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Visualizing Phytochemical-Protein
Interaction Networks: Momordica
charantia and Cancer
Yumi L. Briones1*, Alexander T. Young2, Fabian M. Dayrit 1, Armando Jerome De Jesus1 and
Nina Rosario L. Rojas1*

1Department of Chemistry, Ateneo de Manila University, Quezon City, Philippines, 2Institute of Environmental Science &
Meteorology, College of Science, University of the Philippines Diliman, Quezon City, Philippines

The in silico study of medicinal plants is a rapidly growing field. Techniques such as reverse
screening and network pharmacology are used to study the complex cellular action of
medicinal plants against disease. However, it is difficult to produce a meaningful
visualization of phytochemical-protein interactions (PCPIs) in the cell. This study
introduces a novel workflow combining various tools to visualize a PCPI network for a
medicinal plant against a disease. The five steps are 1) phytochemical compilation, 2)
reverse screening, 3) network building, 4) network visualization, and 5) evaluation. The
output is a PCPI network that encodes multiple dimensions of information, including
subcellular location, phytochemical class, pharmacokinetic data, and prediction
probability. As a proof of concept, we built a PCPI network for bitter gourd
(Momordica charantia L.) against colorectal cancer. The network and workflow are
available at https://yumibriones.github.io/network/. The PCPI network highlights high-
confidence interactions for further in vitro or in vivo study. The overall workflow is broadly
transferable and can be used to visualize the action of other medicinal plants or small
molecules against other diseases.

Keywords: network visualization, network pharmacology, reverse screening, medicinal plants, phytochemicals,
Momordica charantia (bitter gourd), colorectal cancer

1 INTRODUCTION

Medicinal plants have been consumed to fight disease since ancient times (Petrovska, 2012).
However, even in the modern age, their complex cellular action is not fully understood. Unlike
magic bullets that selectively target a given protein, phytochemicals in medicinal plants act on
multiple protein targets to restore the overall equilibrium of the cell (Ding et al., 2009). While in vitro
and in vivo methods are often used to study the therapeutic effects of medicinal plants, there is
limited experimental data on phytochemical-protein interactions (PCPIs) (Huang et al., 2018).
Recently there has been increasing use of in silico methods such as reverse screening and network
pharmacology in natural products research, as these are well-suited for studying the multi-targeted
action of medicinal plants (Chandran et al., 2017).

Reverse screening uses experimentally validated PCPIs to make novel predictions. While
conventional screening starts with a target protein and searches for compounds targeting it,
reverse screening starts with the compounds (e.g. phytochemicals) and looks for proteins
targeted by these compounds (Huang et al., 2018). The ability of reverse screening to predict
PCPIs makes it useful for a network pharmacology approach where phytochemicals and proteins are
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analyzed as nodes in an interaction network. Of all existing
reverse screening tools we are aware of, only one provides a
network visualization: Bioinformatics Analysis Tool for
Molecular mechANism of Traditional Chinese Medicine
(BATMAN-TCM) (Liu et al., 2016). The network shows
predicted interactions between phytochemicals, protein targets,
and enriched pathways and diseases. However, this does not
provide a complete picture of the action of a medicinal plant
against a specific disease, which is often the goal of natural
products research. It would be useful to see protein-protein
interactions (PPIs) between targets to evaluate downstream
effects. The network can be better organized by sorting nodes
into subcellular compartments. To assess whether
phytochemicals can reach these compartments,
pharmacokinetic properties are needed. There are existing
tools for each of these purposes, but they are all separately found.

Natural products research would greatly benefit from a
streamlined workflow that results in a strong (PCPI) network
visualization. Thus, we developed a novel workflow combining
existing tools to predict and visualize the cellular action of a
medicinal plant against a disease. The five-step pipeline consists
of 1) phytochemical compilation, 2) reverse screening, 3) network
building, 4) network visualization, and 5) evaluation. This outputs
a PCPI network that encodes multiple dimensions of information
including PPIs, subcellular location, phytochemical class, and
pharmacokinetic properties. This makes it easier to determine
which predicted PCPIs merit further in vitro and in vivo study.

As a proof of concept, we applied the workflow to Momordica
charantia L. (bitter gourd) against colorectal cancer. Bitter gourd
has shown anticancer activity in vitro and in vivo but has not been
thoroughly investigated in silico (Raina et al., 2016). Meanwhile,
colorectal cancer is a disease known to be highly influenced by diet
(Dray et al., 2003). We evaluated select PCPIs by molecular
docking and identified high-confidence predictions for further
study. Our website (https://yumibriones.github.io/network/)
contains the PCPI network we generated and a diagram of the
workflow with links to all resources used. With this study, we aim
to improve the efficiency of natural products research by using
readily available tools to produce insightful network visualizations.

2 METHODS

2.1 General Workflow
The general workflow consists of five main steps:

1) Phytochemical compilation: A medicinal plant is chosen and
searched in a phytochemical database and literature to obtain
a “Phytochemical list.”

2) Reverse screening: The “Phytochemical list” is entered in a
reverse screening program to obtain a “Complete PCPIs” list.

3) Network building: Protein targets from the “Complete PCPIs”
list are run through pathway enrichment after which a disease
is chosen. The “Disease-specific PCPIs” are merged with the
existing PPI network Signaling Network Open Resource
(SIGNOR) 2.0 to output a “PCPI-SIGNOR disease
network.” Information on phytochemical class,

pharmacokinetic properties, subcellular location and
protein function are added using various resources.

4) Network visualization: The “Annotated PCPI-SIGNOR
disease network” is visualized using Cytoscape and
arranged by subcellular location using the plug-in
boundaryLayout. Phytochemical and protein attributes are
visualized.

5) Evaluation: The “PCPI-SIGNOR disease network
visualization” is analyzed and notable PCPIs are evaluated
in silico, in vitro, or in vivo.

Figure 1 is a detailed diagram of the workflow showing inputs
and outputs of each step and all resources used in the study.

The following sections provide more detail for each step,
including brief backgrounds on each resource used.

2.2 Phytochemical Compilation
After choosing a medicinal plant to investigate, the plant is
entered into the Indian Medicinal Plants, Phytochemistry And
Therapeutics (IMPPAT) (https://cb.imsc.res.in/imppat)
database. IMPPAT contains phytochemical-plant associations
mined from medicinal plant books, phytochemical databases,
and PubMed abstracts (Mohanraj et al., 2018). Phytochemicals
may also be determined from the literature. Positive and negative
control molecules may be selected. If drugs are selected as
controls, their interactions are referred to as drug-protein
interactions (DPIs). The Simplified Molecular Input Line
Entry System (SMILES) of all molecules are obtained from
PubChem (Kim et al., 2019). Phytochemicals are sorted by
class according to Medical Subject Headings (MeSH) Tree (U.
S. National Library of Medicine, 2021) or Chemical Entities of
Biological Interest (ChEBI) ontology (Hastings et al., 2016).

To simulate metabolism, glycosides (molecules bonded to
sugar units) are manually hydrolyzed with molecular editing
software such as ChemSketch, developed by Advanced
Chemistry Development, Inc. (ACD/Labs). Both glycosides
and aglycones (the non-sugar unit) are kept in the list of
phytochemicals, combining any duplicate structures into a
single entry. The complete resulting list is the “Phytochemical
list” from Figure 1.

2.3 Reverse Screening
Reverse screening is done with SwissTargetPrediction (http://
www.swisstargetprediction.ch), a shape screening software that
uses ligand-protein binding data from ChEMBL version 23
(Mendez et al., 2019). When a query molecule is entered,
SwissTargetPrediction calculates 2D and 3D similarity scores
with ligands in the database. Both scores are combined to
obtain the probability that the query molecule shares the same
protein target as the matched ligands (Daina et al., 2019). If the
query molecule is already listed in the ChEMBL database,
SwissTargetPrediction assigns a prediction probability of 1.

Molecules in the “Phytochemical list” from the previous step
are entered into SwissTargetPrediction using the SMILES, with
Homo sapiens as the selected organism. The output is a list of
predicted protein targets and probability scores for the query
molecule which can be downloaded as a CSV file. Only results
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with probabilities greater than zero are considered. The combined
list of predictions for all molecules in the “Phytochemical list” is
the “Complete PCPIs” output.

2.4 Network Building
Network building consists of four steps: 1) pathway enrichment,
2) addition of PPIs and glycoside-aglycone relationships, 3)
assignment of subcellular locations, and 4) pharmacokinetic
analysis of phytochemicals.

2.4.1 Pathway Enrichment
The program g:Profiler (https://biit.cs.ut.ee/gprofiler/gost)
(Reimand et al., 2007) is used to identify statistically
overrepresented pathways in the set of predicted protein
targets from the “Complete PCPIs” list. The protein names are
entered as a query, and the search is carried out with Homo
sapiens as the selected organism, a 0.05 significance threshold,
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000) as the reference database. Results
are downloaded as a CSV file which lists all enriched pathways
and intersected proteins per pathway. From the file, the disease of
interest is located. The intersected proteins under the disease are
used to filter the “Complete PCPIs” list to only the “Disease-
specific PCPIs.”

2.4.2 Addition of PPIs and Glycoside-aglycone
Relationships
The SIGNOR 2.0 database is used as a source of PPIs. SIGNOR
2.0 is a biological network of literature-based causal interactions
between proteins. The entire network is directed from source to
target node (Licata et al., 2020). The full Homo sapiens database
was downloaded on September 28, 2020. Tableau Prep is used to
combine the “Disease-specific PCPIs” with PPIs from SIGNOR
2.0 using the disease-specific protein targets as a join clause.
Glycoside-aglycone relationships are added to the network as
interactions directed from the parent glycoside to child aglycone.
The resulting file is the “PCPI-SIGNOR disease network”
(Figure 1). In this file, all source nodes are labelled “Entity A”
while all target nodes are labelled “Entity B.”

2.4.3 Assignment of Subcellular Locations
All proteins in the “PCPI-SIGNOR disease network” are assigned
a subcellular location using an interactive database of the HeLa
spatial proteome developed by Itzhak et al. (2016) (http://
mapofthecell.biochem.mpg.de/). The database is a
downloadable Excel file that reports the most probable cellular
location of a protein based on fractionation and mass
spectrometry experiments. When protein names are entered
into the file, the corresponding subcellular locations will appear.

FIGURE 1 | The workflow begins with phytochemical compilation for the chosen plant. This is followed by reverse screening to predict PCPIs. Network building
filters PCPIs to the chosen disease, combines these with PPIs, and annotates the networkwith phytochemical and protein attributes. The annotated network is visualized
with Cytoscape. Evaluation is done through any in silico, in vitro, or in vivo method. This flowchart and links to resources can be found at https://yumibriones.github.io/
network/workflow.html.
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UniProt is used for proteins not in the HeLa database. Protein
entries in UniProt contain a “Subcellular location” section based
on expert annotations (The UniProt Consortium, 2021). The
Gene Ontology (GO) tool is not chosen for this step, as it often
outputs a long list of all recorded links between a protein and
cellular component with no way to narrow down options (Hill
et al., 2008).

Subcellular locations of phytochemicals and controls are
assigned in this order of priority:

1) ligands with protein targets in the nucleus were placed in the
nucleus;

2) ligands with protein targets in the mitochondrion were placed
in the mitochondrion;

3) ligands with protein targets in the plasma membrane were
placed in the plasma membrane; and

4) ligands with protein targets in the cytoplasm were placed in
the cytoplasm.

In the “PCPI-SIGNOR disease network” file, the subcellular
locations of “Entity A” and “Entity B” are entered into separate
columns labelled “Location A” and “Location B” respectively.
This results in an “Annotated PCPI-SIGNOR disease
network” file.

2.4.4 Pharmacokinetic Analysis of Phytochemicals
SwissADME (http://www.swissadme.ch/) assesses
physicochemical and pharmacokinetic parameters of input
molecules (Daina et al., 2017). All phytochemicals and
controls included in the “Disease-specific PCPIs” are entered
into SwissADME using their name and SMILES. The results are a
list of pharmacokinetic data for each molecule. The results are
downloaded as a CSV file and the following attributes are noted:
Abbott bioavailability score, gastrointestinal (GI) absorption (for
orally ingested medicinal plants), and lipophilicity using the
partition coefficient log p (Eq. 1). A more lipophilic
compound would have a higher log p value.

logP � log10
[concentration of solute in octanol]
[concentration of solute in water] (1)

Each pharmacokinetic parameter is entered as its own column
in the “Annotated PCPI-SIGNOR disease network” file. Columns
modifying “Entity A” or “Entity B” are ended with “A” or “B”
respectively (e.g. “Bioavailability A”).

2.5 Network Visualization
The “Annotated PCPI-SIGNOR disease network” Excel file is
loaded into Cytoscape 3.6.0 (Shannon et al., 2003). All duplicate
edges and self-loops are removed.

For edges, these parameters are followed:

1) edge thickness is mapped to the SwissTargetPrediction
probability score (thicker edges � more probable); and

2) edge color is mapped to interaction type (predicted PCPI or
DPI � blue, PPI upregulation � green, PPI downregulation �
red, glycoside-aglycone relation � dark green dashed line).

For ligand nodes, these parameters are followed:

1) node shape is set to circle;
2) node transparency is mapped to log P value (lower log P �

more transparent, higher log P � more opaque);
3) node size is mapped to GI absorption (high absorption � large,

low absorption � small);
4) node border color is mapped to Abbott bioavailability score

(lowest scores in red, highest scores in green); and
5) node color was mapped to ligand class.

For protein nodes, these parameters are followed:

1) node shape is set to square;
2) node color is set to pink; and
3) label color is mapped to protein function (red � oncogene

protein, green � tumor suppressor, black � other protein).

Nodes are automatically organized into a cell template based
on the assigned cellular location using the Cytoscape plug-in
boundaryLayout, developed by University of California San
Francisco’s Resource for Biocomputing, Visualization, and
Informatics (UCSF RBVI).

Supplementary Figure S1 shows the evolution of the network
visualization in graphical form. The complete PCPI network and
detailed legend are shown in Figure 2 in the Results section. We
visualized the network in two ways: with a white background
(Figure 2) and a dark background (Supplementary Figure S2).

2.6 Evaluation Through Docking
Evaluation of interactions in the “PCPI-SIGNOR disease network
visualization”may be done in silico, in vitro, or in vivo. We chose
to evaluate PCPIs in silico through molecular docking with
Autodock Vina, which outperforms its predecessor AutoDock
4 in speed and accuracy (Trott and Olson, 2010).

Protein structures were downloaded from the Protein Data
Bank (PDB) (Berman et al., 2000). We used the Auto in silico
Consensus Inverse Docking (ACID) server to guide our PDB
structure selection (Wang et al., 2019). ACID contains a
curated set of protein targets according to the following
restrictions:

1) no structures with resolution larger than 3.0 Å;
2) no structures solved by Nuclear Magnetic Resonance (NMR)

(structures are all solved by X-ray diffraction for uniformity);
3) no structures with ligands containing nonstandard atoms (e.g.

Si, Be); and
4) structures must have only one drug-like ligand bound in the

active site.

Structures of the bound inhibitors were obtained from PDB
while phytochemical structures were obtained from PubChem.
Protein and ligand structures were prepared for docking with
Autodock Tools. We manually calculated grid boxes using
AutoDock Tools, centering the box on the bound ligand in the
active site. In the absence of a bound inhibitor, protein structure
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was analyzed with Aquaria (http://aquaria.ws/), which aligns
UniProt sequence with a chosen PDB structure and highlights
features such as binding site (O’Donoghue et al., 2015).

For each protein, we docked the inhibitor bound to the
original PDB structure as a positive control before docking
phytochemicals. Results were visualized in 3D with ChimeraX

FIGURE 2 | PCPI-SIGNOR disease network visualization for bitter gourd against colorectal cancer. The cell template is from the Cytoscape plug-in
boundaryLayout. Detailed legend at the bottom. The network can be interactively viewed at https://yumibriones.github.io/network/.
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(Pettersen et al., 2021) and in 2D with LigPlot+ (Laskowski and
Swindells, 2011).

3 RESULTS

This section details results for our proof-of-concept study, where
we applied the workflow to visualize a PCPI network for bitter
gourd against colorectal cancer.

3.1 Phytochemical Compilation
We compiled 169 phytochemicals found in the fruit, seeds, and
leaves of bitter gourd. These were taken from IMPPAT and
reviews by Raina et al. (2016), Jia et al. (2017), and Mozaniel
et al. (2018). Most were phenolic acids, triterpene glycosides, and
aglycones. For positive controls, we selected the chemotherapy
drugs vemurafenib (a selective B-raf inhibitor) and sorafenib (a
multi-kinase inhibitor). Meanwhile for negative controls, we
chose alprazolam (a benzodiazepine), tolnaftate (an
antifungal), and tigecycline (a tetracycline antibiotic), all of
which have similar structures to phytochemicals but are not
expected to act on colorectal cancer signaling. In total, 174
ligands were compiled for screening. The phytochemical list is
shown in Supplementary Table S1 and summarized in
Supplementary Figure S3.

3.2 Reverse Screening
SwissTargetPrediction predicted 6937 PCPIs with nonzero
probability between 166 phytochemicals and 772 protein
targets. No matches were found for (+)-catechin,
(-)-epicatechin, and the cis-zeatin riboside aglycone.

For negative controls, SwissTargetPrediction predicted 52
DPIs for alprazolam, 7 DPIs for tolnaftate, and 17 DPIs for
tigecycline with nonzero probability. The top predicted targets for
alprazolam were GABA receptors, consistent with experimental
knowledge. For tolnaftate and tigecycline, human targets were
identified because of structural similarity to other molecules.
SwissTargetPrediction may identify false positives, highlighting
the need for an evaluation step.

For positive controls, SwissTargetPrediction predicted 100
DPIs for vemurafenib and 100 DPIs for sorafenib, all with
nonzero probability. For sorafenib, all results had probability �
1 with targets being mostly protein kinases, consistent with
experimental knowledge. For vemurafenib, there were only
four results with probability � 1 including the experimentally
known target B-Raf proto-oncogene, serine/threonine kinase
(B-raf). This demonstrates the reliability of
SwissTargetPrediction as a reverse screening tool. The
“Complete PCPIs” list is shown in Supplementary Table S2.

3.3 Network Building
All g:Profiler results are listed in Supplementary Table S3 with
the top ten results shown in Supplementary Figure S4. Pathway
enrichment of phytochemical targets identified 23 protein targets
in the KEGG colorectal cancer entry. These proteins were
involved in the epidermal growth factor receptor (EGFR)/
mitogen-activated protein kinase (MAPK) and

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein
kinase B (Akt) pathways, Wingless-related integration site
(Wnt) signaling, apoptosis and cell cycle regulation. The
disease-specific protein targets included oncogene proteins like
catenin beta 1 (CTNNB1) and B-raf and the tumor suppressor
glycogen synthase kinase 3 beta (GSK3b). Protein classifications
are listed in Supplementary Table S4.

A separate g:Profiler analysis for the negative controls
alprazolam, tolnaftate, and tigecycline found no protein targets
involved in the KEGG colorectal cancer pathway. Meanwhile,
pathway enrichment of positive controls vemurafenib and
sorafenib identified four additional protein targets involved in
KEGG colorectal cancer: A-Raf proto-oncogene, serine/threonine
kinase (A-Raf), Raf-1 proto-oncogene, serine/threonine kinase
(Raf-1), mitogen-activated protein kinase kinase 2 (MAP2K2),
and transforming growth factor beta receptor 2 (TGFBR2)
(Supplementary Table S3).

In total, the KEGG colorectal cancer PCPI-SIGNOR network
contained 98 nodes (69 phytochemicals, 2 drugs, and 27 proteins)
and 331 interactions (251 PCPIs, 60 PPIs, 10 DPIs, and
10 glycoside-aglycone relationships). The PCPI network and
legend are shown in Figure 2. The dark version of the
network can be viewed at https://yumibriones.github.io/
network/(Supplementary Figure S2). Supplementary Table
S5 contains the data used to build the “Annotated disease-
specific PCPI-SIGNOR network.”

3.4 Network Visualization
Figure 2 shows the “PCPI-SIGNOR disease network
visualization” for bitter gourd against colorectal cancer.

Our PCPI network has a number of advantages over other
visualization methods for medicinal plant interactions. The
reverse screening tool BATMAN-TCM represents
phytochemicals, proteins, pathways and diseases as nodes
in a simple network. Yi et al. (2018) have also documented a
workflow resulting in a visualization similar to BATMAN-
TCM. However, natural products research often aims to
study the action of a medicinal plant against a specific
disease. These simple visualizations lack the information
needed to address this problem, and additional
information is presented in other diagrams or in the text
of the paper. Meanwhile, our PCPI network presents plenty of
information in a single diagram designed to be intuitively
understood by biologists.

One clear advantage of our visualization is that nodes are
sorted by subcellular compartment, highlighting which
phytochemicals have targets in specific organelles (Figure 2).
For instance, phytochemicals in the mitochondrion must target
B-cell lymphoma 2 (Bcl-2). Seeing subcellular location makes it
easier for biologists to identify the roles of proteins in the
network.

Another major advantage is the display of pharmacokinetic
properties to help assess whether phytochemicals are able to
reach protein targets in the cell. High investigation priority
may be given to phytochemicals with larger nodes (high GI
absorption) and green or orange borders (high or medium
bioavailability). Seeing phytochemical classifications is also
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helpful, as priority can be given to classes such as triterpenoids
and flavonoids which are more unique to bitter gourd.

Our visualization also conveys information through edges.
The thickest edges (SwissTargetPrediction probability � 1)
represent interactions already recorded in ChEMBL. Novel
predictions would have thinner edges. We can also see
relationships between phytochemicals and their metabolism
products by following the dashed arrows. Interactions between
proteins are represented with green or red arrows for up or
downregulation, revealing the downstream effects of a
phytochemical beyond its direct protein target.

To illustrate how these advantages come together, here is
an important insight we can get from Figure 2. Triterpene
glycosides (light green) are all small nodes mostly in the
plasma membrane. However, following the dashed arrows
reveals that many aglycone products (dark green) have
large nodes and are in the nucleus and cytoplasm. This
tells us that aglycones generally have higher GI absorption
than glycosides with targets deeper in the cell. This supports

experimental knowledge that aglycones are better absorbed
than their glycoside parents (Bhattacharya, 2019).

Important trends in the PCPI network can be summarized
using standard bar graphs as in Figure 3.

As observed in Figure 2, triterpene glycosides were highly
abundant but had low GI absorption while aglycones had high GI
absorption (Figure 3A). Protein kinases were abundant and
highly targeted by phytochemicals (Figure 3B). Highly
targeted proteins include EGFR and the mechanistic target of
rapamycin kinase (mTOR) (Figure 3C), though this is already
apparent from Figure 2. While bar graphs can reveal general
trends in the data, the network visualization shows these trends
while also showing specific interactions. Figure 2 alone can
already highlight PCPIs to evaluate further in vitro, in vivo, or
in silico.

3.5 Evaluation by Molecular Docking
We used Autodock Vina (Vina hereafter) to dock 28 PCPIs and 6
DPIs in the KEGG colorectal cancer PCPI-SIGNOR network. We

FIGURE 3 | (A) Relationships of SwissADME parameters (high/low GI absorption, average bioavailability, average log p) and SwissTargetPrediction results
(number of ligands, number of protein targets, average probability) per phytochemical class as well as the two positive control drugs vemurafenib and sorafenib (SORA/
VEM) in the KEGG colorectal cancer PCPI-SIGNOR network. (B)Number of proteins, number of phytochemical ligands, and average probability scores per protein class.
Proteins targeted only by SORA/VEM are not included in the subfigure. (C) Top ten most targeted proteins by phytochemical ligands (excluding SORA/VEM).
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FIGURE 4 | Simplified PCPI network showing the predicted anticancer action of bitter gourd (with high docking confidence and probability � 1 PCPIs from
docking). Pathways and downstream effects are shown. Phytochemical structures are connected to their corresponding nodes by dashed lines. All PCPIs are
represented by red arrows indicating inhibition. Smaller square nodes are proteins directly inhibited by phytochemicals in the network.
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chose phytochemicals with high GI absorption from various
classes including phenolic acids, triterpenoids, flavonoids, fatty
acids, and aglycones. Proteins were selected from the EGFR/
MAPK and PI3K/Akt pathways, Wnt signaling, apoptosis, and
the cell cycle. Only the top pose from Vina was considered.
Detailed docking information is listed in Supplementary
Table S6.

For positive docking controls, we docked each protein to its
bound inhibitor from the PDB structure.We found that predicted
poses from Vina were visually similar to experimental poses.
Docking interaction energies were generally more negative for
bound inhibitor-protein pairs versus phytochemical-protein
pairs (Supplementary Figure S5). The positive controls
vemurafenib and sorafenib docked with highly negative
energies comparable to the bound inhibitors. We concluded
that Vina predicted binding poses with fairly high accuracy.

Flavonoids and phenolics docked to the adenosine
triphosphate (ATP)-binding sites of protein kinases with
highly negative docking interaction energies, suggesting
competitive inhibition of kinase activity. On the other hand,
triterpenoids generally had less negative docking interaction
energies when docked to the ATP-binding site. This suggests
that flavonoids and phenolics have a high potential for in vitro or
in vivo activity.

To quantify this, we assigned confidence levels to PCPIs based
on docking interaction energy (“docking confidence” hereafter)
(Supplementary Figure S6). Among the PCPIs with probability
� 1, we set the most negative docking interaction energy as the
“soft cutoff” (−7.8 kcal/mol). The upper bound of the 99.7%
confidence interval (CI) (−6.4 kcal/mol) was set as the “hard
cutoff.” Interactions were classified as follows:

1) High docking confidence: docking interaction energy,
E < − 7.8 kcal/mol (soft cutoff);

2) Medium docking confidence: − 7.8 < E < − 6.4 kcal/mol (hard
cutoff);

3) Low docking confidence: E > − 6.4 kcal/mol.

Most flavonoid-protein interactions had high docking
confidence while triterpenoid-protein interactions had low
docking confidence (Supplementary Figure S7). Interestingly
however, all interactions between triterpenoids and mTOR had
high docking confidence.

We then used docking confidence to calculate “probability
confidence” regions based on SwissTargetPrediction probability.
We took the mean probability values of each docking confidence
level and calculated the 68% CI (equivalent to 1 standard
deviation) for each mean (Supplementary Figure S8).
Detailed calculations are shown in Supplementary Table S6.
Probability confidence regions were assigned as follows:

1) High probability confidence: probability, P > 0.1263 (upper
bound of the mean probability of low docking confidence
interactions);

2) Uncertain probability confidence: 0.1263 > P > 0.0774 (lower
bound of the mean probability of medium docking confidence
interactions);

3) Low probability confidence: P < 0.0774.

We then sorted each interaction in the KEGG colorectal
cancer PCPI-SIGNOR network according to probability
confidence regions (Supplementary Table S5). Flavonoids
were most abundant in the high probability confidence region,
triterpenoid aglycones were abundant in the uncertain region,
and triterpene glycosides were abundant in the low probability
confidence region. Protein kinases were highly targeted in all
probability confidence regions (Supplementary Figure S9).

Docking results are color-coded according to the legend in
Supplementary Figure 10, and all visualizations are shown in
Supplementary Figures S11–27.

3.6 Simplified PCPI Network for Anticancer
Action of Bitter Gourd
We visualized a smaller PCPI network including only high
docking confidence and probability � 1 interactions
(Figure 4). This is a simplified model of the predicted
anticancer action of bitter gourd. Phytochemicals in this
diagram are strong candidates for in vitro and in vivo activity.

Ellagic acid, a phenolic compound, was predicted to inhibit the
most proteins and pathways including the cell cycle, EGFR/
MAPK pathway, and PI3K/Akt pathway. Ellagic acid was also
predicted to inhibit the tumor suppressor GSK3b, but
interestingly, experiments show that inhibition of GSK3b may
in fact decrease cancer cell proliferation (Marchand et al., 2012).
Meanwhile, the flavonoids quercetin and luteolin were predicted
to inhibit the same proteins and pathways including PI3K/Akt
and EGFR/MAPK, thereby inhibiting cell survival and
proliferation. The triterpenoids momordicine I, kuguacin C,
and the charantagenin D aglycone were all predicted to inhibit
the PI3K/Akt pathway via mTOR. We highly recommend that
these predicted interactions be studied further through in vitro
and in vivo experiments. The phytochemicals in Figure 4 may
also be used as marker compounds for medicinal formulations of
bitter gourd.

This figure demonstrates the ability of our workflow to
visualize high-confidence PCPI predictions as a detailed yet
intuitive network. The workflow can be used to create PCPI
networks for other medicinal plants and diseases. If small
molecule drugs are searched together with medicinal plants,
the PCPI network can even identify shared protein targets and
potential interaction effects. Unlike the integrated tool
BATMAN-TCM, our modular workflow allows researchers to
use other tools at any step. However, we recommend using the
tools presented in this study as these were carefully selected. The
workflow and links to all resources are available at https://
yumibriones.github.io/network/workflow.html.

4 CONCLUSION

We developed a novel workflow to visualize the predicted cellular
action of a medicinal plant against a disease. We combined select
tools into a five-step pipeline: phytochemical compilation, reverse
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screening, network building, network visualization, and
evaluation. The resulting phytochemical-protein interaction
(PCPI) network visually reflects protein-protein interactions,
subcellular location, phytochemical class, pharmacokinetic
data, and other attributes in a single figure. By clearly
communicating all these attributes visually, the network helps
users identify interactions worth evaluating further. Our proof-
of-concept study on bitter gourd against colorectal cancer
identified triterpenoid aglycones and flavonoids as key players
in the network. The PCPI network and workflow are available at
https://yumibriones.github.io/network/. We evaluated select
PCPIs through docking to produce a smaller network of high-
confidence interactions that can be validated in vitro and in vivo.
Overall, this workflow streamlines natural products research by
using readily available tools to visualize a rich, intuitive PCPI
network.
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