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Abstract

In health cohort studies, repeated measures of markers are often used to describe the natural history of

a disease. Joint models allow to study their evolution by taking into account the possible informative

dropout usually due to clinical events. However, joint modeling developments mostly focused on con-

tinuous Gaussian markers while, in an increasing number of studies, the actual quantity of interest is

non-directly measurable; it constitutes a latent variable evaluated by a set of observed indicators from

questionnaires or measurement scales. Classical examples include anxiety, fatigue, cognition. In this work,

we explain how joint models can be extended to the framework of a latent quantity measured over time

by indicators of different nature (e.g. continuous, binary, ordinal). The longitudinal submodel describes

the evolution over time of the quantity of interest defined as a latent process in a structural mixed model,

and links the latent process to each observation of the indicators through appropriate measurement mod-

els. Simultaneously, the risk of multi-cause event is modelled via a proportional cause-specific hazard

model that includes a function of the mixed model elements as linear predictor to take into account the

association between the latent process and the risk of event. Estimation, carried out in the maximum

likelihood framework and implemented in the R-package JLPM, has been validated by simulations. The

methodology is illustrated in the French cohort on Multiple-System Atrophy (MSA), a rare and fatal

neurodegenerative disease, with the study of dysphagia progression over time stopped by the occurrence

of death.
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Highlights

• Joint models (JM) are a useful tool to analyze longitudinal data with informative dropout

• Joint Latent Process Models (LPM) extend JM to markers (of possibly different nature) measuring

the same underlying quantity

• Maximum Likelihood Estimation of the joint LPM is available in the R-package JLPM

• The case study quantifies the progression of dysphagia during Multiple-System Atrophy (MSA) and

its association with death risk
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Abbreviations

CI Confidence Intervals

GRM Graded Response Model

HR Hazard Ratio

IRT Item Response Theory

JM Joint Model

JLPM Joint Latent Process Model

MAR Missing-At-Random

MNAR Missing-Not-At-Random

MRI Magnetic Resonance Imaging

MSA Multiple-System Atrophy (disease)

MSA-C MSA with predominant Cerebellar impairment

MSA-P MSA with predominant Parkinsonism

SD Standard Deviation

UMSARS Unified Multiple-System Atrophy Rating Scale
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1 Introduction

In health cohort studies, markers measured at multiple times are often used to describe the natural history

of a disease, monitor patients or predict the risk of clinical progression. Classical examples include T-cell

CD4 counts and viral load for the progression of HIV [1] or PSA for prostate cancer evolution [2]. Due to

the intrinsic intra-subject correlation between the repeated measures of markers, their evolution can not

be modelled using classical regression models, and mixed models which include individual random effects

to account for this serial correlation are now adopted worldwide [3].

During the follow-up, clinical events (e.g. diagnosis, recurrence, death) may disrupt the progression

of the markers and induce a dropout. When this interruption of the follow-up is predictable by the

observed marker data, the missing data mechanism is called missing-at-random (MAR), and inference

provided by the mixed model is still valid [4]. However, in many cases, the dropout is likely to depend

on the underlying (unobserved) disease mechanism rather than only on the strictly observed data. The

missing data mechanism becomes missing-not-at-random (MNAR), and mixed models may not provide

correct inference anymore [5, 6]. During the last twenty years, the statistical community has massively

embraced the issue of dropout in longitudinal analysis which lead to the development of joint models for

the simultaneous analysis of repeated markers and clinical events [7, 8, 1, 9]. Joint models combine a

mixed model describing the progression of the markers and a survival model for the time of occurrence of

the clinical events, while associating the two models through shared random variables, usually the random

effects from the mixed model [7]. Beyond the study of the marker progression in the presence of MNAR

dropout, this method also more generally assesses the association between a marker trajectory and an

associated event of interest [10, 11, 2].

Despite many developments in joint models in the recent years [12, 13], most works are dedicated

to classical continuous biomarkers stemmed from blood samples, MRI, etc. Yet, in an ever-increasing

number of health studies, the actual quantity of interest is not directly measured. It is a latent construct

which is assessed using a set of indicators measured with error, usually stemmed from questionnaires

or measurement scales. Examples include health related quality of life in Cancer research and beyond

[14], cognitive functioning and functional dependency in neurodegenerative diseases [15, 16], or many

other constructs such as anxiety or depressive symptomatology [17, 18]. The analysis of latent constructs

stemmed from measurement scales and questionnaires requires a specific attention. Measurement scales

usually translate into multiple categorical and/or continuous items that measure different aspects of the

underlying construct of interest. Furthermore, when aggregating the item information into a sumscore,

the resulting univariate marker may not have classical Gaussian properties for continuous markers; they

are usually bounded with floor/ceiling effects and possible unequal-interval scaling [16, 19].

In this contribution, we show how the joint modeling methodology can be extended to handle re-

peated data from measurement scales in the presence of an informative clinical event, and provide a
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software solution with the R package JLPM. We illustrate the methodology through simulations and

in Multiple-System Atrophy (MSA), a rare and deadly neurodegenerative disease, which progression is

almost exclusively described by measurement scales [20].

The article is organized as follows: Section 2 presents the methodology developed to handle previ-

ously mentioned challenges (multiple markers of different nature, competing risks, delayed entry), Section

3 reports simulation studies aiming at validating the inference procedure. Section 4 illustrates the method-

ology with the analysis of dysphagia progression in MSA, and Section 5 concludes.

2 Methodology

Let consider a cohort of N individuals followed up over time. We define T ∗i the time of occurrence of

an event of interest for subject i (i = 1, ..., N). This event may be due to P different causes, defining

a competing risk setting. As some individuals may be censored before this occurrence, we observe Ti =

min(T ∗i , Ci) where Ci is the censoring time, and δi the event indicator such that δi = p when the

event of cause p occurs first and before censoring (T ∗i ≤ Ci), and δi = 0 otherwise. We also collect

repeated measures of K ≥ 1 markers measuring the same construct of interest (for instance K items of a

measurement scale or only 1 isolated item, or 1 sumscore). The marker values are noted Yikj for subject

i (i = 1, ..., N) and marker k (k = 1, ...,K) at time tikj with j the repeated occasion (j = 1, ..., nik). The

event of interest interrupts the collection of the repeated markers so that necessarily tiknik ≤ Ti. In this

methodology, the markers do not need to be measured at the same visit times across markers and across

individuals.

The joint model aims to analyze the trajectory of the construct of interest over time and the risk of

event by accounting for their correlation. As shown in Figure 1, the joint model includes two submodels,

one for the longitudinal process (on the left) and one for the time-to-event process (on the right). They

are detailed below.

[Figure 1 about here.]

2.1 Longitudinal model

When analyzing data from measurement scales or questionnaires, and more generally psychometric data,

one makes the distinction between the construct of interest which is a latent process, denoted ∆i(t) and

defined in continuous time (t ∈ R), and its observations, denoted Yikj , measured with error at discrete

time visits tikj . As emphasized in Figure 1, the longitudinal model thus consists of a structural model

describing the latent process over time, and measurement models defining its link with each marker [16].
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2.1.1 Structural model

The trajectory over time of ∆ can be described using a linear mixed model [21] as follows :

∆i(t) = Xi(t)
L>βL + Zi(t)

>bi (1)

with XL
i (t) and Zi(t) two vectors of covariates associated to βL the vector of fixed effect parameters,

and bi the q-vector of normally distributed individual random effects (bi ∼ N (0, B)), respectively. We

note that, as the quantity described here is not directly observed or measured, we do not consider any

measurement error in the equation. The term Xi(t)
L>βL defines the mean trajectory of the latent process

at the population level while Zi(t)
>bi captures the individual deviation to the mean trajectory.

2.1.2 Measurement model

The measurement models define the nature of the link between the latent process ∆ and each marker,

considered as a noisy measure of ∆, that is a marker of ∆ prone to measurement error. Depending on

the study to be conducted and the data available, the markers may vary in number and nature (e.g., con-

tinuous, ordinal). We review here different measurement models according to the nature of the markers.

In any case, one measurement model is to be defined for each marker k ∈ {1, ...,K}.

Continuous Gaussian marker

Classically, continuous markers are considered as having a multivariate normal distribution with Gaus-

sian errors. In this case, the measurement model for marker k is:

Yik(tikj) = ηk1 + ηk2 × (∆i(tikj) + εikj) (2)

where ηk1 and ηk2 are two marker-k-specific parameters transforming the continuous marker into the

latent process scale, and ε is the independent Gaussian measurement error (εikj ∼ N (0, σ2
k)).

In the case of one single Gaussian marker (K = 1), ηk1 = 0 and ηk2 = 1 reduces the equation to the

standard definition of a linear mixed model:

Yi(tij) = ∆i(tij) + εij = Xi(tij)
L>βL + Zi(tij)

>bi + εij (3)

Continuous non-Gaussian marker

When analyzing data from measurement scales, the sum-score of all or a part of the items is frequently

considered as a relevant marker of the underlying process of interest. This score is often treated as

continuous because of its large number of possible levels. However its distribution is very rarely Gaussian

due to ceiling and floor effects induced by its lower and upper bounds, and due to the fact that, as based
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on the sum of ordinal items, a one-point change does not necessarily have the same meaning depending on

the level of the score. This phenomenon, called curvilinearity, is not compatible with the assumptions of

the linear model and linear mixed model [22, 19]. In this context, a continuous but non-gaussian marker k

can be described using a curvilinear measurement model where a parameterized transformation function

Hk normalizes marker k:

Hk(Yik(tikj); ηk) = ∆i(tikj) + εikj (4)

with εikj ∼ N (0, σ2
k) and Hk(.; ηk) the marker-k-specific parametric link function. This function is

monotonically increasing and is often approximated by splines [16]. We can notice that if Hk(.) is a linear

function, this model turns into the classical linear mixed model defined in the previous subsection.

Discrete marker

Ordinal items (including binary items as 2-level ordinal items) are frequently considered for measuring

complex constructs. They can be described using proportional odds logistic models or cumulative probit

models [3, 23]. Such models are based on the assumption of increasing monotonicity indicating that a

higher level of the item reflects a higher degradation of the latent dimension that it measures. This is

formalized as follows:

Yik(tikj) = m⇔ ηk,m < ∆i(tikj) + εikj ≤ ηk,m+1 with m ∈ {0, 1, ...,Mk}

and −∞ = ηk,0 ≤ ηk,1 ≤ ... ≤ ηk,m ≤ ηk,m+1 ≤ ... ≤ ηk,Mk+1 = +∞
(5)

where εikj is an additional noise either Logistic in the proportional odds logistic model or Gaussian in

the cumulative probit [3]. We consider here the latter with εikj ∼ N (0, σ2
k).

Parameters ηk = (ηk,m)m=1,...,Mk
are to be estimated. Also called thresholds or locations, they cor-

respond to the level of the latent construct at which the probability of observing Yik(tikj) lower/higher

m+ 1 is 0.5. These measurement models are usual in Item Response Theory (IRT) where they are called

Graded Response Models (GRM) [24].

2.1.3 Caution note

In the case of multiple markers, this framework relies on important assumptions:

• unidimensionnality of the latent construct. The model assumes that all markers should measure the

same phenomenon, the latent dimension of interest. In the case of a multidimensional measurement

scale, items should be grouped by unidimensional underlying dimensions, and different dimensions

analyzed separately.

• inter-marker and intra-marker conditional independence given the latent construct. The latent
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construct should constitute the only source of shared information across pairs of markers and within

repeated measures of the same marker. In the case of residual dependency across markers, redundant

markers may be deleted or their correlation modeled in the measurement models. In the case of

residual dependency within marker, additional random-effect specific to the marker and/or marker-

specific association with covariate may be added [16].

These assumptions need to be verified in preliminary analyses to prevent any bias in the results. For

this purpose, we recommend to follow the PROMIS strategy [25]. Note that intra-marker conditional

independence given the latent construct may be assessed in sensitivity analyses.

2.1.4 Identifiability Constraints

Except for the specific case of equation (3), the longitudinal submodel, as defined in this section, is not

identifiable. Due to the introduction of a latent process, identifiability constraints must be added to

determine the dimension of the latent process; this is a requirement in any latent variable model. In

this work, we chose to center and reduce the latent process ∆ at time 0 in the reference category. This

translates into an intercept fixed to βLint = 0 (location constraint) and a variance of the first random-effect

(usually the random intercept) fixed to B1,1 = 1 (dispersion constraint) [3]. This implies that the unit of

the latent process corresponds to the residual inter-individual standard deviation of the latent quantity

when time t = 0.

2.2 Survival model

The survival model describes the risk of occurrence of each cause of event, usually using a cause-specific

proportional hazard model [3]. In shared random effect joint models, the instantaneous risk function

depends on a (possibly time-dependent) function of the elements of the structural model (1) noted gip(bi, t).

This element, which notably depends on the random effects bi, is added as a linear predictor in the survival

model to quantify the intensity of the association between the latent dimension and the considered event

p.

The cause-specific hazard model is described in continuous time t (∈ R) for each cause p = 1, ..., P

and each subject i (∈ {1, ..., N}) as follows:

λip(t) = λ0p(t;ψp) exp(XS>
pi β

S
p + gip(bi, t)

>αp) (6)

with λ0p(.) the parametric baseline risk function associated to the vector of parameters ψp for cause

p. This function is usually chosen among Weibull hazards, piecewise constant hazards or approximated

using spline functions. The vector of exogenous time-independent covariates XS
p is associated with the

vector of parameters βSp , and the function gip(bi, t) is associated with the vector of parameters αp which
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quantifies the association between the two processes. Many different functions gip(bi, t) can be specified

[26]. We focus here on two frequently used structures encountered in the joint modeling literature [7, 8] :

- the vector of random effects (dimension q): the survival model is adjusted on the individual

deviations to the mean latent process trajectory with

gip(bi, t) = gip(bi) = bi (7)

- the current latent process level (dimension 1): the instantaneous risk is adjusted on the level

of the underlying process (defined in Equation (1)) at the same time with

gip(bi, t) = ∆i(t) (8)

2.3 Estimation

Let Θ denote the vector of all sub-model parameters including :

- for the structural model: vector βL of fixed effects, parameters of the random-effects variance-

covariance matrix B;

- for the measurement model: for all marker k ∈ {1, ...,K}, variance σ2
k of the measurement error

and vector ηk of parameters, it can be regression parameters ηk = (ηk1, ηk2) if marker k is Gaussian,

link function parameters ηk if marker k is continuous but not necessarily Gaussian, or thresholds

ηk = (ηk,m)m∈{1,...,Mk} if marker k is ordinal;

- for the survival model: for all cause p ∈ {1, ..., P}, vector ψp of parameters in the baseline hazard

function, vector of parameters βSp for all covariates included in the survival model, and αp the

association parameters.

The joint model parameters Θ can be estimated by maximizing the log-likelihood L(Θ) =

N∑

i=1

logLi(Θ)

where Li(Θ) is the individual contribution to the likelihood.

2.3.1 Individual contribution to the likelihood

Thanks to the assumption of independence between the latent dimension ∆i, measured by the markers

Yi = (Yik)k=1,...,K , and the time-to-event (Ti, δi) conditionally to the random effects bi, the individual

contribution to the likelihood for subject i ∈ {1, ..., N} can be developed as follows:

Li(Θ) = fYi,(Ti,δi)(Yi, (Ti, δi); Θ)

=
∫
Rq
∏K
k=1{fYik|bi(Yik|b; Θ)}f(Ti,δi)|bi((Ti, δi)|b; Θ)fbi(b; Θ)db

(9)
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with f(.) the generic notation for a density function.

The density of the repeated marker depends on its nature. The density of a continuous marker can

be expressed using the change of variable theorem:

fYik|bi(Yik|b; Θ) = φ(Ỹik|b; Θ)×
nik∏

j=1

J(Ỹikj |b) (10)

where Ỹk = H−1
k (Yk) designates the value of marker Yk transformed by its link function. Functions φ(.)

and J(.) are the density function of a normal distribution and the jacobian associated to the link function,

respectively.

For a discrete marker, it can be expressed as follows:

fYik|bi(Yik|b; Θ) =
∏nik
j=1

∏Mk
m=0 P(Yik(tikj) = m|b)1Yik(tikj)=m

=
∏nik
j=1

∏Mk
m=0[Φ( 1

σk
(ηk,m+1 −∆i(tikj)))− Φ( 1

σk
(ηk,m −∆i(tikj)))]

1Yik(tikj)=m
(11)

where Φ(.) is the standard normal distribution function.

The density of the time-to-event is:

f(Ti,δi)|bi((Ti, δi)|b; Θ) = Si(Ti|b; Θ)

p∏

p=1

λip(Ti|b; Θ)1δi=p (12)

with λip(.) the hazard function specific to cause p given in Equation (6) and Si(.) the survival function

combining all P causes:

Si(t|b; Θ) =
P∏

p=1

Sip(t|b; Θ) =
P∏

p=1

exp(−
∫ t

0
λip(s|b; Θ)ds) (13)

Finally, the density of the random effects is the density of a centered multivariate normal distribution:

fbi(b; Θ) = φN (O,B)(b) (14)

In the presence of delayed entry, that is when a subject is included in the study some time after

time zero, the time-to-event is left-truncated. This is accounted for by considering instead the individual

contribution to the likelihood for truncated data Ltrunc,i(Θ) in which the naive individual contribution

Li(Θ) is divided by the probability to survive until the entry time T0i:

Ltrunc,i(Θ) =
Li(Θ)

Si(T0i;Θ)
(15)

2.3.2 Software

Maximum likelihood estimation of the joint model parameters is implemented in the R package JLPM

(https://github.com/VivianePhilipps/JLPM). The optimization of the log-likelihood is numerically car-
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ried out by a Marquardt-Levenberg algorithm with stringent convergence criteria based on the first and

second derivatives of the log-likelihood (see [27] for details). Example scripts are given in the package.

To reduce the computation time, optimization can be carried out in parallel mode (i.e., using multiple

cores).

As with any complex model, we recommend to proceed step-by-step by estimating submodels with

increasing complexity (e.g., survival submodel without dependency on the latent process, longitudinal

model with a reduced number of random effects) to determine plausible initial values, and as such, reduce

the number of iterations of the optimization algorithm applied to the final model.

The integral on the q random effects in Equation (9) does not have analytical solution so that the

computation of the likelihood involves numerical integrations. This can be carried out with a Monte-Carlo

algorithm which consists in simulating many draws of the random effects (generally around 100000) and

to compute and then average the results of the function to integrate. In this package, we used instead

a quasi Monte-Carlo algorithm [28]. This integration method uses a deterministic sequence rather than

a random one. Then, smaller integration errors are obtained due to the low discrepancy of the chosen

deterministic sequence, so that the number of required points is usually reduced to 1000.

Moreover, when the association structure g(bi, t) is time-dependent (not the case for the dependence

on the random effects), the survival function in Equation (13) also involves an integral with no analytical

solution; it is approximated by a Gauss-Kronrod gaussian quadrature with 15 points [29].

3 Simulation studies

Two simulation studies were performed to illustrate the methodology and validate the estimation pro-

cedure implemented in the R-package JLPM according to the the type of markers and times-to-event

included, and the nature of the dependency structure between the longitudinal and the survival submodels.

3.1 Simulation design

The first simulation study, described below, included 2 ordinal and 2 Gaussian markers measuring the

same underlying process, 2 competing causes of event and a dependence on the shared random effects as

in (7). The second one, reported only in supplementary materials, included 4 ordinal outcomes, 1 cause

of event and a dependence on the current process level as in (8).

We simulated 500 samples of 300 subjects each. The structural model for the underlying process

consisted in a linear function of time at the population (βL = (0, 1)>) and individual level (B =
(

1 0
0 0.2

)
).

For each cause of event p (p = 1 or 2), the time-to-event was defined by a Weibull baseline risk function

λ0p(t;ψp) = ψ
ψp2
p1 ψp2t

ψp2−1 with ψ11 = 0.2, ψ12 = 5 for cause 1 and ψ21 = 0.198, ψ22 = 8 for cause 2. The

unique linear predictor was the random effects of the underlying process with association parameter fixed

to α1 = (0.1, 0.2) for cause 1 and to α2 = (0.3, 0.2) for cause 2.
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Visit times were generated every year (or time unit) from year 0 and up to the minimum between

year 4 (administrative censoring) and the time-to-event. A delayed entry was generated to translate

an individual-specific time of entry (year 0). To do so, we generated individual time-of-entry from a

continuous uniform distribution defined on the interval [0,2]. This lead to a time-of-entry mean around

1.00 (SD=0.58), 21.09% of censoring on average and 3.64 repeated measures of each marker on average.

The 2 discrete markers had 4 ordinal levels each. Those marker data were generated according to equation

(5) with thresholds η1 = (0.5, 1, 1.5)> for marker 1 and η2 = (0.25, 0.75, 0.8)> for marker 2. The 2 Gaussian

marker data were generated according to equation (2) with parameters η3 = (1, 0.4)> for marker 3 and

η4 = (2, 0.2)> for marker 4. Measurement error variances were fixed to σ = 1 for all markers.

3.2 Results

We report in Table 1 the mean estimate, relative bias, variance estimate (empirical or asymptotic) and

the coverage rate of the 95% confidence interval for each parameter. The estimation procedure provides

very good results on this example: for all parameters, the bias is negligible, the mean asymptotic variance

is close to the empirical variance, and the coverage rate of the 95% confidence interval is very close to the

nominal value.

[Table 1 about here.]

4 Illustration in Multi-System Atrophy

We illustrate our methodology to the Multiple-System Atrophy (MSA), a rare neurodegenerative disease

characterized by various combinations of parkinsonism, cerebellar ataxia and dysautonomic symptoms.

The disease progresses very fast and is fatal with a median survival between 8 and 10 years after the first

symptoms onset [20]. The occurrence of death suddenly interrupts the follow-up of MSA patients who

are usually the most affected. This constitutes an informative dropout that needs to be accounted for in

the statistical analyses to avoid biasing the model estimates.

As many other neurodegenerative diseases, MSA clinical progression is studied almost exclusively

using scales that measure the motor degradation, the dysautonomic dysfunction or the pathology-related

quality-of-life. In particular, the Unified Multiple-System Atrophy Rating Scale (UMSARS) assesses

disease severity in MSA patients in 4 sub-scales. The first one, reported by the patient, assesses functional

impairments. In this illustration, we focus essentially on one item, the 2nd item of the first UMSARS

subscale, which measures dysphagia, the difficulty to swallow food and saliva. Clinical assumptions are

that, among the motor and functional impairments of MSA, dysphagia could represent an important

aspect of the prognosis and have a substantial impact on the risk of death. This ability progressively

deteriorates during the course of the disease and most severe cases require nasogastric tube or gastrostomy
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feeding. Dysphagia is measured as a 5-level likert scale (from 0 Normal state to 4 Severe incapacity) leading

to repeated ordinal data.

Finally, the MSA diagnosis can be made several years after the first symptoms since the first MSA

symptoms may not be specific (e.g., some are similar to those a Parkinson’s disease). This delayed

diagnosis yields to a delayed entry in the cohort.

By accounting for these three challenges (ordinal repeated data, informative dropout and delayed

entry), our methodology is particularly useful to study MSA progression.

4.1 Multiple-System Atrophy French cohort

Since 2007, the university hospitals of Bordeaux and Toulouse, the two French reference centres for MSA,

have constituted the MSA French cohort which includes all the patients diagnosed with a MSA, and

follows them every year with a complete clinical examination including the UMSARS completion. For

this application, we considered all the MSA cases included in the cohort who had at least one completed

dysphagia item during the follow-up before the administrative censoring on December 31st 2019. A total

of 634 MSA patients were included with a total of 1819 dysphagia assessments (see description in Table

2). Patients were included in the cohort 4.58 (SD=2.61) years on average after their first symptoms and

were 65.1 (SD=8.2) years old in mean at entry. Two subtypes of MSA are distinguished: MSA-P for

predominant parkinsonism and MSA-C for predominant cerebellar impairment. MSA-P (66.1%) were

more frequent than MSA-C in the cohort (33.9%) as reported in Caucasian cohort [30]. As for many

neurodegenerative diseases, the definite diagnosis of MSA is based on post-mortem neuropathologies. In

clinical practice, the MSA diagnosis is therefore based on criteria established in 2008 by Gilman et al.

[31] and giving two degrees of diagnostic certainty: probable and possible. At first visit, 151 (23.8%) and

483 (76.2%) met consensus for possible MSA and probable MSA, respectively.

Patients had in mean 2.87 (SD=2.09) clinical visits, and remained in the cohort up to 6.94 (SD=3.34)

years after first symptoms onset on average. They entered the cohort about 4.58 (SD=2.61) years after

first symptoms onset. More than half of the patients (51.89%) died and 17.82% were not seen in the 18

months preceding administrative censoring. As shown in Figure 2 (bottom right), the survival probability

dropped very quickly from approximately 2 years after the first symptoms onset reaching a survival

probability of 0.19 [0.16 - 0.24] after 10 years, 0.04 [0.02 - 0.06] after 15 years and 0 after 20 years. This

illustrates the importance of the truncation of the follow-up by the occurrence of death in MSA. Previous

analyses suggest that this truncation is related to the course of the disease [20].

Regarding dysphagia, at entry, 180 (28.39%) patients had a normal state (no particular difficulty to

swallow), 242 (38.17%) a mild impairment (choking less than once a week), 139 (21.92%) a moderate

impairment (occasional food aspiration with choking more than once a week), 62 (9.78%) a marked

impairment (frequent food aspiration) and 6 (0.95%) a severe state requiring assistance to be feeded.
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Note that even if the severe state is under-represented at entry, the frequency increases to 31 during the

follow-up so that it does not pose any problem of sparse category in the estimation process (in a case

where a category would not be represented at all, it could be grouped with another one). Dysphagia

item degradation substantially progressed over disease time as illustrated with the individual observed

trajectories (Figure 2 -bottom left).

[Table 2 about here.]

4.2 Specification of the model

This study aimed at better understanding progression of swallowing difficulties over disease time and at

quantifying its association with death. To do so, we built a shared random effect joint model as illustrated

in Figure 2, and considered time since first symptoms as the study timescale to describe the natural history

of the item progression. The model handles delayed entry due to the fact that patients may enter the

study years after the first symptoms occurred.

[Figure 2 about here.]

The observed 5-level item probability was linked to the underlying continuous dysphagia process at

the exact same time by a cumulative probit model (cf. Equation (5)). The trajectory of the underlying

dysphagia process was simultaneously described over time by a latent linear mixed model (cf. Equation

(1)) with individual random effects on each function of time considered to take into account the within

patient correlation. After preliminary analyses comparing a linear trajectory, a quadratic trajectory

and a trajectory approximated by natural cubic splines with 1 internal knot, we selected the quadratic

trajectory as the one providing the best fit to the data according to the Akaike Information Criterion (AIC)

(AIC=5944.53, AIC=5902.23, AIC=6021.21 for the models with linear, quadratic and splines trajectories,

respectively). The association between dysphagia and death was simultaneously modelled using a survival

model where the instantaneous risk of death was a function of the current underlying level of dysphagia

(cf. Equation (6) with option (8)). The baseline hazard function was defined by cubic M-splines with 3

internal knots placed at the quantiles of the observed times of event, that is 4.65, 6.37, 8.71 years. The

boundary knots were placed at 0 and 24 years. The structural longitudinal model and the survival model

were adjusted for sex (male or female), diagnosis (MSA-C or MSA-P), certainty of the diagnosis (possible

or probable) and age at the first symptoms onset.

4.3 Results

The estimates of the joint model are provided in supplementary table. The predicted trajectories of

dysphagia item are displayed in Figure 3 according to profiles of patient differing by the four main

covariates of interest (sex, age at first symptoms onset, MSA subtype and certainty degree of diagnosis).
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The reference profile corresponded to a male patient, 60 years old at first symptoms onset, diagnosed

MSA-C with possible certainty (black line).

Overall, the trajectories of dysphagia did not significantly differ according to sex, age and MSA

subtype. Male and female patients seemed to endure the same dysphagia progression over at least the first

5 years of the disease. Female patients seemed to face a more important degradation afterwards although

the dysphagia progression was not statistically different by sex (interaction on time and quadratic time,

p=0.624). Dysphagia evolved slighly faster for older patients with substantial differences during the follow-

up. At 5 years of disease, the dysphagia level was 1.662 (95%CI=1.400,1.956), 1.419 (95%CI=1.184,1.671)

and 1.173 (95%CI=0.943,1.445) for patients aged 70, 60 and 50 at the beginning of the disease, respectively.

This highlights an approximate gap of 0.5 points between patients with 20 years difference, stable between

5 and 10 years of disease.

No difference in dysphagia progression was observed between MSA-C and MSA-P patients. At the

beginning of the disease, MSA-P patients seemed to have a little higher level of dysphagia than MSA-C

patients, but after 6 years of disease, this trend reversed and MSA-C patients surpassed MSA-P patients

in terms of degradation degree. This could be explained by the fact that MSA-P patients are initially more

affected on the motor level as opposed to MSA-C patients who suffer from non-motor and dysautonomia

symptoms [20].

Trajectories of dysphagia substantially differed according to the diagnosis certainty. Patients diagnosed

with possible MSA had a significantly higher level of dysphagia at the beginning of the disease compared

to patients diagnosed with more confidence (probable) with a mean level of 0.600 (95%CI=0.344,0.986)

and 0.334 (95%CI=0.192,0.542) at onset for possible and probable, respectively. However, patients with

probable MSA progressed much more rapidly reaching a mean level of 3.034 (95%CI= 2.711,3.272) after

only 10 years while possible MSA patients still had in mean 2.377 (95%CI=1.995,2.722).

[Figure 3 about here.]

The trajectory of dysphagia was also substantially associated with the risk of death through its current

underlying level (HR = 3.773, 95%CI =2.588,5.501) after adjustment on sex, age at first symptoms onset,

MSA subtype and certainty degree of diagnosis (Table 3, right column). This means that the level of

dysphagia at a certain time t is strongly associated with the instantaneous risk of death at the exact

same time: the higher the level of dysphagia, the higher the risk of death. A second model was estimated

without accounting for dysphagia progression (i.e., fixing its association parameter to α = 0) to assess

whether some covariate association with death were changed when considering the association between

dysphagia and death. Results are reported in Table 3 (left-column). The association with age at first

symptoms was not impacted by the adjustment on dysphagia (HR = 1.215, 95%CI = 1.063,1.388 for

a 10-year difference and HR = 1.160, 95%CI = 1.007,1.337 for the model without and with dysphagia,

respectively). This suggests that the effect of age on the risk of death in this pathology may be independent
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of the level of clinical progression. Older patients at first symptoms have a higher risk of death. As well,

with or without adjustment for dysphagia, there was no evidence of difference of death risk according

to MSA diagnosis subtype (HR = 1.081, 95%CI = 0.857,1.363 without dysphagia, HR = 1.132, 95%CI

= 0.889,1.441 with dysphagia). Furthermore, the higher risk of death of probable cases was slightly

attenuated when accounting for the level of dysphagia impairment (from HR = 1.864, 95%CI = 1.398,2.485

without dysphagia to HR = 1.376, 95%CI = 1.026,1.844) with adjustment for. This was expected as we

saw that probable patients had a significantly higher level of dysphagia than possible patients (Figure 3).

Finally, the association between sex and risk of death was not substantially changed when adjusting for

the underlying level of dysphagia (HR = 0.887, 95%CI = 0.713,1.103 without adjustment to HR = 0.827,

95%CI = 0.660,1.036 with adjustment for dysphagia).

[Table 3 about here.]

4.3.1 Goodness-of-fit assessment

The goodness-of-fit of the final model was investigated using two graphical tools:

• for the survival submodel, we generated 500 samples from the fitted joint model and compared the

distribution of the corresponding predicted survival curves with the one observed in the original

sample. As shown in Figure S1 in supplementary materials, the survival curves predicted by the

model were very close to the observed one, showing how the joint model adequately fitted the

time-to-event data.

• for the longitudinal submodel, we computed the predicted item values derived from the estimated

joint model, and compared the mean trajectory of these predictions with the mean trajectory of the

observations by splitting time into 1-year intervals. The predicted item values were obtained by (i)

predicting the patient-specific vector of random effect as the mode of the posterior distribution of the

random effects given the patient observations, and (ii) computing the expected item level according

to the predicted patient-specific random-effect. As shown in Figure S2 in supplementary materials,

the predicted item mean trajectory was close to the observations, illustrating the adequacy of the

estimated model to the longitudinal data.

5 Concluding remarks

The joint modelling of longitudinal data and time-to-event data has become a standard methodology

to address the problem of informative dropout and more generally investigate the association between

longitudinal markers and clinical events [32]. In this work, we have shown how this methodology could be

extended to longitudinal data of different natures by separating the longitudinal model for the quantity
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of interest defined as a latent process from the measurement model that links the quantity of interest to

its repeated observations. This model thus naturally handles univariate or multivariate markers of the

same underlying quantity but also continuous (Gaussian or not) or discrete markers. Specific examples

include the case of a unique continuous Gaussian marker which corresponds to the classical joint model

framework [7] or the case of various ordinal items measuring the same underlying construct. In the latter

case, the longitudinal submodel is a dynamic Item Response Theory (IRT) submodel (see [23, 33] in

this special issue). Although not of importance in the application to MSA, the methodology also handles

competing risks of events, a situation which is often encountered in cohorts when different types of clinical

progression and/or dropout may occur (e.g., types of recurrence in cancer research, multiple causes of

death).

All joint models assume a given structure of correlation between the longitudinal data and the time-

to-event data. In the literature, two main structure types can be found, the shared random-effect models

which consider that the random effects from the longitudinal model capture all the correlation between the

longitudinal process and the time-to-event process, and the joint latent class models which assume that a

latent group structure captures all the correlation between the two processes [9]. In this work, we chose

to focus on the extension of the shared random effect joint model which enables an explicit quantification

of the association with hazard ratios, as illustrated in MSA, and which is more often used in practice, and

has been usually favored for treating informative dropout [4, 34]. We refer to Proust-Lima et al. [9] and

R package lcmm [35] for further details on joint latent class models incorporating multivariate outcomes

measuring the same underlying process.

Within the framework of shared random effect joint models, we considered a dependence structure on

the current level of the latent process or on the individual random-effects of the structural longitudinal

model. However, other dependence structures could also be worth exploring such as the current slope of

the latent process, an accumulation of the latent process over time [36] or nonlinear functions of them [26].

The choice of the dependence structure depends on the application framework and is part of the model

specification and building. The R-package JLPM is still under development to provide more options for

the dependency structure between the two processes.

For simplicity, we described the methodology of the latent process model under the assumption of

measurement invariance. A lack of measurement invariance can occur when markers present a different

functioning according to a specific covariate (called Differential Item Functioning in IRT literature) or

according to time (called response shift in IRT literature). Such lack of invariance can be explored with

our methodology and is implemented in the software solution. We refer to another paper in this special

issue for further details [37].

To conclude, measurement scales and questionnaires become more and more central in health studies

to measure the physical, mental or psychological state of patients. With this joint model implemented in
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the R-package JLPM, we provide a new and relevant solution to study their trajectories over time and

their association with events of interest.

Funding This work was funded by the French National Research Agency 455 (Project DyMES - ANR-

18-C36-0004-01).
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[9] C. Proust-Lima, M. Séne, J. M. G. Taylor, H. Jacqmin-Gadda, Joint latent class models for longitu-

dinal and time-to-event data: a review, Statistical Methods in Medical Research 23 (1) (2014) 74–90,

number: 1. doi:10.1177/0962280212445839.

[10] B. He, S. Luo, Joint modeling of multivariate longitudinal measurements and survival data with

applications to Parkinson’s disease, Statistical Methods in Medical Research 25 (4) (2016) 1346–

1358. doi:10.1177/0962280213480877.

[11] J. Wang, S. Luo, Joint modeling of multiple repeated measures and survival data using multidimen-

sional latent trait linear mixed model, Statistical Methods in Medical Research 28 (10-11) (2019)

3392–3403. doi:10.1177/0962280218802300.
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Simulation study with shared current level

This second simulation study illustrates the performances of the joint model in the case of current level

dependency structure.

Simulation design

We considered the setting of the time to a unique cause of event, and the repeated measures to 4 ordinal

markers measuring the same underlying construct. The longitudinal part constitutes a dynamic Item

Response Theory model for graded responses (see [23] in the same special issue). The longitudinal and

survival processes were associated through the current latent process level (i.e., dependence structure

defined in Equation (8)).

We simulated 500 samples of 300 subjects each. The structural model for the underlying process

consisted in a linear function of time at the population (βL = (0, 1)>) and individual level (B =
(
1 0
0 0.2

)
).

The time-to-event was defined by a Weibull baseline risk function λ0(t;ψ) = ψψ2
1 ψ2t

ψ2−1 with ψ1 =

0.2, ψ2 = 5. The unique linear predictor was the current level of the underlying process with an association

parameter fixed to α = 0.1.

Visit times were generated every year (or time unit) from year 0 and up to the minimum between

year 4 (administrative censoring) and the time-to-event. A delayed entry was generated to translate

an individual-specific time of entry (year 0). To do so, we generated individual time-of-entry from a

continuous uniform distribution defined on the interval [0,2]. This lead to a time-of-entry mean around

1.00 (SD=0.58), 26.07% of censoring on average and 3.45 repeated measures of each marker on average.

The 4 markers had 4 ordinal levels each. The marker data were generated according to equation (5) with

thresholds η1 = (0.5, 1, 1.5)>, η2 = (0.25, 0.75, 0.8)>, η3 = (0.1, 0.2, 0.4)> and η4 = (0.2, 0.4, 0.8)> and

measurement error variances fixed to σ = 1.

Results

We report in Table S1 the mean estimate, relative bias, variance estimate (empirical or asymptotic) and

the coverage rate of the 95% confidence interval for each parameter. The estimation procedure provides

very good results on this example: for all parameters, the bias is negligible, the mean asymptotic variance

is close to the empirical variance, and the coverate rate of the 95% confidence interval is very close to the

nominal value.
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Table S 1: Summary on 500 replicates of the estimation of a joint model with 4 repeated ordinal markers
and 1 event with latent process current level dependency structure on samples of 300 individuals.

parameters true mean relative empirical mean asymptotic 95%CI
value estimate bias standard standard coverage

(in %) deviation deviation rate (in %)

survival model
baseline risk function (Weibull)

scale
√
ψ1 0.447 0.448 0.1 0.008 0.008 93.6

shape
√
ψ2 2.236 2.252 0.7 0.069 0.070 95.2

association parameter, α 0.100 0.099 -1.2 0.044 0.044 93.8
structural model

adjustment covariates, βL

intercept 1.000 - - - - -
time 1.000 1.023 2.3 0.137 0.131 93.8

random effect covariance parameters, B
choleski 0 1.000 - - - - -
choleski 1 0.000 0.013 - 0.078 0.076 92.6
choleski 2 0.447 0.445 -0.6 0.073 0.068 90.6

outcome-specific measurement model
thresholds for items

item 1
η11 0.500 0.516 3.3 0.138 0.130 94.4
η12* 0.707 0.712 0.7 0.053 0.052 94.6
η13* 0.707 0.711 0.6 0.054 0.051 94.0

item 2
η21 0.250 0.262 4.8 0.126 0.124 95.0
η22* 0.707 0.714 0.9 0.053 0.052 94.4
η23* 0.224 0.220 -1.5 0.041 0.041 94.0

item 3
η31 0.100 0.111 10.6 0.126 0.125 95.0
η32* 0.316 0.320 1.1 0.047 0.046 94.2
η33* 0.447 0.449 0.3 0.049 0.047 93.2

item 4
η41 0.200 0.206 3.0 0.126 0.123 93.6
η42* 0.447 0.454 1.6 0.046 0.047 94.0
η43* 0.632 0.638 0.8 0.051 0.050 95.0

standard deviation from measurement error, σ
item 1 1.000 1.017 1.7 0.132 0.126 93.8
item 2 1.000 1.018 1.8 0.132 0.125 93.4
item 3 1.000 1.016 1.6 0.136 0.128 93.0
item 4 1.000 1.024 2.4 0.125 0.126 95.0

* squared root of the increment
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Additional figures and tables for the MSA application

Figure S 1: Survival submodel fit assessment through a graphical comparison between the observed
survival curve and the predicted survival curves on 500 samples simulated from the fitted joint model.
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Figure S 2: Longitudinal submodel fit assessment through a graphical comparison between the observed
item means and the predicted item means over discretized time.
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Estimates of the shared random effect joint model in MSA application
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Table S 2: Estimates of the shared random effect joint model in the MSA application to describe
dysphagia progression (5-level ordinal item) and its strength association with death (more details about
the model specification can be found in section 4.2).

parameters estimate standard error p-value

survival model
baseline risk function, ψ

splines 1 0.000 0.053 1.00
splines 2 -0.090 0.149 0.54
splines 3 0.262 0.062 <0.001
splines 4 0.464 0.097 <0.001
splines 5 -0.385 0.133 <0.001
splines 6 0.261 0.363 0.47
splines 7 0.389 0.337 0.25

linear predictors, βS

sex, female -0.190 0.115 0.10
age 0.269 0.072 0.04
diagnosis, MSA-P 0.124 0.123 0.31
certainty, probable 0.319 0.150 0.03
association α 1.328 0.192 <0.001

structural model
adjustment covariates, βL

intercept 0 - -
time 0.214 0.062 <0.001
time2 -0.005 0.004 0.19
sex, female -0.076 0.152 0.62
age 0.073 0.111 0.51
diagnosis, MSA-P 0.199 0.157 0.20
certainty, probable -0.421 0.216 0.05
time : sex, female 0.021 0.045 0.64
time : age 0.031 0.033 0.35
time : diagnosis, MSA-P -0.034 0.046 0.47
time : certainty, probable 0.155 0.064 0.01
time2 : sex, female 0.000 0.003 0.97
time2 : age -0.002 0.002 0.23
time2 : diagnosis, MSA-P 0.000 0.003 0.97
time2 : certainty, probable -0.006 0.004 0.11

random effect covariance parameters, B
choleski 0 1 - -
choleski 1 -0.242 0.018 <0.001
choleski 2 0.091 0.020 <0.001
choleski 3 0.009 0.001 <0.001
choleski 4 -0.004 0.002 <0.001
choleski 5 0.000 0.001 0.15

outcome-specific measurement model
thresholds for the item
η1 0.402 0.215 0.06
η2* 0.788 0.040 <0.001
η3* 0.761 0.040 <0.001
η4* 0.872 0.051 <0.001

standard deviation from measurement error
σ 0.343 0.038 <0.001

* squared root of the increment
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Figure 1: Schematic diagram of the joint model structure for K repeated markers measuring the same
construct and a time of event (possibly of multiple causes)
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Figure 2: Schematic diagram of the shared random effect joint model applied to MSA dysphagia study,
along with observed individual observed trajectory of dysphagia, and Kaplan-Meier estimate of survival
probability (N=634)
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Figure 3: Mean trajectories of dysphagia item predicted by the shared random effect joint model
according to the four main covariates (sex, age at first symptoms onset, MSA subtype and certainty
degree of diagnosis). The reference profile is a male patient, 60 years old at first symptoms onset,
diagnosed MSA-C with possible certainty. Shades represent the 95% confidence intervals obtained by
Monte Carlo approximation with 1000 draws. The reported p-values are those of Wald tests for the
association at inclusion and the association with the functions of time.
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Table 1: Summary on 500 replicates of the estimation of a joint model with 4 markers (2 ordinal and 2
Gaussian) and 2 competing events with shared random effect dependency structure on samples of 300
individuals.

parameters true mean relative empirical mean asymptotic 95%CI
value estimate bias standard standard coverage

(in %) deviation deviation rate (in %)

survival model
baseline risk functions(Weibull)

cause 1
scale

√
ψ11 0.447 0.447 0.0 0.004 0.004 94.0

shape
√
ψ12 2.236 2.249 0.6 0.087 0.085 94.8

cause 2
scale

√
ψ21 0.445 0.445 0.0 0.003 0.003 94.4

shape
√
ψ22 2.828 2.856 1.0 0.109 0.112 95.0

association parameters
cause 1
α1,intercept 0.100 0.112 12.0 0.111 0.116 96.0
α1,slope 0.200 0.183 -8.4 0.276 0.258 93.4

cause 2
α2,intercept 0.300 0.318 6.0 0.143 0.140 95.8
α2,slope 0.200 0.200 0.0 0.302 0.294 95.6

structural model
adjustment covariates, βL

intercept 0.000 - - - - -
time 1.000 1.005 0.5 0.079 0.078 93.8

random effect covariance parameters, B
choleski 0 1.000 - - - - -
choleski 1 0.000 0.007 - 0.047 0.039 87.4
choleski 2 0.447 0.449 0.4 0.044 0.039 92.0

outcome-specific measurement model
thresholds for discrete markers

marker 1
η1,1 0.500 0.496 -0.9 0.110 0.104 93.2
η1,2* 0.707 0.708 0.1 0.042 0.042 95.4
η1,3* 0.707 0.711 0.5 0.041 0.041 94.6

marker 2
η2,1 0.250 0.250 -0.1 0.112 0.104 93.8
η2,2* 0.707 0.705 -0.2 0.044 0.044 94.0
η2,3* 0.224 0.221 -1.3 0.038 0.038 94.4

parameters for Gaussian markers
marker 3
η3,1 1.000 0.101 0.1 0.035 0.034 94.6
η3,2 0.400 0.400 -0.1 0.028 0.028 93.8

marker 4
η4,1 2.000 2.001 0.0 0.017 0.017 95.2
η4,2 0.200 0.200 -0.1 0.014 0.014 94.0

standard deviation from measurement error, σ
marker 1 1.000 1.006 0.6 0.084 0.085 95.2
marker 2 1.000 0.998 -0.2 0.090 0.090 94.2
marker 3 1.000 1.008 0.8 0.078 0.077 93.4
marker 4 1.000 1.005 0.5 0.077 0.077 95.0

* squared root of the increment
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Table 2: Description of the MSA sample at entry and over time (N=634)

Characteristic N (%) mean ± sd

At entry
Sex

Male 311 (49.05%)
Female 323 (50.95%)

Center
Bordeaux 320 (50.47%)
Toulouse 314 (49.53%)

Diagnosis
MSA-C, with predominant cerebellar impairment 215 (33.91%)
MSA-P, with predominant parkinsonism 419 (66.09%)

Diagnosis certainty
Possible 151 (23.82%)
Probable 483 (76.18%)

Age at first symptoms onset 60.48 ± 8.32
Age at entry 65.06 ± 8.19
Years since first symptoms onset 4.58 ± 2.61
Dysphagia item 1.16 ± 0.98

0. Normal 180 (28.39%)
1. Mild impairment 242 (38.17%)
2. Moderate impairment 139 (21.92%)
3. Marked impairment 62 (9.78%)
4. Nasogastric tube or gastrostomy feeding 6 (0.95%)

During follow-up
Visits with dysphagia item completed 1819 (98%)
Dysphagia item observations per patient 2.87 ± 2.09
Years of follow-up 6.94 ± 3.34
Patients with nasogastric tube or gastrostomy feeding 31 (4.89%)
Drop-out 113 (17.82%)
Death 329 (51.89%)
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Table 3: Hazard ratios for the risk of death in proportional hazard models when accounting or not for
the progression of dysphagia over time (N=634)

Hazard ratios [95%CI]
Covariate, modality (reference modality) Without dysphagia With dysphagia

Sex,
Women (ref Men) 0.887 [ 0.713 ; 1.103 ] 0.827 [ 0.660 ; 1.036 ]

Age at first symptoms onset,
10 years gap (ref 60 years old) 1.215 [ 1.063 ; 1.388 ] 1.160 [ 1.007 ; 1.337 ]

Diagnosis,
MSA-P (ref MSA-C) 1.081 [ 0.857 ; 1.363 ] 1.132 [ 0.889 ; 1.441 ]

Diagnosis certainty,
Probable MSA (ref Possible MSA) 1.864 [ 1.398 ; 2.485 ] 1.376 [ 1.026 ; 1.844 ]

Current level of dysphagia,
unit = 1 SD at first symptoms - 3.773 [ 2.588 ; 5.501 ]
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