete list of non-equivalent vertex stars of T as follows.

(1) List the vertex stars that are entirely contained by

1-order supertiles and vertex stars that cross single 1-order

super-edges.

(2) Let V1;1;V2;1; . . . ;Vq;1 be the vertex stars obtained in

step (1). For each i 2 {1, 2, . . . , q}, apply � on V i;1 and list the

vertex star V i;2 whose defining vertex is the defining 1-order

super-vertex of �ðV i;1Þ. We repeat this process to V i;2 to obtain

the vertex star V i;3 whose defining vertex is the defining

1-order super-vertex of �ðV i;2Þ. We iterate this process until we

obtain the vertex star V i;nðiÞ, where the vertex star whose

defining vertex is the defining 1-order super-vertex of �ðV i;nðiÞÞ
is equivalent to a vertex star that has already been found.

To illustrate the method, we find the vertex stars of

T ! 2 X!. First, we list the vertex stars V1;1;V2;1; . . . ;V6;1 that

are entirely contained by 1-order supertiles and vertex

stars V7;1;V8;1; . . . ;V21;1 that cross single 1-order super-edges.

40 April Lynne D. Say-awen et al. � Primitive substitution tilings Acta Cryst. (2022). A78, 36–55
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Figure 3
Edge types (a) E1, E2, . . . , E6 in !(T1); and (b) E7, E8 and E0

1 in !(T2).

Figure 4
(a) E0

2 � !ðE1Þ; (b) copies of E0
2 in !(E2), !(E3), !(E4); (c) E

0
3 � !ðE5Þ;

(d) E0
4 � !ðE6Þ; (e) copies of E0

1 in !(E7) and !(E8); and (f) E9 and E10 in
!ðE0

1Þ. (A larger version of this figure is available in the supporting
information.)
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These vertex stars are shown in Table 3. For example, Fig. 9

shows that vertex star V1;1 is contained by !(T1) and vertex

star V7;1 crosses the 1-order super-edge of !ðE0
2Þ.

Next, we apply ! on V1;i, i 2 {1, 2, . . . , 21}. Consider the
vertex star V1;1. Applying ! on V1;1 yields the vertex star V1;2

whose defining vertex is the defining 1-order super-vertex of

!ðV1;1Þ [Fig. 10(a)]. Applying ! on V1;2 yields the vertex star

V1;3 whose defining vertex is the defining 1-order super-vertex

of !ðV1;2Þ [Fig. 10(b)]. Applying ! on V1;3 yields an equivalent

copy of V1;2 [Fig. 10(c)]. The other vertex stars (see Table 3)

can be obtained by iterating the process to V2;1;V3;1; . . . ;V21;1.

The next step in deriving the frequency module of X� is to

compute the frequencies of the prototiles, edge types and

vertex stars.
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Figure 6
Copies of E0

1 in !(E11) and !(E12), and E0
5 � !ðE13Þ. (A larger version of

this figure is available in the supporting information.)

Figure 7
E14 and E15 in !ðE0

5Þ.

Figure 8
Copies of E0

5 in !(E14) and !(E15).

Figure 9
!(T1) contains V1;1 and !ðE0

2Þ contains V7;1.

Figure 5
E11 � !ðE0

2Þ, E12 � !ðE0
3Þ, E13 � !ðE0

4Þ, and copies of E0
1 in !(E9) and !(E10).

Figure 10
(a) V1;1 yields the vertex star V1;2; (b) V1;2 yields the vertex star V1;3; and
(c) V1;3 yields an equivalent copy of V1;2.
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3.3. Determining the absolute frequencies of the prototiles

To extract the absolute frequencies of the prototiles of

T 2 X� , we apply Theorem 2 and equation (2). We discuss the

process by computing the absolute frequencies of the proto-

tiles of T ! 2 X!.

It can be computed that the PF-eigenvalue of M! is 7, and

the corresponding left PF-eigenvector and normalized right

PF-eigenvector are respectively given by u = (6, 2, 1, 7) and

v ¼ ð1=12Þ; ð1=4Þ; ð7=12Þ; ð1=12Þð ÞT . By Theorem 2, the left

PF-eigenvector contains the areas of the tiles up to scaling,

and the normalized right PF-eigenvector contains the relative

frequencies of the prototiles. For example, we can say that

one-twelfth of the tiles in T ! are equivalent to T1 and one-

quarter of the tiles are equivalent to T2. Now, using equation

(2), the average number of tiles in T ! equivalent to T1 per unit

area is given by freq T1ð Þ ¼ ð1=12Þ=ðu � vÞ ¼ 1=26. Similarly, it

can be shown that freq(T2) = 3/26, freq(T3) = 7/26 and freq(T4)

= 1/26.

We now focus on the frequencies of the edge types and

vertex stars in the following.

3.4. Determining the absolute frequencies of the edge types

The equivalent copies of an edge type E are accounted for

by counting 1-order supertiles containing equivalent copies of

E and 1-order super-edge types corresponding to 1-order

super-edges crossed by equivalent copies of E. Then we

compute the absolute frequencies of these 1-order supertiles

and 1-order super-edge types containing equivalent copies of

E.

Unlike in the case of a prototile, the frequency of an edge

type cannot always be extracted directly from �. The

frequency of an edge type can be derived from � if every copy

of the edge type is contained by a 1-order supertile (or a k-

order supertile for a fixed natural number k). However, in any

substitution, this is not the case for all edge types because

super-edges are necessarily crossed by edge types.

A technique or method we introduce is to put together edge

types of T in a set E satisfying a certain condition. For each E,
we derive a new substitution tiling T 0 wherein patches of T
containing copies of edge types in E are treated as tiles of T 0.

Given that the substitution corresponding to T 0 is primitive,

we can use Theorem 2 to find the frequencies of these patches,

which contribute to the frequencies of the edge types in E. If
necessary, we repeat the process of deriving a new substitution

tiling until all copies of every edge type in E are accounted for.

After obtaining the frequencies of edge types contained by

several sets E, it is possible that the frequencies of the

remaining edge types can be derived from these known

frequencies of edge types together with the frequencies of the

prototiles. In this case, it is no longer necessary to derive a new

substitution tiling.

We now discuss the method. The first step is to put together

edge types of T in a set E satisfying the following.

(*) For each edge type E	 2 E, there exists a natural number

l (we choose the smallest l) such that every edge type crossing

the l-order super-edge/s of �l(E*) is equivalent to an edge type

in E.
We note that E always exists because the number of non-

equivalent edge types is finite.

Defining E helps in counting equivalent copies of E* in the

tiling T . A copy of E	 2 E occurs in the interior of an l-order

supertile or crosses an l-order super-edge. For the latter case,

the edge type crosses an l-order super-edge corresponding to

an edge type in E by condition (*). Now, Theorem 2 together

with equations (2) and (3) can only account for the copies of

E* that occur in the interior of l-order supertiles.

To account for the copies of E* that cross l-order super-

edges, we reconstruct or ‘rewrite’ T as a tiling T 0 using �l as
a substitution and treating some patch P containing an

equivalent copy of an edge type in E as a prototile. So �lðPÞ
does not only contain equivalent copies of some edge types

in E that occur in the l-order supertiles in �lðPÞ but even

those edge types along an l-order super-edge in the interior

of �lðPÞ.
A reconstruction of T using �l is arrived at by finding

a partition H of T consisting of patches which act as tiles

of T 0. The partition H of T should satisfy the following

conditions:

(A) the number of non-equivalent patches of H is finite;

(B) for each patch P 2 H, �l Pð Þ is a union of patches

belonging to H;

(C) if two patches P and P0 inH are equivalent, then �lðPÞ
and �lðP0Þ are partitioned in the same way; and

(D) an equivalent copy of every edge type in E is contained

by a patch of H.

We note that since H is a partition of T , the collection of

patches S ¼ �l Pð ÞjP 2 H
� �

is also a partition of T .

Let us illustrate the ideas above using the substitution !.
The smallest set of edge types of T ! satisfying (*) is the set

E1 ¼ fE0
4;E

0
5g. Fig. 11 shows that every edge type lying on the

2-order super-edge of !2ðE0
iÞ, i = 4, 5, is equivalent to either E0

4

or E0
5. Hence, the set E1 ¼ fE0

4;E
0
5g satisfies condition (*) with l

= 2 (which is also the smallest natural number for which E1

satisfies the condition).
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Figure 11
Every edge type along the 2-order super-edge corresponding to !2ðE0

4Þ or
!2ðE0

5Þ is either equivalent to E0
4 or E

0
5.
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By analysing large patches of T !, we have found the

partition H1 of T ! satisfying the conditions (A)–(D). A

portion of H1 is shown in Fig. 12.

The number of non-equivalent patches in H1 is finite. A

complete set of non-equivalent patches in H1 consists of

P1;P2; . . . ;P8 as shown in Fig. 13. For each P 2 H1, !
2ðPÞ is

a union of patches belonging toH1. For example, the union of

patches in the shaded portion of H1 (Fig. 12) is an equivalent

copy of !2ðP7Þ. Moreover, it is evident in the figure that

equivalent copies of !2ðP7Þ are partitioned in the same way.

Lastly, an equivalent copy of E0
i 2 E1, i = 4, 5, is contained by a

patch of H1.

After finding the partition H, we define the tiling T 0

consisting of tiles obtained by deleting interior edge/s of each

patch in H. Owing to conditions (A)–(C), T 0 is a substitution

tiling with prototiles T 0
1;T

0
2; . . . ;T

0
n, where T

0
i is the tile arising

from deleting interior edge/s of P i 2 A ¼ fP1;P2; . . . ;Png,
where A is a complete set of non-equivalent patches in H.

The substitution �0 corresponding to T 0 behaves the same way

as �l.
Now, because T can be obtained by replacing every tile

of T 0 by a patch in H1, and vice versa, freq P ið Þ ¼ freq T 0
ið Þ,

i 2 {1, 2, . . . , n}. Moreover, owing to condition (D),Pn
i¼1 kifreq P ið Þ ¼

Pn
i¼1 kifreq T 0

ið Þ contributes to freq(E*),

where ki is the number of equivalent copies of E* in P i, i 2
{1, 2, . . . , n} (ki = 0 if P i does not contain an equivalent copy

of E*).

Provided that �0 is primitive, we can use Theorem 2 and

equation (2) to compute the frequencies of T 0
1;T

0
2; . . . ;T

0
n.

If every equivalent copy of E	 2 E in T is contained by a

patch in the partition H, then freq E	ð Þ ¼
Pn

i¼1 kifreq T 0
ið Þ.

Otherwise,
Pn

i¼1 kifreq T 0
ið Þ contributes only partially to

freq(E*). In this case, we look for another partition H0 satis-

fying conditions (A)–(D), where equivalent copies of E	 2 E
that are not taken into account in the previous partitionH are

contained by some of the patches of the new partition H0. To

avoid double counting, a copy of E* that is contained by a

patch in H should not be contained by any patch in H0. Then

we derive its corresponding substitution. We repeat the search

for partitions and the derivation of substitutions associated to

those partitions until every equivalent copy of E	 2 E in T is

accounted for. To obtain the frequency of E	 2 E, we add
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Figure 12
A portion of the partition H1 of T !. A patch in H1 consisting of more
than one tile is enclosed by thick black edges. The partition of a patch
equivalent to !2ðP7Þ is shaded. (A larger version of this figure is available
in the supporting information.)

Figure 13
The complete list of non-equivalent patches in the partition H1 of T !.

Figure 14
The substitution !0. (A larger version of this figure is available in the
supporting information.)
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Pn
i¼1 kifreq T 0

ið Þ and its analogue sums corresponding to the

other partitions of T .

Let us apply the process to finding the frequencies of the

edge types E0
4 and E0

5. As discussed above, we define the tiling

T 0
! consisting of tiles obtained by deleting interior edge/s of

each patch in H1. The prototiles of T 0
! are T 0

1;T
0
2; . . . ;T

0
8,

where T 0
i is the tile arising from deleting, if it exists, every

interior edge of Pi, i 2 {1, 2, . . . , 8}. The substitution !0

corresponding to T 0
! is shown in Fig. 14, which behaves the

same way as !2.

Now, because T ! can be obtained by replacing every tile of

T 0
! by a patch in H1, and vice versa, freq P ið Þ ¼ freq T 0

ið Þ, i 2
{1, 2, . . . , 8}. Observe from Fig. 13 that the patches P5, P6

and P7 contain one, two and three equivalent copies of

E0
4, respectively; and P8 contains one copy of E0

5. Thus,

freq T 0
5ð Þ þ 2freq T 0

6ð Þ þ 3freq T 0
7ð Þ contributes to freq(E4

0) and

freq T 0
8ð Þ contributes to freq(E5

0). But because each equivalent

copy of E0
i 2 E1, i= 4, 5, in the tiling T ! is contained by a patch

of H1, we have freq E0
4ð Þ ¼ freq T 0

5ð Þ þ 2freq T 0
6ð Þ þ 3freq T 0

7ð Þ
and freq E0

5ð Þ ¼ freq T 0
8ð Þ.

We now compute the frequencies of T 0
1;T

0
2; . . . ;T

0
8. The

substitution matrix of !0 is given by

M!0 ¼

1 0 6 6 12 18 24 0

36 25 0 36 66 96 126 40

48 20 13 144 288 432 576 40

0 4 0 13 18 24 30 4

0 0 0 0 4 6 8 2

0 0 0 0 0 1 2 0

6 0 0 0 0 0 0 0

0 0 0 0 3 6 9 5

2
66666666664

3
77777777775
:

It can be verified that !0 is primitive since M!0
4 contains

positive entries only. The primitivity of !0 allows us to use

Theorem 2 to solve the frequencies of T 0
5;T

0
6;T

0
7;T

0
8.

The PF-eigenvector and normalized right PF-eigenvector of

M!0 are equal to u0 = (6, 2, 1, 7, 14, 21, 28, 4) and v0 = (7/81, 323/

1269, 49/81, 589/15228, 109/53298, 1/2268, 2/189, 1/423)T,

respectively. By Theorem 2, u0 and v0 encode the areas and the

relative frequencies of the prototiles, respectively. Using

equation (2), the absolute frequencies of T 0
5;T

0
6;T

0
7;T

0
8 can be

extracted. For instance,

freq T 0
5ð Þ ¼ v5

0

u0 � v0 ¼
109=53298

182=81
¼ 109

22 
 72 
 13
 47
:

The frequencies of the other prototiles can be derived simi-

larly. We have

freq T 0
6ð Þ ¼ 1

23 
 72 
 13
; freq T 0

7ð Þ ¼ 3

72 
 13

and freq T 0
8ð Þ ¼ 9

2
 7
 13
 47
:

Therefore,

freq E0
4ð Þ ¼ freq T 0

5ð Þ þ 2freq T 0
6ð Þ þ 3freq T 0

7ð Þ

¼ 109

22 
 72 
 13
 47
þ 2
 1

23 
 72 
 13
þ 3
 3

72 
 13

¼ 66

7
 13
 47

and
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Figure 15
Portions of the partitions (a)H2;1 and (b)H2;2 of T !. A patch (inH2;1 or
H2;2) consisting of more than one tile is enclosed by thick edges. (A larger
version of this figure is available in the supporting information.)

Figure 16
The complete lists of non-equivalent patches of partitions (a)H2;1 and (b)
H2;2.
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freq E0
5ð Þ ¼ freq T 0

8ð Þ ¼ 9

2
 7
 13
 47
:

We summarize these results in the following lemma.

Lemma 4. The absolute frequencies of the edge types E0
4

and E0
5 are respectively equal to

freq E0
4ð Þ ¼ 66

7
 13
 47
and freq E0

5ð Þ ¼ 9

2
 7
 13
 47
:

In the case of E1 ¼ fE0
4;E

0
5g, one partition is sufficient to

obtain the frequencies of the edge types. We discuss in the

following lemma the case of E2 ¼ fE0
1;E

0
2;E

0
3g, where in two

partitions are defined to obtain the frequencies of E0
1, E

0
2, E

0
3.

Lemma 5. The absolute frequencies of the edge types E0
1, E

0
2

and E0
3 are respectively equal to

freq E0
1ð Þ ¼ 11439

2
 7
 13
 472
; freq E0

2ð Þ ¼ 22665

2
 7
 13
 472

and freq E0
3ð Þ ¼ 2829

7
 13
 472
:

Proof. It can be shown that the set E2 ¼ fE0
1;E

0
2;E

0
3g satis-

fies condition (*) with l = 2. We first consider the partition

H2;1. The partition H2;1 satisfies conditions (A)–(D). A

portion of H2;1 is shown in Fig. 15(a). A complete set of non-
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Figure 17
The substitution !1. (A larger version of this figure is available in the supporting information.)
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equivalent patches in H2;1 consists of P1;1;P1;2; . . . ;P1;10 as

shown in Fig. 16(a).

Now, some equivalent copies of E0
1, E

0
2 and E0

3 in T are not

contained by patches ofH2;1. For example, an equivalent copy

of E0
3 that is not contained by a patch of H2;1 is shaded red in

Fig. 15(a); its edge lies on a boundary between two patches of

H2;1. To take into account such equivalent copies, we intro-

duce the second partition H2;2 satisfying conditions (A)–(D).

A portion of H2;2 is shown in Fig. 15(b). A complete set of

non-equivalent patches in H2;2 consists of P2;1;P2;2; . . . ;P2;13

as shown in Fig. 16(b).

It can be verified that each copy of an edge type in

E2 ¼ fE0
1;E

0
2;E

0
3g in T is contained by a patch in eitherH2;1 or

H2;2 but not both.

Following a similar process to that discussed earlier, the

partitions H2;1 and H2;2 along with !2 give rise to the subti-

tutions !1 and !2 shown in Fig. 17 and Fig. 18 with prototile

sets {T1,1, T1,2, . . . , T1,10} and {T2,1, T2,2, . . . , T2,13}, respec-

tively.

In the following, we compute the frequencies of the

prototiles of !1 and !2, which are equal to the frequencies of

P1;1;P1;2; . . . ;P1;10 and P2;1;P2;2; . . . ;P2;13, respectively.
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Figure 18
The substitution !2. (A larger version of this figure is available in the supporting information.)
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The substitution matrix of !1 is given by

M!1
¼

1 0 6 6 0 6 6 6 12 12

0 5 0 9 0 6 3 0 3 0

48 20 13 144 40 164 184 204 348 368

6 1 0 0 2 1 2 3 3 4

6 8 0 0 19 10 20 30 33 43

12 2 0 3 0 1 0 0 0 0

6 1 0 6 6 8 8 6 9 8

0 0 0 4 0 5 7 10 12 14

0 0 0 0 0 1 2 3 4 4

0 0 0 0 0 0 0 0 3 4

2
6666666666666666664

3
7777777777777777775

;

which is primitive because M!1

4 contains positive entries only.

The PF-eigenvector and normalized right PF-eigenvector are

respectively given by u1 = (6, 2, 1, 7, 4, 9, 11, 13, 20, 22) and

v1 ¼
�

14

137
;
66

6439
;
98

137
;
18

957
;
22203

302633
;
9789

360584
;
620507

16947448
;

110249

8473724
;

7545

2421064
;

503

2421064

�T

:

By equation (2),

freq T1;5

� �
¼ v15

u1 � v1
¼ 22203=302633

364=137
¼ 22203

22 
 7
 13
 472
:

The frequencies of the other prototiles, which we list in

Table 1, can be derived similarly.

We proceed by extracting the frequencies of E0
1, E

0
2 and E0

3.

Each of the patches P1;5 and P2;5 contains one equivalent copy

of E0
1. Hence,

freq E0
1ð Þ ¼ freq T1;5

� �
þ freq T2;5

� �

¼ 22203

22 
 7
 13
 472
þ 675

22 
 7
 13
 472

¼ 11439

2
 7
 13
 472
:

The patches P1;6, P2;11, P2;12 and P2;13 each contain one

equivalent copy of E0
2; P1;7, P2;9 and P2;10 each contain two

equivalent copies of E0
2; P1;8 and P1;9 each contain three

equivalent copies of E0
2; and P1;10 contains four equivalent

copies of E0
2. Therefore,

freq E0
2ð Þ ¼ 753

25 
 72 
 47
þ 15

73 
 13
 472
þ 5

23 
 7
 13
 472

þ 5

24 
 73 
 13
 472
þ 2
 620507

25 
 72 
 13
 472

þ 2
 675

2
 73 
 13
 472
þ 2
 225

25 
 73 
 13
 472

þ 3
 110249

24 
 72 
 13
 472
þ 3
 7545

25 
 7
 13
 472

þ 4
 503

25 
 7
 13
 472

¼ 22665

2
 7
 13
 472
:

Finally, the patches P1;9, P1;10 and P2;6 each contain one

equivalent copy of E0
3; P2;8 and P2;10 each contain two

equivalent copies of E0
3; P2;7, P2;9 and P2;13 each contain three

equivalent copies of E0
3; and P2;11 contains four equivalent

copies of E0
3. Therefore,

freq E0
3ð Þ ¼ 7545

25 
 7
 13
 472
þ 503

25 
 7
 13
 472

þ 61485

23 
 72 
 13
 472
þ 2
 491

24 
 73 
 13
 47

þ 2
 225

25 
 73 
 13
 472
þ 3
 486

73 
 13
 47

þ 3
 675

2
 73 
 13
 472
þ 3
 5

24 
 73 
 13
 472

þ 4
 15

73 
 13
 472

¼ 2829

7
 13
 472
:

&
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Table 1
The absolute frequencies of the patches T1, 5, T1, 6, . . . , T1, 10,
T2, 5, T2, 6, . . . , T2, 13.

i, j freq(Ti, j) i, j freq(Ti, j)

1, 5 22203

22 
 7
 13
 472
2, 7 486

73 
 13
 47

1, 6 753

25 
 72 
 47
2, 8 491

24 
 73 
 13
 47

1, 7 620507

25 
 72 
 13
 472
2, 9 675

2
 73 
 13
 472

1, 8 110249

24 
 72 
 13
 472
2, 10 225

25 
 73 
 13
 472

1, 9 7545

25 
 7
 13
 472
2, 11 15

73 
 13
 472

1, 10 503

25 
 7
 13
 472
2, 12 5

23 
 7
 13
 472

2, 5 675

22 
 7
 13
 472
2, 13 5

24 
 73 
 13
 472

2, 6 61485

23 
 72 
 13
 472
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For some edge types, it may not be necessary to derive a

new substitution. This is when each copy of that edge type is

contained by a 1-order super-tile or crosses a 1-order super-

edge corresponding to an edge type with a known frequency.

This is the case for the edge types E1, E2, . . . , E15 of T !.

We note that either an equivalent copy of Ei, i 2
{1, 2, . . . , 15}, in T ! is contained by a 1-order supertile or it

crosses a 1-order super-edge corresponding to a 1-order super-

edge type equivalent to !ðE0
kÞ for some k 2 {1, 2, 3, 4, 5} (see

Figs. 4–8). Thus, each copy of Ei, i 2 {1, 2, . . . , 15}, in T ! is

contained by either a 1-order supertile or a 1-order super-edge

type equivalent to !ðE0
kÞ for some k 2 {1, 2, 3, 4, 5}. Therefore,

freq Eið Þ ¼
X4

j¼1

ajfreq ! Tj

� �� �
þ
X5

k¼1

bkfreq !ðE0
kÞð Þ

¼
X4

j¼1

aj
freqðTjÞ

7
þ
X5

k¼1

bk
freqðE0

kÞ
7

; ð4Þ

where aj is the number of equivalent copies of Ei in !(Tj) and

bk is the number of equivalent copies of Ei crossing the 1-order

super-edge of !ðE0
kÞ.

For example, !(T1), !(T4) and !ðE0
2Þ respectively contain

six equivalent copies, 27 equivalent copies and one equivalent

copy of E1 (see Fig. 1 and Fig. 5). Hence,

freq E1ð Þ ¼ 6
 freqðT1Þ
7

þ 27
 freqðT4Þ
7

þ freqðE0
2Þ

7

¼ 6
 1=ð2
 13Þ
7

þ 27
 1=ð2
 13Þ
7

þ 22665=ð2
 7
 13
 472Þ
7

¼ 266472

72 
 13
 472
:

We list in Table 2 the frequency, which can be obtained

using equation (4), of each Ei, i 2 {1, 2, . . . , 15}, together
with the 1-order supertile/s and 1-order super-edge type/s

containing equivalent copies of Ei.

3.5. Determining the absolute frequencies of the vertex stars

We count equivalent copies of a vertex star V by counting

1-order supertiles containing equivalent copies of V, 1-order
super-edge types corresponding to 1-order super-edges

crossed by equivalent copies of V and 1-order super-vertex

stars whose defining vertices are also the defining vertices of

some equivalent copies of V. Then we compute the absolute

frequencies of these 1-order supertiles, 1-order super-edge

types and 1-order super-vertex stars containing equivalent

copies of V.
We illustrate the steps on the vertex stars V1;1, V1;2 and V1;3

of T !. Six equivalent copies of V1;1 are contained by !(T1) and

one equivalent copy crosses the 1-order super-edge of !ðE0
2Þ

(see Fig. 1 and Fig. 5). Thus,

freq V1;1

� �
¼ 6
 freq ! T1ð Þð Þ þ freqð!ðE0

2ÞÞ

¼ 6
 freq T1ð Þ
7

þ freq E0
2ð Þ

7

¼ 6
 1=ð2
 13Þ
7

þ 22665=ð2
 7
 13
 472Þ
7

¼ 115443

2
 72 
 13
 472
:

The vertex star V1;2 is contained by !ðV1;1Þ [where the defining
vertex of V1;2 is also the defining 1-order super-vertex of

!ðV1;1Þ] and one equivalent copy of V1;2 is contained by

!ðV1;3Þ (see Fig. 10). Hence,

freq V1;2

� �
¼ freq ! V1;1

� �� �
þ freq ! V1;3

� �� �
: ð5Þ

One equivalent copy of V1;3 is contained by !ðV1;2Þ (see Fig.

10). Thus,

freq V1;3

� �
¼ freq ! V1;2

� �� �
: ð6Þ

By equations (5) and (6), we have

freq V1;2

� �
¼ 49

48

 freqðV1;1Þ

7

¼ 49

48

 115443=ð2
 72 
 13
 472Þ

7

¼ 38481

25 
 7
 13
 472

and

freq V1;3

� �
¼ freq ! V1;2

� �� �
¼ freqðV1;2Þ

7

¼ 38481=ð25 
 7
 13
 472Þ
7

¼ 38481

25 
 72 
 13
 472
:

We summarize in Table 3 the frequency of each vertex star

V i;j together with the 1-order supertile/s, 1-order super-edge

type/s and 1-order super-vertex star/s containing equivalent

copies of V i;j.

It can be verified that the sum sV of the absolute frequencies

of the vertex stars is equal to 9/26.

We can confirm the validity of the sum sV by the following

arguments. The sum of the interior angles of the hexagonal

prototile T1 is 4�. Hence, every copy of T1 possesses a total of

2 vertices. The sum of the interior angles of T2 is 2�. (Note that
there is a pseudo-vertex at the midpoint of the edge of length

2.) So every copy of T2 possesses a total of 1 vertex. Both T3

and T4 are equilateral triangles, so the sums of their interior

angles are both equal to �. Hence, every copy of Ti (i = 3, 4)

possesses a total of half a vertex. Therefore,
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Table 2
The absolute frequencies of the edge types E1, E2, . . . , E15.

Ei Ei has freq(Ei)

E1 6 copies in !(T1), 27 copies in !(T4) and 1 copy in !ðE0
2Þ 266472

72 
 13
 472

E2 6 copies in !(T1), 2 copies in !(T2) and 1 copy in !ðE0
2Þ 16017

2
 72 
 472

E3 6 copies in !(T1), 1 copy in !(T2), 2 copies in !ðE0
1Þ and 2 copies in !ðE0

2Þ 29625

2
 7
 13
 472

E4 6 copies in !(T1), 1 copy in !(T2) and 2 copies in !ðE0
1Þ 12465

2
 72 
 472

E5 6 copies in !(T1), 3 copies in !(T2), 1 copy in !ðE0
2Þ and 4 copies in ! E0

3ð Þ 2829

13
 472

E6 18 copies in !(T1), 4 copies in !ðE0
4Þ and 2 copies in !ðE0

5Þ 66

13
 47

E7 1 copy in !(T2)
3

2
 7
 13

E8 1 copy in !(T2)
3

2
 7
 13

E9 2 copies in ! E0
2ð Þ 22665

72 
 13
 472

E10 2 copies in ! E0
3ð Þ 8487

72 
 13
 472

E11 3 copies in ! E0
4ð Þ 198

72 
 13
 47

E12 2 copies in !ðE0
1Þ 11439

72 
 13
 472

E13 1 copy in ! E0
1ð Þ 11439

2
 72 
 13
 472

E14 2 copies in !ðE0
5Þ 9

72 
 13
 47

E15 1 copy in ! E0
5ð Þ

9

2
 72 
 13
 47
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Table 3
The absolute frequencies of the vertex stars.

Vertex star V i;j has Frequency

V1;1 6 copies in !(T1) and 1 copy in !ðE0
2Þ 115443

2
 72 
 13
 472

V1;2 1 copy in !ðV1;1Þ and 1 copy in !ðV1;3Þ
38481

25 
 7
 13
 472

V1;3 1 copy in !ðV1;2Þ
38481

25 
 72 
 13
 472

V2;1 6 copies in !(T1) and 1 copy in !(T2)
9

2
 7
 13

V2;2 1 copy in !ðV2;1Þ 9

2
 72 
 13

V2;3 1 copy in !ðV2;2Þ and 1 copy in !ðV2;4Þ
3

25 
 7
 13

V2;4 1 copy in !ðV2;3Þ
3

25 
 72 
 13

V3;1 6 copies in !(T1)
3

7
 13

V3;2 1 copy in !ðV3;1Þ and 1 copy in !ðV3;3Þ
1

24 
 13

V3;3 1 copy in !ðV3;2Þ
1

24 
 7
 13

V4;1 1 copy in !(T2)
3

2
 7
 13

V4;2 1 copy in !ðV4;1Þ and 1 copy in !ðV4;3Þ
1

25 
 13

V4;3 1 copy in !ðV4;2Þ 1

25 
 7
 13

V5;1 1 copy in !(T2)
3

2
 7
 13

V5;2 1 copy in !ðV5;1Þ 3

2
 72 
 13
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Table 3 (continued)

Vertex star V i;j has Frequency

V5;3 1 copy in !ðV5;2Þ and 1 copy in !ðV5;4Þ
1

25 
 7
 13

V5;4 1 copy in !ðV5;3Þ
1

25 
 72 
 13

V6;1 9 copies in !(T4)
9

2
 7
 13

V6;2 1 copy in !ðV6;1Þ, 1 copy in !ðV6;2Þ, and 1 copy in !ðV7;1Þ 13486

72 
 13
 472

V7;1 1 copy in !ðE0
2Þ 22665

2
 72 
 13
 472

V8;1 1 copy in !ðE0
2Þ 22665

2
 72 
 13
 472

V8;2 1 copy in !ðV8;1Þ and 1 copy in !ðV8;3Þ
7555

25 
 7
 13
 472

V8;3 1 copy in !ðV8;2Þ
7555

25 
 72 
 13
 472

V9;1 1 copy in !ðE0
2Þ

22665

2
 72 
 13
 472

V9;2 1 copy in !ðV9;1Þ, 1 copy in !ðV9;3Þ, and 1 copy in !ðV10;1Þ
18871

25 
 7
 13
 472

V9;3 1 copy in !ðV9;2Þ
18871

25 
 72 
 13
 472

V10;1 6 copies in !ðE0
3Þ 16974

72 
 13
 472

V11;1 2 copies in !ðE0
2Þ 22665

72 
 13
 472

V11;2 1 copy in !ðV11;1Þ and 1 copy in !ðV12;1Þ 696

7
 13
 472
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Table 3 (continued)

Vertex star V i;j has Frequency

V11;3 1 copy in !ðV11;2Þ and 1 copy in !ðV12;4Þ
29

2
 13
 472

V11;4 1 copy in !ðV11;3Þ
29

2
 7
 13
 472

V12;1 2 copies in !ðE0
1Þ 11439

72 
 13
 472

V13;1 2 copies in !ðE0
1Þ 11439

72 
 13
 472

V13;2 1 copy in !ðV13;1Þ
11439

73 
 13
 472

V13;3 1 copy in !ðV13;2Þ and 1 copy in !ðV13;4Þ
3813

24 
 7
2 
 13
 472

V13;4 1 copy in !ðV13;3Þ
3813

24 
 7
3 
 13
 472

V14;1 1 copy in !ðE0
1Þ 11439

72 
 13
 472

V14;2 1 copy in !ðV14;1Þ and 1 copy in !ðV14;3Þ
3813

24 
 7
 13
 472

V14;3 1 copy in !ðV14;2Þ
3813

24 
 72 
 13
 472

V15;1 2 copies in !ðE0
5Þ 9

72 
 13
 47

V15;2 1 copy in !ðV15;1Þ 9

73 
 13
 47

V15;3 1 copy in !ðV15;2Þ and 1 copy in !ðV15;4Þ
3

24 
 7
2 
 13
 47

V15;4 1 copy in !ðV15;3Þ
3

24 
 7
3 
 13
 47
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Table 3 (continued)

Vertex star V i;j has Frequency

V16;1 1 copy in !ðE0
5Þ 9

2
 72 
 13
 47

V16;2 1 copy in !ðV16;1Þ and one copy in !ðV16;3Þ
3

25 
 7
 13
 47

V16;3 1 copy in !ðV16;2Þ
3

25 
 72 
 13
 47

V17;1 1 copy in !ðE0
5Þ 9

2
 72 
 13
 47

V17;2 1 copy in !ðV17;1Þ, 1 copy in !ðV17;3Þ, and 1 copy in !ðV18;1Þ
135

25 
 7
 13
 47

V17;3 1 copy in !ðV17;2Þ
135

25 
 72 
 13
 47

V18;1 3 copies in !ðE0
4Þ

198

72 
 13
 47

V19;1 1 copy in !ðE0
5Þ and 1 copy in !ðV19;2Þ 3

25 
 13
 47

V19;2 1 copy in !ðV19;1Þ
3

25 
 7
 13
 47

V20;1 1 copy in !ðE0
5Þ 9

2
 72 
 13
 47

V20;2 1 copy in !ðV20;1Þ, 1 copy in !ðV20;3Þ and 1 copy in !ðV21;1Þ
135

25 
 7
 13
 47

V20;3 1 copy in !ðV20;2Þ
135

25 
 72 
 13
 47

V21;1 3 copies in !ðE0
4Þ

198

72 
 13
 47
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sV ¼ 2
 freqðT1Þ þ freqðT2Þ þ
1

2

 freqðT3Þ þ

1

2

 freqðT4Þ

¼ 2
 1

2
 13
þ 1
 3

2
 13
þ 1

2

 7

2
 13
þ 1

2

 1

2
 13

¼ 9

26
:

We note that sum of the absolute frequencies of the vertex

stars is not equal to 1 because the areas of the prototiles are

not equal.

3.6. Determining the frequency module of X!

From Theorem 3, the frequency module of X! is the Z 1=7½ �-
module generated by the frequencies of the prototiles, edge

types and vertex stars of T !. By considering all the frequen-

cies of the prototiles, edge types (Lemmas 4 and 5, Table 2)

and vertex stars (Table 3), we have the following result:

Theorem 6. The frequency module of X! is

F ¼ 1

25 
 13
 472
Z

1

7

� 	
¼ m

25 
 13
 472 
 7k
jm; k 2 N


 �
:

Therefore, the minimal Z-module that contains the absolute

frequency of every patch in a tiling in the hull of the primitive

substitution ! is F ¼ ½1=ð25 
 13
 472Þ�Z 1=7½ �.

4. Conclusion and outlook

In this article we have discussed how to obtain the frequency

module of the hull X� of a primitive substitution tiling T 2 X�

with convex prototiles. This is done by determining the

absolute frequencies of the prototiles, edge types and vertex

stars of T 2 X�. The following are highlighted in this work.

The frequencies of the prototiles can be derived via the well

known result of the Perron–Frobenius theorem and its

consequence (Theorem 2). However, we cannot always

directly apply these results to edge types. So to compute the

frequencies of the edge types, we introduce a method which

involves defining new substitution/s. We put together edge

types into a set E satisfying condition (*). Then we look for a

partition H of patches of T , wherein an equivalent copy of

every edge type in E occurs in the interior of a patch inH. This

partition must satisfy certain conditions, which ensure that we

can reconstruct T as a substitution tiling T 0 by deleting the

interior edges of the patches in H. Given that the corre-

sponding substitution �0 of T 0 is primitive, one can obtain the

frequencies of the prototiles of �0 using Theorem 2. These

frequencies are equal to the frequencies of the non-equivalent

patches of H, which contribute to the frequencies of the edge

types in E.
Now, it may happen that some copies of the edge types in E

in the tiling T are not contained by patches in H. In this case,

we repeat the search for a partition and the derivation of its

corresponding substitution. We iterate the process until every

equivalent copy of E in T is accounted for. Then we extract the

frequencies of the edge types in E from the frequencies of the

patches of the partition/s.

For some set of edge types, it may not be necessary to apply

the procedure of finding a partition. The frequencies of such

edge types can be obtained from the frequencies of the

prototiles and edge types with known frequencies.

Finally, for the first set of vertex stars (the set of vertex stars

whose equivalent copies appear in 1-order supertiles, 1-order

super-edge types, or both), the frequencies are obtained from

the frequencies of the prototiles and edge types. The

frequencies of the remaining vertex stars are obtained from

the frequencies of the vertex stars from the first set.

The above method has been applied to the primitive

substitution !. The primitive substitution tiling ! is introduced

and discussed in Frettlöh et al. (2017) and Say-awen (2016)

along with other primitive substitutions which give rise to

tilings that are invariant under n-fold rotation for n 2
{3, 4, 5, 6, 7, 8}, with finite local complexity and dense tile

orientations. The substitution ! is the substitution corre-

sponding to n = 6.

We chose the substitution tiling with the least value of n (n =

6) to be discussed in this article since using this tiling can

illustrate the ideas put forward by the method requiring only

two partitions or two new substitutions to extract the

frequencies of the edge types.

There are some points for investigation arising from this

work. For instance, it would be interesting to determine

whether a partition H corresponding to a set E always exists,

or to identify properties of the substitution that can guarantee

the existence of H without constructing large patches of the

tiling. Another aspect that could be explored is to determine

whether the new substitution/s arising from partition/s H
corresponding to E is/are always primitive. It can be shown

that if one partition is sufficient to extract the frequencies of

the edge types in E, then the corresponding substitution of

such a partition is primitive. We suggest that the scenario

wherein there are at least two partitions should be studied in

more depth in the future.
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