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Dualization on partially ordered sets:

Preliminary Results

Lhouari Nourine1 and Jean Marc Petit2

1 Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France
2 Université de Lyon, CNRS, LIRIS, INSA Lyon, France

Abstract. The dualization problem on arbitrary posets is a crucial step
in many applications in logics, databases, artificial intelligence and pat-
tern mining.
The objective of this paper is to study reductions of the dualization prob-
lem on arbitrary posets to the dualization problem on boolean lattices,
for which output quasi-polynomial time algorithms exist. We introduce
convex embedding and poset reflection as key notions to characterize such
reductions. As a consequence, we identify posets, which are not boolean
lattices, for which the dualization problem remains quasi-polynomial and
propose a classification of posets with respect to dualization.
As far as we know, this is the first contribution to explicit non-trivial
reductions for studying the hardness of dualization problems on arbitrary
posets.

1 Introduction

The dualization problem in arbitrary finite3 partially ordered sets (poset for
short), is a crucial step in many applications in logics, databases, artificial intel-
ligence and pattern mining and has been intensively studied for years [1–3]. The
dualization problem can be very di�cult and the decision problem associated to
dualization is still open, even for lattices. Only a few results exist, mainly dual-
ization is quasi-polynomial whenever (P,) is isomorphic to a powerset ordered
under set inclusion (or boolean lattice) [2], which corresponds to the enumeration
of minimal transversal of hypergraph.

The dualization problem on hypergraphs has been studied by many re-
searchers, among which we quote [1, 2] while only a few results exist on dualiza-
tion on other posets [4]. Recently Kante et al [5] have shown that the enumera-
tion of minimal transversal of an hypergraph is equivalent to the enumeration of
minimal dominating sets of a cobipartite graph. Interestingly, this result brings
the dualization problem to the large graph theory community.

Some theoretical frameworks for pattern mining have studied dualization, for
instance [6–8]. In [8], we introduced the idea of weak representations as sets for
pattern mining problems and showed how the frequent rigid sequences mining

3 It also works for infinite partially ordered sets that are well ordered, i.e. all antichains
are finite.



problem benefits from such representation. The embryo of a reduction for the
dualization problem on arbitrary posets was present but was clearly implicit in
[8].

To measure the complexity of enumeration algorithms, we always refer to the
complexity in the size of the input and the size of the output, see [9] for details.

The objective of this paper is to study reductions of the dualization problem
on arbitrary posets to the dualization problem on boolean lattices. On posets,
the dualization problem can be stated as follows:
DualizeOnPoset
Input: A representation of a poset (P,), B+ an antichain of P .
Output: B� such that (B+, B�) are dual sets4 in P .

Let us consider the particular instance of this problem:
DualizeOnSet
Input: A finite set E, B+ an antichain of P(E) (the powerset of E).
Output: B� such that (B+, B�) are dual sets in P(E).

As already mentioned, the complexity of DualizeOnSet is known to be
quasi-polynomial while the complexity of DualizeOnPoset is still open in most
posets (for example, lattice) [4]. In this setting, we are interested in studying the
reduction fromDualizeOnPoset toDualizeOnSet, i.e. under which conditions
DualizeOnSet is at least as hard as DualizeOnPoset. Notice that reductions
for the hardness of enumeration problems are not well established as for decision
problems. In this paper, we consider only polynomial time reduction as explained
in Figure 1 which is inspired from classical polynomial reduction of decision
problems.

Contribution on dualization : We introduce convex embedding and poset re-

flection as key notions to characterize such reductions. As a consequence, we
identify posets, which are not boolean lattices, for which the dualization prob-
lem remains quasi-polynomial and propose a classification of posets with respect
to dualization.

2 Preliminaries

We briefly recall definitions on partial orders, embeddings and borders [10, 8].
A partial order is a binary relation  over a set P which is reflexive, anti-

symmetric, and transitive. Let x, y be elements of P , if x  y or y  x, then x
and y are comparable, otherwise they are incomparable. A partial order under
which every pair of elements is comparable is called a chain. A subset of a poset
in which no two distinct elements are comparable is called an antichain. We say
that y covers x if whenever x  z  y then z = x or y = z; we denote by � the
covering relation. For S ✓ P , # S (resp. " S) is the downward (resp. upward)
closed set of S under the relation  (i.e. # S is an ideal and " S a filter of (P,)).
In case of ambiguity, # S (resp. " S) will be denoted by # S (resp. " S). A

4 Dual sets are also known as blocker and anti-blocker or positive and negative borders



Fig. 1. Reduction from DualizeOnPoset to DualizeOnSet

subset S ✓ P is convex in P if for all x, y, z 2 P , x, y 2 S and x  z  y implies
z 2 S. We denote by Max(S) (resp. Min(S)) denotes the maximal (resp.
minimal) elements of S with respect to . When  is clear from context, (P,)
(resp. Max(S) and Min(S)) will be denoted by P (resp. Max (S), Min(S)).

Let (P,P ) and (Q,Q) be posets and f : P ! Q a mapping (total function).
f is an embedding if for all x, y 2 P , x P y i↵ f(x) Q f(y). The mapping
f is an isomorphism if f is a bijective embedding. In this case P and Q are
said to be isomorphic. f is a convex embedding if f is an embedding and f(P )
is convex in (Q,Q). Whenever f is injective but not surjective, there exists
another mapping g : f(P ) ! P such that g � f = Id, the identity function. A
reflection of a poset (P,) is a poset (P,0) on the same ground set P such that
for all x, y 2 P , x 0 y ) x  y.

Two antichains (B+,B�) of P are said to be dual if # B+[ " B� = P and
# B+\ " B� = ;. The relationship between these dual sets is known as the
dualization, i.e. given B+, compute B� (or inversely). In the sequel, (B+,B�)
will be referred to as a ”border”.

Let f : P ! Q be a mapping and (B+,B�) a border in P . The border
(E+, E�) in Q is an extension of (B+,B�) with respect to f , if f(B+) ✓ E+ and
f(B�) ✓ E�. The extension (E+, E�) is said to be a polynomial extension of
(B+,B�) if |E+|+ |E�| is polynomial in |B+|+ |B�|.



The intuition of the reduction of enumeration problems used in this paper

is based on finding a mapping between posets such that borders are polynomial

preserved, i.e. every border has a polynomial extension.

In the rest of this paper, we assume that a poset is given by an implicit
representation L and we shall denote by (L⇤,) the poset defined by L. Clearly,
the size of L⇤ may be exponential in the size of the representation L. For instance,
the free monoid ⌃⇤ ordered by sub word is implicitly defined by the alphabet
⌃, and a lattice is implicitly defined by its poset of (join and meet) irreducible
elements[11].

3 Classification of posets with respect to dualization

In this section we describe two properties of posets that lead us to have polyno-
mial time reductions to DualizeOnSet. First we show that a convex embedding
from a poset (L⇤,�) to P(E) for some set E is su�cient to re-use algorithms
of DualizeOnSet. Second, we show that the convex embedding is not a neces-
sary condition and introduce the reflection of a poset (L⇤,�) to obtain a new
poset (L⇤,�0) in which there is a convex embedding. Indeed, a reflection of
a poset (L⇤,�) corresponds to an embedding which preserves incomparabili-
ties (or antichains), even if some comparabilities could be lost. The previous
two embeddings introduce extra-elements to the dualization. Whenever these
extra-elements are bounded by a polynomial, the dualization can be polynomial
reduced to DualizeOnSet. To do so, we ask the following questions:

Given a poset of patterns (L⇤,�),

– Does there exist a convex embedding of (L⇤,�) into (P(E),✓) for some finite

set E? If not,

– Does there exist a reflection (L⇤,�0) of (L⇤,�) such that there exists a convex

embedding of (L⇤,�0) into (P(E),✓) for some finite set E?

These two questions and their associated computational costs allow to come
up with new classes of posets with respect to dualization. Figure 2 gives an
illustration with a diagram where posets and borders are placed side by side.

3.1 Convex embedding

First, let us recall that any poset has an embedding into a boolean lattice.

Proposition 1. [10] For any poset (L⇤,�), there exists an embedding from

(L⇤,�) to (P(E),✓), for some finite set E.

It follows that any poset has a set representation but obviously the dualiza-
tion on (L⇤,�) may be much more complex than the dualization on (P(E),✓)
[8]. We define the RAS class as follows:

Definition 1. (L⇤,�) 2 RAS i↵ (L⇤,�) and (P(E),✓) are isomorphic, for

some finite set E.
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Fig. 2. Reflection and convex embedding

This class of posets gathers together many patterns such as frequent itemsets
(FIM) [12], functional dependencies (FD) [13], inclusion dependencies (IND) [14].
This class is known as the representation as sets class of pattern mining problems
defined in [6].

Nevertheless, requirements to be in RAS are restrictive, since the poset must
be isomorphic to a boolean lattice, and then its size has to be equal to 2n where
n = |E|. Now we will relax the bijective constraint of RAS but we keep the
convexity property on the set representation. Hence, we extend RAS to a new
class, called XRAS, for conveX RAS.

Definition 2. (L⇤,�) 2 XRAS i↵ there exists a convex embedding from (L⇤,�
) to (P(E),✓), for some finite set E.

The idea is still to require an isomorphism but just between the poset of
patterns and some subset of P(E), instead of the entire set P(E) (see Figure 3).
Note also that f is injective since f is an embedding. The following proposition
points out a simple yet important characterization of XRAS problems.

Proposition 2. (L⇤,�) 2 XRAS i↵ (L⇤,�) is isomorphic to (P(E)\(# B+
0 [ "

B�
0 ),✓) for some antichains B+

0 ✓ P(E) and B�
0 ✓ P(E).

Proof. Let f be a convex embedding from (L⇤,�) to (P(E),✓) and F = f(L⇤).
Let us consider F+ = Min(F) and F� = Max(F) two antichains of F . More-
over, let B+

0 = Max({X 2 P(E)|X ⇢ Y, Y 2 F+}) and B�
0 = Min(P(E) \

(F[ # B+
0 )). Let X 2 P(E). Then either X 2# B+

0 , or X 2" B�
0 or X 2

P(E) \ (# B+
0 [ " B�

0 ). In the latter case, there exists Y1 2 F+, Y2 2 F� such
that Y1 ✓ X ✓ Y2. Since F is convex, X 2 F and the result follows.

The other direction holds since P(E) \ (# B+
0 [ " B�

0 ) is a convex set of
P(E). ut

Figure 3 gives an illustration of the proposition 2.
Note that the sets B+

0 and B�
0 can be exponential in the size of E. The next

definition introduces e�cient problems of XRAS, called EXRAS.



Fig. 3. The class XRAS

Definition 3. (L⇤,�) 2 EXRAS if (L⇤,�) 2 XRAS and |B+
0 [ B�

0 | is poly-

nomial in |E|.

The following proposition points out that a polynomial extension of any
border of (L⇤,�) exists if (L⇤,�) 2 EXRAS.

Proposition 3. Let (L⇤,�) 2 EXRAS and f : L⇤ ! P(E) a convex embed-

ding, for some finite set E.

Then for any border (B+,B�) of (L⇤,�), (Max(B+
0 [f(B+)), Min(B�

0 [f(B�)))
is a polynomial extension of (B+,B�) in (P(E),✓).

Proof. It su�ces to notice that (B+,B�) is a border of (L⇤,�) i↵ (f(B+), f(B�))
is a border of (P(E)\(# B+

0 [ " B�
0 ),✓) since (L⇤,�) is isomorphic to (P(E)\(#

B+
0 [ " B�

0 ),✓). ut

3.2 Polynomial reflection of posets

We now consider posets that are not in XRAS. Our idea is to transform the
initial poset to a new poset over the same ground set, in order to get a convex
embedding. As a consequence, two natural question arise:

(1) For a given poset (L⇤,�), does there exist a “polynomial reflection”
(L⇤,�0) such that (L⇤,�0) belongs to EXRAS?

(2) How to quantify the “lost comparabilities” induced by a reflection?

In the sequel, we study poset reflection to give answers to the previous ques-
tions. Since the reflection of a poset induces the lost of some comparabilities in
the original poset, we have to recover them e�ciently.

Before that, we consider di↵erent examples of posets over sequences.



Examples with di↵erent posets of sequences Let us consider sequences
with or without wildcard (denoted ?), see e.g. [15].

Let ⌃ be an alphabet. A sequence is an element of ⌃⇤ and a rigid sequence
an element of (⌃ [ {?})⇤ of the form P = P [1] · · ·P [m] such that P [1] 6= ? and
P [m] 6= ?. Let ⌃⇤

R be the set of rigid sequences and ⌃⇤ the set of sequences. We
denote by ⌃n the set of all sequences in ⌃⇤ of size at most n.

Di↵erent partial orders over ⌃⇤
R and ⌃⇤ exist. Let us first consider sub-word

(resp. factor and prefix) posets over ⌃⇤, denoted (⌃⇤,s) (resp. (⌃⇤,f ) and
(⌃⇤,p)). Let P [1..m], Q[1..n] 2 ⌃⇤. We have:

– P s Q if there exists integers i1 < . . . < im in [1..n] such that P [j] = Q[ij ]
for all j 2 [1..m].

– P f Q if P s Q and ij = ij+1 � 1 for all j 2 [1..m� 1]
– P p Q if P f Q and im = m.

These di↵erent posets are illustrated in Figure 4 on a simple example.

(a) (b) (c)

Fig. 4. (a) The sub word poset induced by the word w=aaba on ⌃ = {a, b}; (b) the
factor poset which is a reflection of (a); and (c) the prefix poset which is a reflection
of posets (b) and (a).

In Figure 4, let us consider the set {aa, ab} for the di↵erent posets. Its dual
set is equal to {ba, aab, aaa} for (a) and (b) and {b, aab, aaa, aba} for (c).

Second, we consider two posets for rigid sequences, one similar to the factor
poset and another one to the prefix poset, denoted (⌃⇤

R,v) and (⌃⇤
R,v1). Let

P [1..m], Q[1..n] 2 ⌃⇤
R. We have:

– P v Q if there exists p 2 [1..n] such that for every i 2 [1..m], either P [i] =
Q[p+ i� 1] or P [i] = ?

– P v1 Q if for every i 2 [1..m], either P [i] = Q[i] or P [i] = ?

These two posets are illustrated in Figure 5, where the poset (b) suggests the
existence of hidden hypercubes in the poset (a).

Now, we claim that the posets (⌃⇤,s), (⌃⇤,f ), (⌃⇤,p) and (⌃⇤
R ,v) do

not have any convex embedding. Consider again the example given in Figure 4
and the two following sets: A = {a, b, ab, ba} and A0 = {a, aa, aaa}.



(a) (b)

Fig. 5. (a) The factor poset of rigid sequences induced by the word w=aaba on ⌃ =
{a, b}; (b) the prefix poset of rigid sequences which is a reflection of posets (a).

– A is convex in (⌃⇤,s) (Figure 4.(a)) but its image by any embedding cannot
be convex in (P(E),✓) since (P(E),✓) is a lattice. The same reasoning
applies for (⌃⇤,f ) and (⌃⇤

R ,v).
– A0 is convex in (⌃⇤,p) but its image by any embedding cannot be convex

in (P(E),✓) since P(E) cannot contain a convex set which is a chain of
length 3.

However, Figure 5 also shows a reflection that leads to a convex embedding.
Consider (⌃n

R,v1). Let f : ⌃n
R \ {✏} ! P(E) be an embedding, for some finite

set E [15, 8]: f associates to each letter of a sequence a couple (indice, letter).
For instance, let ab and ba be two patterns. Then f(ab) = {(1, a), (2, b)} and
f(ba) = {(1, b), (2, a)}. It is easy to verify that f(⌃n

R\{✏}) is convex in (P(E),✓)
[8]. Let us again consider A = {a, b, ab, ba}: we only have a v1 ab, b v1 ba, i.e.
two comparabilities (a 6v1 ba, b 6v1 ab) are lost, allowing to reach the convexity
constraint.

These examples point out that we have to study poset reflection to be able
to obtain some convex embedding.

3.3 Reaching convexity by poset reflection

As shown in previous examples involving sequences, whenever possible, we have
now to quantify the lost comparabilities induced by a poset reflection.

For a given element of a poset, we define its successors and its predecessors
induced by a poset reflection.

Definition 4. Let (P,0) a reflection of a poset (P,) and x 2 P . The lost

predecessors of x in the reflection of (P,) to (P,0), denoted by LostPred(x),
are defined by:

LostPred(x) = Max0{y 2 P |y  x, y 6<0 x}. Similarly, the lost successors are

defined by: LostSucc(x) = Min0{y 2 P |x  y, x 6<0 y}.
By extension, we note LostPred(X) =

S
x2X LostPred(x) (resp. LostSucc(X))

for X ✓ P .



Example 1. Let us consider the reflection (⌃n
R ,v1) of (⌃n

R , v) [8]. Let S 2 ⌃n
R.

We have LostPred(S) = {S[i..|S|] | 1  i  |S|, S[i] 6= ?} and LostSucc(S) =
{x ? . . . ?| {z }

i

S | 0  i  n� |S|� 1, x 2 ⌃}.

For instance with n = 5, LostPred(a?ba) = {a?ba, ba, a} and LostSucc(ba) =
{aba, bba, a ? ba, b ? ba, a ? ?ba, b ? ?ba}.

As shown in the following lemma, we can recover the initial poset from any
reduced poset with LostPred and LostSucc.

Lemma 1. Let x 2 P and (P,0) a reflection of (P,). Then:

1. # x =#0
LostPred(x) and

2. " x =" 0
LostSucc(x).

Proof. (1) Let y 2# x. We have either y 0 x or y 6<0 x. If y 0 x, then
y 2#0

LostPred(x) since x 2 LostPred(x). If y 6<0 x, then there exists z 2 P
such that y 0 z, z 2 LostPred(x), i.e. y 2#0

LostPred(x). The same reasoning
applies for (2). ut

Some remarks have to be made: First, for any poset, there always exists
a reflection that has a convex embedding into a boolean lattice. It su�ces to
take a reflection which is an antichain, i.e. that deletes all comparabilities. In
this case, the number of lost comparabilities can be exponential in the size of
the description of the poset. Second, we would like to be able to recover lost
comparabilities in polynomial time. This is formalized with the notion of poly-
reflection as follows.

Definition 5. (L⇤,�0) is a poly-reflection of (L⇤,�) if (L⇤,�0) is a reflection

of (L⇤,�) and for all x 2 L⇤
, LostPred(x) and LostSucc(x) are computable in

polynomial time in the size of the description L.

Example 2. Continuing the previous example, for all S 2 ⌃n
R, LostPred(S) is

polynomial in n and for all s v S, there exists s0 2 LostPred(S) such that
s v1 s0. Therefore, (⌃n

R ,v1) is a poly-reflection of (⌃n
R ,v).

Now we show the relationship between borders in a poset and its reflection.
For a given border on the initial poset, we define its extension in the reduced
poset to take into account lost comparabilities.

Definition 6. Let (L⇤,�0) be a poly-reflection of (L⇤,�) and (B+,B�) a border

of (L⇤,�). The extension of (B+,B�) in (L⇤,�0), denoted by (ext(B+), ext(B�)),
is defined by:

ext(B+) = Max0{LostPred(x) | x 2 B+}
ext(B�) = Min0{LostSucc(x)|x 2 B�}.

The ”preservation” of borders can now be formally stated.

Proposition 4. Let (L⇤,�0) be a poly-reflection of (L⇤,�) and (B+,B�) a bor-

der of (L⇤,�). Then (ext(B+), ext(B�)) is a polynomial extension of (B+,B�).



Proof. We have to show:

1. (ext(B+), ext(B�)) is a border of (L⇤,�0) with B+ ✓ ext(B+) and B� ✓
ext(B�),

2. |ext(B+)|+ |ext(B�)| is polynomial in |B+|+ |B�|.

(1) Any reflection preserves all incomparabilities and x 2 LostPred(x) (resp
x 2 LostSucc(x)) for all x 2 L⇤. Then B+ ✓ ext(B+) and B� ✓ ext(B�). By
definition, ext(B+) and ext(B�) are antichains in (L⇤,�0). By Lemma 1, the
result follows.
(2) |ext(B+)|+ |ext(B�)| is polynomial in |B+|+ |B�| since (L⇤,�0) is a poly-
reflection of (L⇤,�) since computing LostPred(x) and LostSucc(x) can be done
in polynomial time in the size of the description of L. ut

The notion of poly-reflection allows to define the last class of posets, called
EWRAS, meaning E�cient weak representation as sets. EWRAS is the more
general class ensuring the existence of quasi-polynomial algorithms. It combines
both poly-reflection of posets and EXRAS.

Definition 7. (L⇤,�) 2 EWRAS i↵ there exists a poly-reflection (L⇤,�0) of

(L⇤,�) such that (L⇤,�0) 2 EXRAS.

Then, this definition means that if some comparabilities can be forgotten –
up to a polynomial cost to recover them – to get a new poset satisfying the
condition of EXRAS, then the dualization problem on the initial poset can be
reduced to DualizationOnSet.

Example 3. Continuing previous examples, we have (⌃⇤
R ,v1) is a poly-reflection

of (⌃⇤
R ,v) and (⌃⇤

R ,v1) belongs to EXRAS. Then, (⌃⇤
R ,v) belongs to

EWRAS.

The main result concerning the EWRAS class is now given:

Theorem 1. Let (L⇤,�) 2 EWRAS. Assume that (L⇤,�0) is a poly-reflection

of (L⇤,�) such that (L⇤,�0) belongs to EXRAS, i.e. (L⇤,�0) isomorphic to

P(E) \ (B+
0 [B�

0 ). Then, for any border (B+,B�) of (L⇤,�):

– (B+
0 [ f(ext(B+)), B�

0 [ f(ext(B�))) is a border in (P(E),✓),
– (B+

0 [f(ext(B+)), B�
0 [f(ext(B�))) is a polynomial extension of (B+,B�),

The following corollary gives the relationship between all the classes intro-
duced so far.

Corollary 1. Let (L⇤,�0) be a poly-reflection of (L⇤,�) such that (L⇤,�0) be-

longs to XRAS, i.e. (L⇤,�0) isomorphic to P(E) \ (B+
0 [B�

0 ). We have:

1. (L⇤,�) 2 RAS if (L⇤,�) = (L⇤,�0) and B+
0 = B�

0 = ;.
2. (L⇤,�) 2 XRAS if (L⇤,�) = (L⇤,�0).
3. (L⇤,�) 2 EXRAS if (L⇤,�) = (L⇤,�0) and the size of B+

0 [B�
0 is polyno-

mial in the size of the description of (L⇤,�).
4. (L⇤,�) 2 EWRAS if the size of B+

0 [ B�
0 is polynomial in the size of the

description of (L⇤,�).



3.4 DualizeOnSeq is equivalent to DualizeOnSet

Recall that we consider rigid sequences only. The dualization problem can be
stated as follows:

DualizeOnSeq
Input: ⌃ a totally ordered alphabet with a minimal element ?, n a positive
integer, B+ a positive border of ⌃n

R.
output: B� such that (B+, B�) is a border of ⌃n

R.
We have already showed that DualizeOnSeq is at least as hard as Dual-

izeOnSet in [8]. In the sequel, we point out that DualizeOnSet is at least
as hard as DualizeOnSeq, and therefore the two problems are polynomially
equivalent. Indeed, we show that DualizeOnSet is a particular case of Dual-
izeOnSeq.

Let ⌃ = {1, 2, ..., n, ?} be an ordered alphabet (i.e. ? < 1 < 2... < n and
S 2 ⌃n. The sequence S is said to be an ordered sequence if for any i, j 2 [1..n]
such that i < j, S[i] 6= ? and S[j] 6= ? we have S[j] � S[i] = j � i. We denote
⌃n

O ✓ ⌃n the set of all ordered sequences of size at most n. For example, the
sequence 2 ? ?5 is an ordered sequence but 2 ? 5 is not.

The following lemma characterizes ordered sequences.

Lemma 2. Let ⌃ = {1, 2, ..., n, ?} be an ordered alphabet and S 2 ⌃n
. Then

S 2 ⌃n
O i↵ S does not contain a subsequence of the form i ? . . . ?| {z }

k

j with either

i < j and k 6= j � i� 1, or i � j with k 2 [0..n� 2].

Consider the set B�
0 = {i ⇤k j | i � j, k 2 [0..n � 2]}[ {i ⇤k j | i <

j, k 2 [0..n � 2], k 6= j � i � 1}. For example for ⌃ = {1, 2, 3, ⇤} we have B�
0 =

{11, 1 ⇤ 1, 22, 2 ⇤ 2, 33, 3 ⇤ 3, 21, 2 ⇤ 1, 31, 3 ⇤ 1, 32, 3 ⇤ 2} [ {13}.

Lemma 3. ⌃n\ " B�
0 = ⌃n

O.

Let V = {1, ..., n} be a set. We define the mapping f : P(V ) ! ⌃n such
that for any E 2 P(V ), f(E) = S with S[i] = i if i 2 E and S[i] = ? otherwise.
Without loss of generality, we delete the symbols ? that are prefix or su�x of
f(E). Note that f(E)[i] = ? means that i /2 E. For example f({2, 5}) = 2 ? ?5
and f({}) is the empty sequence.

Proposition 5. Let V = {1, ..., n} be a set. Then the mapping f is a convex

embedding of P(V ) into ⌃n
. Moreover f(P(V )) = ⌃n

O.

Proof. Let P,Q be two sequences that are images of two sets A ⇢ B ✓ V , i.e.
f(A) = P and f(B) = Q. Clearly f(A) @ f(B).

Now suppose there is a sequence S such that P @ S @ Q.
For every i 6= j 2 [1..n] we have either S[i] 6= S[j] or S[i] = S[j] = ?, by

definition of the embedding f . Then the set C = {x 2 V | S[i] = x, i 2 [1..n]}
is clearly defined. Moreover f(C) = S and A ⇢ C ⇢ B, since for any x 2 ⌃,
x 6@ ?, but ? @ x.

We have f(P(V )) = ⌃n
O by construction. ut



Theorem 2. DualizeOnSeq and DualizeOnSet are polynomially equivalent.

Proof. We have shown that DualizeOnSeq is polynomially reducible to Du-
alizeOnSet [8]. In Proposition 5, we have shown the existence of a convex
embedding from P(V ) into ⌃n. Moreover we have shown that B+

0 = ; and ac-
cording to Lemma 2 the size of B�

0 is bounded by O(n3). Thus DualizeOnSet
is polynomially reducible to DualizeOnSeq. ut

We have shown that the dualization on rigid sequences with wildcard is
equivalent to the dualization on set, i.e. enumerating minimal transversals of a
given hypergraph.
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