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New approach of diffraction of electromagnetic waves by a
rough surface

Jean Chandezon, Jean-Pierre Plumey

Clermont Université, Université Blaise Pascal, Institut
Pascal, 4 Avenue Blaise Pascal, TSA 60026, CS 60026,
F- 63178 Aubière CEDEX. CNRS, UMR 6602

jean.chandezon@univ-bpclermont.fr

We consider the diffraction of a plane wave by a rough
surface. In the sake of simplicity the study is restricted
to the case of perfectly conducting surfaces. Solving this
problem is only possible by limiting the infinite rough
surface to a window of width D. We show that we can
obtain the diffraction pattern at infinity in the Fraunhofer
zone from the modeling of diffraction by a grating with
period D whose elementary pattern coincides with the rough
surface in the window D. We give some numerical results
for triangular profiles or rectified cosine. We show that
for small heights we find that the most widely Kirchhoff
approximation is very well checked. This modeling can be
applied to Fraunhofer diffraction problem by a non-planar
metal strip and the complementary problem of diffraction
by a perfectly conducting screen, infinitely thin and with a
slit of one or more periods.

OCIS codes: (290.5880) Scattering, rough surfaces,
(050.0050) Diffraction and gratings, (260.2110) Electro-
magnetic optics, (260.0260), Computational electromag-
netic

I. INTRODUCTION

The problem of diffraction of electromagnetic waves by
rough surfaces occurs in many areas: optics, radar detec-
tion, telecommunications and more recently in computer
graphics for the characterization of textures of materials. If
diffractive surfaces are perfectly conducting, the equations
of the problem are dimensionless and therefore apply
regardless of the frequency used.

According to the geometric nature of the surface meth-
ods used to solve are of different types depending on
the value of the radius of curvature with respect to the
wavelength. They appeal to geometrical optics for very
large radii of curvature, physical optics or geometrical
theory of diffraction for large curvatures and electromag-
netism to the curvatures of the order of magnitude of the
length wave. Scalar Kirchhoff approximation theory (KA)
is the most widely used theory in the wave scattering
from rough surfaces [1,2,3]. The reason is that it is
easily understandable physical basis and leads to relatively
simple analytical expressions for scattered field amplitudes
(in some important limits). The basic feature of the theory
is the assumption that the wave field on the surface of
a scatterer is approximated as follows: each point of the
surface is considered as a point of an infinite plane surface
parallel to the local tangent surface.The interaction of the
wave field with the surface is treated as the interaction of

that field with that plane surface. The KA method gives
good results in a rather large domain, but when the rough-
ness becomes large, it appears multiple reflections; then
it’s necessary to use rigorous electromagnetic methods. In
this paper, we propose a new approach to this problem
in the resonant domain based on the resolution of the
diffraction gratings, surfaces for which there are rigorous
numerical models and computer gratings codes (GC) very
effective. For the sake of simplicity we have chosen to
limit our study to perfectly conducting surfaces.

Our results concern the diffraction of a plane wave by
a window of width D of a rough surface. They also apply
to the case of diffraction by a metal ribbon of width D
and the complementary problem (Babinet’s theorem) of
the diffraction by an infinitely thin metallic grating with a
slit of width D. In the case of surfaces with low roughness
height we show that one finds well the results given by
KA.

In the first part we recall the basic principles of the study
of diffraction by gratings and in the second, those of the
aperiodic diffraction surfaces. In the third and in the fourth
part we propose a new approach to numerical modeling of
the diffraction of a plane wave by a rough surface. In the
fifth part we give some numerical results which show that
the proposed method, although much more general, is in
perfect agreement with (KA).

II. DIFFRACTION BY A GRATING

Figure 1. Diffraction by a grating

Diffraction of a plane wave by a grating

Let us consider a grating whose surface coincides with
a cylindrical surface, described in rectangular Cartesian
coordinate system Oxyz by a periodic profile function
y = ha(x) with period d (Fig. 1). The grating is illu-
minated from the vacuum by an incident monochromatic
plane wave with wavelength λ under the incident angle θ0.
The time dependance is ∂/∂t→ iω where ω is the angular
frequency [2,4,5]. Although the method is applicable to
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any grating, for the sake of simplicity, we consider only
the case of perfectly conducting grating.

For 2D problems (∂/∂z → 0) there are two kinds of
solutions TE and TM. In both cases the electromagnetic
field is completely determined by the knowledge of its
component along Oz; we note that component F with F =
Ez for TE mode and F = Hz for TM mode. In the classic
problem the grating is illuminated by one normalized plane
wave, under incidence θ0: F−(x, y) = e−ikα0xe−ikβ0y .
Above the grating, y > max(ha(x)), the diffracted wave
has the form of a Rayleigh development which consists of
a sum of plane and evanescent waves

F+(x, y) =
∑+∞
n=−∞A+

n e
−ikαnxe−ikβny

with αn = α0 + nλd

. (1)

If |αn| ≤ 1 then A+
n correspond to outgoing propagating

plane wave with angle θn so that αn = sin θn+nλ/d with
n ∈ U :

U =

{
n ∈ Z|

∣∣∣∣sin θ0 + n
λ

d

∣∣∣∣ < 1

}
. (2)

If |αn| > 1 then A+
n correspond to an evanescent wave.

With our notations the propagation constant βn according
to Oy is given by:

βn =

{√
1− α2

n = cos θn if |αn| ≤ 1

−i
√
α2
n − 1 if |αn| > 1

. (3)

Far from the grating, in the Fresnel zone, evanescent
waves vanished, the diffracted field is only composed of
a finite set of plane waves with angles θn

F+(x, y) =
∑
n∈U

A+
n e
−ik sin θnxe−ik cos θny. (4)

The boundary conditions on the grating surface are used
to calculate the diffracted amplitudes A+

n in the directions
θn and therefore efficiencies in these directions: En =
|A+
n |

2
cos θn/ cos θ0.

For numerical modeling we use the C-method or Chan-
dezon method [6,7,8,9] developed in our Laboratory from
the late 70s. This is a differential method of solving
Maxwell’s equations in a curvilinear translation coordi-
nates system (u, v) adapted to the geometry of the surface
such that the surface v = 0 coincides with the grating
surface.

The extended grating problem

In fact, numerical modeling gives the solution of a more
general problem called here extended grating problem
(EGP), where the incident wave is not a single plane wave,
but a discrete sum of plane propagating waves or evanes-
cent waves according αn correlated with each other, with
complex amplitudes A−n , whose αn propagation constants
obey to grating equation (Eq. (2)) . For y > max(ha(x))
the total field is written

F (x, y) =

+∞∑
n=−∞

A−n e
−ikαnxe+ikβny

+

+∞∑
n=−∞

A+
n e
−ikαnxe−ikβny. (5)

The first sum represents the incoming waves and the
second outgoing waves. In the numerical approximation
of order M with −M ≤ n ≤ +M we keep only
2M+1 terms in this development. The writing of boundary
conditions on the surface y = ha(x) allows to determine
the linear relationship between the 2M + 1 amplitudes of
the incoming waves A−n assumed to be known, and those
of the 2M + 1 amplitudes of outgoing waves A+

m

A+
n =

+M∑
m=−M

Sm,nA
−
m. (6)

The S matrix with elements Sm,n is the diffraction
matrix associated to the profile for incident direction θ0.

If we are only interested by the far field this matrix is
restricted to real orders, it is denoted S∞ with elements
Sm,n where m,n ∈ U . We can then write

A+
n =

∑
m∈U

Sm,nA
−
m, with:m,n ∈ U. (7)

the knowledge of S∞ is sufficient to determine the far
field diffracted by the grating if we know the incident far
field. It is not possible to calculate directly S∞ but only
S. After normalization, efficiencies or energy distribution
between the different directions are given by

En,m = A+
n,mA

+
n,m (8)

Quantity En,mcorresponds to the diffracted energy in
the direction θn when the grating is illuminated by a plane
wave in the direction θm.

Diffraction of a beam by a grating
In the most general problem only a finite portion of the

grating is illuminated by the incident wave which is then
a beam consisting of a continuous sum of plane waves

F−(x, y) =

ˆ +1

α=−1
A−(α)e−ikαxe+ikβydα. (9)

A plane wave with incidence θ0 is a particular case of
beam for which A−(α) = δ(sin θ0 − α) where δ(x) is a
Dirac function.

The diffracted wave is also a beam including propagat-
ing and evanescent waves

F+(x, y) =

ˆ +∞

α=−∞
A+(α)e−ikαxe−ikβydα. (10)

Solving the problem is to determineA+(α) fromA−(α)
assumed known. This can be done by discretizing α
from an origin α0 with a regular spacing ∆α where
∆α = ∆(sin θ) is the chosen angular resolution. Calcu-
lations are then made with the GC for the EGP for all
associated α0 +n∆α incidences. This rigorous resolution
takes into account diffraction of all the grating patterns.
In the following we propose a method of resolution to
consider only a single pattern of the grating.
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Figure 2. Diffraction by a rough surface

III. DIFFRACTION OF A PLANE WAVE BY AN
APERIODIC SURFACE

Problem formulation

We consider an aperiodic infinite rough surface Σ (Fig.
2), perfectly conducting, with profile y = ha(x) − y0 on
which apply the boundary conditions between the incident
and the diffracted field. The dimensionless function a(x)
is normalized such that max(a(x))−min(a(x)) = 1. The
parameter h is the maximum amplitude of the modulation.

The plane surface origin y = 0 is chosen so as
to be immediately above the rough surface then y0 =
h max(a(x)).

We are looking for the diffracted field F+(x, y) by Σ
illuminated by the incident wave F−(x, y). In Cartesian
coordinates the most general solution of Maxwell’s equa-
tions in the half space y > 0 above Σ is a beam which is
written in the integral form

F±(x, y) =

ˆ +∞

α=−∞
A±(α)e−ikαxe∓ikβydα, (11)

with α2 + β2 = 1 and where F±(x, y) is the compo-
nent of the electromagnetic field along Oz. The ± sign
corresponds respectively to outgoing or incoming waves.
If |α| ≤ 1 then A±(α) corresponds to an outgoing or
incoming plane propagating wave according to the θ angle
with α = sin θ and if |α| > 1 to an evanescent or
anti-evanescent wave whose propagation constant β along
Oy is given by Eq. (2) . At infinity it remains only the
propagating waves for which |α| < 1.

In the surface y = 0, the field is

F±(x) =

ˆ +∞

α=−∞
A±(α)e−ikαxdα. (12)

Amplitudes A±(α) are Fourier transform of the field
for y = 0

A±(α) =
1

λ

ˆ +∞

x=−∞
F±(x)e+ikαxdx. (13)

The energy radiated by each of the plane waves with
angle θ which compose the diffracted beam can be written

E (θ) = A+(θ)A+(θ). (14)

Solving the problem of diffraction by the rough surface
is, writing the boundary conditions, to determine A+(α)
knowing A−(α).

Classical methods

Most of the time, the problem of diffraction by an
aperiodic surface is modeled by the methods of physical
optics like KA [1,2] which is to assume that the surface
can, at any point, be represented by its plane tangent
surface and calculating the wave diffracted by the plan
from the Fresnel coefficients. KA gives very good results
for the roughness of low amplitude and low slope ie when
there are no multiple reflections.

In the case where the dimension of the roughness is of
the order of the wavelength, and where there are multiple
reflections, it is necessary to use a much more expensive
electromagnetic theory in calculation time. In this domain
we find many works [10-14].

Maystre et al [15] showed that in their opinion, there
are three main methods to solve this problem:

1) to consider that an aperiodic surface is the limit,
when the period tends to infinity, of a periodic
surface leading to periodize the surface and then
solve the problem like a diffraction grating. The
grating program gives only a finite and discrete
set of diffraction directions angularly separated by
∆ sin θ = λ/D . Therefore, we are led to select
a large period to limit the interpolation problems
between calculation points.

2) to illuminate by a plane wave over a window of
width L of the surface and then solve the problem
with a GC considering the incident truncated plane
wave as a beam.

3) to illuminate the window L with a Gaussian beam
for example, for having an illumination which tends
to zero at the edges of the window. In fact this
method is a generalization of method 2 to arbitrary
beams.

To these three cases, we can add the canonical problem
of diffraction of a plane wave by a plan locally deformed
where, most of the time, the proposed solutions are type
1. There is an additional difficulty which is the response
of the deformation is embedded in the specular reflection
of the plane mirror. Then it is necessary to subtract
the response of plane mirror to the found solution. The
numerical experiment shows that this method is rapidly
becoming unusable when the height h increases.

Finally, in all cases, the problem is solved by a pe-
riodization then, in addition to the desired solution, this
method introduces the influence of multiple diffractions
between all patterns of the grating associated with Σ.
The influence of these multiple diffractions increases very
rapidly with h which limits the field of application of these
methods. One way to eliminate the influence of multiple
diffractions is to introduce between the patterns an area
where we place a fictitious material (PML) eliminating
the couplings between the patterns [16].

As for us we propose an interpolation method which
easily suprime the multiple diffractions with an optimal
modeling of the problem. In the limiting case where the
period tends to infinity we find method 1.
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IV. NEW APPROACH TO DIFFRACTION BY AN
APERIODIC SURFACE

Discrete approximation of the electromagnetic field

Except for trivial case h = 0, where the surface is a
plane mirror there is no analytical solution; then we are
led to replace the original continuous problem in α by a
discrete problem by discretizing α and then amplitudes
A±(α) of incident and diffracted fields. By assumption,
samples An = A(αn) are taken regularly according to
the variable α posing αn = α0 + nλ/D where D is a
parameter that has the dimension of a length.

Around an arbitrary origin according to x, de-
fine a spatial window D̃ (Fig. 2 ) such as D̃ =
{x ∈ R | −D/2 < x < +D/2}. Consider the electro-
magnetic field F0(x) = F (x, y = 0) in the plan y = 0, the
discrete representation of the field transforms the aperiodic
function in a periodic function of period D

F0(x) =
λ

D

+∞∑
n=−∞

Bne
−ikαnx, x ∈ R. (15)

On the other hand we put

FD(x) = Π(x/D)F0(x), (16)

where Π(x) is the rectangular function

Π(x) =

{
1 |x| ≤ 1

0 |x| > 1
. (17)

FD(x) is a function that is zero outside of x ∈ D̃ written

F0(x) = FD(x) + (1−Π(x/D))F0(x). (18)

The field FD(x), can be represented by a Fourier series{
FD(x) = λ

D

∑+∞
n=−∞Bne

−ikαnx if x ∈ D̃
FD(x) = 0 if x /∈ D̃.

(19)

Profile representation

We have shown that after discretization the modeled
electromagnetic field is periodic with period D; this
implies that the geometry that is involved in numerical
modeling is also periodic of period D. This leads to build
from an aperiodic surface Σ a periodic associated surface
Σ′ which coincides with Σ in D̃. It is this surface Σ′

with elementary pattern ΣD for x ∈ D̃ which is taken
into account in the modeling. Therefore, the numerical
modeling is totally identical for all surfaces Σ coinciding
in D̃ leading to the same surface Σ′. This applies in
particular to the following three cases:
• diffraction by a locally deformed plan surface defined

by y = f(x) = Π(x/D)ha(x) (outside D̃ the surface
Σ is a plan),

• diffraction by a metallic ribbon of width D where
there is no diffraction outside D̃,

• diffraction by only one pattern of a periodic surface,
ie a grating, so that y = f(x+D) = f(x).

As we have rigorous programs GC for the diffraction of
a plane wave by gratings ie for periodic surfaces Σ′. It
is from GC that we will deduct the diffraction in the
window D̃ of the rough surface Σ. This model gives

the diffracted energy only for λ/D. If the GC is used
to calculate additional points for truncated plane wave,
additional rigorous results are valid for the infinite grating
and do not affect the problem for a single patternΣD. If,
for example, calculations are made to values such that
∆α = λ/2D the new results concern a 2D wide window
that takes into account the multiple diffractions between
two consecutive patterns ΣD of Σ′ .

Above the associated grating to Σ, for y > 0, the
electromagnetic field is written in the form of Rayleigh
development Eq. (5). For y = 0 coefficients A+

n of
Rayleigh development given by the GC coincide with
Bn Eq. (19). If we know all A+

n then we know, in the
approximation λ/D the diffracted field at any point of D̃
for y > 0.

The different domains for the electromagnetic field

The modeling gives the value of the field in D̃. As in
antenna theory [17] according to the value of y, different
domains can be defined for the electromagnetic field:
• the field inside roughness for ha(x) < y < 0

which is expressed analytically in terms of curvilinear
translation coordinates (u, v) of C-Method,

• the near field for 0 ≤ y . 3λ which is expressed in
Cartesian coordinates system as the sum of plane and
evanescent waves,

• the far field for 3λ . y . D2/λ (Fresnel domain)
which is expressed as a finite sum of plane waves
which interfere with each other,

• the field at infinity for y � D2/λ (Fraunhofer
domain ) where there is no interference at all, in any
point the wave is locally a plane wave.

In Fraunhofer domain, at a point P located at the distance
r from the origin, in the vicinity of normal incidence the
width D of the diffractive element is seen under the angle
φ ' D/r. If φ� λ/D ie r � D2/λ then the diffracting
element is seen as a point in the retaining approximation.
As a result, the diffracted wave by this element is locally
plane in the vicinity of P and it propagates in the direction
θ, it is then written

rF (−→r ) = A(θ)e−i
−→
k .−→r si r � D2/λ. (20)

This expression is valid for any point at the distance r
from the origin including outside the windowD̃, it is an
extrapolation relationship for the field. As it is usual in
the antenna theory, for a given r , all the points of the
diffracting object being at the same distance r, amplitudes
A(θ) are in phase. On the other hand due to the energy
conservation field amplitude decreases as 1/r.

V. NUMERICAL MODELING

In all that follows the incident field consists of a
single plane wave with incidence angle θ0. We choose
an angular resolution ∆ sin θ = λ/D, numerical modeling
is made from our GC for a grating with period D, whose
elementary pattern ΣD coincides with Σ in D̃. In Fig. 3 the
surface Σ is a plan surface with a triangular deformation.
We solve the EGP by writing the boundary conditions on
the periodic surface y = ha(x).
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Figure 3. Diffraction of a beam by a grating

Incident field

For y = 0 the incident plane wave F−0 (x) = e−ik sin θ0x

is divided into two parts: the fraction that illuminates a
portion of width Li of D̃ centered on the abscissa x = li
and the rest of the plane wave

F−0 (x) = Π(
x− li
Li

)F−0 (x)

+

(
F−0 (x)−Π(

x− li
Li

)F−0 (x)

)
. (21)

The first term represents a pencil of light of width Li,
the second term represents the complete plane wave that
illuminates the entire grating except the window of width
Li (Babinet’s theorem [2]). Each of the two terms of Eq.
(21) forms a beam. Maxwell’s equations are linear, the
solution to the diffraction of the plane wave is the sum of
solutions obtained for each of the terms. What concerns
us here is the solution for the first term, which represents
response of D̃ to excitation by a width of light beam Li
centered at li in the plane y = 0.

In the Fourier space the first term is:

F−Li
(x) = Π(

x− li
Li

)e−ik sin θ0x (22)

=

ˆ +∞

α=−∞
A−(α)e−ikαxdα, (23)

with

A−(α) =
Li
λ

sinc(π(α− α0)Li/λ)e+i2πli/D, (24)

where sinc(x) = sin(x)/x is the cardinal sine. With the
chosen angular resolution using the discretized amplitudes
of the incident wave A−n = A−(αn) are

A−n =
Li
λ

sinc(πnLi/D)e+i2πli/D. (25)

If Li = D all A−n are equal zero except for n = 0

Diffracted field by D̃

For periodic problem associated with D̃, above the
grating (y > 0 ) the diffracted field is written in the form
of a Rayleigh development [4]. As we are concerned only
by the field to infinity we restrict this development only
to plane waves

F+
∞(x, y) =

∑
n∈U

A+
n e
−ikαnxe−ikβny. (26)

In the plane y = 0, each of the plane waves of this
development can be considered as the sum of a truncated
plane wave F+

(D),nof width D and the rest of the plane
wave. For each diffraction order, we can write

F+
(D),n(x) = Π(

x

D
)A+

n e
−ikαnx, (27)

let, in the Fourier space

F+
(D),n(x) =

ˆ +∞

α=−∞
A+
n (α)e−ikαxdα, (28)

with

A+
n (α) = A+

n

D

λ
sinc (π(α− αn)D/λ) . (29)

A priori modeling gives the electromagnetic field only
in the windowD̃ however, to a point at infinity in the
Fraunhofer domain at the distance r of origin the diffracted
field by D̃ can be considered as the radiation of a
diffracting point located at the origin O; we can then think
that we may use the above equation to calculate the field
by extrapolation to infinity in the form of a locally plane
wave Eq. (20)). In the Fraunhofer domain the amplitude of
the plane wave at a point P is the sum of all contributions
of each order diffracted by the grating

A+(α) =
∑
n∈U

A+
n

D

λ
sinc (π(α− αn)D/λ) , (30)

let

A+(θ) =
∑
n∈U

A+
n

D

λ
sinc (π(sin θ − sin θn)D/λ) . (31)

At the angular precision related to D, in Fraunhofer
domain, for a given value of r the energy density radiated
in the direction θ is then

E (θ) = A+(θ)A+(θ). (32)

We note that if θ = θn then A+(θn) = A+
n , diffracted

energy in such direction θn is equal to the efficiency of
the associated grating.

VI. RESULTS

Results are given for an aperiodic surface, we consider
only the window D̃. This surface is illuminated by a plane
wave of incidence θ0, we compute the diffracted wave at
infinity created by only the part of the incident plane wave
that illuminates in a plane y = 0 the part of width Li of
D̃ centered on li(Fig.3).

Principle of calculation

In summary, from the GC the resolution of diffraction
problem by a part of window D̃ of the rough surfaceΣ is
done in five steps:

1) determination of the diffraction matrix S∞(θ0) of
periodized problem with elementary pattern ΣD for
the angular resolution ∆ sin θ = λ/D with incidence
θ0,

2) computation of A−n for the incident plane wave
truncated to width Li centered on a point located
at the distance li of the origin Eq. (24).
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3) computation of A+
n Eq. (7) of the diffracted wave to

infinity by the grating of period D ,
4) calculation of the analytical expression of the

diffracted amplitude A+(θ) by interpolation in car-
dinal sine from A+

n computed in step 3, Eq. (30),
5) calculation of the angular distribution of diffracted

energy E (θ) normalized with respect to energy of
the incident beam where angles are given in degrees.

Diffraction by a deformed plane surface

Deformation of small height in Kirchhoff method do-
main

Figure 4. A plan with a triangular deformation

To be able to simply compare our results with those that
would be obtained in the Kirchhoff method the chosen
deformation ABCDE consists of four line segments Fig.
4. To limit the number of parameters and simplify the
interpretation of results we chose AB=BC’=C’D=DE=b =
3.2λ and a normal incidence θ0 = 0°. The geometrical
optics shows that up to a slope ϕ = 45° there is no
double reflection on the entire pattern, this is the Kirchhoff
domain where we have chosen the first example with h =
1.848λ and ϕ = 30° Fig. 5.

Figure 5. Diffraction for small height h= 1.848λ, (a) diffraction by the
complete pattern, with dotted line diffraction for h = 0, (b) diffraction
by AB, (c) diffraction by BC and (d) diffraction by BD

In this example the two polarizations give practically the
same results. We represent the reflection from the plane
surface D = AE dotted line corresponding to h = 0 and
full line corresponding to the diffraction for both TE and
TM for h = 1.848λ.

• Fig. 5a: the entire pattern is illuminatedby the plane
wave (Li = AE, li = 0) . We note the presence of
three maximum : θ = 0 for the reflections on AB and
DE and two maximum near θ = ±60° for reflection
on inclined plane surfaces CD and BC.

• Fig. 5b: only side AB is illuminated (Li = b, li =
−3/2b), specular reflection is almost perfect.

• Fig. 5c: only the inclined side BC is illuminated
(Li = b, li = −b/2), there again it almost perfectly
specular reflection for incidence of 30 ° which give
θ = 60°.

• In Fig. 5d: both sides BC and CD are illuminated
(Li = 2b, li = 0), once again reflections are around
θ = ±60°

These results show that, as expected, KA is well verified,
replacing the profile by four planar segments led to very
good results.

Deformation with multiple reflections

Figure 6. A plan with a triangular groove

We keep the same geometry but with a hollow defor-
mation Fig.6 that will lead to multiple reflections. The
geometrical optics shows that the double reflection appears
from ϕ = 30°. For ϕ = 45° after a double reflection,
light comes back into the direction of incidence. This phe-
nomenon occurs again at ϕ = 60° after a triple reflection.
The numerical experiment shows that the horizontal faces
AB and DE on which there is no double reflection always
reflect as a horizontal plane mirror. It is for this reason that
we have represented only the reflection on the inclined face
CD (Li = b, li = −b/2) for ϕ = 30°, 45°, 60°, 75°.
• Fig. 7a: ϕ = 30◦, it is observed that the result

is practically the same as in Fig. 5c, there is little
coupling with the other faces.

• Fig. 7b :ϕ = 45° , we observe that, with the double
reflection, as expected, most of the light comes back
into the direction of incidence θ = 0 which is still
the case for ϕ = 60° Fig. 7c.

• Fig. 7d: ϕ = 75° the effects of reflections triple and
quadruple completely distort the specular reflection
by CD and the effects of polarization have a important
effect.

In the last three cases the method Kirchhoff is unable to
correctly model the diffraction.

Diffraction by one or more patterns of a grating

The rough surface Fig.8, is a grating with period d with
a(x) = − |cos(2πx/d)|. We consider a part D = Nd of
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Figure 7. Diffraction of a triangular groove for several values of ϕ,
when only inclined face CD is illuminated, dotted line TE mode, solid
line TM mode.

this grating equal to an integer number of periods. The
selected operating point is in the resonant domain : d =
2.3λ, h = 1.1λ and θ0 = 8°. For this grating there are
four real diffraction orders (-2,-1,0,+1). Efficiencies for
this grating are given in Table 1. We chose this operating
point in the resonant domain to have very different results
in TE and TM.

orders angles efficiencies TE efficiencies TM
-2 -46.92° 0.0491 0.2205
-1 - 17.19° 0.5900 0.0535
0 8.00° 0.2716 0.0703
1 35.03° 0.0894 0.6557

Table I
EFFICIENCIES FOR GRATING WITH PROFILE IN RECTIFIED COSINE

Figure 8. Grating in rectified cosine

Several patterns of the grating are illuminated
We study the diffraction of the fraction of the incident

plane wave that illuminates the calculation window of
width D = Nd = Li with N = 1, 3, 5, 9 respectively
Figs. 9a, 9b, 9c, 9d. We observe the expected result : the
wave is diffracted around the grating diffraction orders
with the more sharp peaks that N is large.

Only one pattern of the grating is illuminated
We study the diffraction where only the central pattern

is illuminated (Li = d, li = 0) among N patterns regarded
in calculation window (D = Nd). In Figs. 10a, 10b, 10c,
10d we see the effect of multiple diffractions which lead
to the deformation of the initial figure obtained for N = 1,

Figure 9. Diffraction of a plane wave by a planar finite surface of width
D = Nd with N=1,3,5,9 identical patterns of width d, doted line TE
mode, solid line TM mode

Fig. 9a. From N = 9, Fig. 10c the diffraction curves do not
vary at all, this shows that from this value of N there is no
coupling between the central motif and extreme patterns.

Figure 10. Diffraction of a truncated plane wave by a surface of width
D = Nd with N = 3, 5, 9, 11 identical patterns of width d where only
the central pattern is illuminated, doted line TE mode, solid line TM
mode. Results for N = 1 are given in Fig. 9a.

Fraunhofer diffraction by a metallic ribbon

We have chosen to determine the diffraction of a portion
of width D of a perfectly conductive surface, the results
relate only diffraction by this surface portion regardless
of what exists outside this window. Hence the Fraunhofer
diffraction pattern obtained is the same that for an in-
finitely thin metal ribbon of width D having the form
of a single grating pattern. By Babinet’s theorem is also
diffraction obtained for the complementary problem with
a perfectly conducting periodic screen where we practiced
a slot of width of one pattern, the diffraction pattern is
then the same as that of the ribbon except for the angles
θn where we find efficiencies for the infinite grating. In
both cases of geometry discussed in this paper results for
the ribbon can be found in Figs. 5a and 9a.
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CONCLUSION

Currently, there are rigorous numerical modeling to
determine the diffraction of a plane wave by a grating. One
may think that the results obtained for a grating formed
by the infinite repetition of an elementary pattern contain
the results of diffraction of the plane wave by only one
of those patterns. We adopted this approach to investigate
the diffraction of a plane wave by a window of width
D of a rough surface considered as single pattern of a
periodic surface with period D. Our numerical results show
that one finds well the expected results that are given by
geometrical optics, the ray tracing and optical physics.

The results of Fig. 5 concerning a weakly modulated
plane surface are in perfect agreement with those provided
by KA which assumes that surface is plane in the vicinity
of each point. When the height of roughness increases,
multiple reflections appear and when both sides of the
pattern are at right angles we find the phenomena of
retro reflection provided by geometrical optics, this phe-
nomenon persists in the resonant domain as can be seen
in Fig. 7.

We used the linearity of Maxwell’s equations to de-
compose the incident plane wave and the diffracted plane
waves as the sum of a truncated plane wave and its
complement. This is in perfect accord with the Huygens
Fresnel principle of assuming that at each point the
wavefront can be considered as the limit of isotropic
radiation point source. If in our modeling we decompose
the incident plane wave into a sum of truncated plane
waves with very small width Li and if then searches the
diffracted wave as the sum of all these contributions then
we found the Huygens Fresnel principle.

A final argument in favor of our approach lies in the
Heisenberg uncertainty principle [18]. If we are interested
in the corpuscular aspect of light it is possible to interpret
the efficiency of a grating such as the probability of finding
in the direction θn an incident photon associated to a
plane wave arriving under the incidence θ0. If one restricts
the study of the diffracted wave only to incident photons
which interact with a single period D of the grating they
are diffracted in a direction θ with a probability density
A(θ)A(θ). There is then a information on the position
of the diffracted photons which come from a point of
the pattern (−D/2 < x < D/2) which, by virtue of
the uncertainty principle, induces an uncertainty in their
direction. In the plan y = 0 the uncertainty relation is
written ∆px.∆x ≥ h where h is Planck’s constant, ∆px
the uncertainty of the momentum of the photon according
Ox and ∆x = D the uncertainty of the position. For
a photon momentum is written p = hν/c = h/λ with
∆px = ∆(p sin θ) = (h/λ)∆ sin θ which leads to an
angular uncertainty ∆ sin θ ≥ λ/D. From the point of
view of the uncertainty principle, once fixed the width
D, to make additional measures for an angular resolution
∆(sin θ) less than λ/D adds no additional information.
It is therefore possible to determine A(θ) only from
measures An = A(θn) made for angles obeying the
grating formula sin θn = sin θ0 + nλ/D, where θ0 is an
arbitrary origin angle.

If the uncertainty principle should be applied to mea-

surements, it also applies to numerical modeling. If we are
looking for the Fraunhofer diffraction pattern of a window
of width D illuminated by a plane wave, all information
that is possible to know is contained in the diffracted
amplitudes in directions θn of associated grating. Make
additional calculations provides no additional information
for diffraction by the window of width D. If, for example,
calculations are made to an angular resolution ∆ sin θ =
λ/2D < λ/D new results obtained are only valid for
L ≥ 2D, they contain the contributions of multiple
reflections between two patterns which is not consistent to
the originally posed problem. If the roughness are of very
low amplitude effect of multiple reflections is negligible
then, in this case, the new calculated points correspond to
the problem initially posed however, the new calculations
are completely useless.

For sake of simplicity we have chosen a perfectly
conducting rough surface, currently, taking in account the
conductivity is not a problem in particular in C-Method.
The extension of the formalism to the finite conductivity
should be done without any difficulty.
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